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Induced seismicity closed-form 
traffic light system for actuarial 
decision-making during deep fluid 
injections
A. Mignan   1,2,3, M. Broccardo   2, S. Wiemer3 & D. Giardini1

The rise in the frequency of anthropogenic earthquakes due to deep fluid injections is posing serious 
economic, societal, and legal challenges to many geo-energy and waste-disposal projects. Existing 
tools to assess such problems are still inherently heuristic and mostly based on expert elicitation (so-
called clinical judgment). We propose, as a complementary approach, an adaptive traffic light system 
(ATLS) that is function of a statistical model of induced seismicity. It offers an actuarial judgement of 
the risk, which is based on a mapping between earthquake magnitude and risk. Using data from six 
underground reservoir stimulation experiments, mostly from Enhanced Geothermal Systems, we 
illustrate how such a data-driven adaptive forecasting system could guarantee a risk-based safety 
target. The proposed model, which includes a linear relationship between seismicity rate and flow 
rate, as well as a normal diffusion process for post-injection, is first confirmed to be representative of 
the data. Being integrable, the model yields a closed-form ATLS solution that is both transparent and 
robust. Although simulations verify that the safety target is consistently ensured when the ATLS is 
applied, the model from which simulations are generated is validated on a limited dataset, hence still 
requiring further tests in additional fluid injection environments.

A significant proportion of the world’s global energy production relies on subsurface resources, such as oil, gas 
and coal production, as well as geothermal energy. In addition, the deep underground is increasingly used for 
waste storage; typical examples are wastewater from fracking operations and CO2 sequestration. However, these 
technologies are not “risk-free,” as shown by the increased frequency of induced seismicity cases around the 
globe. Recent examples include induced seismicity related to fracking and wastewater disposal1–3, gas extraction4, 
gas storage5, CO2 sequestration6, and renewable geo-energy7–9. Although some jurisdictions have enforced the use 
of maximum magnitude thresholds to limit the induced seismicity risk10, most of these rules remain heuristic. In 
this article, we argue that quantitative risk assessment and mitigation strategies rather than trial-and-error meth-
ods, should be essential tools to guarantee safety for society. The approach we advocate, which should be seen as a 
proof-of-concept, allows for an informed risk-cost-benefit analysis involving all stakeholders11.

Traffic light systems (TLS) are commonly used to mitigate induced seismicity risk by modifying the fluid 
injection profile1,10,12,13. A TLS is based on a decision variable (earthquake magnitude, peak ground velocity, 
etc.) and a threshold value above which actions (e.g. stopping the injection or reducing production rates) must 
be taken. Currently, the definition of this threshold is based on expert judgment and regulations10,12,13. Here, we 
propose a data-driven adaptive TLS, termed ATLS, which aims to overcome the limitations of the traditional 
heuristic methods. Here, the assignment of a magnitude threshold is based on a quantitative risk assessment, 
subject to a safety criterion imposed by the authorities (e.g., fixed probabilities of unaccepted nuisance, damage or 
fatalities). As a consequence, the ATLS is an objective and statistically robust mitigation strategy, which facilitates 
a fair and transparent regulatory process. This approach is in line with the procedures common for most other 
technological risks, such as in the hydropower, nuclear or chemical industries14. Model-based forecasting and 
alerting are already advocated elsewhere, such as in hurricane data assimilation and forecasting15.
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Results
Predictive hazard model.  A predictive model lies at the heart of any risk assessment. In the case of induced 
seismicity, a wide range of statistical and physics-based models exists16,17. Undoubtedly, more work is needed to 
develop, calibrate and validate new models; however, we believe that the missing link is the use of such models for 
deriving and monitoring quantitative risk thresholds. Here, we use as example a simple and yet robust model that 
forecasts the piecewise induced seismicity temporal, here daily, rate λ(t, m ≥ m0; θ) as:
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where V (t) is the injection flow rate as a function of time t in m3/day, θ = [b, afb, τ] a set of model parameters 
describing the underground characteristics (earthquake size ratio, activation feedback in m−3 and mean relaxa-
tion time in days, respectively), m0 the minimum magnitude cutoff, and tshut-in the shut-in time, also in days. Both 
afb and b can also be functions of time t (see Decision variable section). In this model, the injection or operation 
phase is described by a linear relationship between λ(t, m ≥ m0) and V (t) in line with previous studies17–19. It 
derives directly from the linear relationship between V  and overpressure17, hence assuming no change of injectiv-
ity during any given stimulation. The post-injection phase is described by a pure exponential decay representative 
of a normal diffusion process17. Although the Modified Omori Law is sometimes used to describe post-injection 
seismicity20, reasons remain mostly historical21,22. The proposed alternative is verified to be consistent with the 
tested data (see Methods section) and preferred on analytical grounds, being directly integrable in contrast with 
the Modified Omori Law, which is conditional on parameter values and may require the definition of an ad hoc 
upper bound22. Finally, no maximum magnitude Mmax is imposed. It follows from Eq. (1) that induced seismicity 
is characterized by both the injection profile V t( ), and the underground feedback described by the three-parameter 
set θ. The main limitations of the proposed model are discussed in detail later on.

