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Abstract: For a given set of moments whose predetermined values represent the available infor-
mation, we consider the case where the Maximum Entropy (MaxEnt) solutions for Stieltjes and
Hamburger reduced moment problems do not exist. Genuinely relying upon MaxEnt rationale
we find the distribution with largest entropy and we prove that this distribution gives the best
approximation of the true but unknown underlying distribution. Despite the nice properties just
listed, the suggested approximation suffers from some numerical drawbacks and we will discuss this
aspect in detail in the paper.
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1. Problem Formulation and MaxEnt Rationale

In the context of testable information that is, when a statement about a probability
distribution whose truth or falsity is well-defined, the principle of maximum entropy states
that the probability distribution which best represents the current state of knowledge is the
one with largest entropy. In this spirit, Maximum Entropy (MaxEnt) methods are tradition-
ally used to select a probability distribution in situations when some (prior) knowledge
about the true probability distribution is available and several (up to an infinite set of) dif-
ferent probability distributions are consistent with it. In such a situation MaxEnt methods
represent correct methods for doing inference about the true but unknown underlying
distribution generating the data that have been observed.

Suppose that X be an absolutely continuous random variable having probability den-
sity function (pdf) f defined on an unbounded support SX and that {µ⇤

k}M
k=1, with µ⇤

0 = 1,
be M finite integer moments whose values are pre-determined that is,

µ⇤
k =

Z

SX
xk f (x) dx, k = 0, . . . , M, (1)

for an arbitrary M 2 N. Quantities such as in (1) may be intended to represent the available
(pre-determined) information relatively to X.

The Stieltjes (Hamburger) reduced moment problem [1] consists of recovering an
unknown pdf f , having support SX = R+ (SX = R), from the knowledge of prefixed
moment set {µ⇤

k}M
k=1.

Due to the non-uniqueness of the recovered density, the best choice among the (po-
tentially, infinite) competitors may be done by invoking the Maximum Entropy (MaxEnt)
principle [2] which consists in maximizing the Shannon-entropy

Hf = �
Z

SX
f (x) ln f (x)dx

under the constraints (1). Since entropy may be regarded as an objective measure of the
uncertainty in a distribution, “... the MaxEnt distribution is uniquely determined as the
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one which is maximally non-committal with regard the missing information” ([2], p. 623)
so that “...It agrees with is known but expresses maximum uncertainty with respect to all
other matters, and thus leaves a maximum possible freedom for our final decisions to be
influenced by the subsequent sample data” ([3], p. 231). In other words, the MaxEnt method
dictates the most "reasonable and objective" distribution subject to given constraints.

More formally, in such situation we have to manage a constrained optimization
problem involving Shannon entropy and a set of given constraints (here the first M integer
moments and the normalization constraint given by (1) when k = 0).

This problem is typically solved using the method of Lagrange multipliers leading to
a MaxEnt distribution whose density function fM is given by [4], p. 59

fM|(µ⇤
1 ,...,µ⇤

M)(x) = exp
⇣
�

M

Â
j=0

ljxj
⌘

, (2)

fulfils the given constraints {µ⇤
k}M

k=0 since

µ⇤
k =

Z

SX
xk fM(x) dx, k = 0, 1, ..., M (3)

and has entropy

HfM (µ⇤
1, . . . , µ⇤

M) = �
Z

SX
fM(x) ln fM(x) dx = l0 +

M

Â
k=1

ljµ
⇤
k (4)

where
HfM (µ⇤

1, . . . , µ⇤
M) = max

f2CM
Hf (µ

⇤
1, . . . , µ⇤

M)

and
CM =:

⇢
f � 0 |

Z

SX
xk f (x) dx = µ⇤

k , k = 0, . . . , M
�

=
n

f(µ⇤
1 ,...,µ⇤

M)

o
. (5)

From now on, for sake of brevity, we will write each member f of CM omitting the
dependency on (µ⇤

1, . . . , µ⇤
M), predetermined set of moments; hence, f and fM will stand for

f(µ⇤
1 ,...,µ⇤

M) and fM|(µ⇤
1 ,...,µ⇤

M) 2 CM, respectively. The same will be done for the corresponding
entropies: we will write Hf and HfM in place of Hf (µ

⇤
1, . . . , µ⇤

M) and HfM (µ⇤
1, . . . , µ⇤

M).
A few words about our notation are now opportune. Since in the sequel an arbitrary

moment µj may play different roles, we establish to use

1. µ⇤
j for prescribed moments;

2. µj for variable (free to vary) moments;
3. µj, f j�1 for the j-th moment of f j�1, that is µj, f j�1 =

R
SX

xj fj�1(x) dx (in general µj 6= µ⇤
j )

4. µ�
j to indicate the smallest value of µj, once (µ⇤

1, . . . , µ⇤
j�1) are prescribed.

Our attention is solely addressed towards sequences {µ⇤
k}•

k=1 whose underlying
density f has finite entropy Hf . More precisely, only distributions with Hf = �• are not
considered. Indeed, once {µ⇤

k}•
k=0 is assigned, Hf = +• is not feasible, as it is well known

in MaxEnt setup that Hf  Hf2 = 1
2 ln[2pe(µ⇤

2 � (µ1
⇤)2)] is finite because Lyapunov’s

inequality µ⇤
2 � (µ1

⇤)2 (Hamburger case) and Hf  Hf1 = 1 + ln µ⇤
1 is finite for every

µ⇤
1 > 0 (Stieltjes case).

