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 37 

Abstract 38 

Volitional modulation and neurofeedback of sensorimotor oscillatory activity is 39 

currently being evaluated as a strategy to facilitate motor restoration following stroke. 40 

Knowledge on the interplay between this regional brain self-regulation, distributed 41 

network entrainment and handedness is, however, limited. 42 

In a randomized cross-over design, twenty-one healthy subjects (twelve right-43 

handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 44 

trials) and right finger extension (48 trials). A brain-machine interface turned event-45 

related desynchronization in the beta frequency-band (16-22 Hz) during motor 46 

imagery into passive hand opening by a robotic orthosis. Thereby, every participant 47 

subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) 48 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
to control contralateral hand opening. The task-related cortical networks were studied 49 

with electroencephalography. 50 

The magnitude of the induced oscillatory modulation range in the sensorimotor cortex 51 

was independent of both handedness (RH, LH) and hemispheric specialization (DH, 52 

NDH). However, the regional beta-band modulation was associated with different 53 

alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric 54 

connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, 55 

these distinct network entrainments were independent of hemispheric specialization. 56 

In healthy subjects, sensorimotor beta-band activity can be robustly modulated by 57 

motor imagery and proprioceptive feedback in both hemispheres independent of 58 

handedness. However, right and left handers show different oscillatory entrainment of 59 

cortical alpha-band networks during neurofeedback. This finding may inform 60 

neurofeedback interventions in future to align them more precisely with the 61 

underlying physiology.  62 

 63 

Keywords: Brain-robot interface, brain-computer interface, robotic rehabilitation, 64 

cortical connectivity, closed-loop stimulation, state-dependent stimulation, stroke 65 

 66 

Abbreviations: DH, dominant hemisphere; EEG, electroencephalographic; ERD, 67 

event-related desynchronization; ERSP, event-related spectral perturbation; iCOH, 68 

imaginary coherence; LH, left-hander; ME, motor execution; MI, motor imagery; NDH, 69 

non-dominant hemisphere; PMC, premotor cortex; PSI, phase slope index; RH, right-70 

hander RH 71 
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Introduction 73 

Activation of the cortical motor system in the absence of overt movement using motor 74 

imagery and brain-machine interface (BMI) assisted feedback is currently being 75 

investigated as a potential therapeutic intervention for stroke patients with persistent 76 

motor deficits. This approach is based on the rationale that sensorimotor oscillations 77 

show typical patterns of event-related desynchronization (ERD) and synchronization 78 

(ERS) during both motor execution and imagery [Pfurtscheller and Lopes da Silva, 79 

1999]. Notably, these fluctuations were shown to be modified by aging and 80 

neurological disorders. During healthy aging, baseline power levels of spontaneous 81 

beta oscillations were elevated with a concurrent increase of the magnitude of 82 

movement-related ERD, thereby suggesting that a specific beta power threshold 83 

needed to be reached for movement execution [Rossiter et al., 2014b; Heinrichs-84 

Graham et al., 2016]. After stroke, the movement-related beta ERD/ERS modulation 85 

range was compromised proportionally to the motor impairment level, thereby 86 

providing a potential physiological target for therapeutic interventions [Rossiter et al., 87 

2014a; Shiner et al., 2015].  88 

Functionally relevant modulations of cortico-muscular coherence in the oscillatory 89 

beta-band were, furthermore, detected in patients with long-term, severe motor 90 

deficits after BMI assisted rehabilitation training [Belardinelli et al., 2017]. Moreover, a 91 

frequency-specific correlation between sensorimotor beta-band dynamics modulated 92 

by BMI neurofeedback and subsequent improvements in an actual motor task was 93 

recently demonstrated [Naros et al., 2016; Naros and Gharabaghi, 2015]. Such a 94 

correlation was, however, not observed between, e.g., alpha activity (another 95 

biomarker often used for BMI interventions) and motor performance. Promoting the 96 

ability to voluntarily control beta-oscillations on the basis of proprioceptive feedback 97 
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might, therefore, improve motor control by facilitating the communication between the 98 

motor cortex and muscles in the same frequency band [Kraus et al., 2016a; Royter 99 

and Gharabaghi, 2016; Romei et al., 2016; Gharabaghi, 2016; Darvishi et al., 2017; 100 

Khademi et al., 2018]. 101 

Beta power neurofeedback tasks might, however, be frustrating even for healthy 102 

subjects [Fels et al., 2015] and proved to be particularly challenging to stroke patients 103 

due to their compromised modulation range [Gomez-Rodriguez et al., 2011; Brauchle 104 

et al., 2015]. Frustration and challenge in these neurofeedback studies may, 105 

however, also be related to intrinsic factors such as hemispheric dominance. The 106 

participants in previous studies were usually right-handers (RH), but trained either 107 

their dominant (left) or non-dominant (right) hemisphere (DH, NDH). Specifically, 108 

healthy participants [Fels et al., 2015] and stroke patients [Gomez-Rodriguez et al., 109 

2011; Brauchle et al., 2015] in previous studies trained robotic control of their left 110 

upper extremity with the non-dominant right hemisphere. The reported limitations 111 

may therefore, at least in part, be related to hemispheric dominance. Along these 112 

lines, right-handed healthy subjects in another study performed motor imagery of 113 

either hand and showed greater beta desynchronization for right hand motor imagery 114 

in the left motor cortex than vice versa [Burianová et al., 2013]. This limited 115 

magnitude of imagery-related neural activation in the right hemisphere may be 116 

explained by either handedness, i.e., dominance of the left hemisphere in right-117 

handers, or by general hemispheric differences. 118 

To test these hypotheses, we investigated the beta modulation range of each 119 

hemisphere with a neurofeedback intervention in both right- and left-handers. 120 

Furthermore, we studied oscillatory entrainment of cortical network connectivity to 121 

elucidate task-related intra- and interhemispheric interactions. 122 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Methods 123 

Subject recruitment 124 

We recruited 25 healthy subjects (mean age = 25.9 ± 3.7 years, 7 female). 125 

Handedness was assessed using the Edinburgh Handedness Inventory [Oldfield, 126 

1971]. Subjects were assigned into two groups of either consistent right-handers 127 

(score >= 70 in the Edinburgh Handedness Inventory) or consistent left-handers 128 

(score <= -70 in the Edinburgh Handedness Inventory). This resulted in the 129 

participation of twelve right-handed (Edinburgh mean score of 84.2 ± 10.8, maximal 130 

score of +100) and nine left-handed (Edinburgh mean score of -86.1 ± 15.3, maximal 131 

score of -100) subjects in this study. Four subjects had to be excluded from the study 132 

since they did not fulfill the inclusion criteria with regard to handedness. The motor 133 

imagery ability of subjects participating in this study was assessed using the KVIQ 134 

[Malouin et al., 2007] and revealed no significant differences between right- and left-135 

handers. Subjects gave their written informed consent before participation and 136 

received financial compensation. The study protocol was approved by the ethics 137 

committee of the Medical Faculty of the University of Tuebingen. 138 

Data acquisition 139 

All subjects were comfortably seated upright in a chair. Scalp 140 

electroencephalographic (EEG) potentials were recorded (Brain Amp, Brain Products 141 

