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Abstract 

Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, 1 

environmental and economic consequences raised from the inability to locate buried underground 2 

utilities (such as pipes and cables) by developing multi-sensor mobile device. The aim of MTU 3 

device is to locate different types of buried assets in real time with the use of automated data 4 

processing techniques and statutory records. The statutory records, even though typically being 5 

inaccurate and incomplete, provide useful prior information on what is buried under the ground 6 

and where. However, the integration of information from multiple sensors (raw data) with these 7 

qualitative maps and their visualization is challenging and requires the implementation of robust 8 

machine learning/data fusion approaches. An approach for automated creation of revised maps 9 

was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted 10 

from sensors raw data and available statutory records. The combination of statutory records with 11 

the hypotheses from sensors was for initial estimation of what might be found underground and 12 

roughly where. The maps were (re)constructed using automated image segmentation techniques 13 

for hypotheses extraction and Bayesian classification techniques for segment-manhole 14 

connections. The model consisting of image segmentation algorithm and various Bayesian 15 

classification techniques (segment recognition and expectation maximization (EM)) provided 16 

robust performance on various simulated as well as real sites in terms of predicting linear/non-17 

linear segments and constructing refined 2D/3D maps. 18 

 19 

 20 

Keywords: MTU Sensors, Most probable maps, Bayesian Data Fusion, Image processing, 21 

Bayesian Regression. 22 
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1. Introduction 23 

The costs associated with street works in the UK is of critical consideration due to the vast 24 

majority of utilities buried underneath the roads and their repair/(re)installation (£7b annual) 25 

(McMahon, 2005). The types of utilities buried under the ground are diverse and their amount is 26 

notoriously large which makes excavation a challenging task in order to upgrade these 27 

underground networks. In addition, the statutory records of underground networks are typically 28 

incomplete and inaccurate particularly for old street works (M Burtwell, 2004). An important 29 

undertaking is to develop schemes to detect what is buried underground that could be associated 30 

to their records and could become cost saviour. A multi-sensor mobile laboratory MTU 31 

(Underworld, 2011) was developed which consists of multiple sensors capable of deploying 32 

several approaches to detect different types of infrastructure. The multi-sensor device, was 33 

designed to assess the feasibility of a range of potential technologies that can be combined into a 34 

single device to accurately locate buried pipes and cables. The potential technologies included 35 

ground penetrating radar (GPR), low-frequency quasi-static electromagnetic fields (LFEM), 36 

passive magnetic fields (PMF) and low frequency vibro-acoustics (VA) and significant advances 37 

have already been made (Royal et al., 2011, Royal ACD, 2010). 38 

The location techniques combined by MTU provide significant advantages over other 39 

commercially available techniques (Ashdown, 2000) for detecting wide variety of utilities and 40 

control trials were taken for few commercial sites. As a result, excavations necessary for 41 

maintenance and repair can be largely reduced using such a device equipped with a variety of 42 

sensor technologies. An important undertaking is to use heterogeneous information from these 43 

sensors and build refined maps of buried utilities in real time. However, due to the heterogeneity 44 

in features of utilities and ground properties, it is challenging to develop a general technique that 45 

http://www.sciencedirect.com/science/article/pii/S0886779812000387#b0025
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could assess heterogeneous information and handle the uncertainties associated to this task. The 46 

integration of information obtained from multiple sensors on MTU is of critical importance in 47 

order to make sense of the data before providing a precise information on a site. The knowledge 48 

obtained from different sensors presents itself non-symbolically i.e. the delivered data is 49 

essentially an image representing what the sensor “sees” underground. In contrast, utility records 50 

are almost universally represented symbolically i.e. they are stored in a spatial database as records 51 

with a vectorized representation of their spatial position, along with attribute information (such as 52 

material, diameter). It is therefore challenging to provide a useful and accurate representation of 53 

the data acquired from a variety of sensors. Therefore, a data fusion approach consisting of 54 

automated techniques for data extraction and integration was imperative.  55 

Data fusion includes fusing raw data that can be used to automatically extract symbolic 56 

hypotheses about the presence of a buried asset. Not all these detections may actually correspond 57 

to utility assets, and equally there may be assets which are not detected by the sensor (because the 58 

sensor cannot detect that kind of asset or the environmental conditions are unfriendly – such as 59 

saturated clay for GPR).  We associate a probability distribution with every such hypothesis 60 

reflecting possible errors in the measurements and hypothesis extraction process. These 61 

geographical positions (x, y) and depths (z) were used as input to the next stage of the mapping 62 

system. A variety of Artificial Intelligence (AI) techniques and algorithms were implemented such 63 

as Bayesian Data Fusion (BDF), image segmentation, orthogonal distance hyperbolic fitting, and 64 

weighted variation. The algorithms for automated data processing and map (re)construction were 65 

developed for real time operative capability of MTU device. 66 

The map (re)construction model developed in this work was an improvement over (Chen and 67 

Cohn, 2011) which was initially designed only for 2D construction of the map assuming that it 68 
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consists of only linear segments. In addition, the data preprocessing for hypotheses extraction in 69 

