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Abstract4

Deep neural networks have shown excellent performances in many real-world applications. Unfortunately, they may5

show “Clever Hans”-like behavior—making use of confounding factors within datasets—to achieve high performance.6

In this work, we introduce the novel learning setting of “explanatory interactive learning” (XIL) and illustrate its7

benefits on a plant phenotyping research task. XIL adds the scientist into the training loop, such that she interactively8

revises the original model via providing feedback on its explanations. Our experimental results demonstrate that XIL9

can help to avoid Clever Hans moments in machine learning and encourages (or discourages, if appropriate) trust10

into the underlying model.111

Imagine a plant phenotyping team attempting to characterize crop resistance to plant pathogens. The plant physiol-12

ogist records a large amount of hyperspectral imaging data. Impressed by the results of deep learning in other scientific13

areas, she wants to establish similar results for phenotyping. Consequently, she asks a machine learning expert to apply14

deep learning to analyze the data. Luckily, the resulting predictive accuracy is very high. The plant physiologist,15

however, remains skeptical. The results are “too good, to be true”. Checking the decision process of the deep model16

using explainable artificial intelligence (AI), the machine learning expert is flabbergasted to find that the learned deep17

model uses clues within the data that do not relate to the biological problem at hand, so-called confounding factors.18

The physiologist loses trust in AI and turns away from it, proclaiming it to be useless.19

This example encapsulates a critical issue of current explainable AI [1, 2]. Indeed, the seminal paper of Lapuschkin20

et al. [3] helps in “unmasking Clever Hans predictors and assessing what machines really learn”, however, rather than21

proclaiming, as the plant physiologist might, that the machines have learned the right predictions for the wrong reasons22

and can therefore not be trusted, we here showcase that interactions between the learning system and the human23

user can correct the model, towards making the right predictions for the right reasons [4]. This may also increase the24

trust in machine learning models. Actually, trust lies at the foundation of major theories of interpersonal relationships25

in psychology [5, 6], and we argue that interaction and understandability are central to trust in learning machines.26

Surprisingly, the link between interacting, explaining, and building trust has been largely ignored by the machine27

learning literature. Existing approaches focus on passive learning only and do not consider the interaction between the28

user and the learner [7, 8, 9], whereas, interactive learning frameworks such as active [10] and coactive learning [11] do29

not consider the issue of trust. In active learning, for instance, the model presents unlabeled instances to a user, and30

in exchange, obtains their label. This is completely opaque—the user is oblivious to the models beliefs and reasons for31

predictions and how they change in time, and cannot see the consequences of her instructions. In coactive learning, the32

user sees and corrects the systems prediction, if necessary, but the predictions are not explained to her. So, why should33

users trust models learned interactively?34

Furthermore, although an increasing amount of research investigates methods for explaining machine learning models,35

even here, the notion of interaction has been largely ignored. Reconsider the study by Lapuschkin et al. [3]. They showed36

that one can find “Clever Hans”-like behavior in popular computer vision models basing their decisions on confounding37

factors. Based on these findings, the authors recommended a word of caution towards the interest in such models, but38

they did not offer a solution for correcting their behavior. Particularly in real-world applications, where monitoring for39

every possible confounding factor or acquiring a new dataset due to existing confounders is time and resource consuming,40

it is inevitable to move beyond revealing the (wrong) reasons by making a step towards correcting the reasons underlying41

a models decisions.42

Doing so is exactly the main technical contribution of the present study. We introduce the novel learning setting of43

“explanatory interactive learning” (XIL) and illustrate its benefits in an important scientific endeavor, namely, plant44

phenotyping. Starting with a learning system that does not deliver biologically plausible explanations for a relevant,45

real-world task in plant phenotyping, we add the scientist into the training loop, who interactively revises the original46

model by interacting via its explanations so that it produces trustworthy decisions without a major drop in performance.47

1Published as Nature Machine Intelligence volume 2, pages 476486(2020). DOI: https://doi.org/10.1038/s42256-020-0212-3. Final
manuscript available at: https://www.nature.com/articles/s42256-020-0212-3.

1



Fig. 1: Explanatory Interactive Learning (XIL). Human users revise learning machines towards trustworthy
decision strategies. (a-left) Data samples, expert-classifications (checks and Xs with colors indicating the class) and
explanations (overlaid with an edge filtered original image for better interpretability) that an expert expects of an ML
model. Yellow corresponds to relevant regions, blue to irrelevant regions for a classification. Not even an expert can
be certain about potential samples from a early disease stage and what a valid explanation should be. (a-middle)
Illustration of hyperspectral data consisting of spatial and spectral dimensions. The planes on the top and left sides of
the cube correspond to slices taken from the center of the cube but placed on the edges for visualization. (a-right)
The characteristic reflectance of healthy tissue vs. disease spots. The vertical red, green and blue lines depict the three
wavelengths of the RGB dataset. (b,c) Classifications of a deep neural network (b) and its explanations (c). The
learned model clearly uses confounding factors, identified as the embedding agar solution. (d) The human user provides
feedback on the reasons and the machine can continue learning. The human-revised deep network yields classifications
matching biologically plausible strategies. (All shown RGB images correspond to real RGB images, while the edge
overlays resulted from pseudo-RGB images generated from the original hyperspectral dataset, cf. Methods RGB/HS
classification.)

Specifically, XIL takes the form illustrated in Fig. 1. In each step, the learner explains its interactive query to the domain48

expert, and she responds by correcting the explanations, if necessary, to provide feedback. This allows the user not only49

to check whether the model is right or wrong on the chosen instance but also if the answer is right (or wrong) for the50

wrong reasons, e.g., when there are ambiguities in the data such as confounders [4]. By witnessing the evolution of51

the explanations, similar to a teacher supervising the progress of a student, the human user can see whether the model52

eventually “gets it”. The user may even correct the explanation presented to guide the learner. This correction step is53

crucial for more directly affecting the learner’s beliefs and is integral to modulating trust [6, 12].54

Specifically, we make the following contributions: (i) Introduction of XIL with counterexamples (CE) to revise55

“Clever Hans” behavior in a model-agnostic fashion. (ii) Adaption of the “right for the right reasons” (RRR) loss56

to latent layers of deep neural networks. (iii) Showcasing XIL on the computer vision benchmark datasets PASCAL57

VOC 2007 [14] and MSCOCO 2014 [15]. (iv) Evaluation of XIL on a highly relevant dataset for plant phenotyping,58

demonstrating its potential as an enabler of scientific discovery. (v) Gathering of the plant phenotyping dataset and the59

creation of a version with confounders. (vi) A user study on trust development within XIL [16].60