GmbH, Germany) from 32 positions in accordance with the international 10-20 142 

system (Fig. 1 A): Fp1, Fp2, F3, Fz, F4, FT7, FC5, FC3, FC1, FC2, FC4, FC6, FT8, 143 

C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P3, 144 

P4, POz, with active Ag/AgCl electrodes (acti CAP, Brainproducts GmbH, Germany). 145 

FCz was used as a common reference and grounded to AFz. All impedances were 146 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
kept below 20 kΩ at the onset of each session. EEG data was digitized at 1 kHz, 147 

high-pass filtered with a time constant of 10sec, transmitted to the BCI2000 software 148 

for online processing and stored for off-line analysis. The code from the toolbox is 149 

available online [http://www.schalklab.org/research/bci2000; Schalk et al., 2004]. 150 

[Insert Figure 1A approximately here] 151 

Experimental paradigm  152 

Subjects performed one session with imagery of the right hand and one session with 153 

imagery of the left hand, thereby modulating regional brain activity in the dominant 154 

and non-dominant hemisphere, respectively.  155 

During the task, subjects were attached to a robotic hand orthosis (Amadeo® 156 

system, Tyromotion GmbH, Austria). This orthosis was used to open the hand, i.e., 157 

providing closed-loop visual and haptic/proprioceptive feedback contingent to 158 

volitional modulation of regional  sensorimotor beta (β)-oscillations induced by MI 159 

[Vukelić et al., 2014; Gharabaghi et al., 2014]. Contingent feedback to successful 160 

volitional modulation meant that as soon as the predefined ERD level was achieved, 161 

the participants were rewarded by the robotic opening of the hand which they saw 162 

and felt. However, if the targeted brain state could not be sustained, the robotic 163 

movement ceased again but could be resumed within the same trial if the predefined 164 

brain state was attained again [Naros et al. 2016]. Subjects were instructed to 165 

perform kinesthetic MI [Neuper et al., 2005] throughout the MI period. This resulted in 166 

event-related desynchronization of β-oscillations (β-ERD) over contralateral 167 

sensorimotor regions [Pfurtscheller and Lopes da Silva, 1999]. The subjects were 168 

also instructed to observe the robotic hand as it opened. This incorporation of 169 

feedback from multiple sensory modalities has been shown to significantly enhance 170 
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volitional brain control [Suminski et al., 2010; Vukelić and Gharabaghi, 2015a; 171 

Brauchle et al., 2015]. 172 

The sessions were randomized across the subjects. Each session consisted of three 173 

runs of four minutes with each run separated into sixteen trials. Each trial consisted 174 

of a cued task design with different task epochs, where an auditory cue was used to 175 

indicate the beginning of each epoch. Every trial was initiated by a preparatory epoch 176 

(2s, indicated by a Right/Left hand auditory cue), followed by a MI epoch of hand 177 

opening (6s, indicated by a GO auditory cue), and completed by a rest period (6s, 178 

indicated by a Relax auditory cue). The participants performed motor imagery 179 

throughout the 6 s MI period. Fig. 1 B provides an overview of the experimental 180 

paradigm. For the online classification of successful β-modulation, an adaptive linear 181 

classifier was used as described previously [Vukelić et al., 2014; Gharabaghi et al., 182 

2014]. In short, during each trial, the spectral oscillatory power of the preceding 500 183 

ms was estimated every 40 ms using an autoregressive model based on the Burg 184 

Algorithm with a model order of 32 [McFarland and Wolpaw, 2008]. During each 185 

session, we used 9 features for our linear classification consisting of 2-Hz frequency 186 

bins (16-22 Hz) and three channels overlying sensorimotor areas contralateral to the 187 

movement imagery of right- (FC3, C3, and CP3) or left-hand (FC4, C4, and CP4). A 188 

decrease in spectral β-power (β-ERD) during the MI epoch was estimated relative to 189 

the average power of the rest and preparation phases of the last 15s.  190 

When a predefined (see below) level of β-ERD was classified in five consecutive 40 191 

ms epochs (i.e., 200 ms of consistent β-ERD), the robotic orthosis extended the 192 

fingers of the hand. When the predefined level of β-ERD was not achieved, the 193 

orthosis stopped, thus resulting in contingent closed-loop haptic feedback to MI. At 194 

the end of the trial, the orthosis returned to the starting position. To account for 195 
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different abilities of β-band modulation, we identified the strongest individual β-ERD 196 

of each participant by performing one training run for calibration prior to the 197 

experiment. From this calibration run, we defined three threshold values representing 198 

different difficulty levels, i.e., the 50% (low difficulty), 30% (moderate difficulty), or 199 

10% (high difficulty) of the strongest, subject-specific β-ERD, respectively. In the 200 

following experimental runs, feedback was provided only when the subjects reached 201 

either 50% (first run), 30% (second run), or 10% (third run) of their strongest β-ERD. 202 

Thereby, the difficulty level increased subsequently throughout the session, ensuring 203 

that the participants remained in the deliberative phase of skill acquisition with high 204 

demands for volitional brain modulation [Bauer and Gharabaghi, 2015 a, b; 2017; 205 

Bauer et al., 2016 a, b]. To minimize the influence of muscular activity, subjects were 206 

instructed not to perform any movements. This was ensured by monitoring online 207 

bilateral forearm muscle activity of the Flexor Carpi Radialis (FCR) and Extensor 208 

Carpi Radialis (ECR) muscles.  209 

[Insert Figure 1 B approximately here] 210 

Data pre-processing 211 

All runs were grouped together, resulting in an EEG data stream of twelve minutes 212 

per subject. Artifacted EEG channels, as determined by visual inspection, were 213 

removed. Altogether, we excluded eight EEG channels (Fp1, Fp2, FT7, FT8, C5, C6, 214 

TP7, and TP8) from offline-analysis to maintain the same number of channels in each 215 

subject. We used two temporal windows for the analysis of the cortico-cortical 216 

connectivity: rest epoch (6 s) and MI epoch (6 s). Epochs were rejected if they 217 

contained a maximum deviation above 60 µV in any of the EEG channels [Sanei, 218 

2007] or if muscular activity (± 0.015 mV) contralateral to movement was detected. 219 

The EEG signals were detrended, zero-padded and band-pass filtered between 1 to 220 
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48 Hz for calculation of imaginary coherence (iCOH) [Nolte et al., 2004] across 221 

frequencies. A frequency filter of 6 to 16 Hz was chosen for the calculation of 222 

effective connectivity in the alpha (α)-frequency range using the phase slope index. 223 