Here (l0, . . . , lM) is the vector of Lagrange multipliers, with lM � 0 to guarantee
integrability of fM. If it is possible to determine Lagrange multipliers from the constraints
{µ⇤

k}M
k=1 then the moment problem admits solution and fM is MaxEnt solution (which is

unique in S due to strict concavity of (4)).
The above non negativity condition on lM which is a consequence of unbounded

support SX, is crucial and renders the moment problem solvable only under certain
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restrictive assumptions on the prescribed moment vector (µ⇤
1, . . . , µ⇤

M). This is the ultimate
reason upon which the present paper relies.

The existence conditions of the MaxEnt solution fM have been deeply investigated
in literature ([5–9] just to mention some widely cited papers); over the years an intense
debate—combining the results of the above papers—has established the correct existence
conditions underlying the Stieltjes and Hamburger moment problem (more details on this
topic may be found in the Appendix A).

On the other hand, when the existence conditions for fM are not satisfied, the non-
existence of the MaxEnt solution in Stieltjes and Hamburger reduced moment problem
poses a series of interesting and important questions about how to find an approximant of
the unknown density f least committed to the information not given to us (still obeying to
Jaynes’ Principle). This problem is addressed the present paper.

More formally, take CM to be the set of the density functions satisfying the M + 1
moment constraints (that is, they share the same M + 1 predetermined moments) and let
µ(CM) be the moment space associated to CM; hence, the indeterminacy of the moment
problem (1) follows.

A common way to regularize the problem, as recalled before, consists in applying the
MaxEnt Principle obtaining EM, the set of MaxEnt densities functions which is a subset of
CM; consequently, let µ(EM) be the moment space relative to the set of MaxEnt densities
functions EM. Because, in general, µ(CM) strictly includes µ(EM) there are admissible
moment vectors in Int(µ(CM)), the interior of µ(CM), for which the moment problem (1) is
solvable but the MaxEnt problem (3) has no solution and the usual regularization based on
MaxEnt strategy is therefore precluded.

The implications of such issue are often understated in practical applications where
the usual procedure limits itself to:
1. In the Stieltjes or symmetric Hamburger cases: to replace the support R+ (R) with

an arbitrarily large interval [a, b]. As a consequence of it, the problem is numerically
solved within a proper interval [a, b], changing the original Stieltjes (Hamburger)
moment problem into Hausdorff one. In the MaxEnt setup, the latter admits a solution
for each set {µ⇤

k}M
k=1 2 Int(µ(CM)) ([7], Theorem 2).

2. If fM does not exist (conclusion drawn uniquely from numerical evidence), fM�1
(Stieltjes case) or fM�2 (symmetric Hamburger case) always exist (see Appendix A).
In such a case, although the first M moments are known, we have to settle for a density
constrained by {µ⇤

k}
M�1
k=1 or {µ⇤

k}
M�2
k=1 . However, this is not completely coherent with

the MaxEnt principle that prescribes to use not only the available but all the available
information; hence discarding available information seems to be conceptually in
contrast with the MaxEnt spirit. However, from the point of practical applications,
to consider or not to consider the prefixed moment µ⇤

M seems to have negligible effects
on the summarizing quantities of the underlying distribution (mostly expected values
of suitable functions) in which we may be interested in. We will resume this issue,
after having carefully motivated and proved the proposed solution, in the last section
of the paper devoted to discussion and conclusions.
We call the solutions 1. and 2. “forced” pseudo-solutions; they might indeed lead to

the unpleasant fact that a MaxEnt solution always exists, although the original Stieltjes
(Hamburger) moment problem does not admit any solution. Hence the crucial question is:
does there exist a way to regularize the (indeterminate) moment problem (1) coherently
with all and only the available information exploiting the MaxEnt rationale setup with-
out forcing to unnatural solutions, i.e., based on totally inappropriate application of the
MaxEnt principle?

Before proceed recall CM and define the following class of density functions:

C̃M =: { f � 0 |
Z

S
xk f (x) dx = µ⇤

k , k = 0, ..., M, µM+1 = +•} (6)
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with C̃M ⇢ CM, whose entries satisfy the given constraints expressed in terms of M + 1
assigned integer moments µ⇤

k = E(Xk), k = 0, 1, . . . , M.
Now the question is: once {µ⇤

k}M
k=1 2 µ(CM)\µ(EM) are pre-determined (that is, the

MaxEnt problem does not admit solution) what is the optimal choice of the pdf that we can
select in place of fM? Relying upon the MaxEnt rationale, the best substitute of the missing
fM should be given by suitable one f̃M 2 CM having the overall largest entropy; that is,
select f̃M 2 CM actually satisfying the relationship

sup
f2CM

Hf � Hf̃M
< # (7)

for an arbitrarily small #.
We are aimed to find sup f2CM

Hf , f̃M and the corresponding entropy Hf̃M
, proving

that it may be accomplished by MaxEnt machinery (see Equations (9)–(11) below).
The remainder of the paper is organized as follows. Sections 2 and 3 are devoted

to evaluating the best pdf in Stieltjes and Hamburger cases respectively. We devote
Section 4 to numerical aspects and in Section 5 we round up with some concluding remarks.
In Appendix A. the existence conditions of MaxEnt distributions in Stieltjes and Hamburger
case are shortly reviewed.

2. Stieltjes Case

Let us consider {µ⇤
k}M

k=1 2 µ(CM)\µ(EM); consequently fM does not exist. In this
section we provide a formal justification about motivation (rationale) and optimality of the
proposed substitute f̃M of the MaxEnt density fM. We deal with the issue of selecting the
"best” pdf both satisfying the constraints (given by predetermined integer moments) and
with the overall largest entropy.