A preliminary version of this manuscript has been published as a conference paper [17]. The present paper signifi-61

cantly extends the conference version by (ii-v) Moreover, the ad-hoc XIL user study presented in [17] was re-designed62

entirely, newly conducted, and now includes a thorough statistical analysis (vi). To encourage further research, we63

provide the created plant phenotyping dataset.64

We proceed as follows. We start by formally introducing Explanatory Interactive Machine Learning (XIL) and65

instantiate it in the CAIPI method [17] as well as the RRR method [4]. After introducing XIL, we discuss quantitative66

results on test datasets before providing details on how domain experts can revise learning machines and, in turn,67

enable the machines to correct their abilities to solve the scientific real-world task of plant disease prediction. Finally,68

we demonstrate the importance of explaining decisions for building trustful machines via a user study. Thus, our69

contributions address a central part of building trustworthy AI methods by providing an end-to-end, interactive method70

to evaluate and revise machine learning models. This provides an important add-on to Rudin’s [18] message “Stop71

explaining black-box machine learning models for high stakes decisions and use interpretable models instead”, namely72

“Start interacting with explanations of machine learning models to avoid ‘Clever Hans’-like behavior.”73

Explanatory Interactive Machine Learning (XIL)74

In XIL, a learner can interactively query the user (or some other information source) to obtain the desired outputs of75

the data points. The interaction takes the following form. At each step, the learner considers a data point (labeled or76

unlabeled), predicts a label, and provides explanations of its prediction. The user responds by correcting the learner if77

necessary, providing a slightly improved—but not necessarily optimal—feedback to the learner.78

Let us now instantiate this schema to explanatory active learning—combining active learning with local explainers79

(cf. Methods). Indeed, other interactive learning can be made explanatory too, including coactive learning [11], active80

imitation learning [19], and mixed-initiative interactive learning [20], but this is beyond the scope of this paper.81

Explanatory Active Learning. In Explanatory Active Learning, we require black-box access to an active learner and82

an explainer. We assume that the active learner provides a procedure SelectQuery(f,U) for selecting an informative83

instance x ∈ U based on the current model f , and a procedure Fit(L) for fitting a new model (or update the current84

model) on the examples in L. The explainer is assumed to provide a procedure Explain(f, x, ŷ) for explaining a85

particular prediction ŷ = f(x). The framework is intended to work for any reasonable learner and explainer.86

When using LIME for computing an interpretable model locally around the queries to visualize explanations for87
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Algorithm 1 XIL takes as input a set of labeled examples L, a set of unlabeled instances U , and iteration budget T .

1: f ← Fit(L)
2: repeat
3: x← SelectQuery(f,U)
4: ŷ ← f(x)
5: ẑ ← Explain(f, x, ŷ)
6: Present x, ŷ, and ẑ to the user
7: Obtain ȳ and explanation correction C
8: if CAIPI:
9: {(x̄i, ȳ)}ci=1 ← ToCounterExamples(C)

10: L ← L ∪ {(x, ȳ)} ∪ {(x̄i, ȳ)}ci=1

11: else if RRR:
12: {(x, ȳ, A)} ← ToBinaryCorrectionMask(C)
13: L ← L ∪ {(x, ȳ, A)}
14: U ← U \ {x}
15: f ← Fit(L)
16: until budget T is exhausted or f is good enough
17: return f

current predictions, this results in CAIPI as summarized in Alg. 1. At each iteration t = 1, . . . , T an instance x ∈ U is88

chosen using the query selection strategy implemented by the SelectQuery procedure. Then its label ŷ is predicted89

using the current model f , and Explain is used to produce an explanation ẑ of the prediction. The triple (x, ŷ, ẑ)90

is presented to the user as a (visual) artifact. The user checks the prediction and the explanation for correctness and91

provides the required feedback. Upon receiving the feedback, the system updates U and L accordingly and re-fits the92

model. The loop terminates when the iteration budget T is reached or the model is good enough.93

During interactions between the system and the user, three cases can occur: (1) Right for the right reasons:94

The prediction and the explanation are both correct. No feedback is requested. (2) Wrong for the wrong reasons:95

The prediction is wrong. As in active learning, we ask the user to provide the correct label. While the explanation may96

provide some signal as to why the prediction was wrong, we currently do not require the user to act on it—this is an97

interesting avenue for future work—but treat the explanation to be simply wrong. (3) Right for the wrong reasons:98

The prediction is correct, but the explanation is wrong—the main target of XIL.99

Model-agnostic XIL using counterexamples (CE). The “right for the wrong reasons” case is novel in active100

learning, and we propose explanation corrections to deal with it. They can assume different meanings depending101

on whether the focus is on component relevance, polarity, or relative importance (ranking), among others. In our102

experiments we ask the annotator to indicate the components that have been wrongly identified by the explanation as103

relevant, that is,104

C = {j : |wj | > 0 ∧ the user believes the jth component to be irrelevant} .105

Given the correction C, we are faced with the problem of explaining it back to the learner. We propose a simple106

strategy to achieve this. This strategy is embodied by ToCounterExamples. It converts C to a set of counterexamples107

that teach the learner not to depend on the irrelevant components. In particular, for every j ∈ C we generate c examples108

(x̄1, ȳ1), . . . , (x̄c, ȳc), where c is an application-specific constant. Here, the labels ȳi are identical to the prediction ŷ. The109

instances x̄i, i = 1, . . . , c are also identical to the query x, except that the jth component (i.e. ψj(x)) has been either110

randomized, changed to an alternative value, or substituted with the value of the jth component appearing in other111

training examples of the same class. This counterexample strategy (CE) produces c · |C| counterexamples, which are112

added to L, as summarized in Alg. 1. Importantly, this method is model-agnostic and can also be used when applying113

a non-differentiable model.114

XIL using gradients. If the model is differentiable, the learner can also be regularized to be right for the right115

reasons using the “Right for the Right Reasons” loss (RRR) introduced by Ross et al. [4]. Here one adds a penalty to116

gradients that lie outside of a binary mask that indicates which features of the input are relevant. We modified the117

original loss function to:118

L(θ, X, y, A) =

N∑
n=1

K∑
k=1

−ckynk log(ŷnk)︸ ︷︷ ︸
Right answers

+ λ1

N∑
n=1

D∑
d=1

(
And

δ

δhnd

K∑
k=1

ck log(ŷnk)

