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Abstract. In this paper we consider a mean field approach to modeling the

agents flow over a transportation network. In particular, beside a standard
framework of mean field games, with controlled dynamics by the agents and

costs mass-distribution dependent, we also consider a path preferences dynam-

ics obtained as a generalization of the so-called noisy best response dynamics.
We introduce this last dynamics to model the fact that the agents choose their

path on the basis of both the network congestion state and the observation

of the agents’ decision that have preceded them. We prove the existence of a
mean field equilibrium obtained as a fixed point of a map over a suitable set

of time-varying mass-distributions, defined edge by edge in the network. We

also address the case where the admissible set of controls is suitably bounded
depending on the mass-distribution on the edge itself.

1. Introduction. In this paper, we introduce a Mean Field approach to modeling4

and analytically studying the agents flow over a transportation network.5

We frame our work in the literature on the flow dynamics of agents, which have6

become in the last decades of interest for several research communities. In the7

transportation area, for example, the interest towards such topics is due to the8

continuous growth of traffic flow as well as the spread of information and commu-9

nication technologies which are changing the transportation system dynamics and10

affecting the users’ decision making and behaviors. Different modeling approaches11
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have been proposed which can generally be classified into three categories: micro-1

scopic, macroscopic and multi-scale models. The microscopic models or “individual2

based models”, describe the crowd by giving the dynamics of each agent, usually3

via an ordinary differential equation and are particularly well suited for use with4

small crowds. Such approach includes the cellular automaton model (see e.g., [9]),5

the lattice gas model (see e.g. [18]) and the social force model considered in [19].6

Specifically, in [19], the authors introduce the concept of social force to measure the7

internal motivation of the individuals in performing certain movements. Another8

microscopic description is provided in [20]–[21], where a theory of pedestrian route9

choice behavior based on the concepts of walking task and walking cost is proposed.10

Each pedestrian plans her movements on the basis of some predictions she makes on11

the other individuals’ behavior. She makes her decisions by minimizing her individ-12

ually estimated walking cost, expressed by a functional depending on the predicted13

positions of other people.14

Macroscopic models, in contrast, focus on the overall behavior of pedestrian flows15

and are more suited to investigations of extremely large crowds, especially when16

examining aspects of motion in which individual differences are less important.17

Such models describe the evolution of the population’s density through a partial18

differential equation, often of transport type. In [23] the crowds is treated as a19

“thinking fluid” and the model is described by the continuity equation coupled with20

the eikonal equation. In [8], instead, the continuity equation is linked to the linear21

momentum one. Both models are based one the concepts of preferred direction of22

motion and discomfort at high densities. In the framework of scalar conservation23

laws, a macroscopic one-dimensional model has been proposed in [12] with the aim24

of describing the transition from normal to panic conditions. Finally, in [29] a25

new model of pedestrian flow, formulated within a measure-theoretic framework26

is proposed. It consists of a representation of the system via a family of measures27

which provide an estimate of the space occupancy by pedestrians at successive times.28

The multi-scale models use measure evolution equations for describing crowds29

mixing a microscopic and a macroscopic description. In particular, the time evolv-30

ing measure allow to split the density into a microscopic granular and a macroscopic31

continuous mass. These kinds of multi-scale models were introduced quite recently32

for crowd and pedestrian dynamics modeling (see [14]–[15], [30]–[31]) and enjoy the33

following properties. They are able to capture some typical phenomena such as34

self organization. Their different scales can be used to model the relative impor-35

tance of agents in a crowd: for example, in a leader-follower system, leaders are36

described by a precise microscopic model, while followers are taken into account by37

the macroscopic part.38

In [3], [4] a mean field game approach is implemented for studying the optimal39

behavior of agents flowing on a network having more than one target (vertices of the40

networks) to be reached (visited). In [5] an origin-destination model with path pref-41

erences dynamics as the one here presented is preliminary treated. In the present42

paper, generalizing the results in [5], we consider the agent’s path preferences dy-43

namics in addition to the usual framing of mean field games (typically defined by the44

pair made of Hamilton-Jacobi-Bellman and mass conservation equations). Specif-45

ically, we propose a model in which the agents choose their path having access to46

global information about the network congestion, but also being influenced by the47

decision of agents that has already made their decisions.48

49
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Then, our model considers two dynamics: the first one, based on the mass con-1

servation equations, describes the real time evolution of the congestion level in each2

edge of the network expressed in terms of mass-concentration ρ (see equation (10));3

the second one describes the evolution of the agents’ path preferences vector z (see4

equation (8)).The path preferences vector is a function of the agents’ experience5

and of the available information. Its dynamics evolves at a slower time scale than6

the network congestion one.7

Roughly speaking, we assume that an agent that enters the network at the time t8

first estimates how the congestion of the network will evolve over time. Then, it9

individuates the “least expensive” path to reach its destination by evaluating the10

optimal control (the velocity) that it should implement edge by edge along each11

possible path. Finally, it makes its choice of the actually followed path being influ-12

enced also by its a-priori path preference. The agent’s path-preference models both13

a probabilistic disturb on the optimal choice and the agent’s tendency to conform14

to the choices of the agents that preceded it.15

The above described agents’ behavior makes the evolution of actual network16

congestion depend on the congestion estimated by the agents when entering the17

network. We say that the system has reached an equilibrium when the actual18

congestion and the estimated one coincide. The assumptions needed and the fixed19

point procedure that can be implemented to obtain an equilibrium will be described20

in Section 3 and sketched in Figure 2.21

In the standard mean field games, equilibria are usually determined via a fixed22

point procedure. It is used to solve a pair of coupled differential equations: a trans-23

port equation describing the evolution of the mass concentration and a Hamilton-24

Jacobi equation determining the optimal agents’ choices. We use a fixed point25

procedure too but our approach differs in the following aspects. Our equation26

that guarantees the conservation of the mass cannot be trivially interpreted as a27

transport equation as it depends also on the equation for the evolution of the path28

preferences. In addition, instead of dealing with the Hamilton-Jacobi equations, we29

determine the optimal feedback controls directly solving, backwardly in the network30

and edge by edge, the minimization problems defined by the value functions and31

interpreted as an exit-time/exit-cost problem (see Subsection 2.3). This approach32

allows us to bypass the problems given by some discontinuities of the exit-costs.33

One possible physical interpretation of our model is to consider the agents as34

pedestrians traversing possible paths within a city described as a network. However,35

it may also seen as well suited to describe, for example, car traffic flow in highways36

networks. In this way, the model can be related to two streams of literature on37

transportation networks. On the one hand, pedestrians flows on networks have38

been widely analyzed using the different modeling approaches cited above. As39

compared to the macroscopic and multi-scale approaches (typically described by40

partial differential equations), ours significantly simplifies the evolution of the traffic41

masses (using a balance ordinary differential equations), whereas it highlights the42

role of agents route choice behavior which is typically neglected in that literature.43

On the other hand, transportation networks have been studied from a decision44

theoretic perspective within the framework of congestion games [7], [32]. In this45

framework, however, the information is available to the agents at a single temporal46

and spatial scale and the mass conservation equations are completely neglected by47

assuming that they are instantaneously balanced. In contrast, we study a model48

where the mass conservation equations are not neglected and agents route choice49
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decisions are affected both by the global information on the congestion and by the1

decision of the agents that have preceded entering the network.2

As already mentioned our models is based on Mean field games (MFG), whose3

theory goes back to the seminal work by Lasry-Lions [25] (see also [22]). This4

theory includes methods and techniques to study differential games with a large5

population of rational players and it is based on the assumption that the population6

influences individuals’ strategies through mean field parameters. Several application7

domains such as economics, physics, biology and network engineering accommodate8

MFG theoretical models (see [1], [17], [26]–[27]). In particular, models to study of9

dynamics on networks and/or pedestrian movement can be found for example in10

[10], [16], [11], [2].11

Beside the position of the problem, which is also rather new, the main goal of the12

present paper is to prove the existence of a mean field equilibrium for our framework.13