For calculation of event-related spectral perturbation (ERSP), signals were band-224 

pass filtered between 14 to 24 Hz. The filtering procedures were performed with a 225 

first order zero-phase lag FIR filter as implemented in the signal processing toolbox 226 

of MATLAB®. 227 

Calculation of β-modulation range 228 

The frequency band and the EEG electrodes implemented in self-regulation and 229 

neurofeedback were also applied to calculate the individual β-modulation range for 230 

each subject as a performance measure of the ability for volitional brain modulation 231 

as introduced previously [Vukelić et al., 2014]. We consider the β-modulation range 232 

to be a more physiological biomarker for feedback in cognitive and motor domains 233 

than ERD alone, since both the down- and the up-regulation of β-oscillations are 234 

functionally relevant and linked to GABA-A and GABA-B-mediated processes, 235 

respectively [Muthukumaraswamy  et al., 2013]. This approach accounted for the 236 

inter-individual variability of different spectral β-peaks in the time course of the 237 

different task epochs. The individual β-modulation range was based on calculating 238 

offline the ERSP between 16 and 22 Hz with a frequency resolution of 0.24 Hz as 239 

implemented in the EEGLAB toolbox (Delorme and Makeig, 2004). Tthe code from 240 

the toolbox is available online [https://sccn.ucsd.edu/eeglab/index.php]. The ERSP 241 

was estimated according to  242 

������, �	 = 	 1 	�|����, �	|�
�

���
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where n is the number of electrodes used and F_k (f,t) the short-time Fourier 243 

transform for electrode k. We calculated the ERSP trial-wise and visualized across 244 

time with -8 to -2 sec of rest epoch, -2 to 0 sec of preparatory epoch, and 0 to 6 sec 245 

of MI epoch. This ERSP map was averaged over the contralateral feedback 246 

electrodes (FC3/C3/CP3 or FC4/C4/CP4) for each frequency bin. Since the online 247 

classification consisted of the detection of β-ERD during the MI epoch relative to the 248 

average of the rest and preparation epochs, we estimated the individual β-modulation 249 

range accordingly. By including the preparatory phase of the task, we could provide 250 

feedback to the β-ERS also, thereby enhancing the achievable β-modulation range, 251 

i.e., the maximum difference between ERD and ERS. The modulation range was not 252 

affected by the baseline selection in the same way as the ERD. Furthermore, this 253 

rescaling had the benefit of facilitating the use of a fixed threshold for the feedback 254 

throughout the experiment as the power estimate was normalized. Moreover, due to 255 

this normalization approach, tonic beta-power changes had less influence on the 256 

estimates. By using the very same methodology we could show in our previous work 257 

that a brain-machine interface might offer a way to bridge the gap between two 258 

distinct abilities and cortical alpha-band networks underlying motor control, i.e., a 259 

motor imagery network and a motor execution network [Bauer et al., 2015]. 260 

More specifically, we estimated the individual frequency bin of the ERSP with the 261 

largest difference between the minimum in the MI epoch (describing the maximum 262 

desynchronization potential) and the maximum in the rest and preparatory epoch 263 

(describing the maximum synchronization potential). This magnitude thus reflected 264 

the ability of maximally modulating sensorimotor brain activity during the task. Finally, 265 

we averaged the ERSP across trials on an individual basis and across the subject's 266 

individual maximum β-modulation range on a group level, resulting in a β-modulation 267 
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range for MI related modulations of the dominant and the non-dominant hemisphere, 268 

respectively. 269 

Estimation of cortico-cortical connectivity  270 

The estimation of the iCOH and PSI functions were based on an estimation of the 271 

complex coherency function, with neither of the measures being prone to problems of 272 

volume conduction [Nolte et al., 2004; Nolte et al., 2008]. More specifically, iCOH 273 

makes it possible to inspect the whole spectrum and represents a robust functional 274 

connectivity measure ignoring relations at zero phase lag and therefore indicating 275 

only the relative coupling of phases, i.e., the time-lag between two brain processes 276 

[Nolte et al., 2004]. iCOH was applied to derive a suitable frequency band for the 277 

subsequent analysis with the final outcome measure of our study, i.e., the phase 278 

slope index (PSI) [Nolte et al., 2008]. Statistics were therefore calculated for the PSI 279 

only. PSI represents a more sophisticated connectivity approach that provides further 280 

information about the direction of causal relations among brain processes, i.e., 281 

effective connectivity, by giving an average of the phase slope spectrum between two 282 

time series [Nolte et al., 2008].  283 

For the estimation of the complex coherency function, each valid epoch was 284 

subdivided into segments of 1 sec length with 50% overlap, corresponding to a 285 

frequency resolution of	δf = 1 Hz [Nolte et al., 2004; Nolte et al., 2008]. Overlapping 286 

the segments increases the dependency between segments. However, this is not an 287 

issue for PSI. Overlapping segments are asymptotically unbiased and are able to 288 

reduce noise (at the cost of frequency resolution). A smooth spectrum is essential 289 

since the linear phase-slope is then less affected by noisy estimates. Furthermore, 290 

overlapping segments reduce the loss of data when one segment is rejected due to 291 

artifacts. 292 
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Each segment was multiplied by a Hanning window. A Fourier transformation of the 293 

data resulted in an estimation of the cross-spectra between two time-series [Nolte et 294 

al., 2004; Nolte et al., 2008]. The complex coherency function was defined as the 295 

normalized cross-spectrum for channels i and j, respectively:  296 

�����	 = 	 S���f	
�S���f	S���f	

 

where	����·	 was the cross-spectrum between channels i and j, and ����·	, 	����·	 297 

represented the auto-spectra for channels i and j, respectively. Robust estimates of 298 

the probability of stable phase lags across frequencies (likelihood of stable phase 299 

lags, see Figure 3 and 4) were obtained by averaging the absolute value of the iCOH 300 

function across frequencies of the rest and MI epoch, respectively. This established 301 

the probability that certain frequencies show stable phase lags (presence or absence 302 

of neuronal communication) among electrode sites, therefore indicating persistent 303 

and consequently activated connections during both rest and MI epochs, 304 

respectively. Here, we used a corrected version of the iCOH function [Ewald et al., 305 

2012]. In addition, we separated this phase lag stability from the noise floor as 306 

described by a 1/f noise model [Blankertz et al., 2010]. PSI is defined as the 307 

weighted sum of the slope of the phase spectrum of the normalized cross-spectra 308 

[Nolte et al., 2008]. We chose the frequency range between 8 and 14 Hz to estimate 309 

the effective connectivity in the α-range on the basis of a pronounced peak above 310 

noise floor in the probability of observing stable phase lags in this range. PSI was 311 

calculated as originally proposed by [Nolte et al., 2008]:  312 

�������	 = ℑ!�C��∗�f	C���f + 	δf	%	∈'
(, 
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where	��� was the complex coherency between channels i and j, and )�	was the 313 

frequency resolution. ℑ�∙	 denoted the imaginary part of the coherency while F was 314 

the frequency band over which the slope was summed [Nolte et al., 2008]. This 315 

resulted in PSI estimations for all unrejected epochs of the rest and MI phase, 316 

respectively. For the estimation of the complex ordinary coherency, a Welch method 317 

was used as described above. All data analysis was performed offline with custom 318 

written or adapted scripts in MATLAB®. The code for calculating PSI is available 319 

online [http://doc.ml.tu-berlin.de/causality/, Nolte et al., 2008]. From this code we 320 

adopted the calculation of the ciCOH as described in detail above.  321 

Statistical evaluation of cortico-cortical effective connectivity 322 

The sign of PSI indicates whether the channel is a transmitter (positive sign) or a 323 

receiver (negative sign), and the sign, but not the magnitude of PSI, is independent 324 

from the power fluctuation of the signals. Averaging the sign of PSI across unrejected 325 

epochs results in a robust estimation of the likelihood of a connection being either a 326 

transmitter or a receiver, which is indicative of a persistent and thus stable direction 327 

of transmission throughout the rest and MI epochs, respectively. Bearing this in mind, 328 

the probability that a connection between two channels i and j is transmitting or 329 

receiving, i.e., the likelihood of phase slope index (LPSI) was calculated as follows: 330 

