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ABSTRACT:

The PEER framework formula, promoted and used by researchers from the Pacific Earthquake Engineering
Research (PEER) Center, has been proved to be a significant step in the realization of a performance-based
earthquake engineering approach. The key objective of this short study is to investigate the use of the classical
PEER framework in assessing the resilience of facilities or systems against natural hazards, with a particular
focus on seismic loads. The resilience is a metric that accounts for the performance of a facility or a system after
a shock and during its recovery phase. It is therefore of interest to have accurate, yet simple, tools to compute
statics of this metric. In this study, the PEER framework formula is first revisited by imposing the resilience of a
facility as a final decision variable, after which the limitations and the range of applicability are closely analyzed.
The resilience assessment framework thusly developed sets the foundation for the implementation of resilient
management strategies which can address optimal targets for a given hazard. A simple example with fully
ergodic uncertainties approximation is introduced to practically show the computation of resilience statistics,
such as the mean annual rate, the complementary cumulative distribution function, the mean annual cumulative
value, and the approximate probability of extremes. Finally, we introduce the concept of a “resilience breaking
point”, which represents scenarios that lead to the point where the system stops being resilient. The resilience
breaking points, as well as the potential events that could lead to such points, are of particular importance, as
they define the critical scenarios that should be taken into meticulous account by policy makers. It is shown that
the framework validity bounds can be used to define the range in which some of these critical points may occur.

1 INTRODUCTION amples of this include Jayaram & Baker (2010) and
Esposito (2011). In recent years, the resilience, or its

loss, has been proposed as a performance metric for
Performances of human systems are strongly affected prop p

by natural disasters such as earthquakes, floods,
droughts, storms, etc. The development of mathe-
matical and statistical models to assess the risk aris-
ing from different natural hazards is essential to-
wards creating and managing resilient societies. Us-
ing performance-based designs and analysis is a desir-
able practice for reducing and managing these risks.
In the domain of earthquake engineering, scholars and
researchers at the Pacific Earthquake Engineering Re-
search Center (PEER) have applied the PEER frame-
work formula in order to develop such performed-
based analysis. The formula has been originally pro-
posed by Cornell & Krawinkler (2000), and later has
been used and refined in different studies to estimate
the statistics of different performance metrics, see
Moehle & Deierlein (2004) and Mackie & Stojadi-
novic (2001). The PEER framework has later been
employed to estimate the mean rate of performance
loss for complex systems through simulations. Ex-

facilities or systems. In a renowned paper, Bruneau
et al. 2003 conceptualized the resilience as a metric
that “can be understood as the ability of the system to
reduce the chances of a shock, to absorb a shock if it
occurs, and to recover quickly after a shock”. Follow-
ing Bruneau et al. pioneering study, considerable at-
tention has been recently devoted towards developing
frameworks to assess the resilience of civil facilities
or infrastructures; among these, notable are, Bocchini
et al. 2014, Cimellaro et al. 2010. Within the burgeon-
ing literature in this field, the key contribution of this
study is to investigate the use of the PEER formula in
computing the statistics of the resilience metric. Our
study commences by closely analyzing the range of
applicability of the framework developed in the PEER
center in the context of resilience. In particular, we
show that the range of applicability of this framework
depends on the interaction between the recovery time
and the inter-arrival time of a future event. Finally,



the concept of a “resilience breaking point”, which, in
short, represents scenarios that lead to the point where
the system ceases being resilient, is introduced for
the given virtual region. With these resilience break-
ing points, we enable policy makers to identify crit-
ical scenarios that should be taken into meticulous
account in policy planning and execution. We show
that a particular set of resilience breaking points may
originate from possible interactions between the re-
covery phase and the occurrences of new events. The
“applicability” criteria used to define the range of the
validity of the resilience PEER framework can then
be used to prevent the materialization of such events,
and thus to positively impact the performance of hu-
man systems.

