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Abstract. In this paper we consider complete noncompact Riemannian manifolds (M, g) with
nonnegative Ricci curvature and Euclidean volume growth, of dimension n ≥ 3. For every
bounded open subset Ω ⊂M with smooth boundary, we prove thatˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ ≥ AVR(g)
∣∣Sn−1

∣∣ ,
where H is the mean curvature of ∂Ω and AVR(g) is the asymptotic volume ratio of (M, g).
Moreover, the equality holds true if and only if (M\Ω, g) is isometric to a truncated cone over
∂Ω. An optimal version of Huisken’s Isoperimetric Inequality for 3-manifolds is obtained using
this result. Finally, exploiting a natural extension of our techniques to the case of parabolic
manifolds, we also deduce an enhanced version of Kasue’s non existence result for closed minimal
hypersurfaces in manifolds with nonnegative Ricci curvature.

1. Introduction and main results

The classical Willmore inequality [74] for a bounded domain Ω of R3 with smooth boundary
says that ˆ

∂Ω

H 2 dσ ≥ 16π, (1.1)

where H is the mean curvature of ∂Ω. Such an inequality has been extended in [19] to subman-
ifolds of any co-dimension in Rn, for n ≥ 3. In particular, for a bounded domain Ω in Rn with
smooth boundary there holds ˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ ≥ |Sn−1| , (1.2)

with equality attained if and only if Ω is a ball. Implicit in this statement is the fact that the
underlying metric by which H and dσ are computed is the Euclidean metric gRn . Note that the
above rigidity statement can be rephrased by saying that the equality in (1.1) is fulfilled if and
only if (∂Ω, g∂Ω) is homothetic to (Sn−1, gSn−1), where g∂Ω is the metric induced by gRn on the
submanifold ∂Ω and gSn−1 is the standard round metric.

Recently, in [4], the Willmore-type inequality (1.2) and the corresponding rigidity statement
have been deduced as a consequence of suitable monotonicity-rigidity properties of the function

U(t) = t−(n−1)

ˆ

{u=t}

|Du|n−1 dσ, t ∈ (0, 1], (1.3)

associated with the level set flow of the electrostatic potential u generated by the uniformly
charged body Ω. In other words, u is the unique harmonic function in Rn \ Ω which vanishes
at infinity and such that u = 1 on ∂Ω. More precisely, what is proven in [4] is that the function
U is nondecreasing and that this monotonicity is strict unless Ω is a ball. Once this fact is
established, the proof of (1.2) consists of a few lines. Indeed, exploiting first the global feature
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of the monotonicity
(
i.e. U(1) ≥ U(0+)

)
and using then the asymptotic expansion at infinity of

u and |Du| one getsˆ

∂Ω

|Du|n−1 dσ = U(1) ≥ lim
t→0+

U(t) = (n− 2)n−1|Sn−1|. (1.4)

On the other hand, computing the derivative at t = 1, yields

U ′(1) = (n− 2)

ˆ

∂Ω

|Du|n−2
[

H−
(
n−1
n−2

)
|Du|

]
dσ ,

and using U ′(1) ≥ 0, we deduce thatˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ ≥
ˆ

∂Ω

∣∣∣∣ Du

n− 2

∣∣∣∣n−1

dσ, (1.5)

where we have also applied the Hölder inequality. The coupling of the latter inequality with the
former (1.4) yields the desired (1.2). In this paper, we show that the strategy described above
can be adapted to a much more general setting, giving rise to a new Willmore-type inequalities,
holding on manifolds with nonnegative Ricci curvature of dimension greater than three.

Throughout this paper, we systematically assume that the dimension of the underlying ambient
manifold M is at least 3.

Our main result reads:

Theorem 1.1 (Willmore-type inequality). Let (M, g) be a complete noncompact Riemannian
manifold with Ric ≥ 0 and Euclidean volume growth. If Ω ⊂ M is a bounded and open subset
with smooth boundary, then ˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ ≥ AVR(g)|Sn−1| , (1.6)

where AVR(g) ∈ (0, 1] is the asymptotic volume ratio of (M, g). Moreover, the equality holds if
and only if (M \ Ω, g) is isometric to( [

r0,+∞)× ∂Ω , dr ⊗ dr + (r/r0)2g∂Ω

)
, with r0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

In particular, ∂Ω is a connected totally umbilic submanifold with constant mean curvature.

Let us remark that no connectedness assumption on Ω is required in the above statement.
On the other hand, if the equality holds in (1.6), then we obtain that ∂Ω is connected as a
by-product of the rigidity statement combined with the fact that (M, g) has exactly one end,
see Proposition 2.10. We recall that since Ric ≥ 0 in the above statement, then, by the classical
Bishop-Gromov Volume Comparison Theorem, the function

(0,+∞) 3 r 7−→ Θ(r) =
n|B(p, r)|
rn|Sn−1|

is nonincreasing. In particular, we have that the asymptotic volume ratio

AVR(g) = lim
r→+∞

Θ(r)

is well defined. Moreover, we have that this limit does not depend on the point p ∈ M , and
that limr→0+ Θ(r) = 1. Hence, we have that 0 ≤ AVR(g) ≤ 1. Moreover, AVR(g) = 1 if and
only if (M, g) = (Rn, gRn). Assuming Euclidean volume growth means assuming AVR(g) > 0.
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Observe in particular that for n = 3, if Ric ≡ 0 then (M, g) is isometric to (R3, gR3) and
consequently AVR(g) = 1. On the other hand, for n ≥ 4 there exists an important class
of complete noncompact Ricci flat Riemannian manifolds with 0 < AVR(g) < 1, that is the
class of Ricci flat Asymptotically Locally Euclidean (ALE for short) manifolds. We refer the
reader to Definition 4.13 for the precise notion. For the time being, we just recall that a n-
dimensional Riemannian manifold is ALE if it is asymptotic to

(
(Rn \ {0})/Γ , gRn

)
, where Γ

is a finite subgroup of SO(n) acting freely on Rn \ {0}. This family of Riemannian manifolds
is widely studied. In this regard, we first mention that in [7] it is proved that any Ricci flat
manifold with Euclidean volume growth and strictly faster than quadratic curvature decay is
actually ALE. Moreover, we point out that 4-dimensional Ricci flat ALE manifolds appear as
important examples of gravitational instantons, that are noncompact hyperkhäler 4-manifolds
with decaying curvature at infinity, introduced by Hawking in [36], in the framework of his
Euclidean quantum gravity theory. An explicit example is given by the famous Eguchi-Hanson
metric, introduced in [31], where n = 4, Ric ≡ 0 and Γ = Z2. We remark that ALE gravitational
instantons are completely classified in [45] and [46]. Concerning the general class of gravitational
instantons, let us cite, after the important works of Minerbe [60, 61, 62], the recent PhD thesis
[20], where gravitational instantons with strictly faster than quadratic curvature decay are also
classified. We refer the reader to the latter work and to the references therein for a more complete
picture on this subject. The following corollary is the direct application of Theorem 1.1 to the
class of ALE manifolds with nonnegative Ricci curvature.

Corollary 1.2. Let (M, g) be an ALE Riemannian manifold with Ric ≥ 0. Then,

inf


ˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ

∣∣∣∣∣∣ Ω ⊂M bounded and smooth

 =
|Sn−1|

card(Γ)
. (1.7)

Moreover, if the infimum is attained by some Ω, then M \ Ω is isometric to([
r0,+∞)×

(
Sn−1/Γ

)
, dr ⊗ dr + r2gSn−1/Γ

)
, with r0 =

(
card(Γ) |∂Ω|
|Sn−1|

) 1
n−1

, (1.8)

for some r0 > 0 and some finite subgroup Γ of SO(n). In particular, (∂Ω, g∂Ω) is homothetic to(
Sn−1/Γ, gSn−1/Γ

)
.

We observe that on ALE manifolds the rigidity is much stronger, being characterized by cones
whose cross sections are homothetic to Sn−1/Γ. Notice also that, if Γ is trivial, one recovers the
classical Willmore inequality (1.2). Moreover, we point out that (1.7) also says that, in every
ALE manifold with nonnegative Ricci curvature, the lower bound we find for the Willmore-
type functional is actually an infimum. This fact holds true for a larger class of manifolds.
Indeed, as proved in Theorem 4.12, it is sufficient to assume the hypotheses of Theorem 1.1
together with a quadratic curvature decay condition. Understanding metric and topological
consequences of curvature decay conditions is a very interesting and widely studied problem in
geometric analysis. Dropping any attempt of being complete, we refer the interested reader to
the aforementioned [7], to the seminal [17], to [66], where the case n = 3 is considered, and
to [77] and the references therein. To make the picture more complete, let us also mention
that Willmore-type inequalities are proven in [3] for asymptotically flat (AE) static metrics in
the framework of General Relativity, and in [69] for integral 2-varifolds in Cartan-Hadamard
manifolds.

1.1. Monotonicity formulas in nonparabolic manifolds. Theorem 1.1 will be deduced as a
consequence of the monotonocity-rigidity properties of the function U defined as in (1.3), where
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now u is the unique solution to the problem
∆u = 0 in M \ Ω

u = 1 on ∂Ω

u(q)→ 0 as d(O, q)→ +∞,
(1.9)

with O being a fixed point in Ω and d a distance function on M . Observe that the hypotheses
of Theorem 1.1, namely the nonnegativity of the Ricci tensor and the Euclidean volume growth,
guarantee the existence of the solution to problem (1.9), as explained in Section 2.

In order to make the treatment of problem (1.9) more transparent, it is better to avoid
the situation in which the function u is locally constant (and equal to 1) on some connected
component of its complement M \ Ω. To this purpose, we are going to consider bounded,
open, smooth subsets with no holes, i.e., such that their complement has no compact connected
components. On this regard, notice that, if (M, g) is not a cylinder, a subset Ω ⊂ M of this
kind is such that ∂Ω coincides with the boundary ∂E of the unique unbounded component E
of M \Ω (see Proposition 2.10). Moreover, by the Strong Maximum Principle, one has that ∂Ω
also coincides with the level set {u = 1} of the solution u to (1.9), provided the latter exists.

Once that the monotonicity-rigidity of U is known, the proof of Theorem 1.1 consists of exactly
the same formal steps outlined in (1.4)–(1.5), the main difference being the careful computation
of the limit value

lim
t→0+

U(t) = AVR(g)(n− 2)n−1|Sn−1|.

We remark that whereas in the classical Euclidean context the limit was deduced from the
pointwise asymptotic expansion of u and |Du| at infinity, here it will be deduced from some
quite delicate integral asymptotic expansions, in the spirit of [25]. This is an important technical
difference from the Euclidean case. Such integral asymptotics will be worked out in Section 4.
For completeness, we state the monotonicity-rigidity result concerning U in the wider generality
of Theorem 1.3 below. Indeed, the same monotonicity-rigidity properties are shared by the
whole family of functions Uβ, with β ≥ (n− 2)/(n− 1), where Uβ : (0, 1] −→ R is defined as

Uβ(t) = t−β
(
n−1
n−2

)ˆ
{u= t}

|Du|β+1 dσ. (1.10)

Note that Uβ coincides with the function U defined in (1.3) when β = n− 2. Moreover, such a
Monotonicity-Rigidity Theorem holds for a wider class of manifolds than the ones with Euclidean
volume growth. Namely, we prove it for any complete noncompact Riemannian manifold with
Ric ≥ 0 admitting a solution to (1.9). This class of manifolds coincides with the thoroughly
studied class of nonparabolic ones, as we are going to see in Section 2.

Theorem 1.3 (Monotonicity-Rigidity Theorem for nonparabolic manifolds). Let (M, g) be a
nonparabolic Riemannian manifold with Ric ≥ 0. Given a bounded and open subset Ω ⊂M with
smooth boundary and no holes, let u be the solution to problem (1.9) and let Uβ be the function
defined in (1.10). Then, for every β ≥ (n − 2)/(n − 1), the function Uβ is differentiable, with
derivative

dUβ
dt

(t) = β t−β
(
n−1
n−2

)̂
{u=t}

|Du|β
[

H−
(
n−1
n−2

)
|D log u|

]
dσ, (1.11)
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where H is the mean curvature of the level set {u = t} computed with respect to the unit normal
vector field ν = −Du/|Du|. The derivative of Uβ fulfils

dUβ
dt

(t) =
β

t2

ˆ
{u<t}

u2−β
(
n−1
n−2

)
|Du|β−2

{
Ric(Du,Du) +

+
[ ∣∣DDu

∣∣2 − ( n
n−1

)∣∣D|Du|∣∣2 ] +

+
(
β − n−2

n−1

) ∣∣DT |Du|
∣∣2 +

+
(
β − n−2

n−1

)
|Du|2

[
H−

(
n−1
n−2

)
|D log u|

]2
}

dµ .

(1.12)

In particular, Uβ is nondecreasing. Moreover, ( dUβ/ dt)(t0) = 0 for some t0 ≤ 1 and some
β ≥ (n − 2)/(n − 1) if and only if (M, g) has Euclidean volume growth and

(
{u ≤ t0}, g

)
is

isometric to([
r0,+∞)× {u = t0} , dr ⊗dr +

(
r

r0

)2

g{u=t0}

)
, with r0 =

(
|{u = t0}|

AVR(g)|Sn−1|

) 1
n−1

.

(1.13)
In this case, in particular, {u = t0} is a connected totally umbilic submanifold with constant
mean curvature.

Observe that the quantity on the right hand side of (1.12) is nonnegative because of the
refined Kato’s inequality for harmonic functions reading as∣∣DDu

∣∣2 ≥ ( n

n− 1

) ∣∣D|Du|∣∣2. (1.14)

The vanishing of (1.11) can in particular be interpreted as an overdetermining condition on
(1.9), forcing the ambient manifold to split as a cone and the solution u to be radially sym-
metric. We mention, in this context of PDE’s and splitting results, the paper [33]. Although
the monotonicity of the Uβ’s in the above theorem holds on every nonparabolic manifold with
Ric ≥ 0, the rigidity statement seems to be particularly effective only on manifolds with Eu-
clidean volume growth. On the other hand, in certain contexts (e.g., in the study of ALF, ALG
and ALH gravitational istantons [60, 61, 20]) it is natural to consider different types of volume
growths. Studying monotonicity and rigidity properties of quantities tailored on manifolds with
these kinds of behaviours at infinity will be the object of future works.

Remark 1.4. As already observed, the Willmore-type inequalities follow from Theorem 1.3
applied with β = n− 2. In particular, for this purpose, it is sufficient to prove the latter just for
β ≥ 1. In fact, in this paper we propose a proof in full details suited to this range of parameters.
To also cover the range (n− 2)/(n− 1) ≤ β < 1, it is sufficient to adapt the arguments recently
introduced in [4]. Some guidance in this sense will be provided in the subsequent Remark 3.8
and Remark 3.10.

As for the Euclidean case, Theorem 1.3 will actually be proved working in the manifold
(M \ Ω, g̃) where g̃ is conformally related to g by

g̃ = u
2

n−2 g,

where u is a solution to (1.9). In this setting, integral identities and splitting techniques are
employed to infer the monotonicity of (the conformal analogue of) Uβ and the related rigidity.
We point out that these techniques can easily produce a more general version of Theorem 1.3 for
nonparabolic ends with Ric ≥ 0 of a noncompact Riemannian manifold. This conformal splitting
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method, introduced in [2], has proved to be fruitful in various other situations. In [3, 10] and [9]
it has been applied to the relativistic setting, while in[34, 1], geometric and analytic properties
of p-harmonic functions in exterior domains have been studied, obtaining as a by-product an
extended version of the classical Minkowski inequality. Moreover, a different approach to exterior
problems, but still relying on a conformal change of metric, has been introduced in [8].

1.2. Monotonicity formulas in parabolic manifolds. So far, we have considered non-
parabolic Riemannian manifolds with Ric ≥ 0. We now turn our attention to parabolic Rie-
mannian manifolds with nonnegative Ricci curvature. As we will see in Section 2, for this class
of manifolds, problem (1.9) does not admit a solution, en revanche the following problem does

∆ψ = 0 in M \ Ω

ψ = 0 on ∂Ω

ψ(q)→ +∞ as d(O, q)→ +∞ ,

(1.15)

where Ω ⊂ M is any open subset with smooth compact boundary and connected unbounded
complement. Observe that again in light of Proposition 2.10, if (M, g) is not a Riemannian
cylinder such assumption is equivalent to requiring that Ω is an open bounded subset with
smooth boundary and no holes. Also notice that, by the Strong Maximum Principle, one has
that ∂Ω coincides with the level set {ψ = 0}.