+PSI����	 = ∑ sgn 2ℑ3∑ C��∗�f, e	C���f, e + 	δf	%	∈' 5678 E  

 331 

where e and E represent the number of epochs over which the sign (sgn) was 332 

averaged. This resulted in LPSI scores for the rest and MI epochs, respectively. To 333 

account for the low number of samples and the subsequent possibility of non-334 

normality, we used an empirical distribution technique, i.e., a surrogate data 335 
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approach [Kamiński et al., 2001, Babiloni et al., 2005; Haufe et al., 2013]. For the 336 

surrogates, we chose the original data, in which the temporal order had been 337 

randomly permuted separately for each channel time series and for each unrejected 338 

epoch of the subjects. This procedure destroys all the temporal structure within a 339 

time series as well as the interdependency between the time series and affords the 340 

PSI estimates the opportunity to establish a null distribution. PSI estimates were then 341 

calculated from this randomly and independently shuffled time series. The shuffling 342 

procedure was performed 1000 times for each subject and epoch (rest and MI 343 

separately) and, finally, averages of LPSI scores across the surrogates were taken 344 

into consideration. Hence, we were able to perform two sided t-tests on the 345 

differences of connectivity scores obtained on original and permuted data [Haufe et 346 

al., 2013] assuming an alpha error of p < 0.05 as significant, corrected for multiple 347 

comparisons by limiting the false discovery rate (FDR) to 5% [Benjamini and 348 

Hochberg, 1995]. 349 

 350 

Results 351 

Beta modulation range in both hemispheres is independent of handedness 352 

Fig. 2 A and B show the ERSP during MI related sensorimotor β-modulations of the 353 

dominant hemisphere (DH) and the non-dominant hemisphere (NDH) in RH (upper 354 

plots) and LH (lower plots), respectively. The plots illustrate that both groups 355 

displayed a strong decrease of β-power over contralateral sensorimotor cortices 356 

during the MI epoch in comparison to the rest epoch. Both groups showed their 357 

maximal synchronization during the preparatory epoch. Fig. 2C shows the ability for 358 

MI- related β-modulations of regional sensorimotor areas for both DH and NDH in RH 359 

and LH, respectively. We used a two by two ANOVA to ascertain whether the factors 360 
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Handedness (RH, LH) or Hemispheric Dominance (DH, NDH) had an influence on 361 

the distribution of β-modulation range. The RH/LH by DH/NDH ANOVA revealed no 362 

significant effects on the differences of the distribution of β-modulation range (see 363 

Table 1). 364 

[Insert Figure 2 approximately here] 365 

Cortical networks during motor imagery of dominant hand 366 

We observed an increase in the likelihood of stable phase lags over the noise floor in 367 

the α-range (between 8 and 14 Hz) in both RH and LH during the MI and rest epoch 368 

(left panel in Fig. 3 A and 3 B). This likelihood decreased with increasing frequency 369 

while showing no relevant elevation over the noise floor when monitoring higher 370 

frequencies such as β- and γ- activity. The directionality across cortico-cortical sites 371 

of these stable phase lags in the α-range was estimated using the PSI function and is 372 

illustrated on the right panel in Fig. 3 A and 3 B, separately for the MI (left figures) 373 

and rest epoch (right figures) as a global average across RH and LH, respectively.  374 

During the MI epoch, RH showed prominent information flow between CP5/CP3/CP1 375 

and P3/POz electrodes, referred to as SM (sensorimotor) and POc (parieto-occipital), 376 

respectively. It should, however, be borne in mind that the acronyms (e.g., SM) that 377 

are applied for the electrode groups in this study are used in a descriptive way only. 378 

Furthermore, RH exhibited conspicuous interhemispheric information flow between 379 

C1/C3/CP1/CP5 and FC6 electrodes, referred to as SM and vPM (ventral premotor), 380 

respectively, as well as between C2/C4 and FC6 electrodes. During the rest epoch, 381 

RH indicated information flow between CP3/CP5/CPz and P3/POz electrodes. 382 

By contrast, LH exhibited strong bilateral intra-hemispheric coupling during the MI 383 

epoch between C2/C4/CP1/CP2/CP4/CP6/CPz and P3/P4/POz electrodes. This 384 
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effect was more pronounced in the contralateral hemisphere. The bilateral 385 

intrahemispheric coupling was similarly activated during the rest epoch in LH. 386 

Cortical networks during motor imagery of non-dominant hand 387 

Sensorimotor β-modulations of the NDH showed a pronounced increase in the 388 

likelihood of stable phase lags over the noise floor in the α-range (between 8 and 14 389 

Hz) for both RH and LH during the MI and the rest epoch, (left panel in Fig. 4A and 390 

B). Furthermore, when monitoring higher frequencies from β- to γ-range, this 391 

likelihood showed no relevant elevation over the noise floor. The right panel depicts 392 

the topographical causal interactions across cortico-cortical sites in the α-range, 393 

separately for the MI epoch (left figures) and the rest epoch (right figures) as a global 394 

average across RH and LH, respectively.  395 

During the MI epoch, a pronounced information flow was observed in RH between 396 

CP4/CP5/CP6 and P3/P4/POz electrodes. Furthermore, F3 and FC5 electrodes, 397 

referred to as FR (ipsilateral frontal) and vPM, respectively, received information from 398 

C2/C4/CPz/CP2/CP4/CP6 electrodes. During the rest epoch, RH showed 399 

contralateral information flow between CP4/CP6 and P4/POz electrodes. 400 

On the other side, LH engaged in a strong bilateral intra-hemispheric information flow 401 

between CP4/CP5/CP6 and P3/P4/POz electrodes as well as between midline Fz 402 

and CP4/CP5/CP6 electrodes during the MI epoch. During the rest epoch, LH 403 

exhibited contralateral information flow between CP4/CP5/CP6 and P3/P4/POz 404 

electrodes.  405 

[Insert Figure 3 approximately here] 406 

[Insert Figure 4 approximately here] 407 
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Different neuronal strategies 408 

We analyzed the results with a two by two ANOVA to test the factors (RH/LH and 409 

DH/NDH) with regard to their impact on the distribution of the likelihood (LPSI scores) 410 

of information flow during the MI epoch. Hence, the inter-hemispheric and the intra-411 

hemispheric information flow were grouped according to regions of interest. In 412 

particular, we defined inter-hemispheric information flow (communication between the 413 

two hemispheres) as crossing midline central electrodes, while intra-hemispheric 414 

information flow (communication within each hemisphere) was defined as not 415 

crossing midline central electrodes, as specified in detail below. 416 

We therefore averaged the LPSI scores of transmission from C2/C4/CP2/CP4/CP6 417 

(right SM) to F3/FC5 (left FR/vPM) electrodes during the MI epoch for each subject. 418 

The probability of interhemispheric SM-FR information (Right SM-Left FR) flow for 419 

both RH and LH and for both DH and NDH are summarized in Fig. 5A. The RH/LH by 420 