2 THE PEER FORMULA IN THE RESILIENCE
CONTEXT

The classical performance-based earthquake engi-
neering approach builds on the well-known PEER for-
mula, i.e.,

Adv) = /d /edp /m G (dv|d)|dG (d|edp)|

|[dG (edplim)||dA(im)], (D

where ¢m is an intensity measure (e.g., peak ground
acceleration, peak ground velocity, spectral acceler-
ation, etc.), edp is an engineering demand parame-
ter (e.g., interstorey drift), d is a damage measure
(e.g., minor, medium extensive, etc.), dv is a deci-
sion variable (e.g., monetary losses, downtown time,
etc.), A(z) is a mean annual rate of events exceeding a
given threshold for a given variable z, and G(y|x) =
P(Y > y|X = z) is a conditional complementary cu-
mulative distribution function (CCDF). Note that, in
general, d is a discrete variable so that ) _ , substitutes
f 4+ Moreover, the variables im, edp, and dm can be
expressed in vector form; the integral then involves
several folds. The PEER framework was originally
presented by Cornell & Krawinkler (2000).

In recent years, the “loss of resilience”, here named
r, has been proposed as the metric of post event per-
formance for facilities and/or networks. The loss of
resilience essentially accounts for the loss of facility
performance during the recovery time. In the PEER
framework, it thus appears logical to impose r = dwv.
The r is an area defined as

r:/Tﬁ(t)dt:Txaxc(a), (2)
0

where ;]\”(t) is the recovery function defined in the
interval [0, 7], @ = maxy v f(t) is the performance
drop (absorption phase, which depends on damage d),

and c is a constant dependent on the shape of rf(t).
The constant c is characteristic of the facility and the

recovery strategies, and, in this context, we assumed
it to be dependent on the performance drop a. Both T
and A are considered random variables (thus denoted
with an upper case), while c is considered a determin-
istic mapping. We will soon return to the assumptions
underlying these choices. We can finally write

R = T Ac(A), (3)

and investigate the statistics of the resilience loss
K. In particular, we are interested in the CCDF of
R, its mean annual rate A(r), and the probability
of its extreme given a time span. To integrate (3)
into the PEER formulation, we make our first as-
sumption that A is conditionally independent from
the variables ED P, [ M given D = d. Thus, as A L
EDP,IM|D = d, we can first define G 44(a|d), and
then obtain the CCDF of A as

Gatw)= [ [ [ Gulald)dGora(dledr)
m Jedp Jim

1AG aaplim (ED Plim)||dGim (im)]. (4)

Our second assumption is that the recovery time 7T
is statistically independent from all the other vari-
ables given a performance drop a, that is, 7 L
D,EDP,IM|A = a. Our third fundamental assump-
tion is that the recovery time 7 is “much shorter”
than the intra-arrival time of an event, T}, for a given
I'M >im of interest, thatis, P(T > T;,|IM > im) <
e for a sufficiently small e. Given the first two assump-
tions, we can write the joint CCDF of A and 7 as
G(1,a) = G114(7]a)G a(a) for a prescribed recovery
distribution G',(7]a), and then derive the statistics
of ®. We are particularly interested in transforming
the conditional distribution of 7 given A = a into
the conditional distribution of % given A = a, that
is, PR >r|A=a)=P(Tac>r|A=a)=P(T >
r/(ac)|A = a), which is equivalent to

r

Grjalrla) = Gm(—‘a) (5)

ac(a)

Given (5), we can finally obtain the CCDF of R,
which is simply

Galr) = /GGW(@(CL) dGa(a),  (©)

and the mean rate \(r) by rewriting the PEER formula

A(r):/zz/d‘/e\dp/imGT'CL(@‘a)’dGAd(a‘d)‘

|dG pieap(d|edp)||dG gppjim (edplim)||dA(im)|. (7)

This is an important relationship since for a defined
recovery distribution G'7, and shape of the recovery

function ﬁ(t), it directly produces the mean rate of



resilience loss A(r). To the best of our knowledge,
(7) has not been applied before. Another key metric
is the expected annual cumulative resilience loss. As
pointed out by (Der Kiureghian 2005), this quantity
can be written as

B[So&] = [ Aaxe) = o5 +

+/OOO)\(r)dr:/OOO)\(r)dr, (8)

where the last equality is given by the fact that
lim, o rA(r) — 0. This condition is satisfied if, for
example, A\(r) has an exponential decay, and it com-
monly holds if our third assumption, that is, P(7T >
Tin) < €, is met.