Inspired by the fact that problem (1.15) presents strong formal analogies with the confor-
mal reformulation of problem (1.9) in terms of g̃ (see problem (3.5) below), we also provide a
Monotonicity-Rigidity Theorem for parabolic manifolds with Ric ≥ 0 involving ψ in place of u.
For β ≥ 0, we define the function Ψβ : [0,∞)→ R as

Ψβ(s) =

ˆ

{ψ=s}

|Dψ|β+1 dσ , (1.16)

and we prove the following result:

Theorem 1.5 (Monotonicity-Rigidity Theorem for parabolic manifolds). Let (M, g) be a para-
bolic manifold with Ric ≥ 0. Let Ω ⊂ M be an open subset with smooth compact boundary and
connected unbounded complement, and let ψ be a solution to problem (1.15). Then, for every
β ≥ (n− 2)/(n− 1), the function Ψβ is differentiable with derivative

dΨβ

ds
(s) = −β

ˆ

{ψ=s}

|Dψ|β H dσ ,

where H is the mean curvature of the level set {ψ = s} computed with respect to the unit normal
vector field ν = Dψ/|Dψ|. Moreover, for every s ≥ 0, the derivative fulfils

dΨβ

ds
(s) = −β

ˆ

{ψ≥s}

|Dψ|β−2
(

Ric(Dψ,Dψ) +
∣∣DDψ

∣∣2 + (β − 2)
∣∣D|Dψ|∣∣2 ) dµ . (1.17)

In particular, dΨβ/ ds is always nonpositive. Moreover, ( dΨβ/ ds)(s0) = 0 for some s0 ≥ 1 and
some β ≥ (n − 2)/(n − 1) if and only if

(
{ψ ≥ s0}, g

)
is isometric to the Riemannian product(

[s0,+∞) × {ψ = s0}, dρ ⊗ dρ + g{ψ=s0}
)
. In this case, in particular, {ψ = s0} is a connected

totally geodesic submanifold.

Observe that the right-hand side of (1.17) is nonnegative again by (1.14), that in fact holds
for any harmonic function on any Riemannian manifold.

Combining Theorem 1.3 and 1.5, we obtain as a straightforward consequence an enhanced
version of a theorem by Kasue, [44, Theorem C (2)], asserting that if a smooth boundary ∂Ω ⊂M
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has mean curvature (computed with respect to the outer unit normal) H ≤ 0, then H ≡ 0 on
∂Ω and M \Ω is isometric to a half cylinder. Our result actually gives precise lower bounds for
the supremum of H in terms of our monotone quantities and their derivatives.

Theorem 1.6 (Enhanced Kasue’s Theorem). Let (M, g) be a complete noncompact Riemannian
manifold with Ric ≥ 0, and let Ω ⊂ M be an open subset with smooth compact boundary and
connected unbounded complement. Then, for every β ≥ (n− 2)/(n− 1), the following assertions
hold true, where the mean curvature is computed with respect to the outward unit normal.

(i) If (M, g) is nonparabolic, then

sup
∂Ω

H ≥ 1´
∂Ω|Du|

β dσ

[
Uβ(1) +

1

β

dUβ
dt

(1)

]
> 0 , (1.18)

where Uβ is defined in (1.10) and its derivative satisfies (1.12).
(ii) If (M, g) is parabolic, then

sup
∂Ω

H ≥ − 1´
∂Ω|Dψ|

β dσ

[
1

β

dΨβ

ds
(0)

]
≥ 0 , (1.19)

where Ψβ is defined in (1.16) and its derivative satisfies (1.17).

Kasue’s Theorem then follows as a corollary.

Corollary 1.7 (Kasue’s Theorem). Let (M, g) be a complete noncompact Riemannian manifold
with Ric ≥ 0 and let Ω ⊂ M be an open subset with smooth compact boundary and connected
unbounded complement. Assume that H ≤ 0 on ∂Ω, where the mean curvature is computed
with respect to the outward unit normal. Then (M \Ω, g) is isometric to a Riemannian product
([0,+∞)× ∂Ω, dr ⊗ dr + g∂Ω) and ∂Ω is a totally geodesic connected submanifold of (M, g).

1.3. Isoperimetry in 3-manifolds. Finally, we combine our sharp Willmore-type inequal-
ity (1.6) with curvature flow techniques along the lines of an argument presented by Huisken
in [37]. We obtain a characterization of the infimum of the Willmore functional in terms of
the isoperimetric ratio of 3-manifolds with nonnegative Ricci curvature and Euclidean volume
growth, refining the analogous result stated in the aforementioned contribution. This is the
content of the following theorem.

Theorem 1.8 (AVR(g) & Isoperimetric Constant). Let (M, g) be a complete noncompact 3-
manifold with Ric ≥ 0 and Euclidean volume growth. Then,

inf
|∂Ω|3

36π|Ω|2
= inf

ˆ
∂Ω

H2 dσ

16π
= AVR(g), (1.20)

where the infima are taken over bounded and open subsets Ω ⊂ M with smooth boundary. In
particular, the following isoperimetric inequality holds for any bounded and open Ω ⊂ M with
smooth boundary

|∂Ω|3

|Ω|2
≥ 36πAVR(g). (1.21)

Moreover, equality is attained in (1.21) if and only if M = R3 and Ω is a ball.

Beside the characterization of the isoperimetric constant in terms of the Asymptotic Volume
Ratio, the novelties with respect to [37] lie in the rigidity statement and in the fact that the
infimum of the Willmore functional is taken over the whole class of bounded open subsets Ω with
smooth boundary, and not just over outward minimizing subsets. All of these improvements
substantially come from our optimal Willmore-type inequality (1.6).
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It is worth noticing that the above theorem can be rephrased in terms of a Sobolev inequality
with optimal constant. This is the content of the following corollary.

Corollary 1.9 (AVR(g) & Sobolev Constant). Let (M, g) be a complete noncompact 3-manifold
with Ric ≥ 0 and Euclidean volume growth. Then

inf
f∈W 1,1

0 (M)

ˆ
M
|Df | dσ(ˆ

M
|f |3/2 dσ

)2/3
= 3
√

36πAVR(g) . (1.22)

Once Theorem 1.8 is established, (1.22) is obtained by very standard tools. We refer the
reader to [67, pages 89-90] for a complete proof of the well known equivalence between the
isoperimetric and the Sobolev inequality. On this regard, it is worth observing that relations
between isoperimetry and mean curvature functionals date back to Almgren [6], while a first
derivation of isoperimetric inequalities through a curvature flow has been obtained by Topping
in the case of curves [71]. Isoperimetric inequalities in Rn and in Cartan-Hadamard manifolds
through curvature flows have been established by Schulze in [68] and [69], while the application
to manifolds with nonnegative Ricci curvature is suggested in the already mentioned [37]. The
techniques lectured in [37] have interesting applications also in connection with the relativistic
ADM mass, see [42] for the details. Actually, as pointed out in the discussion following [22,
Theorem 5.13], a positive isoperimetric/Sobolev constant for complete noncompact Riemannian
manifolds with Ric ≥ 0 and Euclidean volume growth can be deduced via the techniques intro-
duced by Croke in [29] and [30]. However, it is known that such constant is not optimal. Other
strictly related issues about isoperimetry in noncompact manifolds with Ric ≥ 0 are treated in
[63] and [21].

1.4. Summary. This paper is organized as follows. In Section 2 we review, for ease of the reader,
the theory of harmonic functions on Riemannian manifolds with nonnegative Ricci curvature
we are going to employ along this work. In Section 3 we introduce the conformal formulation of
problem (1.9). In this setting, we prove (the conformal version of) Theorem 1.3. In Section 4
we work out the integral asymptotic estimates for the electrostatic potential on manifolds with
nonnegative Ricci curvature. With these estimates at hand, we prove Theorem 1.1 and Corol-
lary 1.2. In Section 5 we prove the Monotonicity-Rigidity Theorem for parabolic manifolds and
deduce Theorem 1.6 and Corollary 1.7. In Section 6, we prove Theorem 1.8. Finally, we have
included an Appendix where we describe the relations between our monotonicity formulas and
some of those obtained by Colding and Colding-Minicozzi in [23] and [28].

2. Harmonic functions in exterior domains

In this section we are mainly concerned with characterizing Riemannian manifolds for which
problems (1.9) and (1.15) admit a solution. We are going to see that complete noncompact
nonnegatively Ricci curved manifolds for which a solution to (1.9) exists are the nonparabolic
ones, namely, manifolds admitting a positive Green’s function, while those admitting a solution
to (1.15) are the parabolic ones.

Nothing substantially new appears in this section. We are just collecting, re-arranging and
applying classical results contained in [49, 50, 51, 53, 75], and [72]. The interested reader might
also refer to the nice survey [35], where the relation with the Brownian motion on manifolds
is also explored, or, for a more general account on the vast subject of harmonic functions on
manifolds, to the lecture notes [48] and the references therein. Other important works in this
field will be readily cited along the paper. Before starting, let us mention that the results
gathered in this preliminary section are spread in a huge literature, and frequently they do not
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appear exactly in the form that we need or with a detailed proof. For this reason, we include
the most relevant ones. Important gradient bounds are discussed too.

Along this section, we denote by D the Levi-Civita connection of the Riemannian manifold
considered, and by ∆ the related Laplacian. For any two points p, q ∈ M , we let d(p, q) be
their geodesic distance. Moreover, it is understood that we are always dealing with manifolds
of dimension n ≥ 3.

2.1. Green’s functions and parabolicity. Let us begin with the definition of Green’s func-
tions on Riemannian manifolds.

Definition 2.1 (Green’s function). A smooth function

G : (M ×M) \Diag(M)→ R ,
where Diag(M) = {(p, p) : p ∈M}, is said to be a Green’s function for the Riemannian manifold
(M, g) if the following requirements are satisfied.

(i) G(p, q) = G(q, p) for any p, q ∈M , p 6= q.

(ii) ∆G(p, ·) = 0 on M \ {p}, for any p ∈M .

(iii) The following asymptotic expansion holds for q → p:

G(p, q) =
(
1 + o(1)

)
d2−n(p, q) . (2.1)

It is well known that on a complete noncompact Riemannian manifold there always exists a
Green’s function. This result has been obtained for the first time by Malgrange in [56], while
a constructive proof, best suited for applications, has been given by Li-Tam in [49]. Complete
noncompact Riemannian manifolds are then divided into two classes.

Definition 2.2 (Parabolicity). Complete noncompact Riemannian manifolds which support a
positive Green’s function are called nonparabolic. Otherwise they are called parabolic.

A by-product of Li-Tam’s construction of Green’s function gives the following very useful
characterization of parabolicity, see for example [48, Theorem 2.3] for a proof.

Theorem 2.3 (Li-Tam). Let (M, g) be a complete noncompact Riemannian manifold. Then,
it is nonparabolic if and only if there exists a positive super-harmonic function f defined on the
complement of a geodesic ball B(p,R) such that

lim inf
d(p,q)→+∞

f(q) < inf
∂B(p,R)

f. (2.2)

Notice that if (M, g) is a nonparabolic Riemannian manifold then a barrier function f as in
Theorem 2.3 is just the function G restricted to M \B(p,R). A positive Green’s function G is
called minimal if

G(p, q) ≤ G̃(p, q)

for any other positive Green’s function G̃. The construction of the Green’s function in [49]
actually provides the minimal one.

The following theorem is a fundamental characterization of parabolicity for manifolds with
Ric ≥ 0 in terms of the volume growth of geodesic balls, first provided in [72].

Theorem 2.4 (Varopoulos). Let (M, g) be a complete noncompact Riemannian manifold with
Ric ≥ 0. Then (M, g) is nonparabolic if and only if

+∞ˆ

1

r

|B(p, r)|
dr < +∞ , (2.3)

for any p ∈M , where B(p, r) is a geodesic ball centered at p with radius r ≥ 0.
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The above characterization roughly says that on nonparabolic manifolds volumes are growing
faster than quadratically, while on the parabolic ones they grow at most quadratically. On
the other hand, on a n-dimensional complete noncompact Riemannian manifold with Ric ≥ 0
Bishop-Gromov’s Theorem and a result of Yau [76] respectively show that the growth of volumes
of geodesic balls B(p, r) is controlled from above by rn and from below by r.

From now on we focus our discussion on complete noncompact manifolds with nonnegative
Ricci curvature. In the following two subsections we collect some basic though fundamental
facts in this context, for the ease of references.

2.2. Harmonic functions on manifolds with nonnegative Ricci curvature. A basic tool
in the study of the potential theory on Riemannian manifolds is the following celebrated gradient
estimate, first provided by Yau in [75] (see also the nice presentation given in [67]).

Theorem 2.5 (Yau’s Gradient Estimate). Let (M, g) be a complete noncompact Riemannian
manifold with Ric ≥ 0. Let u be a positive harmonic function defined on a geodesic ball B(p, 2R)
of center p and radius 2R. Then, there exists a constant C = C(n) > 0 such that

sup
x∈B(p,R)

|Du|
u
≤ C

R
. (2.4)

We now apply the above inequality to a harmonic function v defined in a geodesic annulus
B(p,R1)\B(p,R0). We obtain a decay estimate on the gradient of u that we will employ several
times along this paper.

Proposition 2.6. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0,

and let u be a positive harmonic function defined in a geodesic annulus B(p,R1)\B(p,R0), with
R1 > 3R0. Then, there exists a geometric constant C = C(n) such that

|Du|(q) ≤ C
u(q)

d(p, q)
, (2.5)

for any point q such that 2R0 ≤ d(p, q) <
R1 +R0

2
. In particular, if u is a harmonic function

defined in M \B(p,R0), then

|Du|(q) ≤ C u(q)

d(p, q)
(2.6)

for any point q with 2R0 ≤ d(p, q).

Proof. Let q be such that 2R0 ≤ d(p, q) <
R1 +R0

2
. Then the ball B

(
q, d(p, q) − R0

)
is all

contained in the annulus B(p,R1) \B(p,R0). In particular, by Yau’s inequality (2.4) we have

|Du|(q) ≤ C u(q)

d(p, q)−R0
≤ 2C

u(q)

d(p, q)
.

Letting R1 → +∞, we get also (2.6). �

Another important application of Yau’s inequality is the following compactness result for
sequences of harmonic functions. A complete proof can be found in [48, Lemma 2.1].

Lemma 2.7. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0, and let U ⊂ M be
an open and connected subset. Let {fi} be a sequence of positive harmonic functions defined on
U , and suppose there exists a constant C such that fi(p) ≤ C at some point p ∈ U for any i ∈ N.
Then, there exists a subsequence {fij} converging to a positive harmonic function f uniformly
on any compact set K ⊂ U .
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2.3. Ends of manifolds with nonnegative Ricci curvature. It is a well-known and largely
exploited fact that a complete noncompact Riemannian manifold (M, g) with nonnegative Ricci
curvature that is not a Riemannian cylinder has just one end. However, since a complete proof
of this fact is hard to find in standard literature, we discuss the details below.

We employ the following definition of end, that is, the one used in the works by Li and Tam,
see for example [50, Definition 0.4 and discussion thereafter].

Definition 2.8 (Ends of Riemannian manifolds). An end of a Riemannian manifold (M, g)
with respect to a compact subset K ⊂ M is an unbounded connected component of M \K. We
say that (M, g) has a finite number of ends if the number of ends with respect to any compact
subset K ⊂ M is bounded by a natural number k independent of K. In this case, we say that
(M, g) has k ends if it has k ends with respect to a compact subset K ⊂ M and to any other
compact subsets of M containing K.

To state the result, we quickly recall some terminology. A line in (M, g) is a curve γ : R→M
which is a minimal geodesic between any two points lying on it. A ray is half a line. We
also recall that a complete Riemannian manifold (M, g) is called a Riemannian cylinder if it is
isometric to the Riemannian product (R × Nn−1, dt ⊗ dt + gNn−1), where Nn−1 is a compact
manifold.

Remark 2.9. Using the above definition and terminology it is clear that if a Riemannian man-
ifold has at least two ends, then it contains a line.

Proposition 2.10. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0.
If (M, g) is not a Riemannian cylinder, then it has just one end.

Proof. Since (Mn, g) has nonnegative Ricci curvature by hypothesis, then the Cheeger-Gromoll
Splitting Theorem [16] implies that

(M, g) is isometric to
(
Rm ×Nn−m, gRk + gNn−m

)
, (2.7)

for some m ∈ {0, . . . , n}, where the manifold (Nn−m, gNn−m) has nonnegative Ricci curvature
and does not contain any line. The Riemannian manifold (M, g) is a Riemannian cylinder if
m = 1 and Nn−1 is compact. Let us then suppose that (M, g) is not a Riemannian cylinder.
We consider the cases m = 0, m = 1 and m ≥ 2.

Case m = 0. In this case, (M, g) does not contain any line. Then there is no more than one
end, in view of Remark 2.9.

Case m = 1. Since (M, g) is not a cylinder, we have that Nn−1 is a noncompact Riemannian
manifold that contains no lines. Then again by Remark 2.9, it has at most one end. Thus, also
R×Nn−1 has at most one end.