Before start, some relevant facts need to be collected together. Since MaxEnt density
fM does not exist both fM�1 with its M-th moment µM, fM�1  µ⇤

M and

fM+1 = fM+1(µM+1) = fM+1|µ⇤
1 ,...,µ⇤

M ,µM+1
2 CM

exist; the latter exists for any value µM+1 > µ�
M+1 (see Appendix A for more details).

Since the procedure here adopted remains valid for each value µ⇤
M > µM, fM�1 ,

as µ⇤
M ! +• from Lyapunov’s inequality, we have µM+1 > (µ⇤

M)(1+
1
M ) and consequently

µM+1 ! +• too. As well, since MaxEnt density does not exist, some additional infor-
mation not given to us must be added; of course, µM+1 is the most suitable candidate to
represent it.

Once this is established, the relevant question is: what value for µM+1? Recalling that
HfM+1(µ

⇤
1, . . . , µ⇤

M, µM+1) = HfM+1(µM+1) is monotonic increasing ([4], Equation (2.73),
p. 59), with upper bound HfM�1 so that limµM+1!• HfM+1(µM+1) exists, µM+1 should
assume the overall largest value, so that the decreasing of entropy is as small as possible.

Since
�

µ⇤
k
 M

k=1 2 µ(CM)\µ(EM), fM and then HfM are meaningless, CM includes in-
finitely many f and sup f2CM

Hf must be calculated. The moment set (µ⇤
1, . . . , µ⇤

M�1, µ⇤
M >

µM, fM�1 , µM+1) is considered too, where µM, fM�1 is the M-th order moment of fM�1 and
µM+1 varies continuously within µ(EM+1) with

(µ⇤
1, . . . , µ⇤

M, µ�
M+1) 2 ∂µ(CM+1). (8)

If fM+1(µM+1) is density corresponding to the set of moments (8), the following
theorem holds.

Theorem 1. The following two relationships hold

sup
f2CM

Hf = HfM�1 (9)
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and
lim

µM+1!•
HfM+1(µM+1) = HfM�1 . (10)

Now, f̃M is identified with fM+1(µ̃M+1) where µ̃M+1 is such that

HfM�1 � HfM+1(µ̃M+1) < # (11)

and # indicates a fixed tolerance.

Proof. If fM does not exist, fM�1 exists with entropy HfM�1 and M-th moment µM, fM�1 <

µ⇤
M respectively. The function HfM (µM), with µM > µ�

M, is monotonic increasing. As

1. µ⇤
M  µM, fM�1 one has sup f2CM

Hf = max f2CM Hf = HfM  HfM�1 . The latter
represents the maximum attainable entropy once (µ⇤

1, . . . , µ⇤
M) are prescribed;

2. µ⇤
M > µM, fM�1 , from monotonicity of HfM (µM) it follows sup f2CM

Hf = HfM�1 in-
dependent on µ⇤

M. Equivalently, HfM�1 is strict upper bound for the entropies of all
densities which have same lower moments (µ⇤

1, ..., µ⇤
M�1) as fM�1 but whose highest

moment µ⇤
M exceeds µM, fM�1 .

Hence Equation (9) is proved.
Let us now consider the suitable class

EM+1(µM+1) =
n

fM+1(µM+1) = fM+1|µ⇤
1 ,...,µ⇤

M ,µM+1
(x)

o
(12)

where µM+1 2 (µ�
M+1, •) is assumed as parameter and µM, fM�1 is the M-th order mo-

ment of fM�1. Equivalently, the entries of EM+1(µM+1) are MaxEnt pdfs constrained by
(µ⇤

1, ..., µ⇤
M, µM+1), belong to CM and, primarily, they all have analytically tractable entropy.

In (5), (6) and (12) three classes of functions CM, C̃M and EM+1(µM+1) had been defined.
Relying upon the identity CM = EM+1(µM+1) [ (CM\EM+1(µM+1)\C̃M) [ C̃M we investi-
gate the entropy Hf of functions f belonging to (a) EM+1(µM+1), (b) CM\EM+1(µM+1)\C̃M
and (c) C̃M respectively.
1. Consider that HfM+1(µM+1), bounded by HfM�1 from above, is a differentiable mono-

tonic increasing function of µM+1 and then it tends to a finite limit so that

sup
fM+1|µM+12EM+1(µM+1)

HfM+1(µM+1) = lim
µM+1!•

HfM+1(µM+1).

2. Each f 2 CM\EM+1(µM+1)\C̃M has entropy Hf and its (M + 1)-th finite moment,
say µM+1, f . Since f and fM+1|µM+1, f

share same moments (µ⇤
1, ..., µ⇤

M, µM+1, f ) then
Hf  HfM+1(µM+1, f ) holds, from which

sup
f2(CM\EM+1(µM+1)\C̃M)

Hf  sup
fM+1|µM+12EM+1(µM+1)

HfM+1(µM+1) = lim
µM+1!•

HfM+1(µM+1).

3. In analogy with (12), let us introduce the following class

CM+1(µM+1) =
n

f (µM+1) = f|µ⇤
1 ,...,µ⇤

M ,µM+1
(x)

o

where µM+1 > µ�
M+1 assumes arbitrary values. For a fixed µM+1, each f 2 CM+1(µM+1)

satisfies the following inequality

Hf  sup
f2CM+1(µM+1)

Hf = HfM+1(µM+1).
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Taking µM+1 ! •, CM+1(µM+1) coincides with C̃M and then

sup
f2C̃M

Hf = lim
µM+1!•

HfM+1(µM+1).