(Chen and Cohn, 2011) was not combined as a complete model and it was assumed that the 70 

hypotheses were extracted from GPR images using an iterative clustering/classification techniques 71 

prior to data fusion tasks. Simple clustering/classification algorithms for hypotheses extraction 72 

such as k-means or Dbscan were restricted in several ways for asset classification problem when 73 

developing real time maps. For example, traditional k-means clustering algorithm creates the 74 

clusters based on Euclidean distance of each data point to the centroids (initially selected 75 

randomly). Also the number of clusters to be created is known in k-means algorithm. Depending 76 

on statutory records to identify the number of segments was not reliable as, even providing 77 

valuable information, they are inaccurate and may contain incomplete information. Dbscan 78 

(Sander et al., 1998) also separates the clusters based on Euclidean distance without providing the 79 

desired number of clusters to be generated as prior. However, Dbscan requires radius in order to 80 

differentiate the clusters that is used as a criterion for decision making on number of clusters. The 81 

Euclidean distance between parameters is important in both approaches which is helpful in 82 

situations where clustering is only distance based. 83 

Neira (Neira, 2001) developed a data association model for addressing the problem of robust 84 

data association for simultaneous vehicle localization and map building which was an 85 

improvement over gated nearest neighbor (NN) (Bar-Shalom, 1987) for tracking problems that 86 

successfully rejects spurious matching and provides optimal solutions in terms of pairs of matching 87 

in cluttered environments. The correlation between measurement prediction errors in 2D space in 88 

cluttered environment provides robust data association with an efficient traversal of the solution 89 

space. However, the directional errors (linearity) caused mismatching of the segments with 90 

manholes using the hypotheses extracted from the sensors. Abhir and Roland (Abhir Bhalerao 91 
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2001) also used a Multi-resolution Fourier Transform (MFT) for capturing sufficient shape and 92 

orientation of objects within a given image. The use of statistical analysis and camera projections 93 

to estimate the location/orientations of line segments in 3D image was also implemented for 94 

similar linear segment construction problems (Dong-Min and Dong-Chul, 2009, Ting-Wang and 95 

Qing, 2010). However, these approaches are only limited to an image of objects and segments 96 

which is used to reconstruct a 3D image. MTU mapping, on the other hand, is multi-source data 97 

fusion approach to integrate information from multiple sources and produce most probable maps 98 

utilizing advanced machine learning/data mining techniques. For linear segment fitting, significant 99 

amount of literature report the use of different regression models including EM algorithm that can 100 

efficiently fit at higher accuracy levels (Ward et al., Ester et al., 1996, Sanquer et al., 2011, 101 

Delicado and Smrekar, Werman and Keren, 1999, Friedman and Popescu, 2004). The 102 

classification of data samples based on its source as distinguished by MTU sensors is, however, 103 

lacking in these approaches as these algorithms were developed for regression scenarios. In 104 

addition, the connection establishment (manhole-segment) was not considered as an underlying 105 

issue as only the general regression was covered. 106 

The Bayesian mapping model is capable of using automated techniques for hypotheses 107 

extraction, classification, segment recognition and connection establishment with the associated 108 

manholes. The model workflow was divided into three major components which were (1) 109 

hypotheses extraction from sensor input images using variety of image segmentation and Bayesian 110 

clustering techniques, (2) segment (pipe or cable section detected by the sensor) recognition and 111 

noise removal techniques using the extracted hypotheses, and (3) segment-manhole connection 112 

using EM algorithm. A complete use case can be tested using real time mapping model where 113 

hypotheses extraction techniques were combined with iterative connection establishment and 114 
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visualization techniques. Several simulated as well as real sites were tested and it was 115 

demonstrated that the model is robust in various conditions where statutory records were 116 

unavailable and the sensor readings were sparse. The segments were recognized and noise was 117 

removed successfully in various situations for mapping the utilities demonstrating the ability of 118 

model to work in real time complex situations. 119 

2. Materials and Methods 120 

The model for Bayesian mapping followed the workflow depicted in Fig 1. The sequential steps 121 

in model workflow were as follows; (1) data preprocessing, (2) segment recognition, and (3) 122 

segment-manhole connection. The datasets consisted of both qualitative (raw images from MTU 123 

sensor device, statutory records (utility maps)) as well as quantitative information (manhole 124 

surveys providing information on directions and depths). The data from these sources were 125 

integrated together in the form of positions (x, y), depths (z) and directions (Ɵ) as an input for 126 

segment recognition algorithm. Manhole surveys were helpful in determining the types of buried 127 

utilities at a site and estimating their directions and depths. Bayesian recursive algorithm as known 128 

as EM was developed for segment-manhole connection. EM is an iterative algorithm for finding 129 

the maximum-likelihood estimation of a set of parameters for a specific distribution in a statistical 130 

model when it contains unobserved latent variables (Do and Batzoglou, 2008). Based on partially 131 

connected information from different sources and segments recognized from segment recognition, 132 

EM algorithm was used to identify most probable connections of segments with assets and connect 133 

them in an iterative manner. The depth information from manholes and sensor readings were then 134 

used in conjunction with EM output to produce refined 2D/3D maps of an investigated site. The 135 

model workflow steps are described as follows: 136 
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2.1. Data Preprocessing: Data for model development were collected from 3 different sources 137 

which were; 138 

2.1.1. Statutory Records: The utility/statutory records consisted of maps of buried assets as 139 

ground truth which provided information on approximate directions and positions of these assets. 140 