Case m ≥ 2. We show that

M \K is connected for every compact K ⊂M. (2.8)

In view of Definition 2.8, this readily implies that M has at most one end. Now, to check (2.8)
in view of (2.7), it is sufficient to check that for every compact Q ⊂ Rm and every compact
P ⊂ Nn−m, we have that (Rk × Nn−m) \ (Q × P ) is connected. Let then (x, q), (y, p) ∈
(Rm ×Nn−m) \ (Q× P ) and suppose for the moment that x, y ∈ Q, so that, in turn, q, p /∈ P .
Choose z ∈ Rm \Q and define the curves

α(t) =
(
tx+ (1− t)z, q

)
, β(t) =

(
ty + (1− t)z, p

)
,

t ∈ [0, 1], connecting (x, q) to (z, q) and (y, p) to (z, p), respectively. Note that α(t), β(t) ∈
(Rm × Nn−m) \ (Q × P ) for every t ∈ [0, 1], because q, p /∈ Q. Now, let γ(t) be a continuous
curve in Nn−m connecting q and p. Then the curve

(
z, γ(t)

)
∈
(
(Rm \ Q) × Nn−m) connects

(z, q) to (z, p). Gluing together the curves α, β, and (z, γ), we obtain a continuous path lying
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in (Rm ×Nn−m) \ (Q × P ) and connecting (x, q) to (y, p). Obtaining such a curve in the case
where either x /∈ Q or y /∈ Q requires a similar simpler construction. We have thus proved that
(Rm ×Nn−m) \ (Q× P ) is path-connected, hence connected.

We proved that (M, g) has at most one end, if it is not a cylinder. Then, it has exactly one
end, because it is noncompact. �

Let us now describe separately some aspects of harmonic functions on nonparabolic and
parabolic manifolds. In particular, we are going to characterize these two classes of manifolds
through a couple of existence results for solutions of suitable boundary value problems in exterior
domains (see Theorems 2.13 and 2.16 below). The monotone quantities analysed in Theorems 1.3
and 1.5 are defined along the level sets of these solutions.

2.4. The exterior problem on nonparabolic manifolds. The following is a fundamental
estimate proved by Li-Yau in [53].

Theorem 2.11 (Li-Yau). Let (M, g) be a nonparabolic Riemannian manifold with Ric ≥ 0.
Then, its minimal Green’s function G satisfies

C−1

+∞ˆ

d(p,q)

r

|B(p, r)|
dr ≤ G(p, q) ≤ C

+∞ˆ

d(p,q)

r

|B(p, r)|
dr , (2.9)

for some C = C(n) > 0.

Combining (2.3) with (2.9), we get that the minimal Green’s function goes to 0 at infinity,
i.e. for any fixed p in M

lim
d(p,q)→+∞

G(p, q) = 0 . (2.10)

An easy application of Laplace Comparison Theorem then gives the following well known fact.

Lemma 2.12. Let (M, g) be a nonparabolic Riemannian manifold with Ric ≥ 0, and let G be
its minimal Green’s function. Then, for any fixed pole p we have

d2−n(p, q) ≤ G(p, q). (2.11)

for any q 6= p in M .

Proof. Let r be the function mapping a point q in M to d(p, q). By the Laplacian Comparison
Theorem, we have

∆r ≤ n− 1

r
in the sense of distributions (see e.g. [22, Theorem 1.128]). Therefore, we have, in the sense of
distributions,

∆r2−n = (n− 2)
[
(n− 1)r−n − r1−n∆r

]
≥ 0 ,

and then the the function r2−n − G(p, ·) is sub-harmonic. By the maximum principle, for any
ε > 0 and R > ε

max
B(p,R)\B(p,ε)

(r2−n −G(p, ·)) = max
∂B(p,R)∪∂B(p,ε)

(r2−n −G(p, ·)) .

We conclude by passing to the limit as ε→ 0 and R→ +∞, taking into account the asymptotic
behaviour at the pole p given by (2.1) and that G→ 0 at infinity, as observed in (2.10). �

Now, we characterize the existence of a solution to problem (1.9) with the nonparabolicity of
the ambient manifold. Let us first set up some notation that we are going to use in the rest of
the paper. With respect to a bounded open subset Ω ⊂ M with smooth boundary, we denote
by O a generic reference point taken inside Ω.
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Theorem 2.13. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0, and
let Ω ⊂ M be a bounded open subset with smooth boundary and no holes. Then, there exists a
solution to problem (1.9) if and only if (M, g) is nonparabolic.

Proof. The proof is an easy adaptation of arguments already presented in [50]. By Theorem 2.3
the existence of a solution to problem (1.9) implies nonparabolicity of M , since the restriction
of u to M \B(O,R) with Ω ⊂ B(O,R) clearly satisfies condition (2.2).

Conversely, assume that M is nonparabolic, and consider an increasing sequence of radii
{Ri}i∈N such that Ω ⊂ B(O,R1) and Ri → +∞. Let, for any i ∈ N, ui be the solution to the
following problem: 

∆u = 0 in B(O,Ri) \ Ω

u = 1 on ∂Ω

u = 0 on ∂B(O,Ri).

(2.12)

Let now G be the minimal positive Green’s function, and consider the function G(O, ·). Due to
the Maximum Principle for harmonic functions and the boundary conditions in problem (2.12)
we have that

0 ≤ uRi(q) ≤
G(O, q)

min∂ΩG(O, ·)
, (2.13)

for q ∈ B(O,Ri). Let then K be a compact set contained in M \ Ω. We can clearly suppose
without loss of generality that K is contained in B(O,Ri)\Ω for any i. Then, (2.13) and Lemma
2.7 give that ui converges up to a subsequence to a harmonic function u on K. We can clearly
extend by continuity u to 1 on ∂Ω. Again by (2.13), and by uniform convergence,

0 ≤ u(q) ≤ G(O, q)

min∂ΩG(O, ·)
.

on M \Ω. Since, by (2.10), G(O, q)→ 0 as d(O, q)→ +∞, so does u, completing the proof. �

We conclude this section with the following easy lemma, which shows that we can control
function u by the minimal Green’s function G.

Lemma 2.14. Let (M, g) be a nonparabolic Riemannian manifold with Ric ≥ 0, and let G be
its minimal Green’s function. Let u be a solution to (1.9) for some open and bounded set Ω with
smooth boundary and no holes, and let O ∈ Ω. Then, there exist constants C1 = C1(M,Ω) > 0
and C2 = C2(M,Ω) > 0 such that

C1G(O, q) ≤ u(q) ≤ C2G(O, q) (2.14)

on M \ Ω. In particular

C1d(O, q)2−n ≤ u(q). (2.15)

on M \ Ω.

Proof. Just set 0 < C1 < 1/max∂ΩG(O, ·), and C2 > 1/min∂ΩG(O, ·). The claim follows from
the Maximum Principle and the observation that both u and G are vanishing at infinity. The
inequality (2.15) is obtained combining the lower estimate on u by (2.14) with (2.11). �

2.5. The exterior problem on parabolic manifolds. The following inequalities, proved
in [51, Theorem 2.6], can be interpreted as a version for parabolic manifolds of the Li-Yau
inequalities recalled in Theorem 2.11. We point out that we are always dealing with Green’s
functions obtained by the Li-Tam’s construction.
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Theorem 2.15. Let (M, g) be a parabolic manifold with Ric ≥ 0, and let p ∈ M . Let G be a
Green’s function. Then, for any fixed r0 > 0 and for any q with d(p, q) > 2r0 there holds

−G(p, q) ≤ C1

d(p,q)ˆ

r0

r

|B(p, r)|
dr + C2 , (2.16)

for some constants C1 and C2 depending only on n, r0 and the choice of G. Moreover, for any
R > r0 , there holds

C3

R̂

r0

r

|B(p, r)|
dr + C4 ≤ sup

∂B(p,R)

(
−G(p, ·)

)
, (2.17)

for some constants C3 and C4 depending only on n, r0 and the choice of G.

When (M, g) is parabolic, Li-Tam proved in [50, Lemma 1.2] that the exterior problem (1.15)
admits a solution. The construction of such a solution ψ, combined with Yau’s inequality and
Theorem 2.15, readily implies a uniform gradient bound on ψ.

Theorem 2.16. Let (M, g) be a parabolic Riemannian manifold with Ric ≥ 0, and let Ω ⊂ M
be an open subset with smooth compact boundary and connected unbounded complement. Then,
there exists a solution to problem (1.15). Moreover, |Dψ| is uniformly bounded in M \ Ω.

Proof of Theorem 2.16. Let O ∈ Ω, let U ⊂ Ω be an open neighborhood of O and let D b Ω be
a bounded open subset of Ω such that U b D and ∂Ω ⊂ ∂D. Let finally K be the compact set
defined by K = D \U . Consider, for a sequence B(O,Ri) of geodesic balls with increasing radii
containing Ω, a corresponding sequence of positive Green’s functions Gi(O, ·) of B(O,Ri) with
pole in O such that Gi(O, x) = 0 for x ∈ ∂B(O,Ri). We then consider the sequence of functions
defined in B(O,Ri) \ {O} by

fi(q) = sup
x∈K

Gi(O, x)−Gi(O, q).

The construction in [49] implies that there exists a Green’s function G on M such that fi
converges to −G(O, ·) uniformly on compact subsets of M \ {O} (compare with the discussions
around Lemma 1.2 in [50]). Observing that fi = supK Gi(O, ·) on ∂B(O,Ri), we set

ai = sup
x∈K

Gi(O, x)

and consider the solution ψi to the problem
∆ψ = 0 in B(O,Ri) \ Ω

ψ = 0 on ∂Ω

ψ = ai on ∂B(O,Ri) ∩ (M \ Ω) .

Since supK Gi(O, ·) ≥ sup∂ΩGi(O, ·), the Maximum Principle immediately gives

fi − sup
∂Ω

fi ≤ ψi ≤ fi (2.18)

on B(O,Ri) \ Ω. Since the sequence fi is converging (uniformly on compact sets) to the Li-
Tam Green’s function, the second inequality in (2.18) combined with Lemma 2.7 shows that ψi
converges uniformly on the compact subsets of M \ Ω to an harmonic function ψ, that we can
clearly extend to 0 on ∂Ω. Moreover, since for every q ∈M \ {O} the sequence fi(q) converges
to −G(O, q) and since by (2.17) we have that −G(O, qj) → +∞ along a sequence of points qj
such that d(O, qj)→ +∞, we use the first inequality in (2.18), to deduce that ψ(qj)→ +∞, as
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j → +∞. In particular, since by [25, Lemma 3.40] ψ must admit a limit at infinity, we infer
that ψ(q)→ +∞, as d(O, q)→ +∞. Therefore, ψ is a solution to problem (1.15).

Observe that, again by (2.18), ψ ≤ −G(O, ·). Inequality (2.6) then yields

|Dψ|(q) ≤ C
ψ(q)

d(O, q)
≤ C

−G(O, q)

d(O, q)
(2.19)

for some constant C and any q outside some big geodesic ball B(O, r0). Combining now (2.16)
with Yau’s lower bound on the growth of geodesic balls, saying that |B(O, r)| ≥ Cr for any
r ≥ 1 and for some constant C, we also have

−G(O, q)

d(O, q)
≤ C1

d(O, q) + C2

d(O, q)

for q with d(O, q) > 2r0 and constants C1 and C2. Plugging it in (2.19), this shows that |Dψ| is
uniformly bounded, as claimed. �

3. Proof of the Monotonicity-Rigidity Theorem for nonparabolic manifolds

3.1. The conformal setting. Let (M, g) be a nonparabolic Riemannian manifold with non-
negative Ricci curvature. Let Ω ⊂ M be a bounded and open set with smooth boundary and
no holes, and let u be the solution to problem (1.9). Let us recall that the no holes assumption,
combined with the parabolicity, implies that M \ Ω consists of a unique unbounded connected
component, in virtue of Proposition 2.10. We introduce, in M \ Ω the metric

g̃ = u
2

n−2 g. (3.1)

The expression for g̃ is formally the same as in [2] and [4]. Let us explain why such a conformal
change of metric is natural also in the current setting. Our model geometry is that of a truncated
metric cone

(M \ Ω, g) ∼=
( [
r0,+∞)× ∂Ω , dr ⊗ dr + Cr2g∂Ω

)
, (3.2)

for some positive constant r0 and C, and where g∂Ω is the metric induced by g on ∂Ω. We also
assume that ∂Ω is a smooth closed sub-manifold with Ric∂Ω ≥ (n − 2)g∂Ω. Such a curvature
assumption on ∂Ω is equivalent to supposing that the cone in (3.2) has nonnegative Ricci cur-
vature. In this model setting, up to a suitable choice of C in (3.2), the solution to problem (1.9)
is u(r) = r2−n. With this specific u, the metric g̃ becomes

g̃ = dρ⊗ dρ+ g∂Ω ,

where ρ = log r. In other words g̃ is a (half) Riemannian cylinder over (∂Ω, g∂Ω). In parallel, as
the rigidity statement in Theorem 1.3 gives a characterization of the truncated cone metrics (3.2),
so its conformal version in Theorem 3.2 characterizes truncated cylindrical metrics.

Having this in mind, we are now going to describe the general features of (M \Ω, g̃) in more
details. Letting

ϕ = − log u , (3.3)

we have that g̃ = e−
2ϕ
n−2 g.

As before, D is the Levi-Civita connection of (M, g). Moreover, we denote by DD the Hessian.
We denote by ∇, the Levi-Civita connection of the metric g̃, by ∇∇ its Hessian, and we put the
subscript g̃ on any other quantity induced by g̃. We have, for a smooth function w

∇α∇βw = DαDβw +
1

n− 2

(
∂αw∂βϕ+ ∂βw∂αϕ− 〈Dw,Dϕ〉gαβ

)
,

where by 〈·, ·〉 we denote the scalar product induced by g. In particular,

∆g̃ϕ = 0 . (3.4)
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Moreover, the Ricci tensor Ricg̃ of g̃ and the Ricci tensor Ric of g satisfy

Ricg̃ = Ric +∇α∇βϕ−
dϕ⊗ dϕ
n− 2

+
|∇ϕ|2g̃
n− 2

g̃ . (3.5)

Finally, by (3.4) and (3.5) problem (1.9) becomes

∆g̃ϕ = 0 in M \ Ω

Ricg̃ −∇∇ϕ+
dϕ⊗ dϕ
n− 2

=
|∇ϕ|2g̃
n− 2

g̃ + Ric in M \ Ω

ϕ = 0 on ∂Ω

ϕ(q)→ +∞ as d(O, q)→ +∞.

(3.6)

The classical Bochner identity applied to ϕ in (M \Ω, g̃) , combined with the first two equations
of the above system, immediately yields the following identity

∆g̃|∇ϕ|2g̃ − 〈∇|∇ϕ|
2
g̃,∇ϕ〉g̃ = 2

[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2g̃

]
, (3.7)

where Ric is the Ricci tensor of the background metric g. Such a relation is at the heart of this
work. As a first application, we have the following fundamental correspondence between the
splitting of (M \ Ω, g̃) as a cylinder and the splitting of (M \ Ω, g) as a cone.

Lemma 3.1. Let (M, g) be a nonparabolic Riemannian manifold with Ric ≥ 0, let Ω ⊂M be a
bounded and open subset with smooth boundary and no holes, and let g̃ and ϕ be defined by (3.1)
and (3.3). Assume that ∇|∇ϕ|g̃ = 0 on {ϕ ≥ s0} for some s0 ∈ [0,+∞).

(i) Then the Riemannian manifold ({ϕ ≥ s0}, g̃) is isometric to the Riemannian product(
[s0,+∞)× {ϕ = s0}, dρ⊗ dρ+ g̃{|ϕ=s0}

)
.

In particular, {ϕ = s0} is a connected totally geodesic submanifold inside (M \ Ω, g̃).

(ii) Accordingly, for t0 = e−s0, the Riemannian manifold ({u ≤ t0}, g) has Euclidean volume
growth and it is isometric to the truncated cone([
r0,+∞)× {u = t0} , dr ⊗ dr +

(
r

r0

)2

g{u=t0}

)
, with r0 =

(
|{u = t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In particular, {u = t0} is a connected totally umbilic submanifold inside (M \Ω, g) with
constant mean curvature.