)2

︸ ︷︷ ︸
Right reasons

+ λ2
∑
i

θ2i︸ ︷︷ ︸
Weight regularization

, (1)119

120
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(a) Fashion-MNIST (Toy) Dataset

no Counterexamples RRR
corr. c = 1 c = 3 c = 5 IG

Train 97% 93% 92% 92% 89%
Test 48% 82% 85% 85% 85%

(b) Scientific Dataset

no. RRR
corr. GRAD-CAM

RGB 89% 87%*
HS 99% 95%

(c) HS Scientific Dataset
non-confounded test set

per-channel no RRR
average corr. GRAD-CAM

non-tissue 81% 87%
full image 50% 82%

Table 1: Explanatory feedback can boost trust and performance. Highest performances are bold. (a) Accuracy
on the fashion MNIST dataset of an MLP without corrections (no corr.), with our (CE) using varying c (middle), and
RRR with input gradient (IG) constraints [4]. (b) The average model balanced accuracy of applying RRR with GRAD-
CAM over five cross-validation runs. With “*” we denote situations where decisions made based on the background could
not be fully removed. (c) The average model balanced accuracy over five cross-validation runs on a non-confounded test
set of the hyperspectral (HS) scientific data. The confounding background features were set to either the per-channel
average of the non-tissue regions or the full image of the training samples. The accuracies are reported for HS-CNN.

Fig. 2: Examples of correcting Clever Hans moments with XIL. XIL helps avoiding Clever Hans moments on
unseen PASCAL VOC images (a). Ignoring user feedback, the model focuses on a source tag present in the lower left
corner (b). Training it via interacting with its explanations, it does not consider the source tag to be relevant anymore
(c). The visual explanations in (b, c) show relevant regions for the models decision using light and irrelevant ones using
dark colors. Note that the images (from Pixabay) in (a) are shown for illustrative purposes; the original PASCAL VOC
images to which the explanations in (b) and (c) correspond are not shown due to licensing issues but can be provided
upon request for academic purposes.

where θ describes the parameters of the network, X the input, y the ground truth and A the binary mask used in the121

regularization term that discourages the input gradient from being large in regions marked by A. Instead of regularizing122

the gradients with respect to X, as originally described in [4], we regularize the gradients of the final convolutional123

layer h, corresponding to Gradient weighted Class Activation Maps (GRAD-CAM) ([21], cf. Methods). Further c is a124

rescaling weight given to each class of the unbalanced dataset and ŷ corresponds to the network prediction. The objective125

function is split into three terms. The first and the last are the familiar cross-entropy and weight (θ) regularization126

terms. The second term is the new regularization term. The λ values are used to weight the different regularizations.127

Ross et al. [4] state that the regularization parameter λ1 should be set such that the “right answers” and “right reasons”128

terms have similar orders of magnitude.129

RRR can easily be incorporated into XIL (see again Alg. 1), and, as demonstrated by Selvaraju et al.’s HINT130

approach [22], Eq. 1 can be extended if the user is confident about how a (visual) explanation should look like. See131

Methods for an extended discussion of related work.132

Demonstrating XIL on Computer Vision datasets. We begin by considering simulated users—as it is common for133

active learning—to evaluate the contribution of explanation feedback. Indeed, counterexample strategies (e.g., CAIPI)134

can trivially accommodate more advanced models than the one employed here. We simulate a human annotator that135

provides correct labels. Explanation corrections are also assumed to be correct and complete (i.e., they identify all136

false-positive components), for simplicity.137

Specifically, we applied our data augmentation strategy to a decoy variant of fashion-MNIST [17], based on [23]138

(cf. Methods). The average test set accuracy of a multilayer-perceptron (with the same hyperparameters as in [4]) is139

reported in Table 1(a) for three correction strategies: no corrections, our CE, and the input-gradient constraints (RRR).140

The models’ explanations for CE are computed with LIME. Additionally, for every training image, we added c = 1, 3, 5141

counterexamples where the decoy pixels are randomized. When no corrections are given, the accuracy on the test set142

is 48%: the confounders completely fool the network, cf. Table 1(b). Providing even a single counterexample increases143

the accuracy to 82%, i.e., the effect of confounders drops drastically. With more counterexamples, the accuracy of CE144

is similar to that of RRR. Both methods pose valid improvements, thus showing that explanatory interactive learning145

(XIL) is an effective mean for correcting “Clever Hans” moments in machine learning and may even improve predictive146

performance and beliefs.147

Furthermore, we conducted experiments on the PASCAL VOC 2007 [14] dataset. We focused on a five-class subset148

(cf. Methods) and revised the model using XIL with the RRR loss. Fig. 2 presents some example images and their149

explanations with and without user feedback, i.e. default (test accuracy.: 78%) and XIL trained (test accuracy: 73%).150

One can see that the classifier has learned the confounding factor for horse images (the source tag on the bottom left151

corner) without user feedback. After retraining the classifier using user feedback on the source tag location, we can152

see that the model no longer focuses on the confounder, demonstrating the benefit and effectiveness of XIL also in153
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Extended Data Figure 1: Examples of XIL on MSCOCO 2014 dataset. The left column (a) presents the original
images, the middle column (b) presents the explanations (GRAD-CAM) after training without user feedback (default),
the right column (c) presents the explanations after training with user feedback (XIL) using the MSE loss between
user and model explanations. Also here, light regions represent relevant regions for the model’s decision, dark regions
represent irrelevant regions. As user annotations we use the complete class segmentation to illustrate that XIL can also
aid in improving the explanations for non-confounded data. See the Supplementary Information for more details. Due
to license issues the presented images are alternatives to the original dataset.

Fig. 3: Spectral signatures of measured agar plates with sugar beet leaf discs. Signatures were extracted of
agar on which healthy and inoculated sugar beet leaf discs were placed (a), of healthy and inoculated sugar beet leaf
discs (b) and C. beticola symptoms of sugar beet leaves (c). Signatures were extracted from 100 pixels for each group,
and the mean value is presented. The vertical (green, blue, red) lines correspond to the wavelength selected for the
pseudo-RGB images.

this setting. Similar benefits can be observed on MSCOCO using HINT-like extensions (Extended Data Figure 3 and154

Supplementary Information). They may help to more quickly align human and gradient-based network explanations.155

High predictive performance for deep plant phenotyping. Next, we showcase the extent, importance, and156

usability of XIL. To this end, we performed classification and revised corrections of the learned models on a real-world,157

scientific dataset. This dataset corresponds to RGB and hyperspectral (HS) (cf. Methods) images of leaf tissue from158

inoculated (Cercospora beticola) and healthy sugar beet plants. Notably, there is a strong variability in the extent of159

disease severity over all samples, with some samples clearly showing the characteristic of Cercospora Leaf Spot (CLS)160