This equilibrium is a time-varying distribution of agents ρ, defined edge by edge14

in the network, that generates an optimal controls vector which, in turn, yields a15

path preferences vector providing once again the time-varying distribution ρ. It is16

obtained as a fixed point of a map which satisfies the conditions of the Brouwer17

fixed-point theorem. In our model, the controls implemented by an agent can be18

interpreted as the velocities at which the agent traverses the network edges. Then,19

we also address the case where a mass-distribution dependent bound on the set of20

admissible controls is assumed, in order to take account of possible constraints in21

the velocities when edges are very congested.22

The rest of this paper is organized as follows. In Section 2, we describe the23

model and state the hypotheses used in the paper. Moreover we separately analyse24

all the agents’ dynamics which constitute our transportation system. In Section 3,25

we prove the existence of a mean-field equilibrium and, in Section 4, we study a26

new mean field game problem with a constraint on the set of admissible controls.27

In Section 5, we draw conclusions and suggests future works.28

Notation. Hereinafter, in the paper we will use the following notation.29
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V the finite set of vertices;
E the finite set of directed edges;
e the index of the edge;
p the index of path;
o the origin vertex;
d the destination vertex;
νe the tail vertex of the edge e;
κe the head vertex of the edge e;
`e the length of edge e;
uep(·) the measurable control for agents in the edge e ∈ p;
uep[t] the optimal constant control chosen at starting time t for traversing e ∈ p;
Ce the maximal mass of agents that can enter in e per unit of time;
ρmax the maximal mass of agents that can be present at the same time in e;
Γ the set of all the paths p from o to d;
A the edge-path incidence matrix (see (1));
Ξ the number of pairs (e, p) ∈ E × Γ : e ∈ p;
λ(t) the total flow entering the network in the origin o at time t (throughput);
Sλ(t) The simplex of a probability vector over Γ (see (5));
β the fixed noise parameter;
η the update rate of the path preferences;
L(w) the Lipschitz constant of a function w;

L̃ the common Lipschitz constant to all the functions belong to X (see (27));
|.| cardinality of a set, e.g., |B| is the cardinality of set B;
∧ minimum operator, e.g., a ∧ b = min{a, b}.

1

2. Model description. We describe the flow dynamics over a network of possible2

paths that the agents can choose to traverse within a time interval [0, T ], where3

T > 0 is the final horizon.4

2.1. Network characteristics. The network is a directed multi-graph G = (V, E),5

where: V is a finite set of vertices, generically denoted by v, and E is a finite set of6

directed edges, generically denoted by e = (νe, κe) being νe the tail vertex of e and7

κe 6= νe the head vertex.8

The set V includes two special vertices, the orign o and the destination d, where9

the agents enter and leave the network, respectively. Each edge e ∈ E is character-10

ized by three finite parameters: its length `e; its flow capacity Ce, expressing the11

maximum number of agents that can enter in e per unit of time; and maximum12

mass ρmax denoting the maximum number of agents that can be present at the13

same time in e. We assume ρmax be the same for each e ∈ E .14

An (oriented) path from a vertex v0 to a vertex vr is an ordered set of r adja-15

cent edges p = (e1, e2, . . . , er) such that νe1 = v0, κer = vr, vs = κes = νes+1
for16

1 ≤ s ≤ r − 1, and no vertex is visited twice, i.e., vl 6= vs for all 0 ≤ l < s ≤ r,17

except possibly for v0 = vr, in which case the path is referred to as a cycle. A vertex18

vj is said to be reachable from another vertex vk if there exists at least a path from19

vk to vj .20

In particular, we hold the following assumptions on the multi-graph G:21

• G contains no cycles;22

• any vertex in V can be reached from the origin vertex o and the destination23

vertex d is reachable from any vertex in V.24
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We denote by Γ the set of all the paths p from o to d. We denote by A the1

|E| × |Γ| edge-path incidence matrix with entries2

Aep =

{
1 if e ∈ p,
0 otherwise.

(1)

and by

Ξ =
∑
e∈E

∑
p∈Γ

Aep, with |E| ≤ Ξ ≤ |E| × |Γ|,

the number of the elements equal to 1 of the matrix A, that is, the number of pairs3

edge-path (e, p) ∈ E × Γ such that e ∈ p.4

For every path p ∈ Γ and edge e ∈ p, we define two functions

ρep : [0, T ]→ [0, ρmax], fep : [0, T ]→ [0, Ce],

which denote the current mass and current flow of agents following path p, re-5

spectively, present and leaving the edge e at at each time instant t ∈ [0, T ]. We6

let7

ρ(t) := {ρep(t) : e ∈ p, p ∈ Γ} ∈ RΞ, f(t) := {fep (t) : e ∈ p, p ∈ Γ} ∈ RΞ, (2)

be the vectors of masses and flows, respectively.8

In order to simplify notations and statements, in this paper we consider a graph G9

on which agents have only three possible paths to reach d starting from o (see10

Figure 1). Accordingly, the set of paths is Γ = {p1, p2, p3}, where p1 = (e1, e4),

o

v1

v2

d

e1

e2

e3

e4

e5

Figure 1. The graph topology used in the paper.

11

p2 = (e2, e5), p3 = (e1, e3, e5). However, all the results obtained in the next12

sections can be proved for more general networks, still satisfying the assumptions13

i) and ii) above.14

2.2. Agents’ dynamics and costs. We assume that the agents are indistinguish-15

able. Each agent enters the network G by the origin vertex, chooses a path p ∈ Γ,16

travels through G along p, and finally leaves the network from the destination vertex.17

We let λ : [0, T ]→ [0,+∞[ be a given function describing the throughput of the18

agents, i.e., λ(t) is the total flow of agents entering the network in the origin o at19

time t. In addition, we let θe ∈ [0, `e] be the state of the generic agent over an20

edge e ∈ E . The value θe(s) describes the position of the agent at time s from the21

tail of e, i.e., θe(s) = 0 means that the agent is in νe, while θe(s) = `e means that22

the agent is in κe and hence it is inside the edge e as long as 0 ≤ θe(s) ≤ `e. We23

stress that θe(s) describes the state of an hypothetical agent assumed to be in νe24
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at time t, independently of the fact whether there is actually someone present at νe1

at that time.2

The controlled dynamics in any edge e ∈ E of an agent who entered the edge at3

time t ∈ [0, T ] is:4 {
θ̇e(s) = ue(s), s ∈]t, T ],

θe(t) = 0,
(3)

where the control, s 7→ ue(s), is measurable and integrable, namely ue ∈ L1(0, T ).5

Each agent traversing an edge e at a given time t, aims at minimizing a cost that
takes into account: i) the possible hassle of running in the edge to reach d on time;
ii) the pain of being entrapped in a highly congested edge; iii) the disappointment
of not being able to reach d by the final horizon T . We model this cost analytically
as

Je(t, u
e) =

∫ T

t

χ{0≤θe(s)≤`e}

 (ue(s))2

2
+ ϕe

 ∑
p̂∈Γ|e∈p̂

ρep̂(s)

 ds

+χ{0≤θe(T )<`e}α
∑
j∈pe

`j , (4)

where χ is the characteristic function6

χ{0≤θe(s)≤`e} =

{
1 if 0 ≤ θe(s) ≤ `e,
0 otherwise,

and similarly for χ{0≤θe(T )<`e}; α > 0 is a constant parameter representing a cost
per unit of length, and pe is the shortest path from the tail νe to d. The quadratic
term inside the integral in (4) stands for the cost component i), while the other
term, characterized by the congestion function

ϕe : [0, ρmax]→ [0,+∞[,

stands for the congestion cost component. Finally, the last addendum in (4) stands7

for cost component iii). In particular, note that, due to the presence of the charac-8

teristic functions, the integral part is paid as long as the agent stays on the edge e.9