Proof. Let us first observe that plugging ∇|∇ϕ|g̃ = 0 in (3.7) readily implies, since Ric ≥ 0, that

∇∇ϕ ≡ 0 in {ϕ ≥ s0} = {u ≤ t0}. (3.8)

for s0 = − log t0. The isometry of ({ϕ ≥ s0}, g̃) with a Riemannian product is then a well known
fact, that was employed for example in the conclusion of the proof of the celebrated Cheeger-
Gromoll’s Splitting Theorem [16] (see also [2, Theorem 4.2 (i)] for a simple direct argument).
Observe now that {ϕ = s0} is connected as a consequence of Proposition 2.10. Recalling the
formula

∇α∇βw = DαDβw +
1

n− 2

(
∂αw ∂βϕ+ ∂βw ∂αϕ− 〈Dw,Dϕ〉 gαβ

)
,

that holds for every C2 function w, we have in particular that condition (3.8) translates into

0 = ∇α∇βϕ = −
DαDβu

u
+
( n

n− 2

)DαuDβu

u2
−
( 1

n− 2

) ∣∣∣∣Duu
∣∣∣∣2 gαβ. (3.9)
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Observing now that

DαDβ

(
u−

2
n−2
)

=
( 2

n− 2

)
u−

2
n−2

[
−

DαDβu

u
+
( n

n− 2

)DαuDβu

u2

]
we deduce from (3.9) that

DαDβ

(
u−

2
n−2

)
=

2

(n− 2)2

∣∣∣∣Duu
∣∣∣∣2 u− 2

n−2 gαβ.

In particular, we have that DD
(
u−2/(n−2)

)
is proportional to the metric. By a standard result

in Riemannian geometry (see e.g. [14, Theorem 1.1] for a complete proof, or [15, Section 1])

this fact implies that the potential f = u−2/(n−2), and thus u, depends only on the (signed)
distance r from {u = t0} and that, up to a multiplicative factor in front of f , the metric g can
be expressed as

g = dr ⊗ dr +
(
f ′(r)

)2
gΣ, Σ = {u = t0}.

Moreover, the associated Ricci tensor is given by

Ric = −(n− 1)
f ′′′

f ′
dr ⊗ dr + RicΣ−

(
(n− 2)(f ′′)2 + f ′f ′′′

)2
gΣ . (3.10)

The second information obtained by plugging ∇|∇ϕ|g̃ = 0 into the Bochner identity (3.7) is

Ric (∇ϕ,∇ϕ) = 0 in {ϕ ≥ s0} = {u ≤ t0} .

In particular this implies that Ric(Du,Du) = 0 in the same set. Using now expression (3.10)
and recalling that Du is orthogonal to Σ, we obtain that f ′′′(r) = 0. This yields

g = dr ⊗ dr +
( r
r0

)2
gΣ ,

where r0 > 0 is such that Σ = {r = r0}. Finally, if O is the tip of the above cone, since

|∂B(O,R)| =

ˆ

∂B(O,R)

dσ =

ˆ

∂Σ

(
R

r0

)n−1√
det gΣ

ij dϑ1 . . . dϑn−1 =

(
R

r0

)n−1

|Σ| ,

we can explicitly express r0 in terms of AVR(g) as in (1.13) by

AVR(g) = lim
R→+∞

|∂B(O,R)|
Rn−1|Sn−1|

=
|Σ|

rn−1
0 |Sn−1|

.

The first identity is a well known characterization of the AVR(g) in terms of areas of geodesic
balls instead of volumes, and follows easily by the standard proof of the Bishop-Gromov Theorem
(see e.g. [64]). The proof of the second claim is completed. �

We now briefly record some of the main relations among geometric quantities induced by
the two metrics. We omit the computations, since they are straightforward and completely
analogous to those carried out in [2] and [4]. First, observe that

|∇ϕ|g̃ =
|Du|
u
n−1
n−2

.

Let H and Hg̃ be the mean curvatures of the level sets of u, that coincide with those of ϕ,
respectively in the Riemannian manifold (M \Ω, g) and in (M \Ω, g̃). They are computed using
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the unit normal vectors −Du/|Du| and ∇ϕ/|∇ϕ|g̃, respectively. Exploiting the g-harmonicity
and g̃-harmonicity of u and ϕ, we obtain that

H =
DDu(Du,Du)

|Du|3
, Hg̃ = −∇∇ϕ(∇ϕ,∇ϕ)

|∇ϕ|3g̃
. (3.11)

These quantities are related as follows

Hg̃ = u−
1

n−2

[
H−

(
n− 1

n− 2

)
|Du|
u

]
.

Letting dσg̃ and dµg̃ denote respectively the surface and the volume measure naturally induced
by g̃ on M \ Ω, we have

dσg̃ = u
n−1
n−2 dσ , dµg̃ = u

n
n−2 dµ .

Finally, for every β ≥ 0, define the conformal analogue of the Uβ as the function Φβ : [0,+∞) −→ R
mapping

Φβ(s) =

ˆ

{ϕ=s}

|∇ϕ|β+1
g̃ dσg̃. (3.12)

The functions Uβ and Φβ, and their derivatives are related to each other as follows

Uβ(t) = Φβ(− log t),

−tU ′β(t) = Φ′β(− log t) , (3.13)

for 0 < t ≤ 1. The following theorem is the conformal version of the Monotonicity-Rigidity
Theorem 1.3.

Theorem 3.2. Let (M, g) be a nonparabolic Riemmanian manifold with Ric ≥ 0. Let Ω ⊂ M
be a bounded and open subset with smooth boundary and no holes, and let g̃, ϕ and Φβ be defined
respectively as in (3.1), (3.26) and (3.12). Then, for every β ≥ (n− 2)/(n− 1), the function Φβ

is differentiable with derivative

dΦβ

ds
(s) = −β

ˆ

{ϕ=s}

|∇ϕ|βg̃ Hg̃ dσg , (3.14)

where Hg is the mean curvature of the level set {ϕ = s} computed with respect to the unit normal
vector field νg̃ = ∇ϕ/|∇ϕ|g̃. Moreover, for every s ≥ 0, the derivative fulfils

dΦβ

ds
(s) = − β es

ˆ

{ϕ≥s}

|∇ϕ|β−2
g̃

(
Ric(∇ϕ,∇ϕ) +

∣∣∇∇ϕ∣∣2
g̃

+ (β − 2)
∣∣∇|∇ϕ|g̃∣∣2g̃ )

eϕ
dµg̃ . (3.15)

In particular, dΦβ/ds is always nonpositive. Moreover, ( dΦβ/ds)(s0) = 0 for some s0 ≥ 1
and some β ≥ (n − 2)/(n − 1) if and only if

(
{ϕ ≥ s0}, g̃

)
is isometric to the Riemannian

product
(
[s0,+∞)× {ϕ = s0}, dρ⊗ dρ+ g̃{|ϕ=s0}

)
. In particular, {ϕ = s0} is a connected totally

geodesic submanifold.

Observe that the right hand side in (3.15) is nonpositive because of the refined Kato’s in-
equality for harmonic functions∣∣∇∇ϕ∣∣2

g̃
≥
(

n

n− 1

) ∣∣∇|∇ϕ|g̃∣∣2g̃ . (3.16)

Notice also the striking analogy between the above statement and Theorem 1.5.
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We are now going to show how to recover the Monotonicity-Rigidity Theorem 1.3 for non-
parabolic manifolds from its conformal version.

Proof of Theorem 1.3 after Theorem 3.2. Deducing formulas (1.11) and (1.12) from formulas
(3.14) and (3.15) is just a matter of lengthy but straightforward computations carried out using
the relations between g and g̃ recalled above. We sketch the main steps. First, compute

|∇∇ϕ|2g̃ = u−
4

n−2

{∣∣∣∣DDu

u

∣∣∣∣2 +
n(n− 1)

(n− 2)2

∣∣∣∣Duu
∣∣∣∣4 − 2n

n− 2

∣∣∣∣Duu
∣∣∣∣3 H

}
, (3.17)

where H is defined as in (3.11), and∣∣∇|∇ϕ|g̃∣∣2g̃ = u−
4

n−2

{∣∣∣∣D|Du|u

∣∣∣∣2+

(
n− 1

n− 2

)2 ∣∣∣∣Duu
∣∣∣∣4− 2

(
n− 1

n− 2

) ∣∣∣∣Duu
∣∣∣∣3 H

}
. (3.18)

By (3.17) and (3.18), we can write

|∇∇ϕ|2g̃ + (β − 2)
∣∣∇|∇ϕ|g̃∣∣2g̃ = u−

4
n−2

{
|DDu|2 − ( n

n−1)
∣∣D|Du|∣∣2

u2
+

+

(
β − n− 2

n− 1

)[ ∣∣∣∣D|Du|u

∣∣∣∣2+

(
n− 1

n− 2

)2 ∣∣∣∣Duu
∣∣∣∣4− 2

(
n− 1

n− 2

) ∣∣∣∣Duu
∣∣∣∣3 H

]}
.

(3.19)

Now, considering a orthonormal frame as {e1, . . . , en−1,Du/|Du|}, where the first n− 1 vectors
are tangent to the level sets of u, we can decompose∣∣∣∣D|Du|u

∣∣∣∣2 =

∣∣∣∣Duu
∣∣∣∣2 H2 +

n−1∑
j=1

〈
D|Du|
u

, ej

〉2

.

Plugging the above decomposition into (3.19), we obtain, with the aid of some algebra,

|∇∇ϕ|2g̃ + (β − 2)
∣∣∇|∇ϕ|g̃∣∣2g̃ = u−

2n
n−2

{[ ∣∣DDu
∣∣2 − ( n

n−1

)∣∣D|Du|∣∣2 ]
+
(
β − n−2

n−1

) ∣∣DT |Du|
∣∣2

+
(
β − n−2

n−1

)
|Du|2

[
H−

(
n−1
n−2

)
|D log u|

]2
}
,

where ∣∣DT |Du|
∣∣2 =

n−1∑
j=1

〈
D|Du|
u

, ej

〉2

.

The monotonicity formula (1.12) now follows easily. On the other hand, (1.11) follows from
(3.14) by a direct computation.

Assume now that U ′β(t0) = 0 for some t0 ∈ (0, 1] and some β ≥ (n − 2)/(n − 1). Then, by

(3.13), Φ′β(− log t0) = 0. The rigidity statement in Theorem 1.3 then follows from the analogous
statement in Theorem 3.2, simply recalling the discussion at the beginning of Subsection 3.1. �

3.2. Proof of Theorem 3.2. As already pointed out in Remark 1.4, we restrict ourselves to
the range β ≥ 1, since it is sufficient for the main geometric corollaries of Theorem 1.3. The
arguments are considerably easier in this regime, however in Remarks 3.8 and 3.10 we will
comment on the main difficulties that arise in the case (n− 2)/(n− 1) ≤ β < 1 and about how
they can be overtaken, following the strategy described in [4].

In what follows, we are always referring to a background nonparabolic Riemannian manifold
(M, g) with Ric ≥ 0. Outside a bounded and open subset Ω ⊂ M with smooth boundary and
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no holes, we define the conformal metric g̃ as in (3.1). In particular, with the same notations as
in the previous subsection, (M \ Ω, g̃, ϕ) is a solution to (3.6).

A first fundamental ingredient for the proof of the (conformal) Monotonicity-Rigidity Theo-
rem 3.2 is the upper bound for the function Φβ’s. We are going to prove it by first showing that
|∇ϕ|g̃ is uniformly bounded in M \Ω. Although not necessary for our aim, we actually provide
a sharp upper bound for such a function, together with a rigidity statement when this bound is
attained. The proof is substantially the one proposed in [2, Lemma 3.5] for the Euclidean case.

Proposition 3.3 (Sharp Gradient Estimate). The inequality

|∇ϕ|g̃(q) ≤ sup
∂Ω
|∇ϕ|g̃ (3.20)

holds for every q ∈ M \ Ω. Moreover, if the equality is attained for some q ∈ M \ Ω, then the
Riemannian manifold (M \ Ω, g̃) is isometric to

(
[0,+∞)× ∂Ω, dρ⊗ dρ+ g̃∂Ω

)
.

Proof. We first show that there exists a constant C = C(M,Ω) > 0 such that |∇ϕ|g̃ ≤ C in

M \ Ω. Fixing a reference point O inside Ω, and letting d(O, ·) be the distance from this point
with respect to the metric g, we have, by (2.6), that

|Du|(q) ≤ C
u(q)

d(O, q)

outside some ball containing Ω. Then,

|∇ϕ|g̃(q) =
|Du|
u
n−1
n−2

(q) ≤ C
u−

1
n−2 (q)

d(O, q)
≤ C C

− 1
n−2

1 ,

where in the last inequality we used (2.15). Consider now, for a given constant α > 0, the
auxiliary function

wα = |∇ϕ|2g̃e
−αϕ .

Observe that by the just proved upper bound on |∇ϕ|g̃ we have wα(q) → 0 as d(O, q) → +∞
for any α > 0. Moreover, a direct computation combined with (3.7) shows that wα satisfies the
identity

∆g̃wα − (1− 2α) 〈∇wα,∇ϕ〉g̃ − α(1− α)|∇ϕ|2g̃wα = 2 e−αϕ
[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2g̃

]
.

In particular, using the Maximum Principle, one has that for every q ∈M \ Ω it holds

wα(q) ≤ sup
∂Ω
|∇ϕ|2g̃ .

Letting α → 0 in the above inequality yields (3.20) for every q ∈ M \ Ω. Assume now that
the maximum value of |∇ϕ|g̃ is attained at some interior point q ∈M \Ω. Then, by the Strong

Maximum Principle |∇ϕ|2g̃ must be constant, since it satisfies

∆g̃|∇ϕ|2g̃ − 〈∇|∇ϕ|
2
g̃ ,∇ϕ〉g̃ ≥ 0 .

Lemma 3.1 then yields the desired conclusion. �

Remark 3.4. The above results, in terms of (M \ Ω, g) and u, says that for every q ∈M \ Ω

|Du|
u
n−1
n−2

(q) ≤ sup
∂Ω

|Du|
u
n−1
n−2

,

with equality attained only if (M \ Ω, g) is isometric to a truncated cone. This is exactly the
content of Colding’s [23, Theorem 3.2].

A direct consequence is that the functions Φβ’s are bounded.
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Corollary 3.5. For every β ≥ 0 the function Φβ : [0,+∞)→ R defined in (3.12) is bounded as

Φβ(s) ≤ sup
∂Ω
|∇ϕ|βg̃

ˆ

∂Ω

|∇ϕ|g̃ dσg̃ .

for every s ∈ [0,+∞).

Proof. Just observe that a simple application of the Divergence Theorem combined with the
g̃-harmonicity of ϕ gives the constancy in s of the function

s 7−→
ˆ

{ϕ=s}

|∇ϕ|g̃ dσg̃ .

Combining this observation with the bound (3.20), we have

Φβ(s) =

ˆ

{ϕ=s}

|∇ϕ|βg̃ |∇ϕ|g̃ dσg̃ ≤ sup
∂Ω
|∇ϕ|βg̃

ˆ

∂Ω

|∇ϕ|g̃ dσg̃ ,

for every s ∈ [0,+∞), as claimed. �

A fundamental tool in the forthcoming computations, leading to the expression of the de-
rivative of Φβ in terms of a nonpositive integral (as in (3.15)), is the following Bochner-type
identity.

Lemma 3.6 (Bochner-type identity). At every point where |∇ϕ|g̃ 6= 0, the following identity
holds for every β ≥ 0

∆g̃|∇ϕ|βg̃ −
〈
∇|∇ϕ|βg̃ ,∇ϕ

〉̃
g

= β |∇ϕ|β−2
g̃

[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2g̃ + (β − 2)

∣∣∇|∇ϕ|g̃∣∣2g̃ ],
(3.21)

where the Ric is the Ricci tensor of the background metric g.

Proof. By a direct computation one gets

∆g̃|∇ϕ|βg̃ = |∇ϕ|β−2
g̃

[
β

2
∆g̃|∇ϕ|2g̃ + β(β − 2)

∣∣∇|∇ϕ|g̃∣∣2g̃ ] ,
that, combined with (3.7), leads to (3.21). �

We prove now an integral identity that will enable us to link the derivative of Φβ to the
Bochner-type formula above. This is where the assumption β ≥ 1 enters the game, simplifying
the proofs (see Remarks 3.8 and 3.10 for the remaining cases).

Lemma 3.7 (Fundamental Integral Identity). Let 0 ≤ s < S < +∞, and let β ≥ 1. Then the
following identity holds

ˆ

{ϕ=S}

〈
∇|∇ϕ|βg̃ ,

∇ϕ
|∇ϕ|g̃

〉
eS

dσg̃ −
ˆ

{ϕ=s}

〈
∇|∇ϕ|βg̃ ,

∇ϕ
|∇ϕ|g̃

〉
es

dσg̃ =

= β

ˆ

{s≤ϕ≤S}

|∇ϕ|β−2
g̃

[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2g̃ + (β − 2)

∣∣∇|∇ϕ|g̃∣∣2g̃]
eϕ

dµg̃ ,

(3.22)

where the Ricci tensor is referred to the background metric g.
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Proof. Since all the quantities that appear in this proof are referred to the metric g̃, except for
Ric, which is the Ricci tensor of the background metric g, we shorten the notation, dropping
the subscript g̃. We consider the vector field

X =
∇|∇ϕ|β

eϕ
,

that is well defined at every point where |∇ϕ| 6= 0, and thus σg̃-almost everywhere, in virtue
of the regularity theory for elliptic equations recalled above. Moreover, by the Bochner-type
identity (3.21), we have that wherever |∇ϕ| 6= 0 it holds

divX =
∆|∇ϕ|β − 〈∇|∇ϕ|β,∇ϕ〉

eϕ
= β

|∇ϕ|β−2
[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2 + (β − 2)

∣∣∇|∇ϕ|∣∣2]
eϕ

.