3 UNDERSTANDING THE ASSUMPTIONS

There are three fundamental assumptions underlying

(7):
1. AL EDP,IM|D =d
2. T 1L D,EDP,IM|A=a

3. P(T > Ty|IM > im) < e for a sufficiently
small e.

The first assumption is “robustly” consistent with the
PEER framework. The same argument holds for the
second assumption, although here one can argue that
it is a weaker statement, since the recovery time de-
pends also on external factors, such as the perfor-
mance drops of the other facilities and infrastruc-
tures. These assumptions share the limitations of the
PEER framework from which they have been ex-
tracted. Nevertheless, it is important to recognize that
they are enablers of a manageable and realistic frame-
work, the benefits of which outweigh the usual reser-
vations that emanate from abstractions. Assumption 3
is the most delicate one, since it defines the range of
applicability of (7). This condition states that, given
an intensity range of interest /A > im, the proba-
bility that the recovery time is greater than the intra-
arrival time of a given event, is “negligible”. To com-
pute this probability, we introduce a fourth assump-
tion:

4. T L Tp|IM > im.

This is a reasonable assumption, since for a given
I M > im, the processes that govern the recovery time
are “independent” from the arrival of the next event of
intensity /M > im. Assuming that the occurrence of
events, such earthquakes, follows a Poisson distribu-
tion, the intra-arrival time between two events, which
is equivalent to the first arrival time, follows an ex-
ponential distribution with mean rate of occurrence

A(im), i.e., Ty, ~ exp(A(im)), while the CCDF of the
recovery time is given by

Gy (r) = / Gra(7|A = a)G(AIIM > im). (9)

Note that while, for simplicity, we did not explicitely
write G7(7|IM > im), it is assumed implicitly in
the notation G (7). From now, we will thus drop
the implicit condition /M > im. Following this, we
can write P(T > T;,,) = P(T — T}, > 0), which can
be derived by defining 7' = 7 — T, and computing
P(T —T;, > 0) = G7(0). Since G7(t) is simply

Gr(t) = (Gr = fr,,(=))(1)

_ / Fo (t = DG (t)dt. (10)
0
we can write that

PT>To)= [ fn 0G0 a
0

Note that (11) can be inserted in the PEER for-
mula framework by substituting Gr(t) for (9) and
G 4 for (4). Alternatively, using elementary proba-
bility frequentist reasoning, we can obtain G(7) =

)‘T<7—)/)‘T(O)-
4 APPLYING THE PEER FRAMEWORK

In this section, we present an application to investi-
gate the use and the limitation of Equations (7) and
(8). In order to not dwell on details, we contract the
(7) and replace it with a CCDFs. The CCDFs we use is
based on the experience in developing similar CCDFs
using the three-step process implied by the PEER for-
mula framework, thus it does not detract form the gen-
erality of the proposed framework. We thus want to
define a direct relationship between the intensity mea-
sure I M and the performance drop A. This means that
(7) can be rewritten as
)

A(r) = / /m G (s

1AG Ajim (alim) || dA(im) |- (12)

A full example is beyond the scope of this study and
will be examined in a future one. Suppose an an-
nual hazard curve, H (im, 1), is given by the following
equation

H(im,1) = 0.015exp(—im(3.5 + 0.02 % im)).(13)

Figure 1 shows a plot of this curve. As a reminder, the
hazard curve is defined as

H(im,t) = P[IM > im int years]

=1 —exp[—Gm(tm)vt]. (14)



Then, for our value of interest, we have \(im) ~
H(im,1). Notice that H(0,1) ~ v, where v is the
mean rate of earthquake greater than a minimum sig-
nificant value, m > m,,;,. Moreover, we assume that
the performance drop has a value of 100 units per day,
where 0 stands no variation in performance and 100
fully not operational. The random variable A thus has
a finite support [0, 100]. We define the performance
drop distribution, G Alim- following a beta distribution,
that is, A|im ~ Beta(a(im), 5(im)). The choice of
the beta distribution is driven by the compact support
of A. Following this, we set:

Lajim (im) = 0.479im 4 0.0021 (15)

8 ajim (im) = —0.137im + 0.314 (16)
where § i, (9m) is c.0.v.. Then, the parameters «(im)
and (3(im) are simply given by the following relation-
ships

alim) = e *U*f — ) (im), 17)
Blim) = (0% + 4 —QM)(M —1) (im). (18)

g

where 1t = pajim(im) and 0 = 0 gpim (M) fLajim (22).
Figure 2 shows the distribution of G 4}, (alim) for
different intensity values im. We notice that while the
intensity ¢m is increasing, the CCDF is shifting to the
right, giving a high probability of performance drops.

Next, we assume that the recovery time distribution
given a performance loss follows a lognormal dis-
tribution, i.e., 7la ~ InN (pria(a), pria(a)dria(a)),
where the parameters are assumed to trail the follow-
ing relationships

pria(a) = 10exp(0.047a) — 5, (19)

071a = —0.002a + 0.310, (20)

In this case, we have assumed that the mean recovery
time follows an exponential law, since it is reasonable
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Figure 1: Assumed annual seismic hazard curve

to expect a much longer restoration of heavily dam-
aged structures compared to lightly damaged ones.
Moreover, for a performance drop close to 100, the re-
covery time distribution has to be understood as a time
of reconstruction of the facility. Figure 3 shows the
distribution of G'7;,,,(7|m). Notice that these distri-
butions give the probability that the structure returns
to fully operational mode.

Another important factor in (12) is the definition of
the “area factor” c(a). In fact, since the resilience is
an area, it strongly depends on the shape of the re-
covery function. There are systems that show a fast
recovery in the first phase, so that the derivative of the
recovery function is “steep”, while there exist systems
for which the recovery function shows a slower first
phase, so that the derivative of the recovery function
is “flat”. Moreover, the function needs to have a com-
pact support [0 7]. The shape of the recovery function
depends on the (seismic) design of the facility and the
(seismic) recovery strategies. Thus, defining the re-
covery function should be one of the seismic design
objectives, as well as one of the principles for gov-
erning the recovery process. In this study, we decided
to use a single parametric function to describe the re-
covery process in order to keep the model as simple,
yet as flexible enough to capture the main trend. The
parametric function that we will use is the following

rf(t)=a (;)p with p €]0, +00] 21)

Given (21), the ¢ factor is simply

_1 T t p B P
C—%(Ta—/o a(;) dt)-m. (22)

Figure 4 shows different recovery functions for differ-
ent p values and the evolution of c as a function of p.

Notice that the value of p can be viewed as a
resilience index for a given performance drop and
a given recovery time. Higher values of p indicate
higher resilience losses and systems that do not have
a “rapid” recovery phase. In other words, a resilient
system can be defined by low values of the index p for
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Figure 2: Performance drop distributions G 4, (a|im)



a given performance drop a and for a given recovery
time 7. The p value can be understood as a property
of the facility and of the recovery strategies, or more
generally as dependent on the performance drop a. It
is thus reasonable to assume that low values of a cor-
respond to low value of p and, indeed, of c. We can
finally write c¢(a) = p(a)/(1 + p(a)) for a given p(a)
function.

Although the model is quite simple and p allows
only for one shape of the recovery function, it can
be noticed that for any given general (and thus real)
recovery shape, it corresponds to one unique p or ¢
(obviously the inverse mapping does not hold). Given
this, we can study the statistics of p and ¢ consid-
ering a particular performance drop and then define
a new random variable. However, in doing that, (7)
will not hold, since the Markov chain underlying the
PEER framework will not have a single parent-child
relationship.