In contrast with complex fluid modelling16, the closed-form Eq. (1) can be computed on-the-fly; moreover, 
it includes the mean relaxation time, τ, hence taking into account the long-term underground feedback after 
shut-in. Finally, being integrable, it leads in turn to a closed-form ATLS, as demonstrated in the next section. 
Although the physical process governing the rate of induced seismicity is more complex than what is repre-
sented by Eq. (1), this rate model is proven to be valid in a Poissonian probabilistic setting (see Methods section). 
Moreover, the physical processes are either not still clear (in fact, there is not an unanimous consensus among 
scientists), or computationally expensive. Therefore, pragmatism imposes the use of statistical models until both 
an agreement is found on the physics of induced seismicity and computational time of complex physical model-
ling is reduced.

The model (Eq. 1) was fitted to six induced seismicity sequences observed in fluid injection experiments from 
enhanced geothermal systems (EGS)13,23–26, the initial stage of a long-term brine sequestration27, and one fracking 
at an oil field28 (Table 1). The model succeeds to describe most of the data as shown in Figure 1 (see results of sta-
tistical tests in the Methods section – Note that the rare outliers above 3σ may be due to missing on-site data that 
may affect seismicity, such as unknown technical operations on wells, or to second-order physical processes miss-
ing in Eq. (1), as discussed below). The parameters are found to range over 0.8 ≤ b ≤ 1.6, −2.8 ≤ afb ≤ 0.1 m−3 and 
0.2 ≤ τ ≤ 20 days and show a relatively large scattering between sites and between different stimulations at a same 
site (Table 2). It is important to note that we specifically chose those six datasets, as they had been made publicly 
available. Those cases are characterized by high pressures and flow rates, and are rich in induced earthquakes. 
This represents a selection bias and the afb parameter could decrease to much lower values elsewhere (Fig. 2). For 
instance, most injection wells in the U.S. do not cause felt earthquakes29; large afb variations between regions and 
sites might be explained by different regional crustal stresses30. The present sites provide however natural labo-
ratories to test our model and the associated ATLS, without generalizing or inferring any high level of risk for all 
existing deep fluid injections. Figure 2 illustrates the parameters’ scattering, including results from past studies18 
for EGS and other hard rock settings enlarging the range of values to 0.7 ≤ b ≤ 2.2 and −4.2 ≤ afb ≤ 0.4 m−3. It has 
been shown that in fracking environments, the activation feedback can be as low as afb = −9.25 m−3 18.