DH/NDH ANOVA is shown in Table 2. RH showed a higher probability of 421 

interhemispheric SM-FR information flow than LH (significant main effect for 422 

Handedness F(1,38) =5.13, p = 0.02). Furthermore, RH showed a higher probability of 423 

interhemispheric SM-FR information flow for NDH than for DH (significant main effect 424 

Hemispheric Dominance F(1,38) =5.8, p = 0.02, post hoc analysis, two sided t-test, p-425 

value = 0.01). 426 

We next averaged each subject’s LPSI scores of transmission from 427 

C1/C3/CP1/CP3/CP5 (left SM) to FC6 (right vPM) electrodes during the MI epoch. 428 

The likelihood of interhemispheric SM-vPM information flow (Left SM-Right vPM) for 429 

RH and LH and for DH and NDH is shown in Fig. 5B. The RH/LH by DH/NDH 430 

ANOVA is shown in Table 3. RH showed a higher likelihood of interhemispheric SM-431 
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vPM information flow than LH (significant main effect for Handedness F(1,38) =6.67, p 432 

= 0.01).  433 

We also averaged the LPSI scores of transmission from C1/C3/CP1/CP3/CP5 and 434 

C2/C4/CP2/CP4/CP6 (SM) to P3/POz and P4/POz (POc) electrodes, respectively, 435 

during the MI epoch for each hemisphere and subject. This value was taken to be an 436 

indicator of intra-hemispheric SM-POc communication. The results of the likelihood of 437 

left and right intra-hemispheric SM-POc communication (Left SM-POc and Right SM-438 

POc) for both RH and LH and for both DH and NDH are illustrated in Figs. 5C and D, 439 

respectively. The RH/LH by DH/NDH ANOVA for the likelihood of left intra-440 

hemispheric SM-POc information flow as a dependent variable is shown in Table 4. 441 

LH showed a higher left hemispheric SM-POc likelihood than RH (significant main 442 

effect for Handedness F(1,38) =8.86, p = 0.005). The RH/LH by DH/NDH ANOVA for 443 

the likelihood of right intra-hemispheric SM-POc information flow as a dependent 444 

variable is shown in Table 5. Again, LH showed the higher likelihood of right intra-445 

hemispheric SM-POc communication (significant main effect for Handedness F(1,38) 446 

=11.1, p = 0.002).  447 

[Insert Figure 5 approximately here] 448 

Ability for volitional β-modulation and the neuronal network correlates 449 

The values of the LPSI scores of inter-hemispheric SM-FR and intra-hemispheric 450 

SM-POc are plotted against the β-modulation range for RH and LH, respectively in 451 

Fig. 6. The two plots in Fig. 6 A illustrate the relationships of MI related sensorimotor 452 

β-modulations of DH for RH (left side) and LH (right side), respectively:  453 

In RH, higher likelihoods of inter-hemispheric SM-vPM information flow (Left SM-454 

Right vPM) correlated positively with their self-regulation ability (MI related 455 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
modulations of β-band oscillations of the dominant hemisphere) for the DH 456 

(Pearson’s correlation coefficient rps= 0.65, p-value = 0.02). This accounted for as 457 

much as 43% of the variance in this ability in RH (linear regression analysis, R2 = 458 

0.43).   459 

In LH, higher likelihoods of right intra-hemispheric SM-POc information flow (Right 460 

SM-POc) correlated positively with their self-regulation ability (MI related modulations 461 

of β-band oscillations of the dominant hemisphere) for the DH (Pearson’s correlation 462 

coefficient rps= 0.70, p-value = 0.03). This accounted for 42% of the variance in this 463 

ability in LH (linear regression analysis, R2 = 0.42).  464 

The two plots in Fig. 6B illustrate the relationships between MI-related sensorimotor 465 

β-modulations of NDH for RH (left side) and LH (right side), respectively: 466 

In RH, higher likelihoods of inter-hemispheric SM-FR information flow (Right SM-Left 467 

FR) correlated positively with their self-regulation ability (MI related modulations of β-468 

band oscillations of the non-dominant hemisphere) for the NDH (Pearson’s 469 

correlation coefficient rps= 0.61, p-value = 0.03). This accounted for as much as 36% 470 

of the variance in this ability in RH (linear regression analysis, R2 = 0. 36).  471 

In LH, higher likelihoods of midline Fz to CP1/CPz information flow correlated 472 

negatively with their self-regulation ability (MI related modulations of β-band 473 

oscillations of the non-dominant hemisphere) for the NDH (Pearson’s correlation 474 

coefficient rps= -0.75, p-value = 0.02). This accounted for 50% of the variance in this 475 

ability in LH (linear regression analysis, R2 = 0.50). 476 

[Insert Figure 6 approximately here] 477 

 478 

 479 
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Discussion 480 

This study revealed that both RH and LH could volitionally modulate regional 481 

sensorimotor β-oscillations without any significant difference in the distribution of the 482 

β-modulation range. This performance was independent of DH and NDH, 483 

respectively (Fig. 2). However, RH and LH showed different patterns of network 484 

activity between distributed cortical regions during this task. These coherent 485 

communications were specific for the oscillatory α-range (Fig. 3 and 4), in line with 486 

the known role of this frequency band for sensorimotor behavior [Jensen et al., 2010; 487 

Capotosto et al., 2009; Haegens et al., 2011; Klimesch et al., 2012; Weisz et al., 488 

2014], integration and information coupling of distant cortical regions [Palva and 489 

Palva, 2011; Pineda, 2005; Bollimunta et al., 2008; Mo et al., 2011; Palva et al., 490 

2011], and task-specific neurocognitive strategies [Smith et al., 1999, 2001]. 491 

Moreover, the results supported our previous findings of cross-frequency interactions 492 

within the sensorimotor system [Bauer et al., 2014; Vukelić et al., 2014; Vukelić and 493 

Gharabaghi, 2015 a, b]. The various cortical regions which were active during self-494 

regulation of regional β-activity in RH and LH corresponded to the different areas 495 

involved during both imagined and executed movements [Miller et al., 2010; Wander 496 

et al., 2013; Averbeck et al., 2009; Gao et al., 2011; Karabanov et al., 2012; Koch et 497 

al., 2007]: 498 

In the rest epoch of the task, which included the passive orthotic hand movement to 499 

the starting position and the stable rest state, a dominant information flow occurred 500 

between contralateral sensorimotor and parieto-occiptal regions. This activation of 501 

precentral and postcentral regions tallied well with the cortical activation pattern for 502 

passive wrist movements found in earlier studies [Szameitat et al., 2012]. The 503 

interconnection of these areas with parietal regions is consistent with the view that 504 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
the parietal cortex acts as an important node for visuomotor and sensorimotor 505 

integration, providing information about the current state of the hand by integrating 506 

sensory feedback [Gandolla et al., 2014].  507 

Regional event-related modulation of β-power 508 

As anticipated, we observed β-power synchronization in the preparatory and 509 

relaxation epoch, and β-power desynchronization in the MI epoch. The 510 

desynchronization of β-power has already been reported during both ME and MI 511 

[McFarland et al., 2000], reflecting the conjunction of several factors related to 512 

sensorimotor and cognitive aspects of motor control, and indicating the activation of 513 

the sensorimotor system in association with an increase in cortical and peripheral 514 

communication [Kilavik et al., 2013; Baker et al., 2003; Jackson et al., 2002]. The 515 

synchronization of β-power during the relaxation epoch following MI is related to the 516 

same physiological mechanism as the β-rebound after movement execution 517 

[Pfurtscheller and Solis-Escalante, 2009; Solis-Escalante et al., 2012]. This is 518 

indicative of an active inhibition of the regional sensorimotor areas following 519 

termination of a motor program, i.e., MI of hand movements. By contrast, the β-power 520 

increase during the preparatory epoch might reflect regional communication for an 521 

efficient preparation or an anticipatory up-regulation of attention in the sensorimotor 522 

system before the MI epoch [Kilavik et al., 2013]. Therefore, our results indicate that 523 