Assume that we want to study three facilities that
share the same absorption and recovery functions de-
fined above, but with three different p values. Facility
A and B have constant p values of 1/2 and 2, respec-
tively, while the facility C has a p value that varies
according to the following equation

p(a) = 0.018a + 0.412. (23)

These facilities can be thought of as belonging to the
following categories: A) systems that have a high rate
of recovery independent from the performance drop;
B) systems that have a slow rate of recovery indepen-
dent form the performance drop; and C) systems that
have an intensity-dependent recovery rate such that
for larger performance drops the rate of recovery is
lower. The three facilities considered here can be in-
terpreted as having the same loss of performance af-
ter the event occurs and as having the same recovery
time, but with three different initial rates of recovery.

Given this outline, we can compute the mean an-
nual rate of the resilience loss for the different facili-
ties. Figure 5 shows the three curves for the three fa-
cilities. It is of interest to observe that for a high A(r),
the facility C has a loss of resilience close to facility

10 100 1000
T[days]

Figure 3: Recovery time distributions G'7,(7|a)

A, while for a low A(r), it has losses close to facility
B, and this is because its rate of recovery depends on
A. As a final step, we are able to compute the cumu-
lative resilience loss by using (8). Table 4 shows the
results of this computation for the three facilities.

Table 1: Cumulative loss of resilience for the three facilities

Facility type D E>R)
A 0.5 3.617
B 2.0 7.169
C 0.018a+0.412.  6.159

4.1 Probability of extremes and ergodicity of the
framework

In this subsection, we compute the probability of
maximum resilience loss for given ¢ years. Note that
the probability of extremes, which is the probability
that at least one event over a series of events in ¢
years is greater than a given threshold, i.e., P[R >
rin t years], is different from the CCDF, which is the
probability that a random event is greater than a given
threshold, i.e., P[R > r] = Gg. If all the intermediate
variables defining \(r) are ergodic and thus satisfy the
underlying assumption of a Poisson process, then we
can write

H(r,t) = P[R > r int years]
=1— P[0 events R > r int years]
=1—exp[—A(r)t]. (24)

However, it has been pointed out by Der Kiureghian
(2005) that the intensity variables /Ms have un-
certainties that renew at each occurrence of an
earthquake, while the “structural variables”, such
as FDPs and Ds, are also characterized by time-
invariant uncertainties. More generally, the occur-
rence of these latter variables for different earth-
quakes cannot be considered statistically indepen-
dent. In other words, the ergodic assumption is valid
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Figure 4: Recovery functions ;?(t)



only for the intensity measures, while it is gener-
ally invalid for the other variables involved (Der Ki-
ureghian & Ditlevsen 2009). The (24) can commonly
be shown to be only an upper bound of the true H (r,t)
(Der Kiureghian 2005). This is the reason why we
use the overline in (24). For a given intensity measure
I M = im, the total uncertainty in £ D P or in other
variables can be thought of as the combination of an
ergodic component and a non-ergodic component.

Notice that, the correct solution can only be found
by a clear classification of the uncertainties during the
analysis. However, this process can be very difficult or
even impossible in the PEER framework if the inter-
mediate distributions (vulnerability and recovery dis-
tributions) are “given” or “prescribed”. We will now
provide a small example to support this statement.
Suppose that the performance drop A is related to the
intensity of the earthquake via the following simple
linear model

A= M(IM,0)=IMO (25)

where O is the “response” of the facility for a unit
change in /M and © 1 I M. Clearly, © is an inher-
ent property of the structure with uncertainties that
do not renew over different occurances of events,
and it is thus non-ergodic. The random variable A is
hence the composition of an ergodic and non-ergodic
random variable. Suppose that we are interested in
P[A > a,in t years], then the correct solution is ob-
tained by considering the event as conditioned to the
non-ergodic variables, i.e., [A > a|© = 0]. Undoubt-
edly, this event is ergodic since its uncertainties de-
pend only on I M, and it can thus be viewed as Pois-
son with rate P[A > a|6]v. Following this, it is easy
to show that

PA > alf] = G(a]f) = G (g) , (26)
and

P[A > a|f,in t years]

=1—exp [—VG[M (%) t} . 27)

—p=0.5

Figure 5: Mean annual rate of resilience rf (t)