Since these records are inaccurate, their position information was not included in segment 141 

recognition algorithm. However, the information pertaining to the type of buried asset and their 142 

approximate directions was helpful in segment-asset connection algorithm. Therefore the positions 143 

and directions (x, y, Ɵ)T from these records were used for segment-manhole connection 144 

establishment. 145 

 

Figure 1: Model Workflow (Data preprocessing for hypotheses extraction following segment 

recognition, Bayesian segment connection and refined map visualization) 

Output

User Input

Utility Map MTU Sensor 

Readings
Manhole 

Survey

Hypotheses Extraction Segment Recognition

Bayesian Segment ConnectionMap Visualization
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2.1.2. MTU Sensor Raw Data: The raw data included heatmaps (Fig. 2) of investigated sites that 146 

were produced from various MTU and commercial sensors. The sensors used in MTU mobile 147 

apparatus include Ground Penetrating Radar (GPR), Passive Magnetic Field (PMF), Vibro 148 

Acoustic, and Low Frequency Electro-Magnetic (LFEM). Briefly, the sensors and their 149 

functionality are explained in this section. Detailed information on each sensor can be found 150 

elsewhere (Dutta et al. 2013; Muggleton et al. 2011; Thomas et al. 2009). 151 

2.1.2.1. Ground Penetrating Radar (GPR): GPR locates buried utilities (metallic and non-152 

metallic) by transmitting electromagnetic waves into the ground and collecting the response 153 

(waves reflected from the objects underground). A GPR scan produces an image as a collection of 154 

multiple A-scans of reflected waves received at different wave-travel times and integrating them 155 

 

Figure 2: Images taken from MTU sensors and processed to mark the hypotheses (hyperbolae 

and circles). The images were created from the raw data collected from (a) Commercial GPR, 

(b) MTU GPR, (c) Passive Magnetic Field, (d) Vibro acoustics, and (e) Low Frequency 

Magnetic Field. 

(a) (b) (c)

(d) (e)
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into a B-scan. In B-scan, the rows represent the depth (by utilizing the reflected waves) and the 156 

columns represent the horizontal positions of the scan lines. 157 

2.1.2.2. Passive Magnetic Field (PMF): PMF is useful for detecting the cables by utilizing the 158 

magnetic field generated by current in a cable as well as neighboring objects which generate 159 

magnetic field (may also be from the current flow leak from a buried cable). The cluster centroids 160 

(Fig. 2c) are multiplied by the surveyed map dimensions (m × n image) which are then divided by 161 

surveyed lengths and depths, respectively, to calculate the (x, y, z) coordinates on the map. 162 

2.1.2.3. Vibro Acoustic (VA) Sensors: VA device at the MTU uses seven geophones which excite 163 

the buried utility at survey location and receive raw response on the surface which is then utilized 164 

to generate the cross sectional image via frequency domain transformation. The areas of cross 165 

sectional image representing maximum intersections of the responses from seven geophones are 166 

extracted as hypotheses (Fig. 2d). 167 

2.1.2.4. Low Frequency Electromagnetic Field (LFEM): LFEM approach is based on injecting 168 

the current into the ground and measuring the voltage on the surface via coupled plates moved 169 

along the surface. The LFEM approach at MTU is operated in a targeted grid location and the 170 

resulting image represents the underground structure (Fig. 2e). 171 

Using the above approaches, qualitative raw images consisting of (x, y, z)T information (x-axis 172 

as the width of sensor device and y-axis as the depth of the investigated surface (typically 2-4 173 

meters deep)) were collected and processed to extract hypotheses which were utilized for 2D/3D 174 

map reconstruction. The orientation of MTU sensor device provides approximate direction of 175 

buried asset as the survey is usually taken in the direction perpendicular to the orientation of asset. 176 

2.1.3. Manhole Survey: Manhole surveys for real sites were conducted to collect supporting 177 

information on estimated directions and depths of buried assets. In addition, types of buried assets 178 
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were also recorded in order to distinguish between them when constructing site maps. The 179 

quantitative information from manhole surveys therefore included (x, y, z, Ɵ)T as well as the type 180 

of buried asset as qualitative information. 181 

2.1.4. Hypotheses Extraction: Hypotheses (processed coordinates of the location detected by 182 

MTU sensors) extraction was implemented on raw sensor image data to automatically estimate the 183 

positions from surveyed locations. The images were segmented into clusters of foreground 184 

(hypotheses) and background pixels using unsupervised image segmentation techniques. The 185 

centroids of clusters were identified as approximate positions of assets. Sensor output image is 186 

often noisy and may not provide an accurate location. Additionally, multiple hypotheses locations 187 

may be reported in close proximity when different types of assets (or a non-asset object) are 188 

present. From multiple images of a single surveyed location, the most probable locations of assets 189 

were estimated using Bayesian weighted average technique, i.e. 190 

ℎ(𝑥𝑖) ≈ 𝑁(𝑥𝑖 , 𝜇,  )            (1) 191 

In the above equation,  𝑥i denotes hypothesis i collected from the image,   is the mean of selected 192 

hypotheses, and   is covariance matrix of the hypotheses. Maximum A Posteriori (MAP) position 193 

of an asset was obtained using 
1

( ) arg max ( ( ))
n

i
i

h x h x


   where n is the number of hypotheses.  194 

Prior to segment recognition from groups of hypotheses, the identification of noise was 195 

conducted in terms of points with no manhole connection within a given previously tested 196 

threshold ( 2 meters). Each hypothesis point was validated using: (1) point to line (nearest 197 

buried utility in statutory record) distance and (2) manhole directions. The distance 
jhd  from each 198 

pipe segment j  to the point h  was calculated using 199 
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jsjehjshjsjsje

jh

yyxx

yyxxyyxx
d






 