The cost outside the integral acts as follows: 1) if at the final horizon T the agent10

is still in between the edge (not reached the head κe yet), then the final paid cost11

is the minimum distance in the graph from the tail νe of the actual edge to the12

destination d; 2) if at the final horizon T the agent is at the head of the edge κe13

(i.e. it has already traversed the whole edge), then the corresponding paid cost with14

respect to the actual edge e is zero. Anyway it will be paid as the minimum distance15

in the graph from the head vertex κe to the destination d just by interpreting that16

head as the tail νe′ of any other subsequent edge e′ hypothetically entered by the17

agent at time T .18

Throughout this paper we will assume the following basic assumptions to hold19

on the agents’ behavior:20

Assumptions 1.21

1. The throughput λ is C1([0, T ]) and λ(t) > 0 for all t ∈ [0, T ]. In particular,22

this implies that there exist 0 < λ ≤ λ < +∞ such that λ ≤ λ(t) ≤ λ for all23

t ∈ [0, T ].24

2. The initial mass of agents is null, i.e., ρ(0) = 0.25

3. For every e ∈ E , the congestion cost function ϕe is Lipschitz continuous.26

Moreover it only depends on the masses ρep and not on the state variable θe.27
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4. The network edges’ maximum mass is such that ρmax > λT ≥
∫ T

0
λ(s)ds and1

the flow capacity Ce > λ, ∀e ∈ E , i.e., neither the mass capacity nor the flow2

capacity of the edges can impede the agents’ movements even in the worst3

case scenario.4

5. When more than one optimal control is available, agents choose the smallest5

one.6

6. Agents have a bounded rationality in the sense that, even when they access7

to the full available information, the cognitive limitations of their minds, and8

the finite amount of time they have prevent them from using the pieces of9

information to their full extent when making their decisions.10

We remark that Assumption 1.2 means that no one is around the network at11

t = 0, while Assumption 1.3 implies that all agents in the same edge at the same12

instant equally suffer the same congestion. Moreover, Assumptions 1.1–1.3 imply13

the boundedness of ϕe, for all e ∈ E .14

The simplifying Assumption 1.4 will be partially dropped and discussed in the Sec-15

tion 4.16

Assumptions 1.5 and 1.6 models the human behavior of the agents. Assumptions 1.517

implies that agents, when they can choose, prefer to consume less energy than more,18

e.g. they prefer to move slower than faster. In particular, this is implemented in19

formula (17), and some other consideration on flow density may also justify it.20

Assumptions 1.6 understands that agents typically have limited capabilities of fore-21

casting the evolution of a dynamic system and of optimizing their decisions. The22

consequence of this assumption are detailed in the rest of this subsection. Specif-23

ically, it will used both in the definition of the agents’ aggregate path preferences24

and in the computation of the agents flows (12).25

We assume that agents entering the network have access to the global information26

about the current congestion status of the network through the knowledge of the27

actual mass vector ρ. Then, they choose the path to follow on the basis of their28

appraisal of the costs of the different paths and on the observation of the decision29

of the agents that have preceded. Next, we formally introduce this concept.30

The relative appeal of the different paths to the agents is modeled by a time-31

varying nonnegative (aggregate) path preferences vector z : [0, T ] → R|Γ|+ , whose32

generic element zp(t) represents the flow’s density of agents entering path p at the33

origin o at time t. The vector z varies within the simplex34

Sλ(t) =

z ∈ R|Γ|+ :
∑
p∈Γ

zp(t) = λ(t)

 , (5)

where we recall that by λ(t) we denote the agents’ throughput at time t.35

The path preferences vector z(t) evolves over time as a function of the appraisal36

of the costs that the agents would pay along the different paths. The agents assess37

these costs in terms of the optimal controls that they would implement and assuming38

known the congestion level described by ρ. Specifically, the assessed cost for each39

path p ∈ Γ at time t is:40

Jp(t) =
∑

e∈E:e∈p
Je(t

p
e(t), u

e
p), (6)

where, for every e ∈ p, uep ∈ L1(0, T ) is the optimal control implemented along the41

edges by an agents who is in the path p (these controls are discussed in the following42
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subsection); tpe(t) is the time instant in which an agent, arriving in t in the origin o1

and following the path p, reaches νe using the controls uep. We write tpe(t) =∞ if an2

agent does not reach e within T and we define Je(∞, uep) = 0. This last definition is3

justified by the fact that the sum (6) must involve non-null costs only for the edges4

that an agent actually reaches. Indeed, (4) imposes, that at each time s ∈ [t, T ], an5

agent pays some costs that are function only of: 1) the edge e the agent is currently6

on; 2) the position of the edge e on the agent’s path p to the destination vertex. In7

particular, the last term of (4) makes an agent pay an extra cost depending on the8

last reached/not fully traversed edge e if the agent cannot get the destination by9

time T . This extra cost is proportional to the minimal length in the network from10

the tail νe to the destination d.11

We also assume that information on the congestion of the network provided to12

the agents may be inexact, so that they assess a path p having a minimum cost13

with probability e−βJ
p(t)/

∑
p̂∈Γ e

−βJ p̂(t), where β > 0 is a fixed noise parameter.14

Hence, the fraction of agents entering the network at time t that would consider a15

path p having minimum cost is16

F pβ (t) = λ(t)
e−βJ

p(t)∑
p̂∈Γ e

−βJ p̂(t)
. (7)

Note that, when β tends to 0, then F pβ (t) tends to λ(t)/|Γ|, that is, agents consider17

all the paths equivalent. Differently, when β tends to infinite the agents have the18

possibility of surely determining the exact costs of the paths and indeed F pβ (t) tends19

to 0 for all p, except for the path minimum cost, for which it tends to λ(t).20

Hereinafter, we denote by Fβ(t) the vector {F pβ (t) : p ∈ Γ} and by J(t) = {Jp(t) :21

p ∈ Γ} the vector of costs on all the paths p ∈ Γ.22

Agents make their final decision on the path to choose comparing the value of23

Fβ(t) with the choice of the agents that have preceded them. Specifically, we assume24

that they correct the difference z(t)−Fβ(t) with a proportional control, as described25

by the following equation:26

ż(t)− Ḟβ(t) = −η
(
z(t)− Fβ(t)

)
, z(0) = z0, (8)

where, the parameter η > 0 can be interpreted as the rate at which the path prefer-27

ences are updated. In other words, equation (8) says that the bounded rationality of28

the agents makes them, on the one side, like the idea to split as indicated by Fβ ; on29

the other side, prefer not to stray from previous agents’ decisions. We remark that30

the dynamics described by (8) makes z(t) satisfies constraint (5) for all t ∈]0, T ],31

whenever the same happens for z0.32

Remark 1. Equation (8) can be seen as a generalization of the so called noisy33

best response dynamics (see e.g., [13, 28]) and such generalization is needed be-34

cause of the non-constancy of λ. While with the noisy best response dynamics, the35

agents update their path preferences comparing the difference between the noisy36

best response function and their current path preferences, in (8) the agents acts in37

a way to control the error between the answer to the global information about the38

actual congestion status and the path preferences of agents who previously entered39

the network. Another possible generalization of the noisy best response dynamics,40

when λ varies over time, is the one given in [5].41

The path preferences vector z turns then useful, as in [28], to define, for every42

t ∈ [0, T ] the local decision function G[t] : Sλ(t) → RΞ
+, which characterizes the43
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fractions of agents choosing each outward directed edge e ∈ p, p ∈ Γ when traversing1

a non destination vertex v. Actually, in this paper, we are interesting only on the2

first three component of this functions, (e1, p1), (e1, p3), (e2, p2), which are relative3

to the two edges e1, e2 outgoing from the origin o (see Figure 1). We restrict our4

attention to these three components since once the path is chosen in the origin, in5

the following non-destination vertices the agents get split according such a choice.6