The final unconditioned solution is given by the total
probability theorem as

Hy(a,t) = P[A > a,in t years] =

—1- /eexp [—VGIM (%) t] dGs(0)].  (28)

This solution is naturally different from H 4(a,t),
which assumes the ergodicity of #. However, if we
apply the PEER framework to this problem, we will
write the formula as A, = [ G(alim)|dA(im)| for a
prescribed G(alim). We can observe in our example
that the event [a|I M = im)] is non-ergodic and that

P[A > alim] = G(a|im) = Gy (i) .9
m

Now suppose that the “correct” G(alim) has been
prescribed without knowledge of the given model
M(IM,®), which is the case when we select pre-
defined vulnerability functions or empirical fragility
functions. As we can see, it is then impossible to
derive the correct formula (28) without knowing the
relationship between A and IM, ie., M(IM,0),
and the classification underlying the uncertainties. As
Der Kiureghian (2005) shows, the H (-, t) is generally
an upper bound to the true H (-, t). It worthwhile to in-
vestigate a formulation that finds a lower bound, i.e.,
H(-,t), in future studies.

Figure 6 shows the upper bound (H(r,t)) for the
three systems over a time span of 50 years.

4.2  Validity of the framework

In this subsection, we will look at the validity of
the framework for the resilience of our example. The
original PEER framework (1) assumes that CCDFs of
the intermediate variables are time invariant, which
implies two fundamental assumptions: a) the struc-
tural performance of the facility is time invariant, i.e,
not deteriorating; and b) the structure fully recovers
to its original state and performance immediately af-
ter an event. Clearly, the latter assumption suggests a
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Figure 6: Probability of of £ > r in 50 years



recovery time equal to zero, or, in practical terms, that
the recovery is sufficiently fast so as to not interact
with the next event. As we have seen in section 3, this
entails in probabilistic terms that P[T > T;,|IM >
m] — 0. We essentially need to define a sufficient
small € so that (7) can be considered valid. The exact
solution of this problem is given by (10); in our exam-
ple, we obtain P[T > T;,|IM > 0] = 7.0366 - 10~*.
Notice that this has to be understood as the proba-
bility that for a given random earthquake, the recov-
ery time is longer than for the next random earth-
quake. One may doubt this metric since it considers
all events and is not conditioned on the extremes. An
alternative way to think about this problem is to as-
sume that an event leading to a large loss of perfor-
mance has occurred. In that case, the probability dis-
tribution of the recovery time is simply G-j4(7]|A >
Umaz), Which can interpreted as the reconstruction
time distribution. Following this, the probabilistic
question we want to address here is: what is the proba-
bility that another earthquake occurs before the struc-
ture is fully operational? If this probability is small
enough, then we can consider the framework valid.
Or, formulated mathematically:
P(T > Tin|A > amas) < €. (30)
15, 1s again the inter-arrival time for a given /M >
1m. Note that, here, after we condition on the extreme
event A > a,,q., We can freely choose a significant
intensity that can cause the performance drop during
the recovery phase. To compute (30), we assume that
T L T, (im)|A > ama. (31)
This is a robust assumption, since the recovery time,
given an event has occurred, is statistically indepen-
dent from the arrival of the next earthquake. Follow-
ing this, we can simply rewrite (11) as

P(T > Tin|A > amaz)

= / fTin|im<t)G7—|a(t‘A > amam)dt. (32)
0

Figure 7 shows the numerical values of (32) as a func-
tion of the selected ¢m for the inter-arrival time. The
acceptance limits ¢, ¢ are not defined in this study, and
thus pose limits to our framework when compared to
one that can consider interactions.

5 RESILIENCE BREAKING POINTS

When the interactions between the recovery time and
the inter-arrival time have significant probabilities of
occurance, then the framework (7) is invalid. How-
ever, it should be recognized that the validity crite-
ria introduced in section 3 and 4.2 could also be con-
sidered as measures of the resilience of a system, in

particular, for extreme events and scenario-based de-
signs. In these cases, it is important to identify events
that lead to large, and thus non-acceptable losses of
resilience, for a defined time span. When an event or a
series of events generates such losses of resilience, we
characterize the system as not resilient. We can define
these events as “resilience breaking points” and their
formal definition is as follows:

Resilience breaking points represents scenarios
that lead to the point where the system stops being
resilient.