Collecting together both the achieved results in above items (a), (b), (c) and taking
into account (9) one has

sup
f2CM

Hf = lim
µM+1!•

HfM+1(µM+1) = HfM�1 .

Hence Equation (10) is also proved.
Equation (10) is restated as follows: if # indicates a fixed tolerance, there exists a

value µ̃M+1 of µM+1 such that HfM�1 � HfM+1(µ̃M+1) < # holds. Next f̃M is identified with
fM+1(µ̃M+1) so that its entropy Hf̃M

coincides with HfM+1(µ̃M+1). From which the wanted
result HfM�1 � Hf̃M

< # (or, equivalently (7)) follows. As a consequence f̃M is the proposed
substitute of fM and Equation (11) is proved.

In conclusion:
1. As fM does not exist, although the current use of MaxEnt fails, a solution is found

back to (9)–(11) from which the desired result (7).
2. The existence of MaxEnt fM implies its uniqueness, unlike f̃M which depends on

the assumed tolerance. In numerical Examples below just above remark will be
actually used.

3. Hamburger Case

The non-symmetric Hamburger case when M even is here disregarded because the
existence of the MaxEnt solution fM is guaranteed. Now, we will concentrate our attention
on the symmetric case with M � 4 and on the non-symmetric case with M � 3 odd.
In both cases, thanks to MaxEnt formalism, the procedure used in Stieltjes case can be
extended to Hamburger one (see [9]); this fact represents one of the main advantages of
MaxEnt machinery.

3.1. Symmetric Case with M � 4 Even
We recall fM is symmetric function for every M even so that Lagrange multipliers

l2j�1 = 0.

Theorem 2. Suppose the moment set (µ⇤
1, ..., µ⇤

M) is prescribed and fM does not exist. Symmetric
Hamburger case is analogous to Stieltjes one and then Theorem 1 holds true, with µM+1 replaced by
µM+2 and µM�1 by µM�2.

Proof. Just remember that if fM does not exist for a prescribed moment set (µ⇤
1, ..., µ⇤

M) then
fM�2 exists with its next moments µM�1, fM�2 , µM, fM�2 and entropy HfM�2 . If µ⇤

M = µM, fM�2
holds, then HfM�2 is the maximum attainable entropy. In analogy with (12) let

EM+2 =
n

fM+2(µM+2) =: fM+2|(µ⇤
1 ,...,µ⇤

M ,µ⇤
M+1 = 0, µM+2

, µM+2 2 (µ�
M+2, •)

o

where the parameter µM+2 is introduced and thanks to MaxEnt machinery the proof
continues analogously to the Stieltjes case.

3.2. Non-Symmetric Case with M � 3 Odd
If M is odd fM does not exist for every set of moments belonging to µ(CM) becauseR

R fM(x) dx = +•. We now look at the problem from a different point of view. Suppose
(µ⇤

1, ..., µ⇤
M) 2 µ(CM) is prescribed. In general fM�1 exists (equivalently, (µ⇤

1, ..., µ⇤
M�1) 2

µ(EM�1) (see Appendix), with its M-th moment µM, fM�1 . Two alternatives are possible:
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1. µ⇤
M = µM, fM�1 then fM with lM = 0 exists and coincides with fM�1. Then usual

MaxEnt method may be used;
2. µ⇤

M 6= µM, fM�1 (highly probable case), then fM does not exist.
Both items 1. and 2. recall the Stieltjes case; more precisely, item (ii) may be solved

taking into account fM+1(µM+1) 2 EM+1 (which exists for each µM+1 > µ�
M+1). Then non-

symmetric case, with M odd and for every set of moments belonging to µ(CM), is solved
analogously to the Stieltjes case and Theorem 1 holds true. A consequence of achieved
results in this section is the following. Let us consider a non symmetric Hamburger moment.
In Theorem 1 we proved

HfM�1 = sup
f2CM

Hf = lim
µM+1!•

HfM+1(µM+1).

Since the entropy is monotonic non increasing as M increases, the latter equalities
enable us to set HfM = HfM�1 . As a consequence, the two subsequences {Hf2M} and
{Hf2M�1} have coinciding entries. In past paper Milev and Tagliani proved that {Hf2M}
converges to Hf ([10], Theorem 1) . Joining together the two achievements, both {Hf2M}
and {Hf2M�1} converge to the same limit Hf , then so does {HfM}, filling the gaps left by
even moments.

4. Numerical Aspects

The procedure just above described and rooted on MaxEnt machinery suffers from
some numerical drawbacks which will be here discussed. It deserves to recall similar
drawbacks had been previously found ([11,12]) although for the special value M = 4 in
Hamburger case, exploring special regions of the moment space. Essentially, numerical
troubles arise because the expected solution fM+1 is contaminated with a small wiggle
that (a) moving to infinity, (b) is scaled in such a way that its contribution to the (M + 1)-th
order moment µM+1 is always O(1) and (c) may become invisible to numerical methods
of quadrature.

Now we provide some theoretical ground to justify above heuristics, which holds
true in both Hamburger and Stieltjes case thanks to MaxEnt formalism. First of all, under
the constraints (µ⇤

1, . . . , µ⇤
M, µM+1), we prove the wiggle exists. At this purpose both the

relationships lM < 0 for each µM+1 and lM+1 ! 0 as µM+1 ! • have to be proved.