(two rightmost samples in Fig. 1) while others do not (second to the left sample in Fig. 1) and for the human eye161

appear indistinguishable—at least in RGB—from healthy leaves (top sample in Fig. 1). Roughly 50% of inoculated162

tissue samples showed visible CLS.163

We performed classification using convolutional neural networks (CNNs) on the RGB and HS datasets (cf. Methods).164

The task was to classify the leaf samples into one of the two classes: healthy or diseased. The corresponding average165

balanced accuracies determined over five cross-validation runs are shown in the left column (no corr.) of Table 1(b).166

They show high accuracies of 88% on the RGB dataset and nearly perfect performance of 99% on the HS dataset. It167

seems the HS data contains more relevant information to the classification task.168

Model might be right for the wrong scientific reasons. The nearly perfect predictive performance is slightly169

suspicious since plant phenotyping is a rather difficult task. Therefore, we wanted to know the reasons for the predictions170

and visualized the network’s explanations using GRAD-CAMs. Specifically, we applied a spectral clustering and t-SNE171

[24] analysis, similar to [3], on the resulting explanations. Fig. 4(a) shows the strategies of the CNN trained on the HS172

data for data points belonging to the test set only. Supplementary Figure 1(a) shows the strategies of the CNN trained173

with RGB data. One can identify that the HS-CNN has altogether two prediction strategies, one for each predicted174

class label (cf. Supplementary Figure 4 for more details). In the case of control samples, the HS-CNN focuses on large175

areas of the tissue, however, for inoculated samples, even if CLS are visible, the network focuses on the nutritional176

solution (agar) to classify these as inoculated. Moreover, when analyzing the reflectance of the agar across different177

stages of disease development, we could indeed identify differences between control and inoculated nutrition solution.178

This can be seen in Fig. 3(a). Given the much smaller data dimensionality of the RGB images compared to the HS data,179

it seems likely that the RGB-CNN would have more difficulties focusing only on the agar as a classification feature,180

thus explaining the different classification strategies between HS and RGB-CNNs as well as the reduced classification181

performance of the RGB-CNN, compared to the HS-CNN.182

In any case, both CNNs showed high to very high performances by largely using confounding factors within the183

dataset. The trained neural networks used strategies, which a biologist would consider as cheating rather than valid184

problem-solving behavior. The accuracies might not correspond to the true performance when measured in an environ-185

ment outside of the lab setting, possibly even leading to dangerous consequences if left untackled.186

Revising the model to be right for the right reasons. It is too simple to say that we can not trust these models187

and even question if machines are truly “intelligent”. We now show that with the human in the loop revising the188

machine, as in the XIL setting, the models can recover from the observed “Clever Hans”-like strategies towards trustful189

ones.190

To this end, we let a plant biologist revise the machine by constraining the machine’s explanations to match her191

domain knowledge. Since the used models are differentiable, we focused on using RRR rather than using the CE strategy,192

though both would be valid within the XIL framework.193
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Fig. 4: Cluster strategy analysis. Analysis of the different decision strategies after training CNNs on the HS data
with the cross-entropy loss (Default) in (a) and with the RRR loss in (b). The images are visualized in a two-dimensional
t-SNE embedding and colored by the spectral clustering assignments.

Fig. 5: Results of the user study on trust development. (a) shows the total TiA Score over the three test
conditions and (b) show in detail trust development (Q1) in correct rule learning after the three different learning stages
of model accuracy (50%, 75%, 100%) for each test condition. Only statistically significant results are highlighted. The
centerline of the box plots represents the median of the data, the box the interquartile distance between the first and
third quartile, the whiskers the minimum and maximum value, discarding outliers which are plotted individually above
the whiskers. The number of asterisks indicate the P values: ∗ P ≤ 0.05, ∗∗ P ≤ 0.01, ∗ ∗ ∗ P ≤ 0.001.

Specifically, we simulated the interaction between the domain experts and the ML models. After training a model194

without any interactions, plant physiologists analyzed the provided predictions and corresponding explanations. She195

decided that it is always a wrong reason to focus on the background, and consequently, her annotations corresponded196

to binary masks of the whole tissue (cf. Methods).197

As before, we analyzed the decision strategies of the RRR trained model using t-SNE and spectral clustering. The198

results are summarized in Fig. 4(b) for the HS-CNN and Supplementary Figure 1(b) for the RGB-CNN.199

As one can see, after training the HS-CNN with RRR, the model focuses on image regions lying only on the tissue,200

regardless of the underlying class. The control samples’ strategies correspond to nearly full activation of the whole tissue,201

whereas for inoculated samples, the identified relevant image regions are often very specific spots. Particularly, the model202

now focuses on the CLS, which were previously essentially ignored. Fig. 1(d) shows in more detail several examples203

of the observed strategies used by the corrected HS-CNN in comparison to the observed “Clever Hans” strategies of204

the unrevised machine. Although the model’s performance slightly decreased, cf. Table 1(b), it is still able to classify205

samples without visible symptoms. Even exploring different hyper-parameters for RRR, we were not able to force the206

RGB-CNN to ignore the background entirely, as illustrated in Supplementary Figure 1(b). As shown in Fig. 3(a), the207

HS-CNN has much more information at hand to focus on the confounding factors in the first place. However, after208

revision with RRR, it is easier for the HS-CNN to make accurate predictions based on the reflectance of the tissue in209

comparison to the RGB-CNN (Fig. 3(b)). Particularly, the HS-CNN mainly uses a spectral area for prediction, which210

is beyond the RGB area. This explains the difficulty of correcting the RGB-CNN.211

We now focus on evaluating the default and revised models on a non-confounded test dataset to investigate the212

generalization improvement of training with XIL. Due to a missing non-confounded test set for the scientific dataset,213

we performed the simple trick of replacing the confounding features of all test samples with other values (cf. Methods).214

The results are summarized in Table 1(c), reporting the average test accuracy over five cross-validations. One can see215

that indeed the accuracy of the revised model is higher than that of the default model for both modifications. These216

results further indicate the generalization improvements due to XIL. Further experiments applying prior knowledge can217

be found in the Supplementary Information.218

Trust development during XIL. After demonstrating that explanations and especially XIL are necessary to reveal219

and correct so-called “Clever Hans” behavior of ML models, we finally investigate how explanations influence the trust220

of users in the learning process. To this end, we designed a questionnaire about a machine that learns a simple concept221

by querying labels (but not explanation corrections) to an annotator. The online questionnaire was administered to 106222

participants of varying ages and backgrounds.223

Specifically, we designed a toy binary classification problem of (3× 3) black-and-white images, inspired by the color224

dataset used in [4]. The subjects were told that an image is positive if the two top corners are white and negative225

otherwise. They were shown 30 images together with the classification of an AI model and a knowledgeable annotator.226