Hence, we define the first three component of G[t] and fix the others equal to zero7

as follows:8

G[t]
e
p(z) =


zp∑
p̂∈Γ zp̂

for e ∈ {e1, e2}, p 3 e,

0 for e ∈ {e3, e4, e5}, p 3 e.
(9)

Note that in (9), for every t ∈ [0, T ] and for every z ∈ Sλ(t), it is
∑
p̂∈Γ zp̂ =9

λ(t)≥ λ > 0, because of (5) and Assumption 1.1. Hence, for every t ∈ [0, T ], G[t] is a10

continuous function defined over the compact set Sλ(t), and so uniformly continuous.11

Definition (9) allows to write the equation that describes mass conservation, for12

every non-destination vertex v and outward directed edge e ∈ p, p ∈ Γ , as:13

ρ̇(t) = H(f(t), z(t); t) , ρ(0) = ρ0, (10)

where the flow t 7→ f(t) = (fep (t))ep ∈
(∏

e∈p[0, Ce]
)
p

is defined next, t 7→ z(t) =14

(zp(t))p ∈ Sλ(t) is the solution of (8), and H :
∏
e∈p[0, Ce]× Sλ(t) → RΞ is defined,15

for every t ∈ [0, T ], by16

He
p(f(t), z(t); t) :=

(
λ(t)G[t]ep(z(t)) + fprecp(e)

p (t)

)
− fep (t) , ∀ p ∈ Γ, e ∈ p, (11)

with precp(e) the function that returns the edge that precedes e on the path p.
Each component fep (t) of the flow f(t) represents the outgoing flow from the edge
e at time t. Given Assumption 1.6, agents assess the outgoing flow assuming a
minimal length of the traverse time interval, k ∈]0, T ], working for each edge e ∈ E .
Specifically, k is what the agents assess as the minimal length of a time interval such
that to cross the edge in less time is certainly non-optimal, as the traversing cost
would be for sure greater than the cost of non-traversing (i.e. of stopping their run
there), given by the disappointment of not being able to reach the destination d at
time T . Similarly, k is also what the agents assess as the maximum time such that
for any t ∈ [T − k, T ] the optimal control uep(t) is certainly null. In other words, for
t ∈ [T − k, T ], the agents think that it is not convenient to traverse the edge, as the
cost of running in the edge to reach d at T is for sure greater than the cost of the
disappointment of not being able to reach d. Actually, such a value k > 0 can be
a-priori evaluated by the data of the problem. Then, we write the outgoing flows
as:

fep (t) =


0 if t ∈ [0, k],

λ(t− k)G[t− k]ep(z(t− k))sign(uep[t− k]) if t ∈ [k, T ],

for e ∈ {e1, e2}, p 3 e,
(12a)

fep (t) =


0 if t ∈ [0, k],

f
precp(e)
p (t− k)sign(uep[t− k]) if t ∈ [k, T ],

for e ∈ {e3, e4, e5}, p 3 e,
(12b)
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where uep[t− k] ≥ 0 is the constant optimal control implemented by an agent that,1

following path p, enters the edge e at time t − k, and sign(ξ) = 1 if ξ > 0 and2

sign(ξ) = 0 if ξ = 0.3

Remark 2. Conditions (12), coherently with Assumption 1.6, model the outgoing4

flows fep (t) as possibly estimated by an agent entering e at time t− k that assumes5

that all the other agents that are currently present on e and that are following the6

same path p, are implementing the same controls uep[t − k], as itself. Hereinafter,7

the flows (12) are sometimes called “estimated flows”. Of course, a more precise8

formulation of them should consider the actual value of the control (and not only9

their sign) and estimate the real traverse time (something similar in this direction is10

made in [4]). Similarly, the mass ρ that satisfies (10) may be more precisely defined11

in order to represent the real dynamics of the agents. Anyway, such estimated flows12

and mass evolution may be also seen as an approximation for the elaboration in real13

time of the information that a possible network manager has to implement in order14

to send them to the agents. The study of the real discrepancy of such estimated15

flows and mass evolution form the actual ones may be the subject of future works.16

However, note that the estimated flows fep (12), when implemented in (10), make17

the principle of mass conservation satisfied that is, for example when ρ0 ≡ 0, the18

actual total mass present in the networks is the mass entered through the origin:19 ∑
e∈E

∑
p∈Γ:e∈p

ρep(t) =

∫ t

0

λ(s) ds ∀ t ∈ [0, T ]. (13)

Equality (13) comes from the following balance equality, easily checked edge by20

edge, and here reported only for e ∈ {e1, e2} and p 3 e;21 ∫ t
e
p

0

λ(s)G[s]ep(z(s))ds =

∫ T

0

fep (s)ds, (14)

where t
e
p = sup{t ∈ [0, T ] : uep[t] > 0}. The balance in (14) says that whatever starts22

to traverse the edge will flow outside of the edge from the other side and vice-versa:23

the mass is conserved. Observe that (see next points i)–iii)), it is uep[t] > 0 for t < t
e
p24

and uep[t] = 0 for t > t
e
p. We also have t

e
p + k ≤ T .25

Moreover, by (10)–(12), and by Assumption 1.1, we have that any solution ρ of26

(10) is Lipschitz continuous with Lipschitz constant L = 3λ, independently on the27

optimal control u, on the initial value ρ0, and the costs J .28

Finally, let us observe that (10)–(12) do not preclude the possibility that agents29

accumulate at the beginning of an edge e, i.e., on the vertex νe. This situation may30

occur, when the optimal control is uep = 0, since the corresponding outflow fep = 0.31

2.3. Value functions and optimal controls. Given a vector mass concentration32

ρ(·), for each p ∈ Γ, e ∈ p and t ∈ [0, T ], we define the following quantities,33

representing the optimum that an agent, following path p and entering edge e at34

time t, may get ∀ p ∈ Γ:35

V ep (t) =


inf

ue
p∈L

1(0,T )

{∫ T∧τ

t

(
(uep(s))

2

2
+ ϕe

( ∑
p̂∈Γ|e∈p̂

ρep̂(s)

))
ds+ Fep(T ∧ τ)

}
if e ∈ p \ {last(p)},

inf
ue
p∈L

1(0,T )
{Je(t, uep)} if e = last(p),

(15)
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where τ is the first exit time from the closed interval [0, `e], last(p) is a function1

that returns the last edge of a path p and Fep(T ∧ τ) is given by2

Fep(T ∧ τ) =


V
succp(e)
p (τ) if τ < T,

α
∑
j∈pe

`j if τ > T,

min
{
α
∑
j∈pe

`j , V
succp(e)
p (τ)

}
if τ = T,

(16)

with succp(e) the function which returns the edge that follows e on path p, for3

e ∈ p \ {last(p)}. Obviously for every value of ρ we may have different V ep (·) (15),4

but here we do not display this dependence on ρ to simplify the notation.5

The quantities in (15) are recursively and backwardly defined, starting from the6

ones corresponding to the last edges ending in the destination vertex d. We call7

them, with a little abuse of terminology, value functions. Note that such a recur-8

sive definition is valid as the absence of oriented cycles in the network G prevents9

self-referring. The value functions will turn useful in the next section, where we10

identify a mean field equilibrium. Note that (16) is a non usual exit cost of (15)11

and it may be discontinuous in τ . This fact implies the possible discontinuity of12

the Hamiltonian associated to the value function and/or of the boundary data. Al-13

though the discontinuous HJB equations have been studied since the eighties (see14

e.g., [6, 24]), in this paper instead of considering such equations, we will write, as15

in [4], optimality conditions in terms of the value functions for the exit-time/exit16

cost problem on each edge. The value functions (15) do not depend on the position17