(2) 

Where ),( jsjs yx  and ),( jeje yx  are the start and end points of the pipe segment j  respectively, and 200 

),( hh yx  is the location of hypothesis point. The point h  was considered as an orphan point if its 201 

distance from a pipe segment j  was greater than  . i.e. 202 

For all Kk ,...,2,1  manholes of same type as that of given pipe segment 203 

   22

1 kjskjshk yyxxd   204 

   22

2 kjekjehk yyxxd   205 

Where ),( kk yx  is the location of the manhole k . The orphan points were obtained using 206 



 


otherwiseh

ddiforphan
h

r

hkhk  21  207 

And the probability that the point h  belongs to a segment j  was then calculated as 208 

 
hj

j
j PS maxarg  where 𝑃ℎ𝑗 =  𝐹(ℎ → 𝑗|𝑑𝑗ℎ)  ≈ 𝑁(ℎ, 𝑑𝑗ℎ) 209 

2.2. Segment Recognition: The hypotheses obtained from above step were given as input to 210 

segment recognition algorithm which estimated the segments by joining hypotheses together based 211 

on their positions and direction. The input to segment identification algorithm included the 212 

hypotheses and the directions in which the surveys were taken (usually from left-to-right). The 213 

linear segments were iteratively classified from groups of hypotheses which were located within 214 

the range of an angle of up to 08.0  (in radians). The algorithm starts with first two chosen 215 

hypotheses as assigned to first class (starts with class=1), and the directions from first hypothesis 216 

to all other hypotheses are calculated. The next point is chosen and assigned to the same class if 217 

their difference in directions is <=   otherwise the chosen point is assigned a new class. The 218 
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algorithm is repeated for each hypothesis and provides the output as points assigned to a class 219 

which are then joined using least squares, circle and/or polynomial fitting techniques. The 220 

workflow of the algorithm is given in following section. 221 

Input:  TyxH ,  where x  and y  are the spatial locations of a set N  of hypotheses in the map 222 

Algorithm: Segment recognition algorithm workflow 

A: n × 2 matrix of 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑖) and 𝐶𝑖 where 𝑚𝑖 = slope of 𝑖𝑡ℎ from first point and 𝐶𝑖= class 

 Initialize 𝐶1 = 1, 𝑟𝑎𝑑 = 0.08, and find 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑖) for 𝑖 ∈ 2, … , 𝑛 

 WHILE: all hypotheses points in H are not visited and not assigned a class C 

 IF: |𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑖) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚1)| >  𝑟𝑎𝑑 

  FOR: 𝑗 ∈ 1 𝑡𝑜 𝑖 
   IF: |𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑖) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑗)| <  𝑟𝑎𝑑  % if closer to another existing class  

 Assign existing class 𝐶𝑗 

 ELSE: 

 Assign new class 𝐶𝑡𝑜𝑡𝑎𝑙+1 

 END 

 ELSE: 

 FOR: 𝑗 ∈ 1 𝑡𝑜 𝑖 
 IF: |𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑖) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑗)| <  𝑟𝑎𝑑  % if closer to another existing class 

 Assign existing class 𝐶𝑗 

 ELSE: 

 Assign new class 𝐶𝑡𝑜𝑡𝑎𝑙+1 

 END 

 Classify points of same class into separate clusters 

END 

 223 

To separate the clusters of linear segments from curved segments, the goodness of fit (R2) was 224 

checked and compared to threshold 
1 0.99  (0.99 confidence). Each cluster with 2 0.99R   was 225 

separated as a linear pipe segment and the remaining clusters were considered as curved or circular 226 

segments. For each hypothesis point in curvature analysis, the tip of the vector  )(),()( tytxtr  227 

traces out a path in the plane where t  represented MTU survey line and y  represented the change 228 

in positions represented by hypotheses. The relative positions of the hypotheses points were 229 

therefore represented as follows ( ) ( ), ( )r t x t y t   where 
t

x
tx




 )(  and 

t

y
ty




 )( . The unit 230 
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tangent vector was calculated as 
)(

)(

tr

tr
T




 where 22 )()()( tytxtr  . In order to determine the 231 

variation in the position )( y  with respect to )(x , the difference interval was obtained using 232 

)(minarg)(maxarg i
Ni

i
Ni

TT


 . Testing data clusters of various curvatures led to the selection of 233 

approximate curvature threshold to 0.15. The segments were assigned as curved using  234 



 


Otherwisefalse

CurvatureRRTRRTiftrue
Curved

1]),[],[(
 

(3) 

where 


 