Site (country ISO 
code), year Injection profile Earthquake catalog

Basel (CH), 2006 Digitized from (13) (23)

Garvin (US), 2011 Digitized from (28) (28)

KTB (DE), 1994 Digitized from (24) (24)

Paradox Valley 
(US), 1994 http://www.usbr.gov/uc/wcao/progact/paradox/RI.html http://www.usbr.gov/uc/wcao/progact/paradox/RI.html

Newberry (US), 
2012 Digitized from (25) http://fracture.lbl.gov/cgi-bin/Web_CatalogSearch.py

Newberry (US), 
2014 Digitized from (26) http://fracture.lbl.gov/cgi-bin/Web_CatalogSearch.py

Table 1.  Source* of stimulation experiment datasets. *Online material last assessed in June 2017.

http://www.usbr.gov/uc/wcao/progact/paradox/RI.html
http://www.usbr.gov/uc/wcao/progact/paradox/RI.html
http://fracture.lbl.gov/cgi-bin/Web_CatalogSearch.py
http://fracture.lbl.gov/cgi-bin/Web_CatalogSearch.py
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Safety criterion.  A safety criterion is a probability of exceedance that can be fixed with respect to different 
safety metrics, such as fatalities, economic loss, building damage or level of nuisance14. Given the selected metric, 
the corresponding safety criterion can be converted in the magnitude space into the probability of exceedance 
Pr(m ≥ msaf) = Y, which will ensure that the acceptable level of risk is preserved at all time:

Figure 1.  Induced seismicity model fitting of six fluid injection experiments: 1994 German Continental Deep 
Drilling Program (KTB); 1994 Paradox Valley, United States; 2006 Basel, Switzerland; 2011 Garvin, United 
States; and 2012–2014 Newberry, United States. For both KTB and 2014 Newberry, experiments are broken 
down into two separate stimulations, each with its own post-injection tail. The model (Eq. 1) is represented 
by the red curves on the induced seismicity time series with the ±3σ uncertainty envelope shown in light red. 
Dashed and dotted vertical lines indicate the shut-in times and sub-stimulation periods, respectively.

Experiment m0 b afb (m−3) Σ* τ (days)

B06 0.8 1.58 0.10 0.4 1.12

G11 1.0 0.77 −1.35 N/A 0.28

KTB94a −1.5 0.98 −1.35 −1.65 0.03†

KTB94b −1.4 0.87 −1.65 −1.65 0.22

PV94 0.6 1.08 −2.40 −2.6 14.13

NB12 0.2 0.80 −2.80 N/A 12.59

NB14a 0.0 0.98 −1.60 N/A 3.55

NB14b 0.2 1.05 −1.60 N/A 3.16

Table 2.  Maximum likelihood estimates per stimulation experiment. *Seismogenic index obtained by ref.18; 
†unreliable, part of the tail being likely hidden by the KTB94b sequence.
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with msaf the magnitude at which the given safety limit (e.g., damage, fatality) is reached. Note that Eq. (2) is a 
closed-form expression where V(t) is the cumulative injected fluid volume, and msaf and Y are derived from the 
safety criterion (see Methods section). Moreover, the set of parameters θ is updatable at any given time. The map-
ping from risk to earthquake magnitude is required to control injection operations based on short-term observa-
tions (see Decision Variable section). While peak ground velocity (PGV) is a more direct measure12, conversion to 
magnitude is in any case inevitable to estimate the risk potential of larger earthquakes from the b-value. It is also a 
unique measure, while PGV requires a location that is not trivial to assign. It should be added that no maximum 
magnitude Mmax is imposed in Eqs (1–2). This implicitly assumes that both small to medium-size induced events 
and large triggered earthquakes on existing faults are treated the same way. This remains debated31 although a 
recent study19 demonstrated that the observed Mmax in fluid injections is compatible with the null-hypothesis 
of the Gutenberg-Richter law with no upper limit. The role of Mmax (and therefore of triggered earthquakes) is 
however only critical when the risk of fatalities (e.g., individual risk IR) is evaluated. For nuisance or minor dam-
age thresholds, risk is more likely dominated by medium-size induced events. This important discussion has no 
significant impact on the method proposed, as proved in the Methods section.