RH and LH apply similar strategies for the event-timing of regional modulations of β-524 

oscillations for their respective DH and NDH, resulting in the same self-regulation 525 

performance regardless of handedness and hemispheric dominance. In future, a 526 

combination of this exploration of task-related oscillatory properties with 527 

complementary mapping approaches such as refined transcranial magnetic 528 

stimulation techniques [Kraus and Gharabaghi, 2015; Mathew et al., 2016] may 529 
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elucidate how hemispheric similarities in sensorimotor β-self-regulation relate to 530 

hemispheric differences of the cortical motor map [Kraus and Gharabaghi, 2016].  531 

Large-scale neuronal signatures underlying self-regulation of regional brain activity in 532 

right- and left-handers 533 

In the present study on volitional β-band modulation, the maximum elevation of task-534 

related cortical networks above the noise floor, i.e., “likelihood of stable phase lags”, 535 

was present in the α-band (Figures 3 and 4). This finding is in line with previous 536 

imaging studies based on multi-channel electroencephalography. They revealed 537 

several cross-frequency interactions as summarized previously [Gharabaghi, 2016]: 538 

The sensorimotor β-band self-regulation and BMI feedback entrained an extended 539 

cortical α-network that included frontal and parietal brain areas [Vukelić et al., 2014; 540 

Vukelić and Gharabaghi, 2015 a] with distributed but spatially selective and 541 

frequency-specific effects on cortico-cortical connectivity that lasted beyond the 542 

intervention period [Vukelić and Gharabaghi, 2015 b]. This cross-frequency 543 

interaction in the motor network was critically linked to the proprioceptive feedback 544 

provided by the BMI [Vukelić and Gharabaghi, 2015 a]. Notably, those subjects who 545 

were particularly capable of performing sensorimotor brain self-regulation in the β-546 

band could be predicted by a distributed α-band resting state network measured 547 

before the intervention [Bauer et al., 2015].  548 

Since subjects needed to volitionally control their current neuronal state, this can be 549 

considered a cognitively demanding task that engaged distributed network beyond 550 

the motor area [Smith et al., 1999, 2001; Halsband and Lange, 2006]. At the same 551 

time, this exercise also bears a certain similarity to a motor task, especially when 552 

providing subjects with haptic/proprioceptive feedback in a brain-robot interface 553 

environment. In this context, the feedback serves several purposes: explicit learning 554 
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involving sensory processing, online monitoring, acquisition of motor skills and 555 

consolidation of motor memory [Dobkin, 2004; Krakauer and Mazzoni, 2011; Lalazar 556 

and Vaadia, 2008]. We intentionally increased the task difficulty in our study to 557 

maximize volitional modulation of β-band oscillatory activity over sensorimotor 558 

regions. Even though RH and LH showed the same ability for regional brain control of 559 

β-oscillations, distinct large-scale signatures of connectivity were found in the α-560 

range during the MI epoch of the task differentiating RH and LH. RH showed a 561 

stronger inter-hemispheric connectivity than LH while LH revealed a stronger intra-562 

hemispheric interaction than RH (Figs. 3-5). This might indicate that RH and LH 563 

employed different neuronal strategies for regional brain control independent of the 564 

self-regulated hemisphere. This is in line with previously reported differences 565 

between RH and LH for mental simulations and mental rotation tasks of dominant 566 

and non-dominant hand movements [De Nooijer et al., 2013; Gonzalez et al., 2008; 567 

Ionta and Blanke, 2009; Ionta et al., 2007]. This is also supported by the correlational 568 

analyses (Fig. 6), which were performed in an exploratory way. The respective 569 

findings should therefore be interpreted with caution and serve only as an indicator 570 

for further studies by pointing to possible links between cortical networks and the 571 

sensorimotor modulation range.  572 

In our study, RH integrated the information flow between sensorimotor and parieto-573 

occipital regions in the contralateral hemisphere as well as between sensorimotor, 574 

frontal and premotor regions of both hemispheres. The information flow between 575 

these regions was not influenced by hemispheric dominance, i.e., the connectivity 576 

pattern remained unchanged regardless of whether the dominant or the non-577 

dominant hemisphere was modulated. The interhemispheric communication during 578 

the control of the dominant hemisphere might indicate that neurocognitive strategies 579 

that rely on recall of motor memory related networks are at work [Halder et al., 2011; 580 
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Suzuki, 2007]. The two premotor cortices (PMC) are responsible for different aspects 581 

of motor learning [Hardwick et al., 2013]. The right PMC is mainly involved in 582 

advanced stages of learning and during recall of motor sequences of familiar motor 583 

sequences, while the left PMC is primarily involved in the acquisition of new motor 584 

sequences, particularly of unfamiliar movements [Hardwick et al., 2013; Schubotz 585 

and von Cramon, 2003]. Furthermore, a dorso-ventral gradient for leg and foot, arm 586 

with hand and, finally, face representations in PMC exists that is akin to the 587 

topological representation in primary sensorimotor cortices [Graziano et al., 2002 a, 588 

b]. The human ventral PMC (vPMC) is proportionally much larger than the dorsal 589 

PMC (dPMC) [Schubotz and von Cramon, 2003], and the activation of vPMC is 590 

consistently involved in paradigms requiring MI and movement observation 591 

[Szameitat et al., 2012; Buccino et al., 2001; Jeannerod, 2001].  592 

Hence, when RH volitionally modulated the dominant hemisphere, the information 593 

flow between left sensorimotor and right vPMC plausibly represented the integration 594 

of the imagined movement of the own hand with the current state of sensorimotor 595 

features, i.e., interpreting and comparing inflow of haptic/proprioceptive information 596 

with the memory of past familiar movements [Christensen et al., 2007; Vahdat et al., 597 

2011]. On the other hand, when RH volitionally modulated the non-dominant 598 

hemisphere, the information flow between right sensorimotor to left vPMC and frontal 599 

cortices might indicate short-term storage of sensorimotor information [Eliassen et al, 600 

2000; Shadmehr and Holcomb, 1997].  601 

By contrast, LH employed synchronized sensorimotor and parieto-occipital 602 

communication of each hemisphere, with the information flow showing unchanged 603 

activity patterns when volitionally modulating either the dominant or the non-dominant 604 

hemisphere. This observed topography of information flow might serve different 605 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
purposes. On the one hand, the interconnection of sensory regions with parietal 606 

regions is important for sensorimotor integration, providing as it does information 607 

about the current state of the hand, while the sensory feedback comprises feed-608 

forward information that is important for motor learning [Gandolla et al., 2014; 609 