Otherwise

if
Curvature

0

15.01 
 and R is the quantitative measure of the change in y (Fig. 3). 235 

 236 
Figure 3: Clusters with curvature of hyperbolic features 237 

 238 

The curvature detection algorithm was tested on various groups of hypotheses which 239 

demonstrated robust performance in terms of separating curved segments from linear ones (four 240 

of the groups given in Fig (4)) 241 
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 242 
Figure 4: Separation of hypotheses into cluster of linear clusters and curved clusters 243 

For clusters with circular features, a three point based was used as given in Fig A1 (Appendix). 244 

2.3. Segment-Manhole Connection using Expectation Maximization Algorithm 245 

The connection of segments recognized from previous section with manholes was categorized 246 

as a classification problem where each segment was to be classified as a segment connected to two 247 

manholes. The EM algorithm was proposed for segment-manhole connection establishment which 248 

has been used in wide range of machine learning and data mining scenarios such as classification 249 

(Aldebaro Klautau, 2003, Sander et al., 1998), Image Processing (Huanhuan Chen, 2010) and 250 

unsupervised clustering (Bailey and Elkan, Buntine, 2002, Salojarvi et al., 2005). The inputs from 251 

sensor readings, estimated asset directions from manholes, statutory records and segments 252 

recognized from previous step were used to identify suitable connections between segments and 253 

manholes. Combining the inputs created a data fusion scenario where hidden information from 254 

different sources was integrated and the probability of segment classification was updated until 255 

the algorithm converged (or the number of iterations reaches). Therefore, based on the probability 256 

distribution drawn from EM algorithm, the local maximum of segment-manhole connection 257 
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provided an optimal solution that was then compared with prior information from statutory 258 

records. Using EM, each segment can be assigned to a pair of manhole connections given the 259 

above parameters. EM consists of two steps that are (1) Expectation and (2) Maximization. 260 

Expectation step calculates the probability distribution of a target outcome given a set of 261 

parameters while the maximization step updates the distribution given the parameters which are 262 

updated from expectation step at each iteration. The EM algorithm is explained as follows: 263 

1) For a given hypothesis point h , get nearest segment 
jS from statutory record. Get manhole 264 

locations and the depths. Initialise the prior for each manhole connection with iP  as uniform 265 

distribution. Initialise covariance matrix 266 

( , , , , )j k k hk j hk h kdiag d Z Z              267 

 In the above equation,    22

kSjkSj yyxxd  , 
j  = direction of 

jS  in the map, k = 268 

direction of segment of same type as of 
jS  recorded from manhole sk ' cover,  hk = direction 269 

from manhole k  to h , hz  = depth of h  recorded by the sensor, kz  = depth of the segment 270 

of same type as of 
jS  recorded from manhole sk ' cover, and  , , , , , , ,

T

h h h jK X Y Z x y z S   for 271 

K  manholes with [ , , ]X Y Z  as position and depth information. 272 

2) E-step: Likelihood for each manhole k  connection  273 

 

 
    1

3/2

1 1
, exp , ,

22

T

kL C C h k C h k


 
     

 

  274 

Where  , , , , ,j k k hk j hk h kC h k d z z           
 

. The Maximum Likelihood Estimate 275 

(MLE) is then given by 276 

  









K

k

k

k

k

CL

CL

1

,

,
  277 

3) M-Step: Maximisation of likelihood 278 

 279 

 

2 2

1 1

1 1

2 2

1 1

1 1

( . , ) ( . , )
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, ,

( . , ) ( . , )

, , ,

, ,

K K

k j k k

k kk k

k k

k k

k k

K K

k hk k j hk k

k kk k

h kk k

k k

k k

d L C L C

L C L C

diag

L C L C

z z

L C L C

 

   

 

 

 

 

 
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    

 
    

 
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  

 
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 281 

4) Repeat 2-3 until converged (log likelihood converges to 10-4) 282 

 283 

5) Maximum A Posteriori (MAP) for connection of k  with 
jS  284 

 k
Kk

khC 


  maxarg  285 

The MLE 
k in step 2 provides best match between a manhole k  and a segment 

jS . The algorithm 286 

is repeated for connection from both ends of 
jS to a pair of best matching manholes. At the test 287 

site, it is possible for sensors to contain noise (containing spatial location and direction error) as 288 

part of the hypotheses. A point h  was considered noise when it's likelihood of manhole 289 

connections (
k  and 

k ) fell below a threshold 290 

𝛼 =
∑ 𝑃(𝐿|ℎ,𝑘→,𝑘←)ℎ∈𝑂

3

2
𝑂

 where   ),,(,, ohLNkkhLP   291 

In the above equation, 0.4o  is the variance (meters) calculated from ( , , )x y z  of O . The noise 292 

from above set of hypotheses points was identified using 293 

 



 

 

otherwiseh

kkhLPifnoise
h

,,

 

(4) 