Before an ATLS is set, the likelihood of failure of the planned project with respect to a specified limit state 
function defined by the safety criterion in magnitude space (Eq. 2) can approximately be determined. In this 
study, we select as main metric the annual individual risk (IR) over the entire project period, and as safety crite-
rion IR ≤ 10−6 (i.e. the probability that a statistically representative individual dies for the introduced hazard), 

Figure 2.  Three-parameter set θ = [b, afb, τ] scattering in fluid injection experiments & impact on project 
validation for fixed safety threshold (IR ≤ 10−6) and different fluid injection scenarios. Dots represent θ 
estimates obtained in the present study (Fig. 1), squares the ones obtained by ref.18 (with no information on τ) 
and curves (made of successive dots) time-dependent estimates obtained where the earthquake catalogue is 
large enough (see Methods section). The hypothetical project injects a total volume V = 10,000 m3 of fluids with 
constant flow rate V at a distance d from the nearest building: a. V  = 1 m3/min, d = 0 km; b. V = 1 m3/min, 
d = 50 km; c. V  = 10 m3/min, d = 0 km and d. V = 10 m3/min, d = 50 km. Lines represent the safety threshold for 
different values of τ (in days) (Eq. 2). Colour green or red indicates if the safety target is respected or not, 
respectively (darker colours are used in the case of time-dependent estimates). Letters represent sites: Basel (B), 
Cooper Basin (CB), Garvin (G), KTB, Newberry (NB), Ogachi (O), Paradox Valley (PV) and Soultz (S), 
followed by the experiment year’s last two digits.
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which is a threshold commonly enforced for hazardous installations14. Figure 2 shows the acceptable domain for 
a fixed limit state function, tested for different injection scenarios in which a hypothetical project plan is to inject 
a total volume V = 10,000 m3 of fluids at a depth of 4 km32. The injection profile is assumed to be flat with a con-
stant flow rate V  = 1 or 10 m3/min, having an impact on injection duration and tail behaviour (Eq. 2; Fig. 2). The 
project is considered to be located at a distance d = 0 km or 50 km from the nearest building. For a given site, with 
no knowledge of the underground feedback to fluid injection, project operators and regulators in an EGS setting 
(where high seismicity rates are common during stimulation) could use the known θ scattering for an a priori 
parameterization. This preliminary assessment shows the likelihood of the project to pass or fail the safety thresh-
old. As shown in Figure 2, the results can be ambiguous, due to the large uncertainties associated with subsurface 
characteristics. Nevertheless, it provides a preliminary assessment of the risk reflecting the limited knowledge of 
the induced seismicity process. Future estimations of θ at additional injection sites will likely refine the results and 
improve the decision process. In addition, rules of decision-making under uncertainty can account for that ambi-
guity9,33. Decisions become more obvious in cases in which the diagram would be entirely green (clear go) or red 
(clear no-go). Underground stimulation activities in areas with low exposure (e.g. remote EGS plant locations 
with large distance d from the nearest habitations) would evidently have a lower induced-seismic risk and, thus, 
shrink the red area. The termination of the 2006 Basel EGS project was due to the high induced-seismic risk 
emerged from the high exposure of the urban built environment7,9. Note that Eq. (2) can be used to predetermine 
a distance d for which the induced-seismic risk would become acceptable—conditional to a given injection profile 
V(t) and parameter set θ (since msaf is a function of d; see Methods section).

Decision variable.  The ATLS decision variable must be selected and updated as new data allows estimating 
θ more accurately, or if the planned injection scheme is changed. Here, a threshold earthquake magnitude mth is 
used as decision variable. In particular, mth is defined as the magnitude value for which mitigating actions must 
be taken, here corresponding to stopping injection, i.e.