Hardwick et al., 2013]. On the other hand, the motor-parietal connection might be 610 

related to greater visuomotor integration, where higher states of coupling are possibly 611 

linked to a greater capacity for visuomotor integration [Karabanov et al., 2012; Wu et 612 

al., 2014; Beuter and Modolo, 2009; Feurra et al., 2011; Ma et al., 2011]. Moreover, 613 

information flow from motor regions might have a top-down-related predictive 614 

influence of sensory consequences upon somatosensory and parietal regions 615 

[Gandolla et al., 2014] by matching haptic / proprioceptive feedback and volitional 616 

control. Such a modular representation of hand and finger gestures are known to 617 

exist in the circuitry of the motor cortex [Krakauer and Mazzoni, 2011].  618 

There are several possible explanations for the bihemispheric activation between 619 

sensorimotor and parieto-occipital regions shown by LH. One possibility is that LH 620 

and RH have different anatomical connectivity patterns [Galaburda et al., 1978; 621 

Witelson, 1985]. Moreover, LH show less functional asymmetries of interhemispheric 622 

inhibition or facilitation between homologous sensorimotor regions [De Gennaro et 623 

al., 2004; Brouwer et al., 2001; Bernard et al., 2011; Civardi et al., 2000; Netz et al., 624 

1995; Reid and Serrien, 2014]. Moreover, LH generally use their non-dominant (right) 625 

hand to adapt to a preferentially right-handed world. The original hand dominance is 626 

modified by an environmental factor, such that LH might not be able to fully express 627 

their hand dominance and therefore do not lateralize as extensively as RH [Willems 628 

et al., 2014].However, this study revealed that, regardless of handedness, the large-629 

scale oscillatory signatures for self-regulation of brain activity remained unaffected by 630 

hemispheric specialization. Even though we did not detect gender-specific effects, 631 
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future studies will need to evaluate this question in greater detail also [Cantillo-632 

Negrete et al., 2014]. 633 

Albeit acquired in healthy subjects, the findings presented here may inform 634 

interventions in stroke survivors with different treatment outcomes due to their 635 

respective hand dominance [Harris and Eng, 2006; Langan and van Donkelaar, 636 

2008; McCombe et al., 2005; Rinehart et al., 2009]. The findings of this study suggest 637 

that inherent characteristics such as hemispheric specialization and handedness do 638 

not limit the application of this neurofeedback approach for patient populations. When 639 

the β-modulation range is compromised after stroke right- and left-handers may, 640 

however, utilize different cortical α-networks for compensation and/or relearning. 641 

Addressing these neurophysiological substrates of volitional modulation of oscillatory 642 

activity more specifically may enable us to develop these neurofeedback approaches 643 

into more effective tools for neurorehabilitation and functional restoration. 644 

When designing interventions based on brain self-regulation, individual α-band 645 

networks could thus serve as more specific neuronal substrates for volitional 646 

modulation than the regional sensorimotor rhythms that are presently in use. 647 

Moreover, these neurophysiological profiles might provide the target for even more 648 

individualized rehabilitation approaches, addressing the described network dynamics 649 

with additional state-dependent interventions such as neuromodulation [Naros and 650 

Gharabaghi, 2017; Kraus et al., 2016b, 2018; Gharabaghi et al., 2014]. 651 

Conclusion 652 

In healthy subjects, sensorimotor β-band activity can be robustly modulated by motor 653 

imagery and proprioceptive feedback in both hemispheres independent of 654 

handedness. However, right and left handers show different oscillatory entrainment of 655 
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cortical alpha-band networks during neurofeedback. This finding may inform 656 

neurofeedback interventions in future to align them more precisely with the 657 

underlying physiology. 658 
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Figure Captions 991 

Fig. 1 A) Map of EEG channels' location with FR, vPM, SM, and POC referring to 992 

electrode locations projecting to frontal, ventral premotor, sensorimotor and parieto-993 

occipital areas, respectively. B) Experimental paradigm: Time course of the 994 

experimental paradigm, with two randomized sessions of brain self-regulation, one 995 

with the volitional control of the dominant hemisphere and the other with the volitional 996 

control of the non-dominant hemisphere.  997 

Fig. 2 Event-related spectral perturbation (ERSP) and the respective β-998 

modulation range. A) and B) show the results of motor imagery-related β-999 

modulations of the dominant hemisphere (DH) and of the non-dominant hemisphere 1000 

(NDH), respectively. The upper two plots represent the results for the right-handers 1001 

(RH) and the lower two plots depict the results for the left-handers (LH). The plots 1002 

show the time course of the event-related spectral perturbation (ERSP) of the β-1003 

oscillations. The abscissa represents the time axis, with the rest epoch from −8 to−2 1004 

s (dashed black line), the preparation epoch from −2 to 0 s (dashed gray line), and 1005 

the motor imagery epoch from 0 to 6 s. The black line (contralateral sensorimotor 1006 

electrodes) shows the group level results as an average, both across trials on an 1007 

individual level and across the subject’s individual maximum β-modulation range 1008 

(visualized on a standard deviation (std) scale, and normalized with respect to the 1009 

rest baseline). Shades represent ± SEM. C) The figure shows the mean of the β-1010 

modulation range for the two groups (RH and LH) and for both motor imagery-related 1011 

β-modulations of DH and NDH. Error bars represent ± SEM. 1012 

Fig. 3 and 4 Cortical networks during motor imagery of the dominant (Figure 3) 1013 

and non-dominant hemisphere (Figure 4): A) and B) depict the results of right-1014 

handers and left-handers, respectively. The figures on the left represent the likelihood 1015 
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of stable phase lags across frequencies (abscissa). The solid black lines represent 1016 

the mean global (average across all connections) iCOH as an average over all 1017 

subjects during the motor imagery (left side) and rest epoch (right side), respectively. 1018 

The dashed black lines represent the estimated noise floor as explained by a 1/f 1019 

noise model [45]. Shades represent ± SEM. The maximum elevation over the noise 1020 

floor of phase lag stability is located in the α-band (between 8 and 14 Hz).The two 1021 

figures on the right  illustrate the stable topographical causal interactions (arrows 1022 

indicate significant cortical information flow, p < 0.05 FDR corrected for multiple 1023 

comparison) of the α-band networks as a global average across all subjects during 1024 

the motor imagery (left side) and rest epoch (right side), respectively.  1025 

Fig. 5 Different neuronal strategies; A): The mean likelihood (LPSI scores) of 1026 

interhemispheric sensorimotor-frontal (Right SM-Left FR) communication during the 1027 

motor imagery epoch is shown. * indicates significant effects (see Table 2). Error 1028 

bars represent ± SEM. B): The figure shows the mean likelihood (LPSI scores) of 1029 

interhemispheric sensorimotor-ventral premotor (Left SM-Right v PM) communication 1030 

during which the motor imagery epoch. * indicates significant effects (see Table 3). 1031 

Error bars represent ± SEM. C): The figure represents the mean likelihood (LPSI 1032 

scores) of left intrahemispheric sensorimotor-parieto-occipital (Left SM-POc) 1033 

communication during which the motor imagery epoch. * indicates significant effects 1034 

(see Table 4). Error bars represent ± SEM. D): The figure depicts the mean likelihood 1035 