The resilience breaking points, as well as the poten-
tial events that could lead to such points, are of partic-
ular importance, as they define the critical scenarios
that should be taken into meticulous account by pol-
icy makers. To define a resilience breaking point, we
first require a time span that defines the time scale. For
example, this can be the expected life of an individual
or a standard time imposed by policy makers. Addi-
tionally, we need an acceptance criteria in terms of
resilience loss. Note that once the selected time is de-
fined, the resilience loss can be expressed in percent-
age over the full loss of resilience. To identify such
events, both the recovery time and the rate of recovery
play a key role. Some resilience breaking points are
easy to recognize: they are events that have a long re-
covery time and a low rate of recovery. Nuclear melt-
downs and contaminations of areas are classical re-
silience breaking point examples. The prolonged re-
covery time (compared to the expected lifespan) af-
ter the 1986 Chernobyl and the 2011 Fukushima acci-
dents are sufficient to classify them as recovery break-
ing points. The key issue in these cases is not their
classification, but the assessment of their probability,
assuming it determinable. However, not all resilience
breaking points are easily to identify, in particular
when we have complex systems. This is compounded
by the generation of resilience breaking points by the
possible interaction between the recovery phase and
future events, or, to paraphrase, when the aforemen-
tioned framework is invalid. Conversely, if the sys-
tem or the facility satisfies the validity criteria of the
framework, then the resilience breaking points will
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Figure 7: Probability that reconstruction time is larger than the
inter-arrival time
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Figure 8: Examples of interactions between the recovery and the occurrence of events. a) Interaction between recovery time and inter-
arrival time is negligible, i.e., (7) can be applied; b) Interaction between recovery time and inter-arrival time is significant, i.e., (7)
cannot be applied; ¢) Example of resilience breaking point due to interaction of events

not occur. Figure 8.a) shows a sample of a stochastic
process for which the interaction between consecutive
events is negligible. Here, the claim that no resilience
breaking point can occur is appropriate. Figure 8.0)
shows a sample of a stochastic process for which the
interaction between consecutive events is significant.
Then, (7) is invalid and a resilience breaking point
may occur. Finally, figure 8.c) shows a sample of a
resilience breaking point: first, an extreme event oc-
curs, after which the system has an unacceptable level
of resilience loss over a selected time span.

When the validity of our framework is in doubt,
models used in time variant reliability problems for
degrading structures can be “modified” to describe
the interaction. As an example, consider the follow-
ing compound process

(1)
Alt) =Y Aur f(OH(t = T,), (33)
n=1

where A, A,,... are decrements of resilience for a
given event, V() is a Poisson with mean rate \(im),
H(t—T,) is the Heavyside step function, and 7,, the
inter-arrival between events. Figure 8.c) presents a

sample of this stochastic process. Moreover, if ﬁ(t)

are exponentials, i.e., 7 f (t) = exp(n(t — T,,)) and the
A, s are statistically independent, then, a close form
solution of (33) can be analytically derived by the
method of moments and thus also its integral over
time. In a future work, the statistics of this or simi-
lar models will be derived and compared against (7)
to investigate the magnitude of acceptance e, €.

6 CONCLUSION

In this study, we set out to extend the PEER frame-
work formula in order to account for the loss of re-
silience for a given civil facility or system. It has
been shown that for a given conditional performance

drop distribution, a conditional recovery time distri-
bution, and a recovery function, the resilience can
be easily integrated in the original Markovian frame-
work. The limitations of our framework have been
studied by analyzing the probability of interaction be-
tween the recovery time and the inter-arrival time of
seismic events. Finally, we introduced the concept of
resilience breaking point events, for which we have
shown that their occurrence can be controlled with a
certain confidence interval obtained using the limita-
tion criteria of the PEER framework.
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