θe of the agents on the edge e ∈ p, because, as we are going to show, the optimal18

behavior of the agents is, for any traversed edge, to implement a constant control19

uep ≥ 0 chosen when they enter the edges. The main reason for that is the fact that20

the congestion functions ϕe depend on the total mass actually present in the edge21

and not on the state position of the single agent. Indeed, consider an agent that,22

in an edge e, moves from the tail νe at time t′ and reaches the vertex κe at time t′′.23

Moreover, as we are going to do in the next section, we can suppose the mass con-24

centration ρ as given. The component
∫ t′′
t′
ϕe(
∑
p̂∈Γ|e∈p̂ ρ

e
p̂(s))ds of the cost (4) can25

be then assumed as given, whenever the agent in νe at time t′ decides to reach κe26

at time t′′.27

Let us now enumerate some facts that, under our hypotheses, hold for the optimal28

behavior of the agents.29

i) When t′′ is chosen (which means that the agent has decided to traverse the30

edge), the agent has only to minimize the component31

1
2

∫ t′′
t′

(uep(s))
2ds of the cost Je in (15), and this happens when the control is32

chosen constant and equal to the constant value uep = `e
t′′−t′ . Also note that,33

with such a choice, in (15), it is τ = t′′.34

ii) The previous point i) also excludes the possibility that an optimally behaving35

agent remains at νe (i.e, chooses uep = 0) for a positive time interval and36

then moves later; or, similarly, that it stops and stay still in a intermediate37

point of the edge for a positive time interval; or that the agent goes back38

and forth along edge e. Hence, an optimal control uep is always constant and39

non-negative.40
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iii) From the previous points i)–ii), similarly arguing as in [4], we get that op-1

timally behaving agents cannot accumulate on points strictly internal to the2

edge, and moreover they also cannot get over each other along the edge be-3

cause it is impossible that two optimally behaving agents, moving from νe at4

time t′1 < t′2 respectively, reaches κe at time t′′2 < t′′1 , respectively. These facts5

come from dynamic programming arguments, taking account that any control6

which is not constant when crossing the edge cannot be optimal. In particular,7

this also implies that whenever at time t an optimal choice is uep = 0 (i.e. to8

not move) for which the arrival time is +∞, then uep = 0 will be the unique9

optimal control for all subsequent instants t′ ≥ t and hence there will be no10

controls’ multiplicity from this t onwards. Also note that, by the previous11

considerations, each flow in (12) is continuous at any time t where it is not12

null, and hence, at any tail node, the incoming flow from the previous edge is13

continuous in time whenever it is not null.14

iv) For an agent in νe such that κe = d (i.e. it stands on the tail of the last15

edge of the chosen path p), it is certainly not optimal to reach d before T and16

wait there for a positive time length as, in any case, that agent would pay the17

congestion costs in d for this interval (see the cost (4).18

v) The following situation is instead possible only for t′′ = T : two optimally19

behaving agents, moving from νe at time t′1 < t′2 respectively, reaches κe at20

the same time t′′. Indeed, since the optimal control is necessarily constant21

(point i)), then any agent that at the time t starts to traverse an edge e as22

part of a path p, has only to optimally choose the arrival time τ to the vertex23

of the edge and implement the constant control uep ≡ `e/(τ − t) (see the terms24

minimized over τ in (21), (23), (25)). Hence if τ = t′′ < T , then being τ = t′′ a25

minimizing value internal to ]t, T [, differentiating and imposing the derivatives26

equal to zero, we get a contradiction. In [4] (Appendix A point 1) the case27

when the value functions V are not derivable is also treated.28

Note that in this case an accumulation of agents (Dirac mass) may appear in29

κe, but the time t′′ = T is the final horizon and hence the game is immediately30

over and that Dirac mass does not flow.31

vi) What is instead formally possible is that for an agent moving from νe at time
t′, the choices of reaching κe at two times t′′1 < t′′2 are both optimal. In this
case, for similar considerations as before, only agents entering the edge at time
t′ may reach κe at a time t′′ ∈ [t′′1 , t

′′
2 ]. Hence, in the interval [t′′1 , t

′′
2 ], actually

no density of agents arrives (the incoming flow f is continuous in time (see
point iii) above) and the quantity f(t′) > 0 should be spread on [t′′1 , t

′′
2 ]) and

by virtue of similar reasonings to those made in [4] (Appendix A point 2) we
can assume, without restriction, that the agents moving from νe at time t′ all
arrive in κe at time t′′2 . More generally, in accordance with Assumption 1.5
(see also point i) for the necessary shape of the possible optimal control), for
every t ∈ [0, T ], for every edge e and path p containing e, we define

τ∗e,p(t) = max

{
τ ∈]t, T ] : uep ≡

`e
τ − t

is optimal

}

and then, without restriction, we assume that the optimal control implemented32

by an agent that, at time t, starts to traverse the edge e as part of the path33
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p is1

uep ≡
`e

τ∗e,p(t)− t
, (17)

when
{
τ ∈]t, T ] : uep ≡ `e

τ−t is optimal
}
6= ∅, and uep ≡ 0 otherwise (which2

may corresponds to τ∗e,p(t) = +∞). Note that, once t is fixed, the control3

in (17) is constant. Hence, form now on, we will denote by uep[t] the optimal4

constant control chosen by an agent that stands in νe at time t when following5

the path p.6

Remark 3. By the previous points i)–vi), the function t 7→ τ∗e,p(t), whenever it7

is finite, is increasing. Hence it is continuous almost everywhere and moreover,8

if t is a continuity point, then τ∗e,p(t) is the unique possible optimal arrival time.9

However, even where it is not continuous, τ∗e,p(t) is anyway uniquely defined, and10

so the corresponding constant optimal control chosen as in (17) can be considered11

as unique.12

Hereinafter, we denote by

u[·] = {uep[·] : e ∈ p, p ∈ Γ, uep[·] ≥ 0},

the controls’ vector. Moreover, we do not display the argument
∑
p̂∈Γ|e∈p̂ ρ

e
p̂ of ϕe,13

whenever it is not strictly necessary.14

Consider now an agent standing at νe at time t < T , and hence at θe(t) = 0, where15

κe = d, i.e (looking to the Figure 1) for the pairs (e, p) ∈ {(e4, p1), (e5, p2), (e5, p3)}.16

It has two possible choices: either staying at νe indefinitely or moving to reach17

κe = d exactly at time T . Accordingly, the candidate constant optimal controls to18

be chosen at the time t are19

uep,1[t] ≡0, uep,2[t] ≡ `e
T − t

. (18)

Hence, given the cost functional (4), we derive20

V ep (t) = min

{
α`e,

1

2

(`e)
2

T − t

}
+

∫ T

t

ϕe ds. (19)

An agent standing at νe3 at time t ∈ [0, T ] has two possible choices: staying in21

νe3 or moving to reach κe3 at some (optimal) instants τ ∈]t, T ]. Hence, we obtain22

that the agent has to choose between the following two kinds of candidate constant23

optimal controls:24

ue3p3,1[t] ≡ 0, ue3p3,2[t] ≡ `e3
τ − t

, (20)

whose associated value function is:25

V e3p3 (t) = min

{
α (`e3 + `e5) +

∫ T

t

ϕe3 ds, inf
τ∈]t,T ]

{
1

2

(`e3)2

τ − t
+

∫ τ

t

ϕe3 ds+ V e5p3 (τ)

}}
(21)

An agent standing at νe1 at time t and following a path p ∈ {p1, p3} may choose26

between staying in νe1 or reaching κe1 at a certain τ ∈]t, T ]. Hence, the candidate27

constant optimal controls are:28

ue1p,1[t] ≡ 0, ue1p,2[t] ≡ `e1
τ − t

(22)
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whose associated value functions are:

V e1p1 (t) = min

{
α
(
`e1 + `e4

)
+

∫ T

t

ϕe1 ds, inf
τ∈]t,T ]

{
1

2

(`e1)2

τ − t
+

∫ τ

t

ϕe1 ds+ V e4p1 (τ)

}}
(23a)

V e1p3 (t) = min

{
α
(
`e1 + `e3 + `e5

)
+

∫ T

t

ϕe1 ds, (23b)

inf
τ∈]t,T ]

{
1

2

(`e1)2

τ − t
+

∫ τ

t

ϕe1 ds+ V e3p3 (τ)

}}
.