τ= − +−
−m

b
Y V t m1 log [ 10 ( )] (3)th

a bm
shut in saf10

fb saf

(see Methods section). If mth is updated “on-the-fly”, the project is guaranteed to meet the defined safety criterion.
To avoid reaching mth before the planned stop of the fluid injection one may be inclined to reduce the flow rate 

V , but here it would only delay the time at which the injection must stop, as the risk is mostly controlled by total 
volume injected V (Eq. 2; the secondary role of V  is highlighted in Figure 2 by the change of width of the yellow 
band, for different V  and τ). It is common practice to reduce V  however13, but results of such action remain 
unclear34 since verification of a safety threshold requests a large number of experiments (see simulations below); 
indeed: (i) It is plausible that such action has no overall effect, the risk remaining the same in average over a fixed 
V; (ii) If such action has an effect, it would indicate that the model of Eq. (1) does not properly describe the role 
of different injection strategies. Despite the proposed model being classified as a pure statistical method, it is 
based on physical considerations. Its first term, for example, builds on the linear relationship between volume 
change and pressure17. Other relationships can be envisioned such as a bilinear relationship indicative of a change 
of injectivity26, which may explain some second-order relationship observed between flow rate and Mmax

35. The 
linear relationship could also be shifted in time by including a minimum pressure threshold17 below which no 
induced seismicity is triggered. Adding such processes would likely allow for smarter mitigation strategies in 
which the shape of the injection profile would play a role. Since any model change would require the inclusion of 
additional parameters (which have yet to be constrained), and since Eq. (1) is verified to be consistent with most 
of the data tested, we consider Eq. (1) to be a reasonable first-order model for the proposed ATLS.

To validate the ATLS in a realistic time-dependent setting, we simulate the Basel induced seismicity sequence 
using Eq. (1) with V Basel(t) (Figs 1; 3a) and θBasel(t) = [b(t), afb(t), τ = 1.12 day] (Figs 2; 3b; Table 2). We use the 
safety threshold IR ≤ 10−6 with the nearest building above the borehole (d = 0 km), yielding msaf = 5.8 (see 
Methods section). The value mth as a function of time is shown in Figure 3c with two examples of induced seis-
micity time series. The first one, in grey, is a reproduction of the 2006 Basel experiment; the second one, coloured, 
is the case where the ATLS is used. Figure 3d finally shows that the safety target, while not respected for synthetic 
versions of the Basel experiment, is reached once the newly proposed ATLS (Eq. 3) is considered. Due to the 
stochastic nature of the earthquake process, the operational safety target is only reached on average over multiple 
sequences. It is plausible that an improved model with a non-linear relationship between flow rate and overpres-
sure would open the possibility for mitigation strategies based on different injection profiles, hence potentially 
avoiding prematurely stopping the stimulation and the project.

Discussion
The main purpose of this study was to present a statistical-based first order ATLS, which verifies that a quan-
titative safety criterion is ensured. An important benefit of the outlined ATLS approach to both operators and 
regulators is its transparency and execution speed (being a suite of simple closed-form expressions). By princi-
ple, its adoption would make any project in compliance with the safety threshold whatever the response of the 
underground. This does not ensure that a project is financially successful, but it gives the operator the maximum 
allowable chance to reach success, based on a quantitative risk-based method.

It is important to note that existing traffic light systems based on heuristics can already provide reasonable 
results (for instance, the magnitude threshold mth = 2.9 fixed during the Basel experiment13 is not far off the 
mth(t) computed with the new ATLS; Fig. 3c). However, magnitude thresholds enforced by different jurisdictions 
vary significantly (with 0.5 ≤ mth ≤ 410) with no clear link with the standard risk-based safety criteria used in 
other hazardous industries14. Although the application of the ATLS in the decision process might appear at first 
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complex, there is substantial evidence that the algorithmic (or actuarial) approach is superior to the so-called 
clinical approach of informal judgement36,37. This must apply too to induced seismicity prognostics, experts nec-
essarily basing their judgements, consciously or intuitively, on past observations shown here to be reasonably well 
described by Eq. (1) (Fig. 1 and Methods section).