(3.23)
Let us consider, in {s ≤ ϕ ≤ S}, a tubular neighborhood of the critical set

Bε[Crit(ϕ)] =
⋃

x∈Crit(ϕ)

Bε(x) ,

It is well known that, for almost every ε > 0, the boundary of Bε[Crit(ϕ)] is (n − 1)-Lipschitz
rectifiable with respect to σg̃ (see e.g. [5, Theorem 2.5] for a much more general result). Then,
the Divergence Theorem applies and yields

ˆ

{s≤ϕ≤S}\Bεj [Crit(ϕ)]

divX dµ =

ˆ

{ϕ=S}\Bεj (Crit(ϕ))

〈
∇|∇ϕ|β, ∇ϕ|∇ϕ|

〉
eS

dσ −
ˆ

{ϕ=s}\Bεj [Crit(ϕ)]

〈
∇|∇ϕ|β, ∇ϕ|∇ϕ|

〉
es

dσ

+

ˆ

∂Bεj [Crit(ϕ)]

〈
∇|∇ϕ|β, νεj

〉
eϕ

dσ,

for a sequence εj → 0+, where νεj is the exterior normal to ∂Bεj [Crit(ϕ)], that is well defined
almost everwhere on such a set due to rectifiability. By Kato’s inequality

|∇∇ϕ|2 ≥
∣∣∇|∇ϕ|∣∣2,

and identity (3.23), divX is nonnegative. Thus, by the Monotone Convergence Theorem, we
have ˆ

{s≤ϕ≤S}

divX dµ = lim
ε→0+

ˆ

{s≤ϕ≤S}\Bε[Crit(ϕ)]

divX dµ .

Moreover, observe that the length of the vector field ∇|∇ϕ|β is bounded in {s ≤ ϕ ≤ S} for
β ≥ 1 again by Kato’s inequality∣∣∇|∇ϕ|β∣∣ = β|∇ϕ|β−1

∣∣∇|∇ϕ|∣∣ ≤ β|∇ϕ|β−1|∇∇ϕ|,

and thus the Dominated Convergence Theorem gives

lim
εj→0+

ˆ

{ϕ=s}\Bεj [Crit(ϕ)]

〈
∇|∇ϕ|β, ∇ϕ|∇ϕ|

〉
es

dσ =

ˆ

{ϕ=s}

〈
∇|∇ϕ|β, ∇ϕ|∇ϕ|

〉
es

dσ ,
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and analogously for {ϕ = S}. We are then left to show that

lim
εj→0+

ˆ

∂Bεj [Crit(ϕ)]

〈
∇|∇ϕ|β, νε

〉
eϕ

dσ = 0. (3.24)

To see this, we observe that the integrand is bounded and we use the estimate on the tubular
neighbourhoods of the critical set given in [18, Theorem 1.17]. Namely, for every η > 0 and
every ε > 0 there exists a constant Cη > 0 such that

|Bε(Crit(ϕ))| ≤ Cη ε
2−η. (3.25)

Let ρ be the distance function from the closed set Crit(ϕ). Then, |∇ρ| = 1 almost everywhere
outside Crit(ϕ) (see [58, Theorem 3.1] for much deeper insights on distance functions). Therefore,
by the co-area formula and (3.25), we get

εˆ

0

dρ

ˆ

∂Bρ[Crit(ϕ)]

dσ ≤ Cη ε
2−η .

By the Mean Value Theorem, we can find a sequence εj → 0+ such thatˆ

∂Bεj [Crit(ϕ)]

dσ ≤ Cη ε
1−η
j ,

and then, up to relabeling, the limit in (3.24) holds true, completing the proof. �

Remark 3.8. As already observed, the refined Kato inequality for harmonic function (3.16)
implies that, whenever ∇ϕ 6= 0, the integrand on the right hand side of (3.22) is nonnegative

also for (n− 2)/(n− 1) ≤ β < 1. However, for β in this range, the vector field X = e−ϕ∇|∇ϕ|βg̃
is no longer uniformly bounded in a neighborhood of the critical set of ϕ, and thus the above
argument is not sufficient to prove (3.24). This difficulty has been recently overcome in [4],

introducing a new family of tubular neighborhoods Uε = {|∇ϕ|2g̃ ≤ ε} of Crit(ϕ), in place of the

standard ones, and then modifying the vector field X = e−ϕ∇|∇ϕ|β through a suitable cut-off
function that vanishes inside Uε. The key point is that the divergence of the modified vector
field always remains nonnegative. This scheme is shown to converge when ε→ 0, leading to the
validity of Lemma 3.7 for every (n − 2)/(n − 1) ≤ β < 1. We refer the reader to [4] for the
details of this construction.

Building on the Fundamental Integral Identity proved in Lemma 3.7, we are now ready to
deduce the following monotonicity result. Again, the case (n−2)/(n−1) ≤ β < 1 can be treated
adapting the argument presented in [4].

Theorem 3.9 (Monotonicity of e−sΦ′β(s)). Let β ≥ 1. The function Φβ defined in (3.12) is
differentiable for any s ≥ 0, and its derivative satisfies

Φ′β(s) =

ˆ

{ϕ=s}

〈
∇|∇ϕ|βg̃ ,

∇ϕ
|∇ϕ|g̃

〉
dσg̃ = −β

ˆ

{ϕ=s}

|∇ϕ|βg̃Hg̃ dσg̃ . (3.26)

In particular, for any 0 ≤ s < S <∞, we have

e−SΦ′β(S)− e−sΦ′β(s) = β

ˆ

{s≤ϕ≤S}

|∇ϕ|β−2
g̃

[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2g̃ + (β − 2)

∣∣∣∇|∇ϕ|g̃∣∣∣2
g̃

]
e−ϕdµg̃ ,

(3.27)
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where the Ricci tensor is referred to the background metric g.

Proof. Let us drop the subscript g̃. Let s0 ∈ [0,+∞), and s ≥ s0. Consider

Φβ(s)− Φβ(s0) =

ˆ

{ϕ=s}

〈
|∇ϕ|β∇ϕ, ∇ϕ

|∇ϕ|

〉
dσ −

ˆ

{ϕ=s0}

〈
|∇ϕ|β∇ϕ, ∇ϕ

|∇ϕ|

〉
dσ .

Ruling out the critical set of ϕ as shown in the proof of the above Lemma 3.7, we can apply the
Divergence Theorem to get

Φβ(s)− Φβ(s0) =

ˆ

{s0≤ϕ≤s}

div(|∇ϕ|β∇ϕ) dµ =

ˆ

{s0≤ϕ≤s}

〈
∇|∇ϕ|β,∇ϕ

〉
dµ ,

where the last identity is due to harmonicity of ϕ. By co-area formula, the above quantity can
also be written as

Φβ(s)− Φβ(s0) =

sˆ

s0

dτ

ˆ

{ϕ=τ}

〈
∇|∇ϕ|β, ∇ϕ

|∇ϕ|

〉
dσ . (3.28)

By the Fundamental Theorem of Calculus, the continuity of the mapping

τ 7−→ I(τ) =

ˆ

{ϕ=τ}

〈
∇|∇ϕ|β, ∇ϕ

|∇ϕ|

〉
dσ

implies the differentiability of Φβ, together with the first identity in (3.26). The second one
follows from the first just by a direct computation involving (3.11). In order to see the continuity
of I at a time τ0, consider, for τ > τ0, the difference

e−τI(τ)− e−τ0I(τ0) = e−τ
ˆ

{ϕ=τ}

〈
∇|∇ϕ|β, ∇ϕ

|∇ϕ|

〉
dσ − e−τ0

ˆ

{ϕ=τ0}

〈
∇|∇ϕ|β, ∇ϕ

|∇ϕ|

〉
dσ .

Then, by (3.22), we have

e−τI(τ)− e−τ0I(τ0) = β

ˆ

{τ0≤ϕ≤τ}

|∇ϕ|β−2
[
Ric(∇ϕ,∇ϕ) + |∇∇ϕ|2 + (β − 2)

∣∣∇|∇ϕ|∣∣2]
eϕ

dµ .

In particular, by the Dominated Convergence Theorem the above integral vanishes as τ → τ+
0 ,

yielding the right continuity of e−τI(τ) at τ0. By a completely analogous argument with τ < τ0

we get that e−τI(τ) is actually continuous at τ0, and clearly so is I, ending the proof. �

We are now in a position to complete the proof of Theorem 3.2.

Conclusion of the proof of Theorem 3.2. We are going to pass to the limit as S → +∞ in (3.27).
The following argument is due to Colding and Minicozzi, [28]. We first prove that the derivative
of Φβ has a sign. By (3.27) we have that, for every β ≥ 1 and every 0 ≤ s < S < +∞,

Φ′β(S) ≥ e(S−s)Φ′β(s) .

Integrating the above differential inequality, we get

Φβ(S) ≥
(
e(S−s) − 1

)
Φ′β(s) + Φβ(s) . (3.29)

for every 0 ≤ s < S < +∞. Assume now, by contradiction, that Φ′β(s) > 0 for some s ∈
[0,+∞). Then, passing to the limit as S → +∞ in (3.29), we would get Φβ(S)→ +∞, against
the boundedness of Φβ provided in Corollary 3.5. Thus, Φ′β(s) ≤ 0 for every s ∈ [0,+∞).

Therefore Φβ is a nonincreasing, differentiable bounded function on [0,+∞), and in particular,
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lim infS→+∞Φ′β(S) = 0. Passing to the inferior limit as S → +∞ in (3.27) finally gives the

monotonicity formula (3.15).
For the rigidity statement, assume now that Φ′β(s0) = 0 for some s0 ∈ [0,+∞). Then, by

(3.15), and Kato’s inequality, we get
∣∣∇|∇ϕ|∣∣ = 0. We then conclude by Lemma 3.1. �

Remark 3.10. For what it concerns the rigidity statement when Φ′β(s0) = 0 for some s0 ≥ 0

and (n − 2)/(n − 1) ≤ β < 1, observe that the only case to be discussed differently from β ≥ 1
is β = (n − 2)/(n − 1). In fact, for this specific parameter, we just obtain from (3.15) that
|∇∇ϕ|g̃ = n/(n− 1)|∇|∇ϕ|g̃|g̃. However, in this case, the isometry with a Riemannian cylinder

substantially follows from [11, Proposition 5.1]. We refer the reader to [4] for the details of this
limit case.

4. Proof of the Willmore-type inequalities

In this section, we are going to prove the Willmore-type inequality on manifolds with nonnega-
tive Ricci curvature and Euclidean volume growth, using the geometric features of the capacitary
potential u of a given bounded domain with smooth boundary Ω. For the reader’s convenience
we recall that u is a solution to the following problem

∆u = 0 in M \ Ω

u = 1 on ∂Ω

u(q)→ 0 as d(O, q)→ +∞ ,

whose existence in the present context follows from Theorem 2.13. As sketched in the Intro-
duction, the proof makes use of the global features of the Monotonicity-Rigidity Theorem, that
is, it compares the behaviour of Uβ in the large with Uβ(1). The well known asymptotics of
u and of its gradient in the Euclidean case were the crucial tool to compute the limits of Uβ
in [2], that consequently gave the sharp lower bound on the Willmore energy. On manifolds with
nonnegative Ricci curvature and Euclidean volume growth, the work of Colding-Minicozzi [25]
actually implies that the asymptotic behaviour of the potential is completely analogous to that
in Rn. However, as we will clarify in Remark 4.7, there is no hope to get an Euclidean-like
pointwise behaviour of Du in the general case. Nevertheless, using techniques developed in the
celebrated [15], we are able to achieve asymptotic integral estimates for the gradient that in turn
will let us conclude the proof of the Willmore-type inequalities (1.6).

As in Section 2, we denote by D the Levi-Civita connection on the manifold considered, by
DD the Hessian and by ∆ the Laplacian. Moreover, we let r(x) = d(O, x), where O ∈ Ω. To keep
the notation shorter it is also useful to recall the following characterization of the electrostatic
capacity of Ω

Cap(Ω) =

ˆ
∂Ω
|Du|dσ

(n− 2)|Sn−1|
, (4.1)

in terms of the capacitary potential u of Ω.

4.1. Manifolds with Euclidean volume growth. With respect to the value assumed by
AVR(g), we define manifolds with Euclidean volume growth and sub-Euclidean volume growth
as follows.

Definition 4.1 (Volume growth). Let (M, g) be a complete noncompact Riemannian manifold
with Ric ≥ 0. Then we say that it has Euclidean volume growth if AVR(g) > 0, sub-Euclidean
volume growth otherwise.
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If follows at once that manifolds with Euclidean volume growth satisfy (2.3), and thus, from
Varopoulos’ characterization, manifolds with Euclidean volume growth are nonparabolic. Let us
also recall the well known fact that in a complete noncompact Riemannian manifold (M, g) with
Ric ≥ 0 also the function

(0,+∞) 3 r 7−→ ϑ(r) =
|∂B(O, r)|
rn−1|Sn−1|

is monotone nonincreasing for any O ∈M , and the asymptotic volume ratio satisfies

AVR(g) = lim
r→+∞

|∂B(O, r)|
rn−1|Sn−1|

. (4.2)

In the remainder of this section we are repeatedly going to use both the area and the volume
formulations of the Bishop-Gromov Theorem without always mentioning them.

Let us now derive some rough estimates for the electrostatic potential u and its gradient Du
holding on manifolds with nonnegative Ricci curvature and Euclidean volume growth, to be
refined later.

Proposition 4.2. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0 and
Euclidean volume growth. Then, it is nonparabolic and the solution u to problem (1.9) for some
bounded and open Ω with smooth boundary and no holes satisfies

C1 r
2−n(x) ≤ u(x) ≤ C2 r

2−n(x) (4.3)

on M \ Ω for some positive constants C1 and C2 depending on M and Ω. Moreover, if Ω ⊂
B(O,R), it holds

|Du|(x) ≤ C3 r
1−n(x) , (4.4)

on M \B(O, 2R) with C3 = C3(M,Ω) > 0.

Proof. The first inequality in (4.3) is just (2.15). To obtain the second one, observe first that
the monotonicity in the Bishop-Gromov Theorem implies, for any O ∈M and any r ∈ (0,+∞),
that

|B(O, r)| ≥
(
n|Sn−1|AVR(g)

)
rn.

Then, the second inequality in the Li-Yau estimate (2.11), combined with the second inequality
in (2.14) completes the proof of (4.3). Finally, inequality (4.4) is achieved just by plugging the
upper estimate on u given by (4.3) into (2.5). �

4.2. Asymptotics for u. The behaviour at infinity of u can be deduced along the path indicated
in [25]. However, we prefer to present here a simplified version of that proof, taking advantage of
some of the refinements provided in [52]. Let us first recall the following asymptotic behaviour
of G (see [25, Theorem 0.1], or [52, Theorem 1.1] for a completely different proof),

lim
r(x)→+∞

G(O, x)

r(x)2−n =
1

AVR(g)
. (4.5)

Building on this fact, we deduce precise asymptotics for the capacitary potential of Ω.

Lemma 4.3. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0 and
Euclidean volume growth, and let u be a solution to problem (1.9). Then

lim
r(x)→+∞

u(x)

r(x)2−n =
Cap(Ω)

AVR(g)
. (4.6)



SHARP GEOMETRIC INEQUALITIES FOR CLOSED HYPERSURFACES 27

Proof. By [52, Theorem 1.2], that slightly extends [25, Theorem 0.3], we have that outside some
large ball B(O,R) containing Ω

u = − G

(n− 2)|Sn−1|

ˆ

∂B(O,R)

∂u

∂ν
dσ + v , (4.7)

where G is the Green’s function with pole in O, ν is the exterior unit normal to the boundary
of B(O,R) and v is an harmonic function defined in M \B(O,R) satisfying

|v| ≤ C
G

r
(4.8)

for some constant C > 0. We point out that the Green’s function considered in [52] is, in our
notation, G/

(
(n − 2)|Sn−1|

)
. By the Divergence Theorem and the harmonicity of u, we infer

that ˆ

∂B(O,R)

∂u

∂ν
dσ +

ˆ

∂Ω

∂u

∂ν
dσ =

ˆ

B(O,R)\Ω

∆udµ = 0 ,

where we denote by ν the exterior unit normal to the boundary of B(O,R) \ Ω. Since, on ∂Ω,
ν = Du/|Du|, we get, by the above identity, that

−

ˆ
∂B(O,R)

∂u

∂ν
dσ

(n− 2)|Sn−1|
=

ˆ
∂Ω
|Du|dσ

(n− 2)|Sn−1|
= Cap(Ω) . (4.9)

Dividing both sides of (4.7) by r2−n and passing to the limit as r → +∞ taking into account
(4.5), (4.9) and (4.8), we get the claim. �

As a straightforward corollary of the above lemma, we compute the rescaled area of large
geodesic spheres in M .