1. lM < 0 for each µM+1. From Appendix we recalled if fM�1 exists with its M-th
moment µM, fM�1 , MaxEnt fM does not exist if µ⇤

M > µM, fM�1 . Let us consider fM where
µM varies continuously. Then lM is monotonically decreasing ([9], Equation (2.1))
with lM = 0 as µM = µM, fM�1 . As a consequence no set (l1, ..., lM) satisfies the
constraints (µ⇤

1, . . . , µ⇤
M ) since the monotonicity of lM would require lM < 0. Let

us consider fM+1 where µM+1 varies continuously. Here, for each µM+1, lM+1 > 0
guarantees integrability, so that lM may assume every real value. Collecting together
the results about lM, the set (l1, . . . , lM�1, lM < 0, lM+1) satisfies the constraints
(µ⇤

1, . . . , µ⇤
M, µM+1) for each µM+1. Equivalently, we can assert (l1, . . . , lM�1, lM < 0)

are appointed to meet (µ⇤
1, . . . , µ⇤

M), whilst lM+1 to meet µM+1.
2. lM+1 ! 0 as µM+1 ! •. Differentiating (4) with respect to lM+1 and recalling the

relationship ([9], Equation (2.1))

M

Â
0

µ⇤
j

dlj

dµM+1
+ µM+1

dlM+1
dµM+1

= 0

one has

dHfM+1(µM+1)

dµM+1
=

M

Â
0

µ⇤
j

dlj

dµM+1
+ µM+1

dlM+1
dµM+1

+ lM+1 = lM+1.
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From Theorem 1 we proved, as µM+1 ! •, HfM+1 ! HfM�1 , so that
dHfM+1(µM+1)

dµM+1
! 0

and then lM+1 ! 0 too.

We are ready to prove the statement concerning the fact that fM+1(µM+1) exhibits a
small wiggle at x � 1 (analogously, in symmetric Hamburger case the wiggle is exhibited
at | x |� 1). At x � 1

fM+1(x) ⇠ exp
⇣
� lMxM � lM+1xM+1

⌘

so that fM+1 admits maximum value at

xwig = � M lM
(M + 1) lM+1

> 0.

As µM+1 increases we proved the relationships lM < 0 and lM+1 ! 0, so that
xwig > 0 moves to infinity (from numerical evidence, as µM+1 increases, | lM |! 0
too much slower than lM+1). Since fM+1 has finite moments (µ⇤

1, ..., µ⇤
M) for each µM+1,

it follows the wiggle in a compact packet is scaled in such a way that its contribution
to the (M + 1)-th order moment µM+1 is always O(1) (whilst for all higher moments the
contribution due to this maximum obviously grows without bound, as a consequence of
Lyapunov’s inequality).

An additional complication comes from the fact that height and position of wiggle
is extremely sensitive to the parameters lM and lM+1, so that it becomes progressively
smaller and smaller until to be “invisible” if an unsuitable numerical method of quadrature
is adopted. As a consequence the procedure becomes increasingly ill-conditioned to such a
degree that numerical error precludes finding a suitable solution. As remedy, for instance,
the quadrature on the unbounded domain has to be mapped onto finite interval, as well an
adaptive quadrature is required. Since the wiggle moves along x-axis as µM+1 increases,
a fixed nodes quadrature formula could be unsuitable as the wiggle could become invisible
for some values of µM+1.

Above remedies are just a numerical trick, not a reduction of Stieltjes or Hamburger
problem into Hausdorff one. Indeed, all the subsequent numerical examples consider and
use random variables X having unbounded support R+ or R.

As well the dual formulation, which evaluates (l1, ..., lM+1) minimizing the poten-
tial function

{lj}M+1
j=1 : min

l1,...,lM+1

h
ln
⇣Z

S
exp(�

M+1

Â
j=1

ljxj)dx
⌘
+

M

Â
j=1

ljµ
⇤
j + lM+1µM+1

i

avoids the computation of higher moments, as required by Newton-type methods by
solving (3).

The drawbacks just illustrated lead us to equip the stopping criterion (7) based on
entropy with a further one based on the moments, which allows us the relationship
µj, fM+1 = µ⇤

j , j = 1, ..., M holds true. That is,

max
1jM

|
µ⇤

j � µj, fM+1

µ⇤
j

|< #1 (13)

(or involving the absolute error) for a proper #1.
The following question arises: it is f̃M, here identified with fM+1(µ̃M+1) and µ̃M+1 is

chosen so that stopping criteria (7) and (13) are verified, an acceptable approximation of
underlying unknown density? Although the wiggle has non-physical meaning, neverthe-
less from the approximate density one like to calculate accurate and interesting quantities.
We will resume the issue in the final part of the paper.
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For practical purposes in both Stieltjes and Hamburger case f̃M is calculated according
to (9)–(11) uniquely by means of MaxEnt machinery following these two distinct steps
1. First, the sequence {µ⇤

k}M
k=0 is prescribed and fM does not exists; then we know fM�1

exists with entropy HfM�1 ;
2. The next step relies upon on the monotonicity of HfM+1(µM+1). If # indicates a fixed

tolerance, fM+1(µM+1) is calculated taking increasing values of µM+1 until for some
µ̃M+1 inequality HfM�1 � HfM+1(µ̃M+1) < # is satisfied, assuming implicitly (13) is
satisfied too. Next f̃M ⌘ fM+1(µ̃M+1) is set.
Before to illustrate some numerical examples that confirm the goodness of the pro-

posed method, it is worth spend some words discussing the outlined procedure. The cal-
culation of f̃M is obtained through an approximate procedure and hence has a limited
range of applicability. The main problem is the presence of wiggles; at the end to contain
their detrimental effect it is necessary that convergence of HfM+1(µM+1) to HfM�1 be fast.
For example, the value µ⇤

M that precludes the existence of fM in the Stieltjes case, must be
such that the difference µ⇤

M � µM, fM�1 be small. Larger values make the convergence of
HfM+1(µM+1) to HfM�1 slow, allowing the generation of a small wiggle at great distance.
The latter may become invisible to numerical quadrature methods.