The learning of the model was simulated by increasing the model’s classification accuracy from 50% over 70% to 100%227

after every ten images. Each participant was randomly assigned to perform one of three experimental conditions with228

varying feedback from the model. In test condition 1 (TC1), the participant received feedback for each image in the229

form of the model’s prediction and the label provided by a knowledgeable annotator. No explanations were shown.230

Test conditions 2 and 3 (TC2, TC3) were identical to TC1, meaning that at every stage the same example, prediction231

and feedback label were shown, but now explanations were also provided. The explanations highlighted the two most232

relevant pixels in form of red dots. In TC2, the explanations converged to the correct rule—they highlight the two top233

corners—from the 6th image onwards. In TC3, the explanations converged to an incorrect rule—an image was classified234

as positive if the two top right pixels were white—from the 12th image onward. To assess the participant’s trust in235

the model’s skills, we used the Trust in Automation Questionnaire (TiA) [25]. After each learning process stage, the236

subjects were asked to rate (Q1) “I trust that the AI has learned the correct rule for classifying such images.”. Lastly,237

having seen all images, subjects were asked to answer the full TiA.238
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Fig. 5 summarizes the results, where (a) shows the total TiA score over TC1-TC3 and (b-d) the Q1 results for each239

test condition over the different stages of the learning process. They confirm previous findings: without explanations,240

people trust highly accurate machines, but the trust drops when wrong behavior is witnessed [6]. Users expect machines241

and their explanations to be correct. Indeed, explanations may increase the trust in earlier iterations at lower predictive242

performances, if they are correct. However, people do not forgive wrong explanations if the predictions are correct.243

Thus, users really care about the “right for the wrong reasons” case.244

Taking all our empirical results together, people care about “Clever Hans”-like moments in machine learning, XIL245

can eliminate them, and XIL may even improve the models predictive performance.246

Conclusion247

In recent years, AI methods, especially machine learning with various directions and algorithms [26, 27], have become248

more and more successful in a wide range of areas like computer vision, natural language processing, and robotics, among249

others. Consider, for instance, AlphaZero surpassing human-level performance in playing chess and Go. During its self-250

play training process, AlphaZero discovered a remarkable level of Go knowledge. This included not only fundamental251

elements of human Go knowledge, but also non-standard strategies beyond the scope of traditional human Go knowledge252

[28], exemplifying the potential of these methods to discover strategies previously unknown even to experts of the domain.253

However, studies from various applications such as [29, 30, 31, 3] have revealed that learning machines can also result254

in “Clever Hans”-like moments, i.e., human-undesired strategies where the machine exploits artifacts in the dataset.255

To “un-Hans” machines, we introduced the novel learning setting of “explanatory interactive learning” (XIL) and256

illustrated its benefits. XIL adds the scientist into the training loop. She interactively revises the original model via257

providing feedback on its explanations, used to automatically augment the training with counterexamples, or to modify258

the model using RRR. Our experimental results demonstrate that users care strongly about “Clever Hans”-like moments259

in machine learning, and XIL can indeed help avoiding them.260

There are several possible avenues for future work to overcome the current limitations of XIL. Acquiring annotations,261

especially of explanations, can be time-consuming. The number of interactions required in order to reach an acceptable262

state is an open issue [17]. Hence, one should work on optimal query strategies for XIL that aim at minimizing the263

interaction efforts. Adapting regret bounds from coactive learning [11] might be an interesting alternative. Moreover,264

the data at hand may not always allow XIL to fully alleviate wrong reasons without decreasing the network’s predictive265

performance. One should develop ways to keep the drop as small as possible. Furthermore, XIL relies on two assumptions,266

namely, (a) faithful explanations can be computed, and (b) the user feedback is faithful, too. Assumption (a) is still267

subject to very active research, particularly for deep learning methods [32] (see our additional experiments on faithfulness268

with XIL in the Supplementary Information (Supplementary Figures 2 and 3)). One should improve the quality and269

robustness of XAI methods and also explore XIL for interpretable models [33]. If the user is rather confident about270

the right reasons, learning to explain methods such as HINT provide an interesting avenue for future work. Our initial271

results, see the Supplementary Information, are encouraging. However, even scientific experts do not always know272

the reasons for predictions. Therefore, one should strive to better understand the effects of wrong feedback and even273

adversarial attacks [34] on XIL. Additionally, one should turn other interactive learning settings such as coactive [11],274

active imitation [19], mixed-initiative interactive [20] and guided probabilistic learning [35] into explanatory one. Lastly,275

because it is not yet clear what makes explanations good for humans [36], one should extend explanatory interactions276

towards using alternative explanations, multiple modalities, and counterfactuals [37, 38]. In any case, interacting with277

explanations of machine learning models is an enabler for scientific discoveries for humans and machines in cooperation.278

Methods279

Active learning. The active learning paradigm targets scenarios where obtaining supervision has a non-negligible280

cost. Here we cover the basics of pool-based active learning, and refer the reader to two excellent surveys [39, 40] for281

more details. Let X be the space of instances and Y be the set of labels (e.g., Y = {±1}). Initially, the learner has282

access to a small set of labeled examples L ⊆ X × Y and a large pool of unlabeled instances U ⊆ X . The learner is283

allowed to query the label of unlabeled instances (by paying a certain cost) to a user functioning as an annotator, often284

a human expert. Once acquired, the labeled examples are added to L and used to update the model. The overall goal285

is to maximize the model quality while keeping the number of queries or the total cost at a minimum. To this end,286

the query instances are chosen to be as informative as possible, typically by maximizing some informativeness criterion,287

such as the expected model improvement [41] or practical approximations thereof. By carefully selecting the instances288

to be labeled, active learning can enjoy much better sample complexity than passive learning [42, 43]. Prototypical289

active learners include max-margin [44] and Bayesian approaches [45]; recently, deep variants have been proposed [46].290

However, active (showing query data points) and even coactive learning (showing the prediction of the query data point291

additionally) do not establish trust: informative selection strategies just pick instances where the model is uncertain292

and likely wrong. There is a trade-off between query informativeness and user “satisfaction”, as noticed and explored293
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in [47]. To properly modulate trust into the model, we argue it is essential to present explanations, e.g., visual ones, as294

shown in Extended Data Figure 1.295

Local explainers. There are two main strategies for explaining machine learning models. Global approaches aim to296

explain the model by converting it as a whole to a more interpretable format [7],[48]. Local explainers instead focus on297

the arguably more approachable task of explaining individual predictions [9]. While explainable interactive learning can298

accommodate any local explainer, in our implementations, we used either LIME [8] or GRAD-CAM [21], both described299

next.300

Extended Data Figure 2: Example of explanations along the spatial and spectral dimensions. GRAD-CAMs
of a hyperspectral sample with spatial and spectral explanations of a corrected network. Leftmost image shows the
sample followed by the corresponding spatial activations maps mapped to four different hyperspectral areas. The areas
are 380-537 nm, 538-695 nm, 696-853 nm and 854-1010 nm.