Corollary 4.4. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0 and
Euclidean volume growth, and let u be a solution to (1.9). Then

lim
Ri→+∞

ˆ

∂B(O,Ri)

u
n−1
n−2dσ =

∣∣Sn−1
∣∣ AVR(g)

(
Cap(Ω)

AVR(g)

)n−1
n−2

Proof. It follows from Lemma 4.3 and (4.2). �

Building on the above formula (4.6) for the asymptotics of u, we now derive integral asymp-
totics for Du. They are achieved through an adaptation of the methods used in [15, Section 4].
Similar estimates have been widely considered in literature (see e.g. [23] [25], [24], [27]). We are
providing here a complete and self-contained proof.

In the computations below, we are going to consider first and second derivatives of the distance
function x 7→ d(O, x). This can be readily justified by approximating the distance function by
convolution, by performing the computations below for the approximating sequence and finally
passing to the limit. A scheme like this, often implicit in modern literature, has been carried
out in details for example in [52]. However, in order to keep the presentation as transparent as
possible, we are going to work directly with the distance function.

Proposition 4.5 (Integral Asymptotics for Du). Let (M, g) be a complete noncompact Riemann-
ian manifold with Ric ≥ 0 and Euclidean volume growth, and let u be a solution to problem (1.9).
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Then, for every k > 1, it holds

lim
R→+∞

R2n−2

|AR,kR|

ˆ

AR,kR

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣2 dµ = 0 , (4.10)

where, for R > 0, we set AR,kR = B(O, kR) \B(O,R).

Proof. A simple integration by parts combined with the harmonicity of u leads to the following
identity

ˆ

AR,kR

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣2dµ = −
ˆ

AR,kR

(
Cap(Ω)

AVR(g)
∆r2−n

)(
u− Cap(Ω)

AVR(g)
r2−n

)
dµ +

+

ˆ

∂AR,kR

(
u− Cap(Ω)

AVR(g)
r2−n

)〈
Du− Cap(Ω)

AVR(g)
Dr2−n, ν

〉
dσ .

(4.11)

Let us estimate separately the integrals on the right hand side of the above identity. Let ε > 0.
Then, by (4.6), ∣∣∣∣ u

r2−n −
Cap(Ω)

AVR(g)

∣∣∣∣ < ε.

for r big enough. We have, for R big enough∣∣∣∣∣∣∣
ˆ

AR,kR

(
Cap(Ω)

AVR(g)
∆r2−n

)(
u− Cap(Ω)

AVR(g)
r2−n

)
dµ

∣∣∣∣∣∣∣ ≤
ˆ

AR,kR

∣∣∣∣Cap(Ω)

AVR(g)
∆r2−n

∣∣∣∣ ∣∣∣∣ u

r2−n −
Cap(Ω)

AVR(g)

∣∣∣∣ r2−n dµ

≤ εR2−n
ˆ

AR,kR

∣∣∣∣Cap(Ω)

AVR(g)
∆r2−n

∣∣∣∣ dµ

= εR2−n
ˆ

AR,kR

Cap(Ω)

AVR(g)
∆r2−n dµ ,

(4.12)

where in the last identity we used ∆r2−n ≥ 0 in the sense of distributions, as already shown
along the proof of Lemma 2.12. Integrating by parts ∆r2−n we obtain

ˆ

AR,kR

∆r2−n dµ = (2− n)
[
(kR)1−n|{r = kR}| −R1−n|{r = R}|

]
.

In particular, by the assumption on the Euclidean volume growth, the above quantity is uni-
formly bounded in R. We have thus proved that the first summand on the right hand side of
(4.11), for R large enough, is bounded as follows∣∣∣∣∣∣∣

ˆ

AR,kR

(
Cap(Ω)

AVR(g)
∆r2−n

)(
u− Cap(Ω)

AVR(g)
r2−n

)
dµ

∣∣∣∣∣∣∣ ≤ C1εR
2−n . (4.13)
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Let us turn our attention to the second integral in the right hand side of (4.11). Proceeding as
in (4.12), we haveˆ

∂AR,kR

∣∣∣∣ (u− Cap(Ω)

AVR(g)
r2−n

)〈
Du− Cap(Ω)

AVR(g)
Dr2−n, ν

〉∣∣∣∣ dσ ≤
≤ εR2−n

ˆ

∂AR,kR

[
|Du|+ (n− 2)

Cap(Ω)

AVR(g)
r1−n

]
dσ .

(4.14)

Recall now that in Proposition 4.2 we proved that

|Du| ≤ C3 r
1−n ,

for some positive constant C3 independent of r. Thus, by the Euclidean volume growth, the
integral on the right hand side of (4.14) is uniformly bounded in R and so∣∣∣∣∣∣∣

ˆ

∂AR,kR

(
u− Cap(Ω)

AVR(g)
r2−n

)〈
Du− Cap(Ω)

AVR(g)
Dr2−n, ν

〉
dσ

∣∣∣∣∣∣∣ ≤ C3 εR
2−n (4.15)

for some C3 independent of R. Finally, by (4.11), (4.13) and (4.15), we obtain, for R big enough,
the estimate

1

|AR,kR|

ˆ

AR,kR

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣2 dµ ≤ C4 ε
R2−n

|AR,kR|
≤ C5 εR

2−2n,

for some positive constants C4 and C5 independent of R. In the last inequality we used the
Euclidean volume growth assumption. Our claim (4.10) is thus proved. �

From the above proposition we easily deduce the integral asymptotic behaviour of |Du| on
the level sets of u.

Corollary 4.6. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0 and
Euclidean volume growth, and let u be a solution to problem (1.9). Then, there exists a sequence
of positive real numbers {tj}j∈N with tj → 0 as j → +∞ such that

lim
j→+∞

ˆ

{u=tj}

∣∣∣|Du| − (n− 2)
Cap(Ω)

AVR(g)
r1−n

∣∣∣ dσ = 0 . (4.16)

Proof. Let us first observe that, by means of Hölder inequality, we can deduce from the L2

asymptotics (4.10) an analogous L1 behaviour. Namely, for any ε > 0 we have

ˆ
AR,kR

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣ dµ

R1−n|AR,kR|
≤


ˆ
AR,kR

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣2 dµ

R2−2n|AR,kR|


1/2

≤ ε (4.17)

for any R large enough. Let us also employ the analogous in our setting of Colding’s function b
(compare with the Appendix) defined by

b =

(
AVR(g)

Cap(Ω)
u

)− 1
n−2

.
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Then, as a consequence of (4.6), we have ∣∣∣∣ br − 1

∣∣∣∣ ≤ 1

4

outside some large enough ball B(O,R), centered at some point O ∈ M . Building on this, we
define for every R > R the annulus ER as

ER =

{
5

4
R ≤ b ≤ 6

4
R

}
.

It is immediately checked that ER ⊆ AR,2R. Then, setting k = 2 in (4.17), we have thatˆ
ER

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣ dµ

R1−n|AR,2R|
≤ ε ,

provided R is large enough. By the Coarea Formula, the above estimate is equivalent to

6
4
Rˆ

5
4
R

ds

ˆ

{b=s}

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣ 1

|Db|
dσ

R1−n|AR,2R|
≤ ε .

Observing that, up to a multiplicative constant, |Db| coincides with |∇ϕ|g̃ = |Du|u−(n−1)/(n−2),

one can easily deduce from Proposition 3.3 that |Db| is uniformly bounded by sup∂Ω|Db|. This
fact, combined with the Mean Value Theorem, yields the existence of sR ∈ (5R/4, 6R/4) such
that ˆ

{b=sR}

∣∣∣∣Du− Cap(Ω)

AVR(g)
Dr2−n

∣∣∣∣ dσ ≤ C1R
−n|AR,2R| ε ≤ C2 ε ,

for constants C1 and C2 independent of R. The last inequality is due to Bishop-Gromov’s
comparison for geodesic annuli. The above estimate clearly implies the existence of a sequence
tj as in the statement. �

Remark 4.7. The integral asymptotic for |Du| given by Corollary 4.6 cannot, in general, be
improved to a pointwise asymptotic expansion at infinity on a manifold with nonnegative Ricci
curvature and Euclidean volume growth. Indeed, the validity of such a formula would imply
|Du| 6= 0 outside some big ball B(O,R), and, in turn, M \ B(O,R) would be diffeomorphic to
∂B(O,R) × [0,+∞). This would imply that M has finite topological type. However, Menguy
provided in [59] examples of manifolds of dimension n ≥ 4 with Ric ≥ 0 and AVR(g) > 0 with
infinite topological type.

4.3. Final steps of the proof. Recalling that

Uβ(t) = t−β(
n−1
n−2)

ˆ

{u=t}

|Du|1+β dσ ,

it is easy to realise that we have now at hand all the elements to compute the limit as t→ 0+.

Proposition 4.8. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0 and
Euclidean volume growth. Then, for every β ≥ 0, we have that

lim
t→0+

Uβ(t) = Cap(Ω)1− β
n−2 AVR(g)

β
n−2 (n− 2)β+1 |Sn−1| . (4.18)
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Proof. We multiply and divide inside the integral in (4.16) by u(n−1)/(n−2). Using the asymp-
totics of u obtained in Lemma 4.3, we obtain

lim
j→+∞

ˆ

{u=tj}

∣∣∣∣∣
∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣− (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

∣∣∣∣∣un−1
n−2 dσ = 0 . (4.19)

As an immediate consequence of the above limit we have

lim
j→+∞

ˆ

{u=tj}

|Du|dσ = (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

lim
j→+∞

ˆ

{u=tj}

u
n−1
n−2 dσ. (4.20)

On the other hand, since u is harmonic, the Divergence Theorem yieldsˆ

{u=t}

|Du| dσ =

ˆ

∂Ω

|Du|dσ

for any t ∈ (0, 1]. Hence, taking into account the well known characterization of the electrostatic
capacity (4.1), one has that (4.20) readily implies

lim
j→+∞

ˆ

{u=tj}

u
n−1
n−2 dσ =

∣∣Sn−1
∣∣ AVR(g)

(
Cap(Ω)

AVR(g)

)n−1
n−2

. (4.21)

Observe now that clearly

ˆ

{u=tj}

∣∣∣∣∣
∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣− (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

∣∣∣∣∣
1+β

u
n−1
n−2 dσ ≤

≤
ˆ

{u=tj}

∣∣∣∣∣
∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣− (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

∣∣∣∣∣ un−1
n−2 dσ × (4.22)

× sup
{u=tj}

∣∣∣∣∣
∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣− (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

∣∣∣∣∣
β

.

Thanks to the uniform bounds on |Du|/u(n−1)/(n−2) = |∇ϕ|g̃ given in (3.20), the second factor

on the right hand side of (4.22) is uniformly bounded with respect to tj . Thus, by (4.22) and
(4.19), we deduce that, for every β ≥ 0, it holds

lim
j→+∞

ˆ

{u=tj}

∣∣∣∣∣
∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣− (n− 2)

(
AVR(g)

Cap(Ω)

) 1
n−2

∣∣∣∣∣
1+β

u
n−1
n−2 dσ = 0 .

In particular, the above limit implies that

lim
j→+∞

ˆ

{u=tj}

∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣1+β

u
n−1
n−2 dσ = (n− 2)1+β

(
AVR(g)

Cap(Ω)

) 1+β
n−2

lim
j→+∞

ˆ

{u=tj}

u
n−1
n−2 dσ ,

which, combined with (4.21), establishes the validity of our claim for some sequence tj → 0+.
However, by the boundedness and monotonicity of Uβ the whole limit as t → 0+ exists and
coincides with the one that we have just computed. �

Let us briefly discuss the case of sub-Euclidean volume growth in the following remark.
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Remark 4.9. If (M, g) has sub-Euclidean volume growth, that is, if

lim
r→+∞

|B(p, r)|
rn

= 0

for any p ∈M , it is easy to realize that limt→0+ Uβ = 0 for any β ≥ 0. Indeed, by (2.14), (2.11)
and (2.6), one easily obtains

|Du|
u
n−1
n−2

≤ C
[
|B(p, r)|
rn

] 1
n−2

outside some ball containing Ω for some C = C(M,Ω). This implies that

lim
t→0+

Uβ(t) = lim
t→0+

ˆ

{u=t}

∣∣∣∣ Du

u
n−1
n−2

∣∣∣∣β|Du| dσ = 0,

where we used the constancy of t 7→
´
{u=t}|Du|dσ. This computation clearly shows that Uβ

cannot be employed to deduce a Willmore-type inequality on manifolds with sub-Euclidean volume
growth, and it supports the perception that the infimum of the Willmore-type functional is zero
on these manifolds. This actually happens for example on noncompact Riemannian manifolds
with a metric which is asymptotic to a warped product metric of the following type

g = dρ⊗ dρ+ Cρ2αg|Σ ,

where Σ is a compact hypersurface, C > 0 and 0 < α < 1. Indeed, this is readily checked by
computing the Willmore-type functional on large level sets {ρ = r}.

Proof of Theorem 1.1. Let us first focus on the case where Ω has no holes, i.e., M \ Ω has no
compact connected components. In this case, with Theorem 1.3 and Proposition 4.8 at hand,
Theorem 1.1 follows exactly as in the Euclidean proof recalled in the Introduction. Precisely,
let β = n− 2. Then, (4.18) reads

lim
t→0+

Un−2(t) = AVR(g) (n− 2)n−1 |Sn−1|.

Moreover, by the nonnegativity of expression (1.11) proved in Theorem 1.3, and the Hölder
inequality,

n− 1

n− 2

ˆ
∂Ω
|Du|n−1 dσ ≤

ˆ
∂Ω
|Du|n−2 H dσ ≤

(ˆ
∂Ω
|Du|n−1 dσ

)(n−2)/(n−1)(ˆ
∂Ω

Hn−1 dσ

)1/(n−1)

,

that gives ˆ
∂Ω
|Du|n−1 dσ ≤ (n− 2)n−1

ˆ
∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ.

Finally, one has

AVR(g) (n− 2)n−1 |Sn−1| = lim
t→0+

Un−2(t) ≤ Un−2(1) =

ˆ
∂Ω
|Du|n−1 dσ ≤

≤ (n− 2)n−1

ˆ
∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ .

This completes the proof of the Willmore-type inequality, when Ω has no holes. Notice that
in the penultimate passage we took advantage of the no holes assumption to deduce that ∂Ω
coincides with the level set {u = 1}, via the Strong Maximum Principle.

We now discuss how to remove the no hole assumption and prove the general statement.
As already observed, under our assumptions, M \ Ω has exactly one unbounded connected
component. Let us denote by E such a connected component and by D its complement, i.e.,
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D = M \E. Observe that D is by construction a bounded open set with smooth boundary and
no holes. Hence, by the previous discussion, we have thatˆ

∂D

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ ≥ AVR(g)
∣∣Sn−1

∣∣ .
The validity of (1.6) now follows from the fact that ∂D ⊆ ∂Ω. For the rigidity part, let us
suppose that

AVR(g)
∣∣Sn−1

∣∣ =

ˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ =

ˆ

∂D

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ +

ˆ

∂Ω\∂D

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ .

By the previous inequality we have that the last summand in the rightmost hand side must be
zero. Since ∂Ω \ ∂D is only given by a finite number of smooth compact hypersurfaces, we can
invoke the Kasue’s Theorem [44, Theorem C (2)] to deduce that ∂Ω\∂D is empty. In particular
Ω has no holes and the thesis follows from the rigidity part of Theorem 1.3 �

4.4. Application to ALE manifolds. We can improve our Willmore-type inequality if (M, g)
satisfies a quadratic curvature decay condition, showing that, in this case, the lower bound
AVR(g)

∣∣|Sn−1| on the Willmore functional is actually an infimum. Let us recall the following
well known definition.

Definition 4.10 (Quadratic curvature decay). A complete noncompact Riemannian manifold
(M, g) has quadratic curvature decay if there exists a point p ∈M and a constant C = C(M,p)
such that

|Riem|(q) ≤ C d(p, q)−2,

where by Riem we denote the Riemann curvature tensor of (M, g).

When this assumption is added on a Riemannian manifold with Ric ≥ 0 and Euclidean volume
growth (M, g), [25, Proposition 4.1] gives the following asymptotic behaviour of the gradient and
the Hessian of the minimal Green’s function G.

Theorem 4.11. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0, Eu-
clidean volume growth and quadratic curvature decay, and let G be its minimal Green’s function.
Then

lim
d(p,x)→+∞

|DxG|(p, x)

d1−n(p, x)
=

(n− 2)

AVR(g)
, (4.23)

lim
d(p,x)→+∞

∣∣∣∣∣DDx

(
G2/(2−n)

)
(p, x)− 2

(
1

AVR(g)

) 2
2−n

g(x)

∣∣∣∣∣ = 0 . (4.24)

Observe that arguing as in Remark 4.7, one realizes that (4.23) actually implies that Rie-
mannian manifolds satisfying the assumptions of the above Theorem have finite topological
type.