Below are some numerical examples which both take into account the above remarks
about the difference µ⇤

M � µM, fM�1 and illustrate the theoretical and numerical aspects
mentioned above.

Example 1. The Stieltjes case with M = 2 and prescribed (µ⇤
1, µ⇤

2) is considered. Now fM exists
if and only if the inequality (µ⇤

1)
2 < µ⇤

2  2(µ⇤
1)

2 holds ([5], Theorem 2). The moment set
{(µ1, µ2) | µ2 = 2µ2

1 | µ1 > 0} 2 Int(µ(CM)) represents an additional boundary in µ(CM). If
the moments satisfy the reverse inequality µ⇤

2 > 2(µ⇤
1)

2 there is no pdf which maximizes the entropy.
We consider the latter case taking µ⇤

1 = 1 and µ⇤
2 = 2.1; then fM+1(µ̃M+1) is calculated by

means of (11), with HfM�1 = 1 + ln µ⇤
1 = 1. Values of entropy HfM+1(µM+1) with increasing

values of µM+1 > µ�
M+1 = 4.41 not reported here lead to conclusion that the entropy stabilizes

rapidly as µM+1 increases. This may be an evidence of high accuracy in the reconstruction.
Taking # = 10�4, Equation (11) is satisfied starting from µ̃M+1 = 20. Then f̃M, which is

identified with fM+1(µ̃M+1), jointly with fM�1 are displayed in Figure 1 (top). The difference
between f̃M and fM�1 is insignificant since µ⇤

M � µM, fM�1 = 0.1 was chosen to avoid the dentri-
mental effect of wiggle. In Figure 1 (bottom) the same fM+1(µ̃M+1), on a logarithmic scale and
on extended x-axis scale, is reported to evidenciate the presence of small wiggle. The moments
µ1, f̃M

, µ2, f̃M
satisfy | µ⇤

1 � µ1, f̃M
|⇠ 10�8, | µ⇤

2 � µ2, f̃M
|⇠ 10�6, respectively. It can be concluded

f̃M ⌘ fM+1(µ̃M+1) satisfies all the expected theoretical properties and can be considered the "best"
substitute of the missing fM.
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Figure 1. Stieltjes case, M = 2. fM+1(µ̃M+1) and fM�1 (top). fM+1(µ̃M+1) in logarithmic
scale (bottom).

Example 2. Hamburger case with M = 3; here µ⇤
1 = 0, µ⇤

2 = 1, µ⇤
3 = 0.5, with the skewness = 0.5,

are assumed. MaxEnt density fM does not exist if the first 3 moments are specified and the skewness
is required to be non-zero. Then fM does not exists whilst fM�1 (Normal distribution) exists,
with entropy HfM�1 = 1

2 ln[2pe(µ⇤
2 � (µ⇤

1)
2)] ' 1.4189385. Taking # = 10�3, Equation (11) is

satisfied starting from µ̃M+1 = 14.65. Then f̃M, which is identified with fM+1(µ̃M+1), jointly
with fM�1 are displayed in Figure 2 (top). In Figure 2 (bottom) the same fM+1(µ̃M+1) is displayed
but on a logarithmic scale and on extended x-axis scale, to highlight the presence of small wiggle.

The moments µ1, f̃M
, µ2, f̃M

, µ3, f̃M
satisfy | µ⇤

1 � µ1, f̃M
|⇠ 10�7, | µ⇤

2 � µ2, f̃M
|⇠ 10�7,

| µ⇤
3 � µ3, f̃M

|⇠ 10�5, respectively. It can be concluded f̃M satisfies all the expected theoretical
properties and can be considered the "best" substitute of the missing fM.

Figure 2. Hamburger case, M = 3. fM+1(µ̃M+1) and Normal (top) . fM+1(µ̃M+1) in logarithmic
scale (bottom).

Remark 1. It is worth to note that the nonsymmetric Hamburger case with M = 3 has been
discussed in [13], pp. 413–415, Equation (12.32), but solely on the basis of a simple heuristic
reasoning; they use a tricky problem to observe that even if the Lagrange multipliers cannot be
chosen to satisfy the given constraints, the “maximum” entropy can be found and it is equal to

sup
f2CM

Hf = HfM�1
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concluding that in this situation the entropy may only be e-achievable. Just to give a simple example
of it, but not a formal justification, the authors consider the case in which a Normal distribution
be contaminated with a small “wiggle” at a very high value of x; consequently the moments of
new distribution are almost the same as those of the non contaminated Normal, the biggest change
being in the third moment (the new distribution is not any more symmetric). However, adding new
wiggles in opportune positions to balance the changes caused by the original wiggle we can bring
the first and the second moments back to their original values and also get any value of the third
moment without reducing the entropy significantly below that of the associated non contaminated
Normal (from this the conclusion about the e-achievability of the entropy).

Just above heuristic procedure is displayed in Figure 2, and interpreted saying f̃M may be
identified with the Normal distribution on which some wiggles are superimposed.

This result is a particular case of the more general result covered by this paper and coincides
with the above (9)–(11) when, in this case, fM�1 is the density function of a Normal distribution.