Analogous arguments hold for computing V e2p2 (t) when an agent is standing at1

νe2 . The candidate constant optimal controls are2

ue2p2,1[t] ≡ 0, ue2p2,2[t] ≡ `e2
τ − t

, (24)

whose associated value function is:3

V e2p2 (t) = min

{
α(`e2+`e5)+

∫ T

t

ϕe2 ds, inf
τ∈]t,T ]

{
1

2

(`e2)2

τ − t
+

∫ τ

t

ϕe2 ds+ V e5p2 (τ)}
}}

.

(25)

Remark 4. We remark that, the optimal controls described in (20), (22), (24)4

are detected, along with the possible arrival time τ , by the minimization process5

carried on in (21), (23), (25). Also, when ρ is given, the construction of the optimal6

controls may be performed backwardly, starting from the problem (19). Also note7

that, the minimization processes in τ are admissible because of the coercivity of the8

minimizing term when τ → t+.9

We now give in the following a result of Lipschitz continuity of the value functions10

defined above that will turn useful in the next section.11

Proposition 2.1. Suppose that ρ is given continuous and that Assumptions 1 hold.12

Then, every value function V ep : [0, T ] → R, for all e ∈ p, p ∈ Γ defined by (19)-13

(25) is: Lipschitz continuous, with Lipschitz constant independent of ρ; bounded14

independently on ρ; continuous with respect to the mass density ρ (via the congestion15

functions ϕ), i.e, whenever ρn → ρ uniformly, then V e,np → V ep uniformly in [0, T ].16

Proof. Assumptions 1 implies that
∑
p̂∈Γ|e∈p̂ ρ

e
p̂≤ ρmax is bounded , independently17

from controls, paths and edges, then there exists a positive constant k1 such that,18

for every 0 ≤ t1 ≤ t2 ≤ T , it always holds:19 ∣∣∣∣∣∣
∫ t2

t1

ϕe

 ∑
p̂∈Γ|e∈p̂

ρep̂(s)

 ds

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ϕe

 ∑
p̂∈Γ|e∈p̂

ρep̂(·)

∥∥∥∥∥∥
∞

|t2 − t1| ≤ k1 |t2 − t1| ≤ k1T.

(26)
Now, take e as the last edge of the path p (i.e. looking at Figure 1, (e, p) ∈
{(e4, p1), (e5, p2), (e5, p3)}), and consider V ep as defined in (19). It is evident that it
is of the form

V ep (t) =
1

2

(`e)
2

T − t
+

∫ T

t

ϕeds,

only if T −t ≥ `e/(2α), that is t ≤ T −`e/(2α) ≤ T −h with h > 0 independent on p20

and its last edge e, on ρ and on controls. Using also (26), we then get the Lipschitz21
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continuity of all value functions V ep in (19), with the same Lipschitz constant. We1

also easily get the equiboundedness of those V ep .2

Proceeding backwards, let us consider V e3p3 (t) given by (21). We concentrate on
the term minimized with respect to τ ∈]t, T ] in (21). Again, as before (see also
Remark 4), there exists h > 0 independent on ρ, on controls and on t ∈ [0, T ]
such that, for any t, whenever V e3p3 (t) is defined as that minimized term, then the
minimizing values τ belong to [t+h, T ] (and V e3p3 (t) is certainly defined as the other
term in the exterior minimization in (21) when t + h > T ). Hence, for every t, we
consider the function

ψt : [t+ h, T ]→ R, τ 7→ 1

2

(`e3)2

τ − t
+

∫ τ

t

ϕe3ds+ V e5p3 (τ).

Note that ψt is Lipschitz continuous for every t, with Lipschitz constant M > 0
independent on t and on ρ (because so is V e5p3 from previous considerations). For
0 ≤ t1 < t2 ≤ T , and for τ ∈ [t2 + h, T ], we get (see also (26)), again for M > 0
independent from all,∣∣ψt1(τ)− ψt2(τ)

∣∣ ≤ 1

2

∣∣∣∣ (`e3)2

τ − t1
− (`e3)2

τ − t2

∣∣∣∣+

∫ t2

t1

ϕe3ds

≤ 1

2

(`e3)2

h2
|t1 − t2|+ k1|t1 − t2| = M |t1 − t2|.

Let τ1, τ2 be two points of minimum for ψt1 and ψt2 respectively. We get

ψt1(τ1)− ψt2(τ2) ≤ ψt1(τ2)− ψt2(τ2) ≤M |t1 − t2|.

If τ1 ≥ t2 + h, we then similarly get

ψt2(τ2)− ψt1(τ1) ≤ ψt2(τ1)− ψt1(τ1) ≤M |t1 − t2|.

If instead, t1 + h ≤ τ1 < t2 + h, then we get

ψt2(τ2)− ψt1(τ1) = ψt2(τ2)± ψt2(t2 + h)± ψt1(t2 + h)− ψt1(τ1) ≤ 2M |t1 − t2|.

We then get the Lipschitz continuity of V e3p3 in (21), with Lipschitz constant inde-3

pendent on ρ.4

Arguing similarly, in a backward manner, one proves the Lipschitz continuity of5

the value functions in (23) and (25), with Lipschitz constant independent on ρ.6

Now, still proceeding backwardly, for a uniformly convergent sequence of mass7

densities ρn → ρ, we easily get that the corresponding value functions in (19)8

uniformly converge. From this, we obtain that the corresponding value functions in9

(21) and (23) pointwise converge. But they are also equibounded and equi-Lipschitz10

and so uniformly converge. We conclude proceeding backwardly in this way.11

Remark 5. An immediate consequence of Proposition 2.1 and of Assumption 1.112

is that F pβ (t) defined in (7) is bounded and Lipschitz continuous. Indeed, F pβ (t)13

is built considering the optimal cost Jp in (6) which is the “sum” of the value14

functions V ep (15) that by Proposition 2.1 are bounded and Lipschitz continuous.15

The Lipschitz continuity of F pβ (t) implies also the boundedness of its derivative16

Ḟ pβ (t) almost everywhere. Moreover, since the number of paths p is finite, we have17

the equiboundedness and the equi-Lipschitz continuous of F pβ (t).18
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3. Existence of a mean field equilibrium. In this section we prove the existence1

of a mean field equilibrium for ρ over the considered network G. Specifically, we2

proceed as follows.3

First, we let L(w) be the Lipschitz constant of a function w and we choose as a4

space to search for a fixed point:5

X =
{
w : [0, T ]→ [0, ρmax] : L(w) ≤ L̃, |w| ≤ ρmax

}Ξ

, (27)

the Cartesian product Ξ times of the space of Lipschitzian functions with Lipschitz6

constant not greater than L̃ and overall bounded by ρmax, where L̃ is a constant.7

Space X is convex and compact with respect to the uniform topology.8

Then, fixed the noisy parameter β > 0, we search for a fixed point of the function9

ψ : X → X, with ρ 7→ ρ′ = ψ(ρ) where ρ′ is obtained performing the following10

steps (see diagram in Fig. 2):11

i) given the mass ρ the optimal control u is derived through (19)-(25);12

ii) the optimal control u is used both to compute the flow vector f through (12)13

and to obtain the path preferences vector z through (8) by first computing14

the vector of costs J and thus the vector Fβ ;15

iii) the mass vector ρ′ is derived from f and z through (10) by first computing16

the vectors G through (9) and H through (11).17

ρ u J Fβ z G(z) H(f, z) ρ′

f

Figure 2. Fixed point scheme.