Theorem 4.11 enables us to prove that the Willmore-type functional of large level sets of
the Green’s function approaches AVR(g)|Sn−1|. This fact, combined with our Willmore-type
inequality (1.6), easily yields the following refinement.

Theorem 4.12. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0,
Euclidean volume growth and quadratic curvature decay. Then,

inf


ˆ

∂Ω

∣∣∣∣ H

n− 1

∣∣∣∣n−1

dσ

∣∣∣∣∣∣ Ω ⊂M bounded and smooth

 = AVR(g) |Sn−1| . (4.25)
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Moreover, the infimum is attained at some bounded and smooth Ω ⊂M if and only if (M \Ω, g)
is isometric to( [

r0,+∞)× ∂Ω , dr ⊗ dr + (r/r0)2g∂Ω

)
, with r0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

Proof. Let p ∈M be fixed, and let G be the minimal Green’s function of (M, g). Let us denote
again by G the function q 7→ G(p, q). In light of Theorem 1.1, it suffices to prove that

lim
t→+∞

ˆ

{G2/(2−n)=t}

∣∣∣ H

n− 1

∣∣∣n−1
dσ = AVR(g)|Sn−1| . (4.26)

To see this, consider, at a point x, orthonormal vectors {e1, . . . , en−1} tangent to the level set
{G = G(x)}. Then, letting r(x) = d(p, x), we have, by (4.24),

lim
r(x)→+∞

n−1∑
i=1

DD
(
G

2
2−n
)

(ei, ei)(x) = 2(n− 1)

(
1

AVR(g)

) 1
2−n

. (4.27)

The mean curvature of the level sets of G2/(2−n) is clearly computed as

HG2/(2−n) =

∑n−1
i=1 DD

(
G

2
2−n
)

(ei, ei)

|DG2/(2−n)|
,

that, combined with (4.27), (4.23) and (4.5) gives

lim
r(x)→+∞

r(x) HG2/(2−n)(x) = (n− 1) .

Combining it again with (4.5) and Euclidean volume growth gives (4.26), in fact completing the
proof. �

We now particularize Theorem 4.12 to Asymptotically Locally Euclidean (ALE) manifolds,
proving Corollary 1.2. We adopt the following definition, that is a sort of extension of the one
considered in the celebrated [7] – where striking relations between curvature decay conditions
and behaviour at infinity of manifolds are drawn – and sensibly weaker than the one used by
Joyce in the classical reference [43].

Definition 4.13 (ALE manifolds). We say that a complete noncompact Riemannian manifold
(M, g) is ALE (of order τ) if there exist a compact set K ⊂M , a ball B ⊂ Rn, a diffemorphism
Ψ : M \K → Rn \ B, a subgroup Γ < SO(n) acting freely on Rn \ B and a number τ > 0 such
that

(Ψ−1 ◦ π)∗g(z) = gRn +O(|z|)−τ (4.28)∣∣∣∂i[(Ψ−1 ◦ π)∗g]
∣∣∣(z) = O(|z|)−τ−1 (4.29)∣∣∣∂i∂j [(Ψ−1 ◦ π)∗g]
∣∣∣(z) = O(|z|)−τ−2, (4.30)

where π is the natural projection Rn → Rn/Γ, z ∈ Rn \B and i, j = 1, . . . , n.

Proof of Corollary 1.2. Conditions (4.28), (4.29), (4.30) readily imply that ALE manifolds have
Euclidean volume growth and quadratic curvature decay. Moreover, condition (4.28) and a
direct computation give that

AVR(g) =
|Sn−1/Γ|
|Sn−1|

=
1

card(Γ)
. (4.31)

The characterization (1.7) then follows immediately from (4.25).
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Assume now that the infimum of the Willmore functional is attained at some Ω ⊂M . Then,
by the rigidity part in Theorem 4.12, M \Ω is isometric to a truncated cone over ∂Ω. However,
by (4.28), (M, g) is also C0-close at infinity to a metric cone with link Sn−1/Γ. Since the cross
sections of a cone are all homothetic to each other, ∂Ω is homothetic to Sn−1/Γ, that is, they
are diffeomorphic and g∂Ω = λ2gSn−1/Γ for some positive constant λ. This fact, together with
(4.31) in the rigidity part of Theorem 1.1 implies that

( [
r0,+∞)× ∂Ω , dr ⊗ dr + (λr/r0)2gSn−1/Γ

)
, with r0 =

(
|∂Ω|
|Sn−1/Γ|

) 1
n−1

.

In particular, one has

|∂B(O,R)| =

(
Rλ

r0

)n−1

|Sn−1/Γ|.

Combining this with (4.31) we conclude that λ = r0, proving the isometry with (1.8) and
completing the proof. �

5. Proof of the Enhanced Kasue’s Theorem

The proof of Theorem 1.5 is completely analogous to the proof of Theorem 3.2, for this
reason most of the details can be easily adapted from the previous section and will be left to
the interested reader. For β ≥ 0, we recall the definition of the function Ψβ : [0,+∞) → R
satisfying

Ψβ(s) =

ˆ

{ψ=s}

|Dψ|β+1 dσ ,

where ψ is a solution to problem (1.15) for some open subset Ω ⊂ M with smooth compact
boundary and connected unbounded complement. Combining the uniform bound on |Dψ| given
in Theorem 2.16 with the constancy of Ψ0, we obtain, as in Corollary 3.5, that Ψβ is uniformly
bounded in s for any β ≥ 0. We record this fact for future reference.

Lemma 5.1. Let (M, g) be a parabolic manifold with Ric ≥ 0, and let ψ be a solution to problem
(1.15). Then, the function Ψβ defined in (1.16) is uniformly bounded for every β ≥ 0.

We are now in a position to prove the Monotonicity-Rigidity Theorem for parabolic manifolds
with nonnegative Ricci curvature.

Proof of Theorem 1.5. As for Theorem 3.2, we only prove Theorem 1.5 for β ≥ 1. To include
the remaining cases it is sufficient to follow the strategy suggested in Remark 1.4. Let us begin

with the computation of a Bochner-type identity for |Dψ|β, in the same spirit as in Lemma 3.6

∆|Dψ|β = β|Dψ|β−2
[
|DDψ|2 + (β − 2)

∣∣D|Dψ|∣∣2 + Ric(Dψ,Dψ)
]
. (5.1)

Observe that the right hand side of (5.1) is nonnegative if β ≥ (n− 2)/(n− 1), by means of the
refined Kato’s inequality (3.16) for harmonic functions. Applying the Divergence Theorem and
the co-area formula in the same fashion as in the proof of (3.28), we get

Ψβ(s)−Ψβ(s0) =

sˆ

s0

dτ

ˆ

{ψ=τ}

〈
D|Dψ|β, Dψ

|Dψ|

〉
dσ . (5.2)
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Exactly as in Lemma 3.7, we can use the Divergence Theorem and (5.1) to obtain that for every
0 ≤ τ0 < τ it holdsˆ

{ψ=τ}

〈
D|Dψ|β, Dψ

|Dψ|

〉
dσ −

ˆ

{ψ=τ0}

〈
D|Dψ|β, Dψ

|Dψ|

〉
dσ =

= β

ˆ

{τ0≤ψ≤τ}

|Dψ|β−2
[
|DDψ|2 + (β − 2)

∣∣D|Dψ|∣∣2 + Ric(Dψ,Dψ)
]

dµ .

Combining this integral identity with (5.2), we deduce, as in the proof of Theorem 3.9, that Ψβ

is differentiable, that

Ψ′β(s) =

ˆ

{ψ=s}

〈
D|Dψ|β, Dψ

|Dψ|

〉
dσ = −β

ˆ

{ψ=s}

|Dψ|β H dσ ,

and that, for every S ≥ s ≥ 0, it holds

Ψ′β(S)−Ψ′β(s) = β

ˆ

{s≤ψ≤S}

|Dψ|β−2
(

Ric(Dψ,Dψ) +
∣∣DDψ

∣∣2 + (β − 2)
∣∣D|Dψ|∣∣2 )dµ ≥ 0 . (5.3)

Since Ψβ is bounded by Lemma 5.1, we can argue as in the conclusion of the proof of Theorem 3.2
to pass to the limit as S → +∞ in (5.3) and obtain the monotonicity formula (1.17). The rigidity
part of the statement is obtained exactly as for that of Theorem 3.2. �

The Enhanced Kasue’s Theorem 1.6 now follows at once.

Proof of Theorem 1.6 and Corollary 1.7. Assume first that (M, g) is nonparabolic. Then, by
Proposition 2.10 the assumptions in the statement of Theorem 1.6 are equivalent to those in
Theorem 1.3. Using (1.11) and (1.12) at t = 1 we get(

n− 1

n− 2

)
Uβ(1) +

1

β

dUβ
dt

(1) =

ˆ

∂Ω

H |Du|β dσ ≤ sup
∂Ω

H∂Ω

ˆ

∂Ω

|Du|β dσ ,

that is (1.18). If (M, g) is parabolic, one can prove inequality (1.19) in a completely analogous
fashion, using Theorem 1.5 together with ∂Ω = {ψ = 0}, as guaranteed under our assumptions
by the Strong Maximum Principle. Since Uβ > 0, it is easy to deduce from (1.18) and (1.19)
that H ≤ 0 on ∂Ω if and only if (M, g) is parabolic and Ψ′β(0) = 0. The rigidity statement in
Theorem 1.5 gives then Corollary 1.7. �

6. The isoperimetric inequality for 3-manifolds

As already discussed in the Introduction, we show here how to use our Willmore inequal-
ity (1.6) to improve a result stated by Huisken in [37], in which the infimum of the Willmore
energy is characterized in terms of the infimum of the isoperimetric ratio on 3-manifolds with
nonnegative Ricci curvature. In concrete, we are going to prove Theorem 1.8, whose statement
is recalled hereafter for the reader’s convenience.

Theorem 6.1. Let (M, g) be a complete noncompact 3-manifold with Ric ≥ 0 and Euclidean
volume growth. Then,

inf
|∂Ω|3

36π|Ω|2
= inf

ˆ
∂Ω

H2 dσ

16π
= AVR(g),
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where the infima are taken over bounded and open subsets Ω ⊂ M with smooth boundary. In
particular, the following isoperimetric inequality holds for any bounded and open Ω ⊂ M with
smooth boundary

|∂Ω|3

|Ω|2
≥ 36πAVR(g).

Moreover, equality is attained in (1.21) if and only if M = R3 and Ω is a ball.

Remark 6.2. We point out that in the 3-dimensional case Theorem 1.8 extends Theorem 4.12 to
any complete noncompact manifold with Ric ≥ 0 and Euclidean volume growth, with no curvature
assumptions at infinity. Such enhancement is implicitly due to the fact that in dimension n = 3
the topology of nonnegatively Ricci curved manifolds is completely understood (see [54]).

6.1. Huisken’s argument. Let us briefly present Huisken’s heuristic argument to deduce an
isoperimetric inequality from Willmore’s through the Mean Curvature Flow. We first recall that
a sequence of orientable hypersurfaces Ft(p) : Σ→M immersed in a Riemann manifold (M, g),
evolves through the Mean Curvature Flow if

d

dt
Ft(p) = −H(p, t) ν(p, t) ,

where H is the mean curvature of Σt = Ft(Σ) and ν is its (exterior, in the case where Σt is the
boundary of a domain) unit normal. Accordingly, we say that {Ωt} is a mean curvature flow if
the boundaries are evolving through mean curvature flow in the sense explained above. Let then
Ω be an open bounded set with smooth boundary and let {Ωt}, with t ∈ [0, T ), be a smooth
Mean Curvature Flow starting at Ω. Suppose, in addition, that

lim
t→T−

|Ωt| = 0. (6.1)

Consider, for some constant C > 0 to be defined later, the Isoperimetric Difference

D(t) = |∂Ωt|3/2 − C |Ωt| . (6.2)

Taking derivatives in t, and using standard formulas (see for example [41, Theorem 3.2]), one
finds

d

dt
D(t) = − 3

2
|∂Ωt|1/2

ˆ

∂Ωt

H2 dσ + C

ˆ

∂Ωt

H dσ ,

that, through Hölder inequality, gives

d

dt
D(t) ≤

|∂Ωt|
ˆ

∂Ωt

H2 dσ

1/2
C − 3

2

 ˆ
∂Ωt

H2 dσ

1/2
 .

Thus, if we choose C such that

C ≤ 3

2

 ˆ
∂Ω

H2 dσ

1/2

(6.3)

for any bounded and smooth Ω ⊂M , t 7→ D(t) is nonincreasing. This implies that

D(0) = |∂Ω|3/2 − C|Ω| ≥ lim
t→T−

D(t) ≥ 0 ,

where we have also used (6.1). The above comparison in particular gives the (possibly non
sharp) isoperimetric inequality

|∂Ω|3/2

|Ω|
≥ C .
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In [37], the constant C is chosen to be the infimum of the right hand side of (6.3), when Ω varies
in the class of outward minimizing domains.

6.2. Tools from the Mean Curvature Flow of mean-convex domains. We are first con-
cerned with the accurate justification of the above computations. This will be accomplished
with the help of a couple of important results due to Schulze and White, respectively. In the
first part of our treatment we assume that the boundary ∂Ω of the bounded set Ω is smooth
and mean-convex, that we understand as H > 0. We will see later how to deal with the general
cases.

Since the Mean Curvature Flow (MCF for short) is likely to develop singularities, one needs to
consider an appropriate weak notion in order to state the following useful results. In particular,
we consider the Weak Mean Curvature Flow in the sense defined in [32]. A special case of the
regularity theorem [73, Theorem 1.1] gives

Theorem 6.3 (White’s Regularity Theorem). Let (M, g) be a 3-dimensional Riemannian man-
ifold, let Ω ⊂ M be a bounded set with smooth mean-convex boundary and let {Ωt}t∈[0,T ) be its
Weak Mean Curvature Flow. Then, the boundary of Ωt is smooth for almost every t ∈ [0, T ).

We point out that the maximal time T might a priori be infinite on a general Riemannian
manifold. We are going to combine the above regularity result with the following special case
of [68, Proposition 7.2], that is a weak version of the monotonicity of the isoperimetric ratio. It
can be checked, indeed, that the computations performed to obtain such a result do not involve
the geometry of the underlying manifold.

Theorem 6.4 (Schulze). Let (M, g) be a 3-dimensional Riemannian manifold, let Ω ⊂M be a
bounded set with smooth mean-convex boundary and let {Ωt}t∈[0,T ) be its Weak Mean Curvature
Flow. Assume there exists a universal constant C ≥ 0 such that

C ≤ 3

2

 ˆ
∂Ωt

H2 dσ

1/2

for almost every t ∈ [0, T ). Then, the Isoperimetric Difference t 7→ D(t) defined as in (6.2)
using the constant C, is nonincreasing for every t ∈ [0, T ).

Remark 6.5. A different tool that might be used to deal with the singularities would be the
theory of the Mean Curvature Flow with surgery, recently developed by Brendle and Huisken
in [12] and [13]. On this regard, one should first make clear whether the monotonicity of the
Isoperimetric Difference survives the surgeries.

The following theorem provides a complete description of the long time behaviour of the Weak
MCF of a surface moving inside a 3-dimensional Riemannian manifolds, and it can be readily
deduced from [73, Theorem 11.1].

Theorem 6.6 (Long time behaviour of MCF). Let (M, g) be a 3-dimensional Riemannian
manifold, let Ω ⊂M be a bounded set with smooth mean-convex boundary and let {Ωt}t∈[0,T ) be

its Weak Mean Curvature Flow. If |Ωt| and |∂Ωt| do not vanish at finite time as t→ T−, then
Ωt converges smoothly to a subset K, and the boundary of any connected component of K is a
stable minimal submanifold.

As a consequence, if (M, g) contains no bounded subsets with minimal boundary, the Weak
MCF of a bounded set with mean-convex boundary is going to vanish. In particular, combining
Corollary 1.7 with Theorem 6.6, one gets the following corollary.
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Corollary 6.7. Let (M, g) be a complete, noncompact, 3-dimensional Riemannian manifold
with Ric ≥ 0 and no cylindrical ends, let Ω ⊂ M be a bounded set with smooth mean-convex
boundary and let {Ωt}t∈[0,T ) be its Weak Mean Curvature Flow. Then, T is finite and |Ωt| and

|∂Ωt| tend to 0 as t→ T−.

So far we have at hand all the ingredients that allow to completely justify the computations
of Subsection 6.1 and in turns to prove the Isoperimetric Inequality for mean-convex domains.