The idea of LIME (Local Interpretable Model-agnostic Explanations) is simple: even though a classifier may rely301

on many uninterpretable features, its decision surface around any given instance can be locally approximated by a302

simple, interpretable local model. In LIME, the local model is defined in terms of simple features encoding the presence303

or absence of basic components, such as words in a document or objects in a picture. While not all problems admit304

explanations in terms of elementary components, many of them do [8]; in this case, LIME assumes these to be provided305

in advance. An explanation can be readily extracted from such a model by reading off the contributions of the various306

components to the target prediction and translating them into an interpretable visual artifact. For instance, in document307

classification, one may highlight the words that support (or contradict) the predicted class.308

GRAD-CAMs are a generalization of Class Activation Maps, introduced by [49], and take advantage of the facts that,309

firstly, deeper layers of a CNN capture higher-level visual constructs and, secondly, that convolutional features retain310

spatial information. As such, the last convolutional layer represents a trade-off between high visual representation and311

spatial information. Specifically, a GRAD-CAM is computed by forward passing an image through the network, applying312

a backpropagation of a one-hot encoding vector that specifies the class label of interest up to the last convolutional layer.313

The resulting gradients of each channel are global average pooled, multiplied with the corresponding feature maps,314

summed, and finally passed through a ReLU activation function. In this way, the final feature maps of the convolutional315

feature extractor are weighted by the importance of these features. The resulting two-dimensional heatmap can finally316

be interpolated to the original input size for visualization. In case a 3D convolutional network is used to classify317

hyperspectral data, the resulting heatmap is three dimensional, also showing activations along the spectral dimension318

of the data, cf. Extended Data Figure 1.319

Explanatory Interactive Learning with counterexamples. Why is this data augmentation a sensible idea? To320

see this, consider the case of linear max-margin classifiers. Let f(x) = 〈w,φ(x)〉 + b be a linear classifier over two321

features, φ1 and φ2, of which only the first is relevant. Extended Data Figure 2 shows that f(x) (red line) uses φ2 to322

correctly classify a positive example xi. In order to obtain a better model (e.g. the green line), the simplest solution323

would be to enforce an orthogonality constraint 〈w, (0, 1)>〉 = 0 during learning. Counterexamples follow the same324

principle. In the separable case, the counterexamples {x̄i`}c`=1 amount to additional max-margin constraints [50] of the325

form yi〈w,φ(x̄i`)〉 ≥ 1. The only ones that influence the model are those on the margin, for which strict equality holds.326

For all pairs of such counterexamples `, `′ it holds that 〈w,φ(x̄i`)〉 = 〈w,φ(x̄i`′)〉, or equivalently 〈w, δi` − δi`′〉 = 0,327

where δi` = φ(x̄i`)−φ(xi). In other words, the counterexamples encourage orthogonality between w and the correction328

vectors δi` − δi`′ , thus approximating the orthogonality constraint above. Most importantly, this data augmentation329

procedure is model-agnostic, although alternatives indeed exist: (manually) adding a discovered data artifact to samples330

of other classes [51], contrastive examples [52], feature ranking [53] for SVMs and constraints on the input gradients for331

differentiable models [4].332

We note that due to sampling, LIME may output different explanations for the same prediction. To reduce the333

variance of the experiments with CE of Table 1(a), we ran it ten times and retained the k components identified most334

often as relevant by LIME.335

fashion-MNIST dataset. The fashion-MNIST dataset, a fashion product recognition dataset, includes 70,000 images336

over ten classes. All images were corrupted by introducing confounders, that is, 4 × 4 patches of pixels in randomly337

chosen corners whose shade is a function of the label in the training set and random in the test set (see [4] for details).338

PASCAL VOC 2007 dataset. We used a subset of the PASCAL VOC 2007 dataset in our experiment. This subset339

includes 1470 train and 782 test images over five classes (horse, cat, bird, bus, dog). Only samples from the horse class340

contain confounding features, i.e., watermark text. We rescale all the images to 224*224*3 to use the VGG-16 network341

[54] as a classifier, and we used the ImageNet-pre-trained weights as initial weights, as well as the ADAM optimizer342
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Extended Data Figure 3: Mathematical intuition for the counterexample strategy, exemplified for linear
classifiers. Two data features are shown, φ1 and φ2, of which only the first is truly relevant. (a) The positive example
xi is not enough to disambiguate between the red and green classifiers. (b) Counterexamples xi,` are obtained by
randomizing the irrelevant feature while keeping the label of xi. The counterexamples approximate a (local) orthogonality
constraint. (c) The red classifier is inconsistent with the counterexamples and eliminated. See the Methods section
Explanatory Interactive Learning with counterexamples for details. (Best viewed in color).

[55]. We trained a default model without user feedback and a model with user feedback for 2k epochs. The explanation343

method was instantiated with input gradients (IG).344

Sample collection. To demonstrate the significance of XIL, we demonstrate XIL for deep plant phenotyping and345

plant disease detection, a growing and relevant field of research [56, 57, 58, 59, 60, 61]. To this end, we recorded a346

scientific, real-world dataset—a plant phenotyping dataset consisting of RGB and hyperspectral images (HS) of healthy347

and diseased sugar beet leaves. Then, we applied convolutional neural networks to classify the plants’ leaves into348

the categories control (healthy) and inoculated (diseased) and investigated the underlying reasons for the network’s349

predictions. As a model disease, Cercospora leaf spot (CLS) was used. This is caused by Cercospora beticola and is the350

most destructive leaf disease of sugar beet with worldwide economic importance.351

The dataset used in this study corresponds to HS and RGB images of leaf discs of sugar beet cv. Isabella (KWS,352