Finally, we suggest the following future directions: (1) improve the model (Eq. 1) by relating directly over-
pressure instead of flow rate to induced seismicity. Due to potential changes in injectivity, gas kicks and other 
processes, overpressure is likely to provide a better proxy than injected fluid volume; (2) test the statistical model 
in other fluid injection environments; (3) improve the updating of the parameter space by using a hierarchical 
Bayesian framework where the uncertainties of the model parameters are taken into account; and (4) modify 
the mapping from risk to magnitude space for site-specific conditions which likely vary between fluid injection 
locations. The present study demonstrated the power of the actuarial approach and should be considered as a 
proof-of-concept for future physics-based induced seismicity models, more sophisticated engineer-based risk 
assessments, and improved mitigation strategies.

Methods
Time series analysis.  The induced seismicity temporal rate model λ(t) of Eq. (1) is fitted to the induced seis-
micity data by using the maximum likelihood estimation (MLE) method38. The probability pi that the observed 
number ni of induced earthquakes results from a Poisson process39 with rate λi is

p
n

exp( )
! (4)i

i
n

i

i

iλ λ
=

−

which yields the log-likelihood function

Figure 3.  ATLS validation on synthetics of the 2006 Basel fluid injection experiment. (a) Observed time series 
and flow rate V t( ) during the 2006 Basel experiment13,23; (b) Maximum likelihood estimates (MLE) of ground 
parameters afb and b over time determined from the Basel time series using a moving window of 100 events (see 
Methods section). Generic parameter values are here updated after the first 100 events are observed. Once 
injection stops at tshut-in, b is assumed to remain constant since no control on induced seismicity is possible after 
that time; (c) Simulated version of the 2006 Basel time series (in grey) and shorten (coloured) when injection is 
stopped by having an event with magnitude m > mth (in green); (d) ATLS validation showing that the frequency 
of events with m ≥ mth tends to Y over many simulations (fluctuations around Y represent the inherent 
uncertainty of the earthquake Poisson process, which decrease with increasing sample size).
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where X = {n1, …, ni, …, nimax} is the observation set and θ = [afb, b, τ] is the parameter set of Eq. (1). The maxi-
mum likelihood estimate of θ is finally θMLE = arg maxθ LL(θ, X). m0 is fixed to Mc, the completeness magnitude 
defined as the magnitude bin with the highest number of events40. b is estimated independently of λ, also based 
on the MLE method41. The model is fitted to 8 datasets (from 6 stimulations in various injection settings; Table 1); 
the resulting maximum likelihood estimates are listed in Table 2.

Sensitivity analysis.  Temporal changes in afb and b are evaluated for induced seismicity sequences that are 
large enough (i.e., made of hundreds of events, such as in 1994 Paradox Valley, 2006 Basel and 2014 Newberry). 
The parameters are estimated using a moving window with constant event number n = 100. Before n is reached, 
MLE estimates obtained in retrospect (Table 2) are used, as shown in Figure 3b. In a prospective case, generic 
values should be used, e.g. the median or mean of values taken by the parameters in previous experiments. Since 
the post-injection phase is not considered in the sensitivity analysis, afb is directly obtained from Eq. (1) so that

= + − −+a bm n V Vlog log ( ) (6)fb i i i, 0 10 10 1

with i the incremental window step. Noteworthy, n ≥ 100 is reached only for high afb and/or low completeness Mc. 
Depending on the underground a priori knowledge, the injection profile plan, and the safety criterion (Eq. 3), one 
may estimate what a reasonable Mc would be for parameter updating over time. This may require further seismic 
network planning, with the number and spatial arrangement of seismic stations potentially derived from the 
simple function M d k c d k c( , ) ( )c

c
1 3

2= + , where d is the distance to the kth nearest seismic station and c1, c2 and 
c3 empirical parameters42 (although there are additional theoretical limits on event detection that must be taken 
into account43).