Lastly, all above heuristics agrees with the mathematical general result that two continuous
density functions having the same first M + 1 moments (including µ0 = 1) cross each other in at
least M + 1 points ([14], Vol.1, No. 140, p. 83). In our case fM+1 and the Normal density plotted
in Figure 2, share the first M + 1 = 3 moments and they cross each other at three points as the
inspection of the previous figure suggests.

Example 3. Symmetric Hamburger case with M = 4, prescribed (µ⇤
2 = 1, µ⇤

4 = 4) and MaxEnt
density fM are considered. fM�2 is the Normal distribution with µM, fM�2 = 3 and entropy
HfM�2 = 1

2 ln[2 p e µ⇤
2 ] ' 1.4189385. fM does not exists, being its existence condition µ⇤

M 
µM, fM�2 = 3 not verified. A further even moment µM+2 with increasing values is added and
fM+2(µM+2) has to be calculated.

Taking # = 10�3, Equation (11) is satisfied starting from µ̃M+2 = 160. Then f̃M, which is
identified with fM+2(µ̃M+2), jointly with fM�2 are displayed in Figure 3 (top). In Figure 3 (bottom)
the same fM+2(µ̃M+2), in logarithmic scale and on extended x-axis scale, is reported to highlight
the presence of two symmetric wiggles travelling in opposite direction and illustrated too in same
Figure (bottom). The moments µ2, f̃M

, µ4, f̃M
satisfy | µ⇤

2 � µ2, f̃M
|⇠ 10�8, | µ⇤

4 � µ4, f̃M
|⇠ 10�6,

respectively.

Figure 3. Symmetric Hamburger case with M = 4. fM+2(µ̃M+2) and Normal (top). fM+2(µ̃M+2) in
logarithmic scale (bottom).

In each of the previous three examples we have assumed that µ⇤
M and µM, fM�1 differ from a

small amount and this to avoid the detrimental effect due to the wiggle; consequently, the difference
between f̃M and fM�1 becomes insignificant too. As a result,
1. The convergence of HfM+1 to HfM�1 is fast and avoids the formation of small evanescent

wiggles at a great distance;
2. The rise of numerical quadrature problems.
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As a consequence the two densities fM+1 and fM�1 are almost superimposed precluding the
possibility to evaluate the effect produced in fM�1 from having discarded µ⇤

M. It would be interesting
to be able to assess how high values µ⇤

M � µM, fM�1 may affect the difference fM+1 � fM�1. The goal
could be achieved by a suitable numerical quadrature method.

5. Discussion and Conclusions

In the present paper, we have discussed the case which arises when, in presence of a
prefixed moment set (µ⇤

1, µ⇤
2, . . . , µ⇤

M) representing the available information, the (reduced)
moment problem admits solution but the MaxEnt density as a solution of the regularization
problem does not exist. In the previous sections, we have given the conditions under
which a solution of the Stieltjes and Hamburger (reduced) moment problems may be found
in the genuine Jaynes’ spirit by finding the overall largest entropy distribution which is
compatible with the available information and showing that this is the best approximant
of the underlying true but unknown distribution. The substitute of the missing MaxEnt
solution is found using solely the usual MaxEnt machinery.

Now we look at the issue from a different point of view. Suppose (µ⇤
1, µ⇤

2, . . . , µ⇤
M)

represent all and only the available information. Two cases 1. and 2. may present:
1. Only the first M moments may be measured but additionally the fM exists. In this situ-

ation the traditional MaxEnt machinery will produce the usual solution fM which has
a well known analytical form corresponding to the Jaynes’ non committal approximant
(MaxEnt) of the underlying f (see Equation (2));

2. Only the first M moments may be measured but additionally the fM does not exist.
Here any information about the analytical form of the substitute of the missing MaxEnt
solution is lacking. If only the first M moments may be measured, it is reasonable to
assume the underlying f admits the first M moments solely. Then it can to be restated
(µ⇤

1, µ⇤
2, . . . , µ⇤

M, µM+1 = +•) to represent all and only the available information.
Next, assuming µM+1 takes finite value, MaxEnt machinery may be invoked, from
which fM+1 as above and the consequent Theorem 1. To find a genuine minimal
committal approximant in the MaxEnt spirit of the underlying f just

lim
µM+1!•

HfM+1(µM+1)

is taken, so that, from the monotonicity of HfM+1 , the spurious information represented
by µM+1 has a minimum effect on the approximant (in other terms, to guarantee to be
minimal committal).
The solution we have proposed in this paper for case 2. offers an alternative and

exhaustive answer to the common empirical “forced” practices consisting in
(a) Replacing an unbounded support with an arbitrarily large interval, or
(b) Neglecting the prescribed higher moment so that the reduced number of moments

allows the existence of MaxEnt solution.
As we have widely said before (see Introduction), solutions like (a) and (b) imply a

forced pseudo-solution of the original problem which conflicts with MaxEnt rationale.
The above conflict is not merely theoretical and it has some practical consequences.

This leads us to distinguish theoretical and practical aspects of the procedure we proposed.
MaxEnt technique is invoked because one reputes the found distribution to be “the best”
and the obtained results are “the best”. Essentially this is the practitioner’s main concern.
More specifically, since the MaxEnt distribution constrained by first M moments does not
exist, we are inclined to turn to fM�1. Depending on whether µ⇤

M is considered or not
considered, fM�1 or f̃M will be used to approximate the unknown underlying density f .
It may happen that some summarizing quantities based on different approximations of f
as fM�1 or f̃M, remain unaltered as we illustrate in next few rows.
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If g is a bounded function of X, f̃M and fM�1 lead to similar values, as Pinsker’s
inequality ([15], p. 390) and (11) yield,

| E fM�1 [g(X)]�E f̃M
[g(X)] | 

Z

SX
| g(x) | · | fM�1(x)� f̃M(x) | dx

k g k•
q

2(HfM�1 � Hf̃M
) k g k•

p
2 · #

As a consequence, although we settle for a density constrained by fewer moments,
and then conceptually in contrast with the MaxEnt spirit, nevertheless the results remain
unaltered.