Note that a suitable constant L̃ exists such that the function ψ maps X into itself.18

Indeed, note that, by construction, ψ(ρ) must satisfy (10) and hence, by Remark19

2 and Assumption 1.4, the bound |ρ| ≤ ρmax is satisfied and, as Lipschitz constant20

we can take L̃ = 3λ.21

Definition 3.1. Let ψ the function described above. Then a mean field equilibrium22

is a total mass ρ ∈ X that satisfies ρ = ψ(ρ).23

Now we show that the function ψ is continuous so that Brouwer fixed-point24

theorem can be applied and a mean field equilibrium exists.25

Lemma 3.2. The function ψ : X → X is continuous.26

Proof. We show that for every sequence {ρn} ⊂ X and for every ρ ∈ X such that27

ρn → ρ uniformly, we get ψ(ρn)→ ψ(ρ) uniformly. We divide the proof into several28

steps.29

(1) Consider the value functions V e,np and V ep , for every e ∈ p, p ∈ Γ defined by30

(19),(21),(23),(25) and associated, respectively, to the choices of masses ρn and ρ31

in the congestion cost vector ϕ = {ϕe : e ∈ E}, where each component ϕe has as32

argument the corresponding component of ρn and ρ, respectively. By Proposition33

2.1 since ρn → ρ uniformly, then V e,np → V ep ∀ e ∈ p uniformly in [0, T ].34

For every fixed t, let un[t] and u[t] be the corresponding constant optimal controls35

for traversing at time t a given edge e in a given path p (here not displayed), with the36
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corresponding optimal arrival time τ∗n(t), τ∗(t) (see (17)). By compactness, there1

exists a real number ut such that, at least for a subsequence, un[t] → ut. By the2

convergence of the value functions, and consequently of the minimizing expressions3

(19),(21),(23),(25), we have that the constant ut is an optimal constant control for4

traversing, at time t, the edge e, as part of the path p, with the given limit mass5

ρ. By Remark 3, if t is a continuity point of τ∗(·), then the only optimal control6

for the limit problem is u[t] ≡ `e
τ∗(t)−t , and hence the limit is independent from the7

subsequence. Again by Remark 3, we then get that the sequence of optimal control8

functions un[·] almost everywhere converges to the limit optimal control u[·]. By9

the dominated convergence theorem they then converge in L1(0, T ).10

(2) Consider the functions F p,nβ and F pβ for every p ∈ Γ defined by (7) and

associated, respectively, to the optimal controls un[·] and u[·] introduced in the
point (1). By Remark 5 and since V e,np → V ep ∀ e ∈ p uniformly, it follows that

F p,nβ → F pβ (t)∀ p ∈ Γ uniformly. Let now {zn} and z be the sequence of path
preferences vectors and the path preferences vector induced, respectively, by Fnβ
and Fβ through (8). Note that the sequence zn is equibounded and equi-Lipschitz

continuous (since zn, Fnβ and Ḟnβ are bounded (see Remark 5)), hence, there exists

z̃ such that, at least along a subsequence, zn → z̃. Now using (8) for both zn and
z̃ we get

zn(t) = zn(0)− η
(∫ t

0

zn(s) ds−
∫ t

0

Fnβ (s) ds
)

+ Fnβ (t)− Fnβ (0), (28a)

z̃(t) = z̃(0)− η
(∫ t

0

z̃(s) ds−
∫ t

0

Fβ(s) ds
)

+ Fβ(t)− Fβ(0). (28b)

From the above considerations follows that the right hand side of (28a) converges11

to the right hand side of (28b). Hence, by the uniqueness of the solution of (8) one12

gets that z̃(t) = z(t)∀ t ∈ [0, T ] and zn(t)→ z(t). Say that, since the function G[t]13

is uniformly continuous then G[t](zn(t)) converges to G[t](z(t)).14

(3) Taking into account the optimal controls un[·] and u[·] introduced in the15

point (1) such that un[·] → u[·] in L1(0, T ) and almost everywhere, and given the16

throughput λ for every t ∈ [0, T ], we can compute the corresponding flows fn and17

f as in (12). We now want to prove that fn → f in L1(0, T ) for which it is enough18

to show that sign(un[·])→ sign(u[·]) in L1(0, T ).19

By the optimization procedure (18)–(25) follows that, each agent when enters an20

edge e decides either to stop or to keep a constant control strictly grater than zero,21

which allows the agent to reach the other extreme of the edge within time T . Then,22

any control u[·] > 0 is lower bounded by a constant `e
T > 0 (for every edge e in a23

given path p). As a consequence if un[·] → u[·] > 0, we have u[·] ≥ `e
T > 0. Hence,24

sign(un[·])→ sign(u[·]) = 1.25

Differently, if un[·] → u[·] = 0, by the limit definition follows that from a certain26

n onward un[·] < `e
T and hence, by its optimality, un[·] = 0 which in turn implies27

that sign(un[·])→ sign(u[·]) = 0. Therefore we have proven the almost everywhere28

convergence of signs from which, by the dominated convergence, their convergence29

in L1(0, T ), and hence the one of the flows.30
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Then we can compute (edge by edge) ψ(ρn) and ψ(ρ) integrating the mass con-
servation (10):

ψ(ρn(t)) = ρn(0) +

∫ t

0

(λ(s)G[s](zn(s)) + fprec,n(s)) ds−
∫ t

0

fn(s) ds; (29a)

ψ(ρ(t)) = ρ(0) +

∫ t

0

(λ(s)G[s](z(s)) + fprec(s)) ds−
∫ t

0

f(s) ds. (29b)

Now, using all the previous arguments in the points (1), (2) and (3) we get that1

the right hand side of (29a) converges to the right hand side of (29b), from which2

ψ(ρn(t))→ ψ(ρ(t)) for every t ∈ [0, T ], and also uniformly, being them equibounded3

and equi-Lipschitz because belonging to X. Hence, by Brouwer fixed point theorem,4

the map ρ→ ψ(ρ) has a fixed point which is the mean field equilibrium.5

4. Mass-depending bounded controls. In the previous sections we have as-6

sumed that the set of admissible values for the controls u was the whole real line7

R, even if, from an optimization argument, the really implemented controls were8

non-negative and bounded. This fact implied that, at least formally, each agent has9

at disposal any possible values for the control, which we recall can be interpreted10

as scalar velocity, even if the edge is very congested. From a modeling point of11

view, this may be not satisfying. Hence, here we assume that there is bound on the12

set of admissible controls, and that such a bound somehow depends on the actual13

values of the mass concentration ρe on the edge e, coherently with the feature of our14

model, where any agent in the edge e at time t suffers the same congestion ρe(t).15

Hence, for every edge e, we consider a function Ue :]0,+∞[→ [0,+∞[, such that16

i) Ue is continuous and decreasing and strictly positive;17

ii) limξ→0+ Ue(ξ) = +∞, limξ→+∞ Ue(ξ) = 0.18

We then assume that, at any time t, an agent in the edge e has at disposal the19

bounded interval [0, Ue(ρe(t))], as admissible values for controls. That is, if in the20

time interval [t1, t2], an agent is in the edge e, then it can only use measurable21

controls such that22

u(s) ∈ [0, Ue(ρe(s))] a.e. s ∈ [t1, t2]. (30)

Note that, without loosing generality, we already restrict ourselves to non-negative23

controls: indeed, also in this case, by an optimization point of view, the use of24

negative controls (i.e. to move back on the edge) will be certainly not optimal.25

We now suppose that the continuous evolution of the mass distribution t 7→
ρ(t) is given (as in the fixed point procedure). In the previous sections, again
by optimization arguments, see (20)–(25), the actual optimization parameter for
an agent entering the edge e at time t was just τ > t, the arrival time on the
vertex of the edge, and then, when moving was optimal, the optimal control to be
implemented was the constant one u ≡ `e/(τ−t). Hence, for every edge e and every
time t ∈ [0, T ], we define