Post-injection data analysis.  While the linear relationship between λ and V  is well established17–19, the 
pure exponential behaviour of the induced seismicity post-injection tail has only been demonstrated for the 2006 
Basel case17. Here, we compare three relaxation models: pure power law t t( )λ ∝ α− , pure exponential 
λ τ∝ −t t( ) exp( / ) and stretched exponential t t t( ) exp( ( / ) )1λ τ∝ −β β−  by using the Akaike Information 
Criterion44,45. We find that, of the 7 datasets (discarding KTB94a, which tail is likely cut), 5 are best described by 
the pure exponential function. The 2 others are best described by a stretched exponential function with stretching 
parameter β = 0.9 and 0.7, for PV94 and NB14b, respectively (β = 1 representing the pure exponential). This jus-
tifies the use of a pure exponential in Eq. (1) hence limiting θ to a simple three-parameter set.

Model goodness-of-fit.  Figure 1 shows the general agreement between model and data by visual inspec-
tion. Additionally we test Eq. (1) against our datasets using the Kolmogorov-Smirnov (KS) confidence bounds46. 
We first convert the dataset  t( ) into a transformed dataset 
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The two datasets are equivalent but with the distribution of ∼
Τ( )

  being the one of a uniform Poisson process with 
unit rate. Then using the KS confidence bounds, we estimate graphically whether the empirical cumulative distri-
bution function (CDF) of ∼

Τ( )
, F ( )Τ∼ , deviates significantly from the CDF of the uniform distribution, FU(Τ). 

Here, we use the confidence bounds not to perform a KS statistical test but rather to examine the 
physical-engineering evidence against the proposed model. When  Τ∼F ( ) is within the 95–99% KS bounds, we 
classify the model as performing well; when  Τ∼F ( ) falls locally outside the 95–99% KS bounds, we classify the 
model as performing fairly well; when F ( ) Τ∼  falls extensively outside the 95–99% KS bounds, we classify the 
model as performing poorly. Results are shown in Figure 4 with the dashed lines representing the two-sided 95% 
and 99% confidence intervals. The following conclusions can be drawn: The model performs well for the datasets 
KTB94b, B06 and G11; fairly well for the datasets KTB94a, PV94, NB12 and NB14b; and poorly for dataset 
NB14a. Given the range of different datasets, we conclude that the rate model expressed in Eq. (1) describes fairly 
well the relationship between injection flow rate and fluid-induced seismicity rate.

Time series simulation.  We simulate induced seismicity time series with time-dependent flow rates V (t) 
and θ(t) = [afb(t), b(t), τ] by using the thinning method for the injection phase47. For the post-injection phase for 
which τ is assumed constant, as no control over post-injection seismicity is possible, the inversion method is used 
instead to simulate event occurrence times t48. Magnitudes m are also simulated using the inversion method (for 
both injection and post-injection phases with b time-dependent in the first phase).

Risk-to-magnitude mapping.  We translate the safety threshold IR = 10−6 as Pr(I = 9) = 10−5 assuming 
that a statistically average “poor” building collapse is reached for a ground intensity I = 9 (i.e., most buildings 
of class A in the EMS98 code suffer collapse)49 and that once a building collapses, there is a 10% chance of indi-
vidual fatality50. The magnitude msaf is then estimated from an intensity prediction equation (IPE). For induced 
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seismicity, we use the IPE derived from the U.S. Geological Survey “Did You Feel It?” rich database51, corrected 
for induced seismicity52:

( )I d c c m c m c d c d c m d( 6) ( 6) log log 3 (8)hyp tecto tecto hyp hyp tecto hyp1 2 3
2

4 10 5 6 10 σ= + − + − + + + +

with mtecto the earthquake magnitude in the tectonic context, = +d d hhyp
2 2  the hypocentral distance in km 