Einbeck, Germany) inoculated with Cercospora beticola. Sugar beet seeds were pre-grown in small pots and piqued353

after the primary leaves were fully developed. The seedlings were then transferred into plastic pots (diameter of 17354

cm) on a commercial substrate (Topfsubstrat 1.5, Balster Erdenwerk, GmbH, Sinntal-Altengronau, Germany) under355

greenhouse conditions and watered as necessary. After reaching growth stage 16 according to BBCH scale [62] the356

plants were inoculated with C. beticola conidia, which were collected from infested sugar beet leaves after incubation in357

a moist chamber for 48 hours. A spore suspension of 5× 105 was sprayed onto leaves before the plants were transferred358

into plastic bags to achieve 100% RH for 48 hours. For image acquisition, leaf discs were stamped out with a 2 cm359

diameter cork borer and placed on 10g/l pyhtoagar (Duchefa Biochemie B.V, Haarlem, Netherlands), containing 0.34360

mM benzimidazole, 10 g sucrose and 3 mg kinetin. To observe different symptom classes, sugar beet leaves of 9, 14, and361

19 days after inoculation (dai) were used since the first symptoms appeared 9 dai. As a control group, 18 leaf discs of362

untreated sugar beet plants were measured as well, and five technical replications with six discs each were used for each363

symptom group.364

Each sample, both control and inoculated, was measured daily over five consecutive days such that a sample from365

9 dai reappears four further times in the dataset as 10 to 13 dai. A few samples were discarded due to technical366

issues. The percentage of healthy leaves to unhealthy leaves was approximately 26% to 74%, respectively. For image367

acquisition, leaf discs on agar were placed on a linear stage at a distance of 53 cm to a Hyperspec VNIR E-series imaging368

sensor (Headwall Photonics, Bolton, MA, USA) in the range of 380 nm to 1010 nm. The VNIR sensor has a spectral369

resolution of 2-3 nm and a pixel pitch of 6.5 µm. The sensor was surrounded by eight lamps (Ushio Halogen Lamp370

J12V-150WA/80 (Marunouchi, Chiyoda-ku, Tokyo, Japan)) and the distance between lamps and leaves was 60 cm with371

a vertical orientation of 45. Exposure times of 44 ms were used for the VNIR sensor.372

The dataset consists of 2410 samples with 504 samples labeled as control and 1906 labeled as inoculated. Control373

samples were not re-used as inoculated samples. The collected hyperspectral raw data size was around 4 TB. After374

preprocessing the data by cutting out the leaf discs into hyperspectral cubes, the data has a size of 140 GB. Since there375

is much redundancy in the wavelength resolution, we further sub-sampled the depth of the data cubes resulting in a376

final data size of 32 GB.377

Data preparation. As mentioned above, each sample was imaged over five consecutive days such that each sample,378

though slightly differing from day to day, is represented up to 5 times within the full dataset. In this way, a sample379

from 9 dai would occur for four further days (10-13 dai). To prevent the models from memorizing the structure of the380

individual leaf samples and correlating this to the corresponding labels, a precaution was taken to exclusively contain381

all days of one sample in either the training or validation dataset.382

Removing confounders for the scientific dataset. It is essential to maintain the underlying assumption that the383

training and test data are drawn from the same distribution. If this is not the case, changes in accuracy might be due384

to artifacts of different data, rather than deficits of the model [63]. We applied two variations to the test samples of the385

HS dataset to remove the confounders: we set the background (everything but the plant tissue) (1) to the per-channel386

average of the non-tissue regions or (2) the per-channel average of the full images of the training data. We then evaluated387

the default and RRR revised CNNs on this modified test dataset. We focused here only on the HS data and model, due388

to the limitations of the RGB model’s performance.389
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RGB/HS classification. The RGB images used for training the classifiers were generated from the hyperspectral390

data, by slicing the data at the corresponding RGB channels that were provided by the camera system (cf. Fig. 1391

(a-right)). Before training the RGB classifiers, the data was standard scaled following z = (x − u)/s, where u is the392

mean and s the standard deviation of the training samples.393

To train a classifier on the RGB images of sugar beet leaves, we used a VGG-16 [54] network pre-trained on ImageNet394

[64] to finetune the network parameters using the RGB plant images. For training a batch size of 32, a learning rate395

of 1e-4 and a step learning rate scheduler set to reduce the learning rate at epochs 5 and 15 by a factor of 0.1 were396

used. Furthermore, the ADAM optimizer was used with L2 regularization 1e-5. Five separate cross-validation folds were397

trained until convergence, using a data split of 0.75 for training and 0.25 for testing. Convergence was reached after 30398

epochs.399

To classify the HS data, we trained a convolutional neural network (CNN) architecture with batch normalization400

using 3D convolution filters, rather than standard 2D filters, learning features not only along the image dimensions401

but also over the spectral dimensions. The used network is build up with four residual blocks, each containing one to402

three convolutional layers. The last two layers are fully connected layers with a final softmax activation function. The403

other layers use ReLU activations. During training the networks, we used dropout to prevent overfitting. The network’s404

parameters are trained with a stochastic gradient descent optimizer with momentum using a batch size of 10 HS images,405

a learning rate of 1e-4, and an L2 regularization of 1e-5.406

Five separate cross-validation folds were trained until convergence, using a data split of 0.75 for training and 0.25407

for testing. Convergence was reached after 100 epochs.408

Analyzing classification strategies of the model. Based on the results of [32], in which the authors performed409

sanity checks over a variety of saliency methods, we chose to investigate our model’s explanations using Gradient-weighted410

Class Activation Mapping (GRAD-CAM) [21].411

To analyze the resulting strategies produced by the layer-wise relevance propagation method (LRP), the authors of [3]412

revert to using spectral clustering on the resulting heatmaps in a pipeline they termed ’SpRAy’. This clustering served413

to receive an overview of the extent of the model’s decision strategies. We apply SpRAy in a similar way. However,414

rather than using the raw GRAD-CAM heatmaps, we perform a discrete Fourier transformation on these beforehand415

to better differentiate different strategies that we had previously identified from single samples. In detail, the pipeline416

is as follows417

• Perform a discrete Fourier transform on downsized GRAD-CAM heatmaps.418

• Using the Euclidean distance for the RGB data and the Cityblock distance for the HS data compute a k-nearest419

neighbor graph of the Fourier transformed heatmaps, represented as an adjacency matrix, C.420

• Compute the affinity matrix as suggested in [65] as A = max(C,CT ).421

• Perform an eigengap analysis [65] to estimate the number of clusters, k, within the dataset.422

• Perform spectral clustering on the affinity matrix, given k from the previous step423