The clusters of segments for manhole connections from (4) consisted of the hypotheses points and 294 

the connected manhole positions which are: 295 

    kShOhkC jj :
 296 

3. Results 297 

Dataset for model validation included five sites of simulated data (3 sets) as well as real data (2 298 

sets). The model was developed and validated using MATLAB 2011(b) where the most probable 299 

maps were generated given 3 different sources of information: (i) sensor readings, (ii) manhole 300 

surveys, and (iii) the statutory records. In order to validate the model, hypotheses extraction, 301 

accurate segment identification (with noise removal) and segment-manhole connection were 302 
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tested. Several variations in the parameters and data quality were taken into account in order to 303 

verify the robustness of model. The hypotheses were extracted from raw sensor images using 304 

image segmentation techniques. A segment recognition algorithm was developed to identify linear 305 

and curved pipe/cable segments based on the direction of survey taken by MTU machine, and 306 

directions estimated from hypotheses when they were combined together. Total of 4 initial use 307 

cases of hypotheses (Fig. 5) tested in order to evaluate the performance of segment recognition 308 

algorithm where the number of segments in each use case were known.  309 

The simulated datasets (S1, S2, and S3) consisted of locations of manholes as well as pipes from 310 

ArcGIS (Esri, 2015) and simulated hypotheses (simulated readings from MTU sensors). The real 311 

sites (R1 and R2) consisted of measurements from MTU sensor readings and statutory records. 312 

For noise removal in simulated sets, white noise was added with the following: (1) Spatial noise 313 

of the locations of manholes and pipes was up to 2×2 meters, (2) Noise in hypotheses locations 314 

was up to 0.4 meters and (3) Noise in pipe directions from manholes was up to 8 degrees. 315 

 

Figure 5: Segment recognition algorithm fitting linear segments in groups of hypotheses 
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 Table 1: Settings for simulated and real sites (S# = simulated site #, R# = real site #) 316 

Data # Manholes # Pipes & Cables # Sensor Readings 

S1 10 13 28 

S2 12 16 30 

S3 26 46 87 

R1 19 8 18 

R2 8 12 25 

 317 

3.1. Bayesian Mapping Model for Simulated Data: 318 

The model was initially tested on 3 simulated datasets (S1, S2 and S3) with varying numbers of 319 

manholes, sensor data points, and segments from statutory records (Table 1). For simulated 320 

datasets, the hypotheses were manually generated and the initial maps were obtained from ArcGIS 321 

(Esri, 2015). Initial simulated datasets with initial maps are depicted in Fig 6.    322 

   323 

 324 
Figure 6: Simulated datasets with hypotheses points and initial maps (a) for S1, (b) for S2, and 325 

(c) for S3 326 



19 
 

(a) Segment Recognition: Segment recognition algorithm showed robust performance for all 327 

datasets and the noise was removed from groups of hypotheses in S1 and S2. The absence of 328 

statutory records did not affect the capability of the model to draw accurate segments due to the 329 

segment recognition algorithm. In addition, the segments were drawn in 3D due to the inclusion 330 

of depth information from manholes and sensor readings. However the uncertainty increased in 331 

the absence of statutory records as they provided useful information on the number of buried assets 332 

and their directions. The segments drawn by automated segment recognition algorithm for 333 

simulated datasets are given in Fig 7. 334 

 335 
Figure 7: Segments recognized for S1 (a), S2 (b) and S3 (c)  336 

(b) Segment-Manhole Connection: The segment recognition algorithm provided advantages 337 

over (Chen and Cohn, 2011) in terms of basis for accurate connection with manholes and 338 

construction of 3D maps. The segments were used by EM algorithm for segment-manhole 339 

   
Figure 8: 3D map construction for segment-manhole connection (S1(a), S2(b) and S3(c)) 
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connection establishment. Using the parameters from different sources (Materials and Methods), 340 

it was observed that the algorithm successfully created connections for segments that led to the 341 

reconstruction of 3D map. Among the segments generated from step (a) a few segments had single 342 

end connecting to a manhole. Such situations were also tested for the validation of EM algorithm. 343 

The maps of simulated datasets were generated which are depicted in Fig 8.  344 

3.2. Bayesian Mapping Model for Real Data 345 

Real sites (R1 and R2) with sensor readings and manhole surveys were tested for model 346 

validation. Table 1 provides information on the inputs to model for simulated sites as well as real 347 

sites. There were 18 sensor readings taken at R1 which included readings for linear pipes and an 348 

electricity cable. Raw images from sensors were manipulated to extract hypotheses which were 349 

used for automatic segment recognition. There were no connection errors for R1 using EM based 350 

segment-manhole connection algorithm for linear segments.  351 

Real site R2 consisted of straight linear pipes with an electric cable for which the sensor readings 352 

were taken (Fig 10a). There was no noise detected in the sensor readings and segments were 353 

successfully connected with manholes. PMF sensor usually detects objects with electrical current 354 

  
Figure 9: Real Site 1. Blue lines represent simulated utility record based on manhole and sensor 

readings. Red lines represent segment-manhole connections established by the model. 
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such as electric cables. At R2, The PMF sensor detected a water pipe (rectangle in Fig 10b) in the 355 

survey. This was due to the run of an electric cable in a close proximity of that water pipe which 356 

emits the electrical current. 357 

 358 

   359 
Figure 10: Real Survey Site 2 (a) pipe detected by MTU sensors, (b) pipe detected by PMF sensor 360 

due to electric cable buried closely, (c) data from different sensors integrated together for segment-361 

manhole connection, (d) 3D view of segments detected by Bayesian Mapping model 362 

3.3. Connection and Spatial Errors in Mapping Models  363 

For manhole connection establishment process, the proposed algorithm was also compared with 364 