(point source hypothesis at depth h = 4 km), c1 = 11.72, c2 = 2.36, c3 = 0.1155, c4 = −0.44, c5 = −0.002044, 
c6 = −0.479 (38), σ = 0.4, msaf = mtecto + mcorr and mcorr = 0.82. The correction is based on the observation that 
induced earthquakes would seem less severe in average than tectonic ones. We assume that the Modified Mercalli 
Intensity (MMI)49 and the USGS Community Internet Intensity (CII)51,52 are equivalent for sake of simplicity. For a 
specific project, a fully probabilistic risk approach9 is recommended to derive the parameters Y and msaf of the ATLS 
closed-form expressions (Eqs  2–3). Here, the safety thresholds shown in Figure  2 use Y = 10−5 with 
msaf(d = 0 km) = 5.8 and msaf(d = 50 km) = 7.9 (equivalent in the tectonic case to 5.0 and 7.1, respectively). This sim-
plified approach is used to illustrate our ATLS proof-of-concept for a general case with no site-specific conditions. A 
detailed risk analysis, which would integrate risk over the full magnitude range9, remains outside the scope of the 
present study. The high values of msaf are due to using IR as the safety metric. Some experts may disagree that such 
high magnitudes can be reached in the induced seismicity context31, although it is statistically plausible19. The choice 
of the safety metric has however no impact on the validity of the proposed method. For example, using the minor 

Figure 4.  Goodness-of-fit of the model represented by Eq. (1). Using the Kolmogorov-Smirnov (KS) 
confidence bounds, we find that the model performs well for the datasets KTB94b, B06 and G11; fairly well 
for the datasets KTB94a, PV94, NB12 and NB14b; and poorly for dataset NB14a (see the Methods section for 
details).
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damage threshold Pr(I = 6) = Y2 (i.e., most buildings of class A in the EMS98 code suffer negligible to slight damage) 
would yield msaf2(d = 0 km) = 4.0. From Eq. (3), the same ATLS mth would be computed for both Pr(I = 9) = 10−5 and 
Pr(I = 6) ≈ 10−3.1 assuming e.g. b = 1 in log10(Y2) = log10(Y) + b(msaf − msaf2).

Decision variable definition.  The threshold msaf is fixed such that Pr(m ≥ msaf) = Y. Assuming that earth-
quakes follow a non-homogeneous Poisson process,

( ) ( )m m T m m YPr 1 exp , (9)saf saf≥ = − 

−Λ ≥ 


=

where ∫ λΛ ≥ = ≥ θT m m t m m dt( , ) ( , ; )saf
T

saf0
 is the mean cumulative number of events and T is the observa-

tion time. For sufficiently large T (i.e. T >>  tshut-in + τ),

T m m V t V t( , ) 10 [ ( ) ( )] (10)saf
a bm

shut in shut in
fb saf

τΛ ≥ = +−
− −

with V(t) the cumulative injected volume and Λ(T, m ≥ msaf) ≈ Y for Pr(m ≥ msaf) << 1. Eq. (2) is then obtained 
by injecting Eq. (10) into Eq. (9) (note that one could replace Y by –ln(1-Y) in Eq. (2) with an impact on the 
results only if Y was tending to 1, which is unlikely in safety norms). We then define the ATLS as the operational 
magnitude threshold mth at which the injection is stopped in order to meet the safety target. Note that mth also 
provides the completeness magnitude to attain in the region and thus a basis for seismic network monitoring 
planning42,53. We thus obtain the following system of equations (for Y << 1):

τ






+ ≈

=
− −

−
−

− V t V t Y

V t

10 [ ( ) ( )]

10 ( ) 1 (11)

a
shut in shut in

a bm
shut in

fb bmsaf

fb th

The second equation is always true since the expected number of events with m ≥ mth is one, given the assumption 
that injection is stopped for t = tshut-in as soon as m ≥ mth is first observed. Substituting V(tshut-in) in the first equa-
tion of this system yields Eq. (3). It is worth noting that omitting the post-injection tail effect with τ = 0 yields the 
basic frequency-magnitude distribution threshold mth = log10(Y)/b + msaf.

Data availability.  All the data used in this study are publicly available. For more information, please contact 
arnaud.mignan@sed.ethz.ch.
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