The matter runs similarly whether quantiles have to be calculated. They may be
configured as expected values of proper bounded functions: indeed, for fixed x, F(x) =
E[g(t)] with g(t) = 1 if t 2 [0, x] and g(t) = 0 if t 2 (x, •). Then, if F̃M and FM�1 denote
the distribution functions corresponding to f̃M and fM�1, respectively, we have in Stieltjes
case (and mutatis mutandis equivalently holds for Hamburger case)

| FM�1(x)� F̃M(x) | 
Z x

0
| fM�1(t)� f̃M(t) | dt


Z •

0
| fM�1(t)� f̃M(t) | dt


q

2(HfM�1 � Hf̃M
) 

p
2 · #.

Again, although we settle for a density constrained by fewer moments, and this goes
conceptually against the spirit of Jaynes, nevertheless the results concerning expected
values of g remain unaltered. However, if g is an arbitrary unbounded function of X then
the sequence of the above inequalities does not hold and the calculation of expected values
of g could lead to different results, i.e., E fM�1 [g(X)] 6= E f̃M

[g(X)].
In conclusion: if the maximum entropy distribution does not exist, being guided by

the spirit of maximum entropy could always turn out to be the best choice.
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Appendix A. Existence of MaxEnt Distributions

Symmetric positive definite Hankel matrices DM =k µi+j kN
i,j=0 and DM,1 =k µi+j+1 kN

i,j=0,
M = 2N and M = 1, 2, ... are recalled. Necessary condition for the existence of MaxEnt
distributions is the positivity of determinants | DM |> 0 for Hamburger case and | DM |> 0,
| DM,1 |> 0 for Stieltjes case ([1], Theorem 1.2, p. 5 and Theorem 1.3, p. 6). The existence
sufficient conditions in both cases are quoted below. Once the first moments (µ1, ..., µM)
are assigned
1. let us define the Mth moment space CM as the convex hull of the curve {(x1, ..., xM), x 2

S}. CM is convex and closed with boundary ∂CM. Then we mean CM = IntCM [ ∂CM
2. let us call µ�

M+1 the value of µM+1 such that | DN |= 0 or | DN,1 |= 0, with M = 2N
or M = 2N + 1, so that the point (µ1, ..., µM, µ�

M+1) 2 ∂CM+1
3. we recall too the moment space EM relative to the MaxEnt densities, where EM ✓ CM.

Here we mean EM = IntEM [ ∂EM. Take note ∂EM includes both points 2 ∂CM and
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points 2 IntCM, so that EM = IntEM [ (∂EM \ ∂CM) [ (∂EM \ IntCM). Additional
boundary points (∂EM \ IntCM) arise from the conditions
(i) lM = 0 (see Equation (2)) in Stieltjes case. For the special case M = 2, see [5],

Theorem 2 or Example 2.
(ii) lM�1 = lM = 0 (see Equation (2)) in symmetric Hamburger case.

Appendix A.1. Stieltjes Case
The moment set (µ⇤

1, ..., µ⇤
M) is prescribed. The existence of fM has been investigated

([7], Theorem 4 and [8], Theorem 3). Here the results are summarized in next two items.
1. Let us suppose fM exists with its (M + 1)th moment µM+1, fM . If µ⇤

M+1  µM+1, fM ,
then fM+1 exists; conversely if µ⇤

M+1 > µM+1, fM , then fM+1 does not exist. The exis-
tence of fM is iteratively and numerically determined, starting from f1 which exists.

2. If fM does not exist, both fM�1 and fM+1 exist for every µM�1 > µ�
M�1 and µM+1 >

µ�
M+1 respectively;

3. If (µ⇤
1, . . . , µ⇤

M�1) are fixed, whilst µM > µ�
M varies continuously, the entropy HfM (µM)

of fM is monotonic increasing function ([4], p. 59, Equation (2.73)).

Appendix A.2. Hamburger Case
The moment set (µ⇤

1, ..., µ⇤
M) with M even, is considered. The existence of fM has been

investigated ([7], Theorem 4 and [9], Theorem 2). Here the results are summarized in next
three items:
1. In the non-symmetric case, the existence of fM is guaranteed except for a special set of

moments which is unknown a priori. So that, excluding the latter ones, the positivity
of the Hankel determinants, which is necessary condition of the solvability, guarantees
the existence of fM.

2. In the symmetric case (i.e., µ⇤
2j�1 = 0) the condition of the solvability of fM is analo-

gous to Stieltjes case, being fM symmetric. Thus the existence of fM, M � 4, is itera-
tively and numerically determined, starting from f2 which exists (being the Normal
distribution); if fM does not exist, both fM�2 and fM+2 exist for every µM�2 > µ�

M�2
and µM+2 > µ�

M+2 respectively;
3. if (µ⇤

1, . . . , µ⇤
M�1) are fixed, whilst µM > µ�

M varies continuously, thanks to MaxEnt
machinery, the entropy HfM (µM) of fM is monotonic increasing function ([4], p. 59,
Equation (2.73)). In MaxEnt setup this guarantees procedures and results valid for
Stieltjes case can be equally extended to Hamburger one.
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