Joint Compatibility Branch & Bound (JCBB) which calculates the Mahalanobis distance between 365 

the observations and the predictions and accepts a connection if the Mahalanobis distance is 366 

Pipe according to map
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smaller than a validation gate (Yangming Li, 2013). The segment-manhole connection problem 367 

was similar to the spatial data association problem in robotics (Bailey, 2006). Using the data fusion 368 

technique, noise removal and the iterative refinement of posterior probability using EM algorithm, 369 

the analysis showed better results compared to JCBB for both simulated sets as well as real sites. 370 

JCBB suffered in connecting segments in simple scenarios with manholes when more than one 371 

segments were located in close proximity in the map as shown in Fig 11. 372 

In tested datasets, JCBB also suffered from connection errors at the manhole locations where 373 

directional error exceeded five degrees. There were total five manhole connection errors recorded 374 

 
Figure 11: Manholes closed to each other potentially suitable for connection with one segment 

 

 
Figure 12: (a) JCBB Connection Error in water pipes (b) JCBB Connection Error in gas pipes 



23 
 

when JCBB was run on S3 as shown in Fig 12 where Fig 12a shows the connection errors for 375 

water pipes and Fig 12b shows the connection errors for gas pipes.  376 

The analysis with segment recognition algorithm significantly reduced the spatial and directional 377 

errors when modeling for mapping the underground utilities. The mean directional error using EM 378 

algorithm was smaller compared to JCBB. The connection errors are given in Table 2 which are 379 

denoted as E(JCBB) for JCBB and E(EM) for EM algorithm. Table 2 below shows the results of 380 

proposed EM algorithm with JCBB. 381 

Table 2: Directional (D(Ѳ)), Spatial (S(x,y)) and connection errors compared to JCBB. EM\L = 382 

without segment recognition algorithm, EM\U = without utility records 383 

Error EM\L EM\U EM JCBB U E(JCBB) E(EM) 

S(x,y)S1 

D(Ѳ)S1 

1.3514 

3.3371 

1.7923 

4.4451 

0.4132 

1.2526 

3.1548 

6.1112 

2.8 

4 
1 0 

S(x,y)S2 

D(Ѳ)S2 

2.1334 

4.3351 

3.5691 

6.4321 

1.005 

1.1129 

7.4324 

10.9813 

2.5 

5 
0 0 

S(x,y)S3 

D(Ѳ)S3 

3.1058 

4.6131 

6.9471 

8.8195 

2.0591 

2.0031 

12.6976 

16.9115 

6.5 

6 
5 0 

S(x,y)R1 

D(Ѳ)R1 

4.3291 

3.9973 

8.7795 

6.9553 

1.6531 

1.8533 

11.1125 

8.8134 

5 

4 
1 0 

S(x,y)R2 

D(Ѳ)R2 

2.4415 

2.3705 

3.1101 

3.1781 

1.0051 

0.8109 

4.9518 

4.1136 

3 

3 
0 0 

 384 

A noticeable impact on the voxel prediction for each pipe was observed when this error rate was 385 

increased from 8 to 14 degrees. The increased directional error in S1 and S3 had significant effect 386 

with inaccurate segment-manhole connections in the maps. In addition, the spatial error resulted 387 

in variations in voxel classification as shown in Fig 13a and Fig 13b. The black circles show 388 

directional errors and the red circles show spatial error. 389 

 390 
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4. Discussion and Conclusions 391 

The traditional approaches for map generation given in the literature require information from 392 

statutory records and provide solutions for mostly 2D map generation. Additionally, the 393 

information from multiple sensors require extensive processing and statutory records should also 394 

be integrated that provide prior knowledge about buried utilities. Recent analyses/studies on the 395 

abilities to locate underground utilities stressed the needs of a system capable of generating real 396 

time maps with the help of heterogeneous information. However, current techniques are limited to 397 

either generating 2D maps of linear segments or unable to detect different types of utilities. This 398 

paper addresses these problems by proposing a Bayesian mapping model by implementing various 399 

machine learning techniques for real time 3D map (re)construction. The segment recognition 400 

algorithm is robust in identifying groups of hypotheses forming linear/curved segments that are 401 

helpful in establishing connections with manholes. In order to improve utility classification and 402 

refined map generation, noise removal facilities were embedded in the system that improved 403 

performance in distinguishing between hypotheses and noise. The Bayesian Mapping model is 404 

aimed to overcome critical issues related to efficient and real time location of buried assets that 405 

  
Figure 13: Impact of spatial and directional error on survey sites S2 and S3 
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could provide valuable underground information and be cost effective. Further online analysis will 406 

also validate model performance at higher levels and its ability to generate refined maps at real 407 

time. 408 
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Appendix 413 

For curved segments, the three point circle fitting was applied as illustrated in Fig. A-1 414 

 415 
Figure A1: (a) Circular hypotheses, (b) Circle fit for circular points, (c) Non-circular Hypotheses, 416 

(d) Polynomial fit for non-circular points 417 

 418 

A. Most Probable segment estimation 419 

In order to refine the output of linear segment fitting without significant impact on model 420 

performance, the least squares fitting was performed on the above sets of hypotheses and manhole 421 

connections. Even though the data from multiple sources was integrated for Bayesian mapping, 422 

the sensor readings may contain small non-negligible noise which may also affect the performance 423 

of least squares linear fitting algorithm. Figure A-2 shows a simple scenario where the point 424 

containing noise in its location causes an increased angular difference with the direction from 425 

connecting manhole. Also the segment approximation fails to find the most probable linear 426 

segment without crossing any other segment in close proximity. 427 
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 428 