τ(t, e, ρe) = τ > t such that

∫ τ

t

Ue(ρe(s))ds = `e

with the convention that τ(t, e, ρe) = +∞ when such τ > t does not exist in [t, T ].26

Hence τ(t, e, ρe), when finite, represents the minimal arrival time on κe for an agent27

entering the edge e at time t and using controls satisfying the constraint (30) in28

[t, τ(t, e, ρe)[, whereas, when it is infinite, it means that there is no possibility to29

reach κe by the final time T .30
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Note that, restricting ourselves to the values t such that τ(t, e, ρe) < +∞, the
function t 7→ τ(t, e, ρe) is strictly increasing. Indeed, if for some t1 < t2 we have
τ(t2, e, ρ

e) ≤ τ(t1, e, ρ
e), then we would have∫ t2

t1

Ue(ρe(s))ds+

∫ τ(t1,e,ρ
e)

τ(t2,e,ρe)

Ue(ρe(s))ds = 0,

which is a contradiction due to the strict positivity of Ue.1

Now, let us note that, even if τ ≥ τ(t, e, ρe), then the corresponding constant2

velocity u ≡ `e/(τ − t) of traversing the edge does not necessarily satisfy the con-3

straint (30). On the other side, we would like to recover, in this constraint case4

too, many of the results of the previous sections, in particular all the properties5

of the optimal control (see i)–vi) Section 2.3) coming from their constancy when6

traversing the edge. To this end, we relax our constrained optimal control problem7

(with constraint given by (30)) in the following one:8

Constraint on the arrival time: every agent that enters the edge e at time t ≥ 09

optimizes (20)–(25) among τ ∈ [τ(t, e, ρe),+∞]. That is, it can implement any10

measurable control (not necessarily satisfying the constraint (30)), provided that it11

satisfies the constraint on the arrival time on κe: the arrival time must be not less12

than τ(t, e, ρe).13

In order to state such a new mean field game problem with lower bound on14

the arrival time, instead of starting from the existence of the function U giving15

the velocity-constraint (30), we start from the existence of a given arrival-time-16

constraint function with suitable properties.17

Assumption 4.1. For every edge e ∈ E there exists a function

τ(·, e, ·) : [0, T ]× C0([0, T ],R+)→ [0,+∞[, (t, ρe) 7→ τ(t, e, ρe)

such that:18

a) it is Lipschitz-continuous (with C0([0, T ],R+) endowed by the uniform topol-19

ogy);20

b) τ(t, e, ρe) > t ∀ (t, ρe);21

c) it is strictly increasing in t, for every ρe fixed;22

d) it is strictly increasing in ρe for every fixed t, that is

ρe1 ≤ ρe2 in [t, τ(t, e, ρe1)], ∃ s ∈ [t, τ(t, e, ρe1)] such that ρe1(s) < ρe2(s) =⇒
τ(t, e, ρe1) < τ(t, e, ρe2).

Hence, in this setting, the mean field game problem is as the one in the previous
sections, with the only difference that in the minimization of the costs (4), every
agent entering the edge e at time t ≥ 0 implements controls from the set

U(t, e, ρe) =
{
u ∈ L1(0, T ) : the corresponding arrival time is τ ≥ τ(t, e, ρe)

}
,

instead of controls from the whole space L1(0, T ).23

In order to apply to this setting all the argumentation and calculations of the24

previous sections, we have to test the validity of the points i)–vi) of Section 2.3,25

and the Lipschitz continuity of the value functions (19)–(25) where, in this case,26

the minimization in τ are, instead of for τ ∈]t, T ], for τ ∈ [τ(t, e, ρe), T ]. In what27

follows, we tacitly refer to those points.28

29

i)–ii) For every τ ≥ τ(t, e, ρe) the constant control `e/(τ−t) belongs to U(t, e, ρe)30

with arrival time τ , and hence, for the same reasons it is the minimizing one. Also31
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iii) and iv) come again from the same considerations as in the Section 2.3.1

2

v) Here, we observe that, since t 7→ τ(t, e, ρe) is strictly increasing, then, if3

for t1 < t2 we have the same optimizing arrival time τ , it must be τ(t1, e, ρ
e) <4

τ(t2, e, ρ
e) ≤ τ ≤ T . Taking t1 < t′ < t2, by the points iii), agents starting at time t′5

must have the same arrival time τ . Hence we get τ(t1, e, ρ
e) < τ(t′, e, ρe) < τ ≤ T .6

If then we assume τ < T , we then get a contradiction because τ , being and interior7

minimizing point of the costs of agents starting at t1 as well as at t′, is a stationary8

point and we conclude using the first order condition (see [4], where the possible9

non-differentiability of V is also taken into account).10

11

vi) This point is similarly valid in this constrained case.12

13

For the Lipschitz continuity of the value functions V ep (19)–(25), we just observe14

that now the minimization is for τ ∈ [τ(t, e, ρe), T ] but, as done in the proof of15

Proposition 2.1, the minimizing τ of the function ψt still belongs to [t+ h, T ].16

Finally, we observe that in the definition of the flows (12), k is defined as a
quantity such that to start to traverse the edge at a time after T −k is certainly not
convenient. However in that definition it has also the meaning of a (approximately
estimated) mean minimal traversing time. Here, in this constrained situation, it
would be more precise to take account also of the minimal traversing time due to
the constraint τ(t, e, ρe). Hence we define the mean minimal traversing time as

τ(e, ρe) =
1

T

∫ T

0

(τ(s, e, ρe)− s) ds

and replace k in (12) by k̃ = max{k, τ(e, ρe)} (which is sufficiently less than T if17

T is large, otherwise we can suitably cut it). Note that, by our hypotheses, the18

function ρe 7→ τ(e, ρe) is continuous with respect to the uniform convergence and19

hence we can still apply all the fixed point machinery as in the previous section.20

Remark 6. The constrained case here discussed may be also a model to take21

account for a possible upper bound on the mass because it is concerned with a22

bound on the admissible velocity, which is decreasing with the mass concentration23

on the edge. In particular, looking to the function U of the constraint (30), if24

U(ρ) = 0 for ρ ≥ ρmax (the maximal mass), then the only admissible velocity is25

u = 0 and so no agents can move: the edge is fully congested. Actually, here we have26

assumed that U(ρ) > 0 for all ρ, and this fact was useful, for example, to prove that27

t 7→ τ(t, e, ρe) is strictly increasing. However, we somehow get that fully congested28

property when U(ρmax) is sufficiently small in such a way that, if ρe ∼ ρmax in the29

time interval [t, T ], then τ(t, e, ρe) > T and so the agents do not move.30

5. Conclusions. In this paper we have modelled the agents flows over a trans-31

portation network via a mean field game model which also takes into account the32

agents’ preferences about the paths choice. We proved the existence of a mean33

field equilibrium, and also addressed the case where the set of admissible controls34

depends on the actual congestion of the edge.35

Future research may be to study the behaviour of the mean field equilibrium by36

varying the noise to which the information on the congestion is subject and also37

to compare our mean field model with the Wardrop one, with also some possible38
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numerical simulations. Also the effects of the only estimated flows assumption (12)1

on the discrepancy from a real model is worth analysing.2

REFERENCES3

[1] Y. Achdou, F. Camilli and I. Capuzzo Dolcetta Mean field games: numerical methods for the4

planning problem, SIAM J. Control Optim., 50 (2012), 77–109.5

[2] F. Bagagiolo, D. Bauso, R. Maggistro and M. Zoppello, Game theoretic decentralized feedback6

controls in Markov jump processes, J Optim. Theory Appl., 173 (2017), 704–726.7

[3] F. Bagagiolo and R. Pesenti, Non-memoryless pedestrian flow in a crowded environment with8

target sets, in Advances in Dynamic and Mean Field Games. Ann. Internat. Soc. Dynam.9

Games, 15 (eds. J. Apaloo and B. Viscolani), Birkhäuser, Cham, (2017), 3–25.10
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