6.3. Proof of Theorem 1.8. In order to prove the isoperimetric inequality for any possibly non
mean-convex domain Ω, we are going to consider the minimizing hull Ω∗ (see [39, Section 1]).
By [70], ∂Ω∗ enjoys C1,1 regularity, and by the minimizing property, its weak mean curvature
H∂Ω∗ is nonnegative. We will actually flow Ω∗ by mean curvature. To this aim, we will invoke
[40, Lemma 2.6], where the authors show that C1 bounded hypersurfaces with nonnegative
variational mean curvature can be approximated in C1,β∩W 2,p, for any β ∈ (0, 1) and p ∈ [1,∞)
by smooth submanifolds with strictly positive mean-curvature. Interestingly, the approximating
sequence is built through an appropriate notion of mean curvature flow starting from such a
C1 hypersurface. Although presented in Rn, the proof given in [40] can be easily adapted to
go through the case of a general ambient Riemannian manifold, and we refer the reader to [78,
Lemma 4.4] for the details of this extension. Such a result has also been pointed out in [47,
Lemma 4.2] in the ambient setting of a Kottler-Schwarzschild manifold, and used in the proof
of [68, Corollary 1.2], where the ambient manifold was a Cartan-Hadamard 3-manifold. For our
aim, where we are interested in approximating C1,1 hypersurfaces, it actually suffices to argue
as in [39, Lemma 5.6]. We include here the precise and general statement.

Lemma 6.8 (Huisken-Ilmanen’s approximation lemma). Let (M, g) be a Riemannian manifold,
and let F : Σ ↪→ M be a C1 closed immersed hypersurface. Assume Σ has nonnegative weak
mean curvature, that is, there exists a nonnegative function H defined almost everywhere on Σ
such that ˆ

Σ
divΣX dσ =

ˆ
Σ

H 〈X, ν〉 dσ

for any compactly supported vector field X of M . Assume also that Σ is not minimal, that is,
there exists a subset K ⊂ Σ of positive measure such that H > 0 on K. Then, F is of class
C1,β ∩W 2,p and there exists a family of smooth immersions F (·, ε) : Σ ↪→ M , with ε ∈ (0, ε0]
such that

d

dε
F (p, ε) = −HΣε(p, ε)ν(p, ε)

for any ε ∈ (0, ε0], where HΣε is the mean curvature of Σε and ν its outer unit normal, and

lim
ε→0+

F (p, ε) = F (p)

locally uniformly in C1,β ∩W 2,p. Moreover, HΣε > 0 for any ε ∈ (0, ε0].

Remark 6.9. Observe that if Σ is a non minimal C2 hypersurface with HΣ ≥ 0, then the
approximation of Σ by means of a family of smooth mean-convex hypersurfaces {Σε}ε>0 is a
straightforward procedure. Indeed, it is sufficient to run the MCF starting at Σ for short time
(see [57] for an account about the classical existence theory), say until some time ε0 > 0. This
provides a family of hypersurfaces {Σε}ε∈(0,ε0], whose mean curvatures satisfy (see e.g. [41,
Theorem 3.2]) the following reaction-diffusion equation,

∂

∂ε
H = ∆H + H

(
|h|2 + Ric(ν, ν)

)
,

where h is the second fundamental form of the evolving hypersurface and Ric is the Ricci tensor
of the ambient manifold. Then, a standard maximum principle for parabolic equations (see e.g.
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Theorem 7 and subsequent remarks in [65]) shows that the mean curvature of Σε is strictly
positive for every ε ∈ (0, ε0], unless Σ were minimal.

We can finally prove Theorem 1.8.

Proof of Theorem 1.8. We argue as in [68, proof of Corollary 1.2]. Let us first suppose that the
boundary of Ω is strictly mean-convex, that is, H∂Ω > 0. Let {Ωt}t∈[0,T ) be a mean curvature
flow starting from Ω. Then, by Theorem 6.3, for almost any t ∈ [0, T ) the boundary ∂Ωt is a
smooth submanifold. Let C be defined as

C = inf

{
3

2

(ˆ
∂Ω

H2 dσ

)1/2
∣∣∣∣∣Ω ⊂M bounded set with smooth boundary

}
. (6.4)

Then, Theorem 6.4 guarantees that, with the above choice of C, the Isoperimetric Difference
t 7→ D(t) defined in (6.2) is nonincreasing for t ∈ [0, T ). Moreover, since the Euclidean volume
growth prevents the presence of cylindrical ends, by Corollary 6.7 D(t) tends to 0 as t → T−.
This implies the inequality

|∂Ω|3/2

|Ω|
≥ C

for any Ω with smooth mean-convex boundary. If this is not the case, take the minimizing
hull Ω∗ of Ω (see [39, Section 1] for details). By [70] (compare also with the comprehensive
[39, Theorem 1.3]) ∂Ω∗ is a C1,1 hypersurface. Observe that, by the minimizing property,
|∂Ω∗| ≤ |∂Ω|, while trivially |Ω∗| ≥ |Ω|. Hence, proving a lower bound on the isoperimetric
ratio for Ω∗ readily implies that the same lower bound holds for Ω. Moreover, again by the
minimizing property, we have that H∂Ω∗ ≥ 0 (see also [39, (1.15)]). Also notice that ∂Ω∗ cannot
be minimal, for otherwise would be smooth and thus (M, g) would have a cylindrical end, in
virtue of Corollary 1.7, against the Euclidean volume growth assumption. By Lemma 6.8, we
find a sequence of smooth hypersurfaces Σε with HΣε > 0 approximating ∂Ω∗ locally uniformly
in C1,β for any β ∈ (0, 1). Arguing as above, we thus obtain the isoperimetric inequality

|∂Σε|3/2

|Σε|
≥ C,

that, through letting ε → 0+, gives the isoperimetric inequality for Ω∗, and, in turn, for any
bounded Ω with smooth boundary. Combining it with our Willmore inequality (1.6), we get

inf
|∂Ω|3

36π|Ω|2
≥ inf

(ˆ
∂Ω

H2 dσ

)
16π

≥ AVR(g), (6.5)

where the infima are taken over any bounded Ω with smooth boundary. We now want to prove
that the equality sign holds in both the above inequalities, as stated in (1.20). To do so, we fix
a point O ∈ M and we observe that by the Bishop-Gromov Theorem, we can find, for every
δ > 0, a radius Rδ such that

|∂B(O,Rδ)|3

36π|B(O,Rδ)|2
≤ AVR(g) + δ.

Observe that we can suppose ∂B(O,Rδ) to be smooth. Otherwise, it suffices to consider in place
of B(O,Rδ) a smooth set whose perimeter and volume approximate |∂B(O,Rδ)| and |B(O,Rδ)|,
respectively (this can be done by standard tools, see e.g. [55, Remark 13.2]). This proves that

inf

{
|∂Ω|3

36π|Ω|2

∣∣∣∣∣Ω ⊂M bounded and smooth

}
≤ AVR(g).
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Combining the above inequality with (6.5), gives (1.20).
To prove the rigidity statement, we assume now that (1.21) holds with the equality sign for

some smooth and bounded Ω ⊂M . In virtue of (6.4) and of (1.20), we have that

C =
√

36πAVR(g) .

By the minimizing property, Ω∗ satisfies the same equality (recall that we actually proved the
isoperimetric inequality for minimizing hulls). We claim that the equality sign also holds for
the region enclosed by any approximating Σε as above. Indeed, by Lemma 6.8, this family is a
smooth Mean Curvature Flow, and then, by the monotonicity of the Isoperimetric Difference,
for any fixed ε1 ∈ (0, ε0] we have

D(ε) ≥ D(ε1) ≥ 0

for every ε ∈ (0, ε1). Since Σε converges to ∂Ω∗ as ε→ 0+, and on Ω∗ the isoperimetric difference
is 0, D(ε) → 0+ as ε → 0+, and thus D(ε1) = 0 as well. Since ε1 was arbitrarily chosen, the
region enclosed by any of the Σε with ε ∈ (0, ε0] satisfies the equality in the isoperimetric
inequality, as claimed. In particular, from the same computations as in Subsection 6.1, for any
fixed ε ∈ (0, ε0], we have that

0 =
dD

dε
(ε) ≤

(
|Σε|
ˆ

Σε

H2 dσ

)1/2
[√

36πAVR(g) − 3

2

(ˆ
Σε

H2 dσ

)1/2
]
≤ 0 .

This implies that the equality sign holds in the Willmore inequality for Σε, and thus, by the
rigidity statement in Theorem 1.1, the exterior of Σε in (M, g) is isometric to a cone. More
precisely, if we call Ωε the (open and bounded) region enclosed by Σε, we have that (M \Ωε) is
isometric to( [

rε,+∞)× Σε , dr ⊗ dr + (r/rε)
2gΣε

)
, where rε =

(
|Σε|

4πAVR(g)

)1/2

.

Hence, it is easily seen that the MCF {Σε}ε∈(0,ε0] is given by totally umbilic hypersurfaces
coinciding with the cross sections of the cone

(M \ Ωε, g) ∼=
( [
rε,+∞)× ∂Ω∗ , dr ⊗ dr +

4πAVR(g)

|∂Ω∗|
r2g∂Ω∗

)
. (6.6)

We now claim that the MCF {Σε}ε>0 does not develop singularities before the extinction
time ε∗. Letting (0, ε∗) be the maximal interval of existence of the smooth MCF, we claim
that ε∗ = ε∗. In fact, from (6.6) one can easily see that the mean curvature of Σε is given by
(n− 1)/rε, and in turn the squared norm of its second fundamental form is equal to (n− 1)/r2

ε .
It follows then by [38, Theorem 7.1] that ε∗ is such that rε∗ = 0, and thus coincides with the
extinction time of the flow, i.e., ε∗ = ε∗. We have hence deduced the isometry

(M \ {O}, g) ∼=
( (

0,+∞)× ∂Ω∗ , dr ⊗ dr +
4πAVR(g)

|∂Ω∗|
r2g∂Ω∗

)
,

for some O ∈ M . In particular, the surface area of the geodesic balls centered at O decays as
4πr2AVR(g), and, since g is smooth at O, this implies that AVR(g) = 1. By Bishop-Gromov,
we infer that (M, g) is isometric to (R3, gR3) and ∂Ω∗ is isometric to a sphere. This implies that
Ω = Ω∗, since, otherwise, the mean curvature of ∂Ω∗ would be null on the points not belonging
to ∂Ω (compare with [39, (1.15)]), leading to a contradiction. We have thus shown that Ω is a
ball, completing the proof. �
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Appendix: comparison with the monotonicity formulas by Colding and Minicozzi

In this section, we provide a comparison between our monotonicity formulas and those ob-
tained by Colding and by Colding-Minicozzi in [23] and [28], respectively. To start with, let u be
a solution of (1.9) in a nonparabolic Riemannian manifold (M, g) with Ric ≥ 0, for a bounded
subset Ω ⊂M with smooth boundary and no holes, and set

b = u−
1

n−2 . (6.7)

Note that b = 1 on ∂Ω and that b→ +∞ at infinity. Associated with the level sets of b, consider
the family of functions {Aβ}, where Aβ : [1,+∞)→ [0,+∞) is defined for every β ≥ 0 as

Aβ(r) =
1

rn−1

ˆ

{b=r}

|Db|β+1 dσ.

Now, replacing u be a minimal Green’s function G(O, ·), for some pole O ∈M , the above defined
Aβ is exactly the quantity considered in [26, formula (1.1)]. Note that in Colding’s setting, the
level sets {b = r} are considered for every r > 0, since b(q)→ 0 as d(O, q)→ 0.

Our aim is to see how the monotonicity of our family of functions {Φβ} translates in terms
of the family {Aβ}. First of all, it is straightforward from (3.1)–(3.3) and (6.7) that

b = e
ϕ
n−2 , |Db| =

|∇ϕ|g̃
n− 2

, dσ = bn−1 dσg̃, (6.8)

and in turn that

Φβ(s) = (n− 2)β+1Aβ
(
e

s
n−2
)
, for every s ≥ 0. (6.9)

We look at the derivative (3.14) of Φβ and at its equivalent expression (3.15). In particular, the
volume integral (3.15) contains the following terms.

Ric(∇ϕ,∇ϕ) =

(
n− 2

2

)2

Ric(Db2,Db2), (6.10)

and ∣∣∇∇ϕ∣∣2
g̃

+ (β − 2)
∣∣∇|∇ϕ|g̃∣∣2g̃ =

(
n− 2

2

)2{∣∣∣DD b2 − ∆b2

n
g
∣∣∣2

+ (β − 2)
∣∣DT |Db|

∣∣2
+ (β − 2)

∣∣Db2∣∣2[H− (n− 1)
∣∣D log b

∣∣]2
}

(6.11)

which have been expressed in terms of the function b and of the metric g via some computations
(compare with the proof of (1.12)) . Differentiating both sides of (6.9) and writing expression
(3.15) in terms of b and g through formulas (6.8), (6.10) and (6.11), we obtain

dAβ
dr

(r) =
(n− 2)−β

r

dΦβ

ds

(
(n− 2) log r

)
(6.12)

= −β
4
rn−3

ˆ
{b>r}
|Db|β−2

{
Ric(Db2,Db2) +

∣∣∣DDb2 − ∆b2

n
g
∣∣∣2

+ (β − 2)
∣∣DT |Db|

∣∣2
+ (β − 2)

∣∣Db2∣∣2[H− (n− 1)
∣∣D log b

∣∣]2
}
b2−2n dµ ≤ 0 .

Setting b = 2 in the above formula, we obtain exactly the integrand of the right hand side of [23,
(2.106)], that, arguing as in the conclusion of the present Theorem 3.2, leads to the monotonicity
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of A2. For a general β ≥ (n−2)/(n−1), in [28, Theorem 1.3] the monotonicity of Aβ is inferred
grouping the terms in (6.12) in a different way. Observe indeed that for β < 2 the volume
integral in (6.12) does not evidently carry a sign. On the other hand, (6.11) combined with
Kato’s inequality immediately show the nonnegativity of the expression.

We close this appendix by showing how our methods can be applied also to obtain the
Monotonicity-Rigidity Theorem for the Green’s function, obtaining a new (conformal) proof
of Colding-Minicozzi’s [28, Theorem 1.3]. Indeed, let (M, g) be a nonparabolic Riemannian
manifold with Ric ≥ 0, let G be its minimal Green’s function and consider the new metric on
M \ {O}

g̃ = G(O, ·)
2

n−2 g,

for some point O ∈M . Set
ϕ = − logG(O, ·).

Then, we have that the triple M, g̃, ϕ satisfies the system

∆g̃ϕ = 0 in M \ {O}

Ricg̃ −∇∇ϕ+
dϕ⊗ dϕ
n− 2

=
|∇ϕ|2g̃
n− 2

g̃ + Ric in M \ {O}

ϕ(q)→ +∞ as d(O, q) → +∞
ϕ(q) → −∞ as d(O, q)→ 0.

We denote by d the distance with respect to g. Define the function Φβ : R 7→ R given by

Φβ(s) =

ˆ

{ϕ=s}

|∇ϕ|β+1
g̃ dσg̃.

All the theory developed in Section 3 holds with trivial modification for Φβ as above, and
immediately yields a conformal Monotonicity-Rigidity Theorem for the Green’s function.

Theorem 6.10. Let (M, g) be a nonparabolic Riemannian manifold with Ric ≥ 0. Let G be its
minimal Green’s function. Then, with the notations above, we have

dΦβ

ds
(s) = − β es

ˆ

{ϕ≥s}

|∇ϕ|β−2
g̃

(
Ric(∇ϕ,∇ϕ) +

∣∣∇∇ϕ∣∣2
g̃

+ (β − 2)
∣∣∇|∇ϕ|g̃∣∣2g̃ )

eϕ
dµg̃

In particular, Φ′β is alway nonpositive. Moreover, ( dΦβ/ds)(s0) = 0 for some s0 ∈ R and

some β ≥ (n − 2)/(n − 1) if and only if {ϕ ≥ s0} is isometric to the Riemannian product(
[s0,∞)× {ϕ = s0}, dρ⊗ dρ+ g̃{|ϕ=s0}

)
.

The above Theorem clearly translates in terms of (M, g) and G, exactly as Theorem 1.3 was
deduced from Theorem 3.2.
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matics. Birkhäuser/Springer Basel AG, Basel, 2011.

[58] C. Mantegazza and A. C. Mennucci. Hamilton-Jacobi equations and distance functions on
Riemannian manifolds. Appl. Math. Optim., 47(1):1–25, 2003.

[59] X. Menguy. Noncollapsing examples with positive Ricci curvature and infinite topological
type. Geom. Funct. Anal., 10(3):600–627, 2000.

[60] V. Minerbe. A mass for ALF manifolds. Comm. Math. Phys., 289(3):925–955, 2009.

[61] V. Minerbe. On the asymptotic geometry of gravitational instantons. Ann. Sci. Éc. Norm.
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