Figure A-2: Pipe segment fitted from hypotheses crossing another closed segment in the map 429 

It is critical to develop an approach for above mentioned scenarios since it is common that the 430 

street surveys contain more than one pipes buried in close proximity and the chances of having the 431 

overlaps between those segments are higher. In order to overcome such challenge, a probability 432 

distribution over the space of three possible lines )3,2,1( iLi  was created which was described by 433 

discrete random variables. iL
 is the 

thi  line of quantized voxels given the specific attributes which 434 

are the locations of the points of clusters defined in previous section. We need to find  435 

  


lg

l

l
l

LLLyP
1

321 ,,maxarg

      (A1) 436 

and 437 

  


lg

l

l
l

LLLzP
1

321 ,,maxarg

     (A2) 438 

Where lgl
is the voxel chosen from a set lg

 of voxels fitted for the quantized line. The probability 439 

distribution for three observed possible 3D positions of each line iL
 were created and combined 440 
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given x , y  and z  information. For each voxel of a line iL
, two equal spaced perpendicular line 441 

segments ℊp were drawn along the y-axis for (A1) and z-axis for (A2). This set of linear segments 442 

is denoted by 𝒢. For the calculation of the most probable voxel at each quantised position of each 443 

line iL
, we use two terminologies. For (A1), the pixel 

l

ip  of iL
 is the 

 ll yx ,
 and for (A2), the pixel 444 

l

ip  of iL
 is the 

 ll zy ,
. Therefore (A1) is used for determining the most probable 

thy  position of 445 

the voxel and (A2) is used to determine the 
thz  position of the voxel in the map. For all k  voxels 446 

defined by lg
, the joint probability distributions are given by 447 

    3,,
1

321 


LforLyPLLLyP
L

i

ill

 448 

    3,,
1

321 


LforLzPLLLzP
L

i

ill

 449 

Where 

 












 





 
2

2

1 G

exp
y

1

p

l

i
g

l y

il

g

py
LyP

l

     (A3) 450 

l

ip  is the 
thl  pixel 

 ll yx ,
 of iL

  451 

 












 





 
2

2

1 G

exp
z

1

p

l

i
g

l z

il

g

pz
LzP

l

      (A4) 452 

l

ip  is the 
thl  pixel 

 ll zy ,
 of iL

 453 

Calculating 
 il LyP

 and 
 il LzP

 provide the probabilities 
 321 ,, LLLyP l  and 

 321 ,, LLLzP l  454 

respectively which are used to calculate the most probable voxel position for the map using 455 
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    



lg

l

l
l

y LLLyPLLLLP
1

321321 ,,maxarg,,

     (A5) 456 

and 457 

    



lg

l

l
l

z LLLzPLLLLP
1

321321 ,,maxarg,,

     (A6) 458 

An example of this is shown in Figure A-3 where three lines 
 321 ,, LLL

 are drawn from three 459 

techniques and the quantized lines on y-axis and z-axis are drawn to calculate (A5) and (A6). 460 

 461 

Figure A-3: Perpendicular quantised linear points created from the point and the linear segment 462 

At each step in the map, the voxel with the highest probability given three lines as input was taken 463 

as the most probable voxel. The set of all voxels at the end created a line in 3D space which was 464 

considered as the most probable linear segment approximation. This algorithm was applied for the 465 

approximation of each linear segment in the performance evaluation of the algorithm. 466 

 467 

 468 
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B. Cardinal Spline Fitting 469 

In addition to the linear and curved pipe segments which may include sewer pipes, gas pipes and 470 

water pipes, the street maps also included electric cables buried underground which need to be 471 

approximated. The difference of the cables from the other pipe segments is their non-linear 472 

behavior. The cable can be buried in an arbitrary order without satisfying linearity condition for 473 

which line fitting or curve approximation may represent inappropriate solutions. The Passive 474 

Magnetic Field (PMF) sensors report the sequence of the survey locations when performing street 475 

survey. For fitting cables and non-linear segment, Cardinal Spline algorithm was implemented 476 

which was capable for fitting the lines to points in both 2D and 3D. The detailed explanation and 477 

the functionality of the Cardinal Spline algorithm is provided elsewhere (Ali Khan and Sarfraz, 478 

2011). 479 

C. Probabilistic Voxel Classification 480 

Errors in the linearity of segment lines vary depending on the noise added in sensor and manhole 481 

readings. In addition, the presence of multiple closely-buried assets is challenging when 482 

recognizing the number of segments. In order to address these challenges, linear approximation 483 

algorithm was useful as it integrated information from multiple sources and provided most 484 

probable estimation of voxel classification. Bayesian probabilistic voxel classification showed 485 

improved results in terms of fitted lines when compared to least squares fitting. 486 
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 487 
Figure C-1: Lines regressed for two pipes with and without using probabilistic approximation 488 

algorithm 489 
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