(LPSI scores) of right intrahemispheric sensorimotor-parieto-occipital (Right SM-POc) 1036 

communication during which the motor imagery epoch. * indicates significant effects 1037 

(see Table 5). Error bars indicate ± SEM. DHI and NDHI indicate dominant hand 1038 

imagery and non-dominant hand imagery, respectively. 1039 
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Fig. 6 Ability of volitional β-modulation and its relation to effective connectivity 1040 

in the α-range: A) Motor imagery-related β-modulations of the dominant 1041 

hemisphere and their neuronal network correlates. The left scatter plot 1042 

represents the neuronal network correlates for the right-handed subjects. The β-1043 

modulation range is represented on the ordinate where the abscissa indicates the 1044 

likelihood (LPSI scores) of interhemispheric sensorimotor-ventral premotor (Left SM-1045 

Right vPM) communication during the motor imagery epoch. The gray line is the 1046 

result of a robust regression analysis of the β-modulation range on the likelihood of 1047 

interhemispheric SM-vPM communication using iteratively reweighted least squares 1048 

with a bisquare weighting function [Pearson’s correlation coefficient rps= 0.65, p-value 1049 

= 0.02, R2 = 0.43, partial correlation (corrected for hand dominance) pr = 0.66, p = 1050 

0.02]. The gray dot overlying the black indicates two different subjects. The right 1051 

scatter plot shows the neuronal network correlates for the left-handed subjects. 1052 

Again, the ordinate illustrates the β-modulation range and the likelihood (LPSI 1053 

scores) of right hemispheric sensorimotor-parietooccipital (Right SM-POc) 1054 

communication during the motor imagery epoch is depicted on the abscissa. The 1055 

gray line is the result of a robust regression analysis of the β-modulation range onto 1056 

the likelihood of right hemispheric SM-POc communication using iteratively 1057 

reweighted least squares with a bisquare weighting function [rps= 0.70, p-value = 1058 

0.03, R2 = 0.42, partial correlation (corrected for hand dominance) pr = 0.61, p = 1059 

0.04]. B) Motor imagery-related β-modulations of the non-dominant hemisphere 1060 

and their neuronal network correlates. The result of the neuronal network 1061 

correlates for the right-handers is illustrated on the left scatter plot. Ordinate shows 1062 

the β-modulation range and abscissa the likelihood (LPSI scores) of interhemispheric 1063 

sensorimotor-frontal (Right SM-Left FR) communication during the motor imagery 1064 

epoch. The gray line is the result of a robust regression analysis of the β-modulation 1065 
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range onto the likelihood of interhemispheric SM-FR communication using iteratively 1066 

reweighted least squares with a bisquare weighting function [rps=0.61, p-value = 0.03, 1067 

R2 = 0.36, partial correlation (corrected for hand dominance) pr = 0.63, p = 0.03]. The 1068 

right scatter plot illustrates the neuronal network correlates of the left-handers. While 1069 

the β-modulation range is shown on the ordinate, the likelihood (LPSI scores) of 1070 

midline fronto-sensorimotor (Midline FR-SM) communication (Fz, to CPz, and CP1) is 1071 

shown on the abscissa. The gray line is the result of a robust regression analysis of 1072 

the β-modulation range onto the likelihood of midline FR-SM communication using 1073 

iteratively reweighted least squares with a bisquare weighting function [rps=-0.75, p-1074 

value = 0.02, R2 = 0.50, partial correlation (corrected for hand dominance) pr = -0.75, 1075 

p = 0.03]. The gray dot overlying the black indicates two different subjects. 1076 

 1077 
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Tables 1100 

Effect DF(n,d) F Prob>F 

Handedness 
 

(1,38) 0.86 0.36 

Hemispheric Dominance 
 

(1,38) 1.23 0.27 

Handedness* Hemispheric 
Dominance 

 

(1,38) 0.55 0.46 

 1101 

Table 1 Two by two ANOVA with the factors Handedness (RH and LH) and Hemispheric 1102 

Dominance (DH and NDH) and with β-modulation range as dependent variable. 1103 

RH and LH have the same ability for volitional modulation of regional sensorimotor β-1104 

oscillations for both the DH and the NDH (see Figure 2). 1105 

 1106 

Effect DF(n,d) F Prob>F 

Handedness 
 

(1,38) 5.13 0.02 

Hemispheric Dominance 
 

(1,38) 5.8 0.02 

Handedness* Hemispheric 
Dominance 

 

(1,38) 0.12 0.73 

 1107 

Table 2 Two by two ANOVA with the factors Handedness (RH and LH) and Hemispheric 1108 

Dominance (DH and NDH) and with likelihood (LPSI scores) of right sensorimotor to left 1109 

frontal (SM-FR) information flow during the motor imagery epoch as dependent variable.  1110 

RH show a higher likelihood of interhemispheric SM-FR communication than LH. 1111 

Furthermore, RH show a higher likelihood of interhemispheric SM-FR communication when 1112 

comparing DH and NDH (see Figure 5A). Post hoc analysis consisted of a two-sided t-test 1113 

(p-value = 0.01). 1114 

  1115 
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Effect DF(n,d) F Prob>F 

Handedness 
 

(1,38) 6.67 0.01 

Hemispheric Dominance 
 

(1,38) 0.26 0.61 

Handedness* Hemispheric 
Dominance 

 

(1,38) 2.24 0.14 

 1116 

Table 3 Two by two ANOVA with the factors Handedness (RH and LH) and Hemispheric 1117 

Dominance (DH and NDH) and with likelihood (LPSI scores) of left sensorimotor to right 1118 

ventral premotor (SM-vPM) information flow during the motor imagery epoch as dependent 1119 

variable.  1120 

RH shows a higher likelihood of interhemispheric SM-vPM communication than LH (see 1121 

Figure 5B).  1122 

 1123 

Effect DF(n,d) F Prob>F 

Handedness 
 

(1,38) 8.86 0.005 

Hemispheric Dominance 
 

(1,38) 0.02 0.88 

Handedness* Hemispheric 
Dominance 

 

(1,38) 1.9 0.18 

 1124 

Table 4 Two by two ANOVA with the factors Handedness (RH and LH) and Hemispheric 1125 

Dominance (DH and NDH) and with likelihood (LPSI scores) of left sensorimotor to left 1126 

parieto-occipital (SM-POc) information flow during the motor imagery epoch as dependent 1127 

variable. 1128 

LH show a higher likelihood of left hemispheric SM-POc communication than RH (see Figure 1129 

5C).  1130 

 1131 
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Effect DF(n,d) F Prob>F 

Handedness 
 

(1,38) 11.1 0.002 

Hemispheric Dominance 
 

(1,38) 1.71 0.19 

Handedness* Hemispheric 
Dominance 

 

(1,38) 0.94 0.33 

 1132 

Table 5 Two by two ANOVA with the factors Handedness (RH and LH) and Hemispheric 1133 

Dominance (DH and NDH) and with the likelihood (LPSI scores) of right sensorimotor to right 1134 

parieto-occipital (SM-POc) information flow during the motor imagery epoch as dependent-1135 

variable. 1136 

LH show a higher likelihood of right hemispheric SM-POc communication than RH (see 1137 

Figure 5D). 1138 

 1139 