• Perform a t-SNE analysis [24] on the similarity matrix, estimated from the affinity matrix as in [3] as S = 1
A+ε ,424

whereby ε ∈ [0, 1], here we used ε = 0.05.425

Applying XIL to CNNs for the scientific dataset. We produced the matrix A (Eq. 1) corresponding to full tissue426

masks for each sample. Specifically, for each sample, we created a binary mask having values of zero within the tissue427

and values of one everywhere else, i.e., the background. In this way, during training, the gradients everywhere but on428

the tissue are to be minimized.429

The network models were retrained from the same initial values as in the default training mode (using only the430

cross-entropy loss), however, now using RRR. To choose the optimal λ1 value, the resulting explanations were visually431

assessed. The five cross-validation folds of HS-CNN were thus trained until convergence between 200 and 280 epochs432

using a λ1 = 20 value, with all other hyperparameters as in the default training mode. For training the RGB-CNN433

with RRR, the learning rate was reduced to a constant learning rate of 5e-05. Although applying a range of λ1 values434

from 0.1 to 1000, using the RGB-CNN, no satisfactory convergence state could be reached in which the regularized435

model showed acceptable explanations for each cross-validation run. The accuracies in Table 1(b-c) and the strategies436

presented in Fig. 4(b) and Supplementary Figure 1(b) correspond to GRAD-CAMs of training the five cross-validation437

folds with λ1 = 1 for up to 200 epochs.438

Extended related work. Using XIL with CE or RRR, users either introduce counterexamples into the dataset and439

thus teach the learner not to depend on the irrelevant components or directly penalize the learner as soon as it uses440

irrelevant components, respectively. One important advantage of XIL is that the user does not have to be certain about441
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the right reasons and instead can explore the learned reasons of the machine, in contrast to other procedures such as442

preprocessing the training set.443

Recently, Selvaraju et al. [22] presented a framework (HINT) similar to RRR but instead of penalizing the wrong444

reasons it advises the network to use a specific visual area (right reasons). As CE and RRR, the HINT method could445

be embedded within the introduced XIL framework in case the users are certain about the right reasons. However, in446

many scientific applications such as the presented plant phenotyping dataset, users are uncertain about what a valid447

explanation should be. In this case, removing wrong reasons might be preferable to applying right reasons.448

The possibility of bi-directional exchange between user and model due to interaction [66] also distinguishes XIL from449

approaches for feature selection,, such as feature masking and approaches that embed prior knowledge into the training450

process, e.g., [67, 68]. Lastly, interactions also allow that the user can provide incomplete explanations. In other words:451

only if it is actually required, the user can revise incorrect aspects of a model’s explanation.452

Finally, we present the XIL framework here for visual tasks and visual explanations only. With our definition of XIL,453

it is also applicable to other data domains like natural language processing, see e.g., [4, 17]. However, we experienced454

that explanations, i.e., right and wrong reasons, are more difficult to define for this modality. In future work, one should455

generally address the best ways to present explanations, even in multi-modal scenarios.456

Details on participant recruitment and study procedure. The presented study is part of an extensive thesis457

work [16]. It was conducted as an online survey, the link of which was distributed via the social network Facebook458

and the forum of the student body of the department of computer science at TU Darmstadt. Due to the distribution459

on these channels, a wide range of people of different ages and different backgrounds was generated. Each participant460

completed only one of the three test conditions with 33 participants in TC1, 36 participants in TC2, and 37 participants461

in TC3, totaling 106 participants overall.462

The wording of the original TiA was modified by replacing “system” with “artificial intelligence (AI)”.The response463

format to each question was a 5-point rating scale from strongly disagree to strongly agree.464

Statistical analysis of the user study. Samples with missing values were removed from the analysis, and for all465

tests, a significance level with alpha being 5% was used.466

For all tests with the same sample/samples, the alpha level was corrected via the Bonferroni-Holm method. The467

corrected alpha level will be stated for every analysis. For testing the hypotheses, one multi-factorial analysis of variances468

(MANOVA) and several one-factorial ANOVAs were conducted. The ANOVA, as well as the MANOVA, requires normal469

distribution of data, independence of data as well as homogeneity of the variances. To test the latter, a Levene-Test470

was conducted before every ANOVA and the MANOVA. Normal distribution was presumed due to the sample sizes,471

and as the samples were drawn randomly, the independence of data was also presumed. A significant result of an472

ANOVA / MANOVA means that at least two of the groups differ significantly with respect to the dependent variable,473

but it is not stated which groups differ. Therefore, if the carried out analyses of variances were significant, post hoc474

tests were carried out to investigate which groups differed exactly. Post hoc tests were selected in this study as the475

hypotheses did not point out which groups should differ, which is why every possible comparison had to be considered.476

For post hoc testing, the Tukey-HSD-Test and the Pairwise-Test were performed.477

The TiA score of subjects being familiar with AI over the whole sample (all test conditions combined) was higher478

(M = 2.82, SD = .64) than the TiA score of subjects being unfamiliar with AI (M = 2.51, SD = .59). As the479

conducted Levene-Test (F (5, 99) = 1.8, p = .12, α = .05) was not significant, the homogeneity of variance assumption480

held. Therefore, the MANOVA was conducted with a significant result for the independent variable test condition481

(F (2, 99) = 10.10, p < .001, α = .025). The MANOVA was significant for the independent variable familiarity with482

AI (F (1, 99) = 7.12, p = .009, α = .025). It was not significant for the interaction of the two independent variables483

(F (2, 99) = .28, p = .75, α = .025).484

For Fig. 5(a) in order to determine which test conditions differed significantly in their TiA score, a pairwise test485

was conducted as a post hoc test. The pairwise test showed significant differences between TC1 and TC3 (p = .0016,486

α = .05) as well as between TC2 and TC3 (p = .0003, α = .05).487

For Fig. 5(b) the conducted Levene-Test was not significant (F (2, 96) = .59, p = .56, α = .05). Therefore, an488

ANOVA was conducted afterwards and showed a significant result (F (2, 96) = 33.83, p < .001, α = .0125). Trust in the489

correct rule learning by the AI was significantly different between the blocks. The conducted Tukey-HSD test found a490

significant difference in trust into the correct rule learning only between stage 1 and 3 (p < .001, α = .05) and between491

stage 2 and 3 (p < .001, α = .05).492

For Fig. 5(c) the Levene-Test was not significant (F (2, 104) = .28, p = .75, α = .05). The ANOVA was significant493

(F (2, 104) = 23.19, p < .001, α = .0167). Therefore, a Tukey-HDS test was performed to investigate which blocks494

differed significantly. The test found only stage 1 and 3 (p < .001, α = .05) and stage 2 and 3 (p < .001, α = .05) to495

differ significantly with respect to trust in correct rule learning by the AI.496

For Fig. 5(d) the conducted Levene-Test was not significant (F (2, 105) = 1.32, p = .27, α = .05). The afterwards497

conducted ANOVA was also not significant (F (2, 105) = 1.62, p = .20, α = .05). Therefore, there was no significant498

difference in trust into correct rule learning by the AI in TC3 and no post hoc test was performed.499
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