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Abstract—In the field of exploration strategies for teams of
autonomous vehicles, one relevant set of solutions build upon the
so called foraging algorithms, which mimic the foraging strategies
of animals and insects, such as bugs and/or ant colonies. In
the literature, it is most often observed that the choice of the
foraging strategy to be applied for a specific swarm robotics
problem does not rely on quantitative and objective selection
criteria but, rather, it is guided solely by qualitative guidelines.
Hence, this paper proposes a quantitative review of four
popular foraging strategies, namely solitary foraging, behavioural
matching, stigmergical foraging and signalling. A quantitative
evaluation of their performance in terms of collectible or goal
acquisition in different operating scenarios is proposed together
with a comparison of their computation times when the size
of the swarm changes. The comparative simulations presented
to provide evidence of the different approaches efficiency have
been implemented with the ARGoS simulation tool.

I. INTRODUCTION

Swarm robotics is becoming more and more popular in
modern applications, ranging from search and rescue [14],
patrolling [8] or detection of points-of-interest [4]. The
main advantages of multi-agent applications are the intrinsic
robustness of the solution and the high performance [1].
Foraging algorithms are biologically inspired and are gaining
popularity in robotics. Many real-world tasks, such as
exploration, mining or search and rescue, are application
examples for foraging approaches.

The most simple foraging approach considers individuals.
The bottom line, which is a directly proved proposition, is that
at least some individuals must have narrower niches than the
overall population niche [7]. In individual foraging, indeed,
an individual searches for the goal resources (i.e. food for
animals and insects) and plans an optimal path trajectory
to the goal from the starting position. Individual foraging is
classified into solitary foraging and behavioural matching. In
solitary foraging the goal is to collect a certain number of small
resources which are scattered in the individual surroundings.
The goal defined generally for the navigational purposes is
a path to the collectible objects, while the detection of such
collectible objects is usually related to specific features given
upfront (e.g. size, weight, distance, etc). As a result, the
determined path is used to guide the agent back to the starting
point or to the check region [10].

Behavioural matching, instead, comprises an additional
step with respect to the solitary foraging. In this case,
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the individuals have the opportunity to interact with the
other agents. In this case, the agent that has found the
resource may share the information about the path towards
the resource location or share with the other individuals
the resource. It is not necessary for the following agent to
engage or communicate with the forager in order to share the
knowledge [10].

Opposite to the individual foraging, in the recruited
individual foraging an individual gathers resources either for
itself or its whole group. Unlike behavioural matching, in
this approach the whole group gain collectively a benefit
from an activity completed by an individual. For this class
of approaches, in stigmergy individuals use their surroundings
in order to store information. These individuals are capable of
laying pheromone trails where they found possible resources
that allow other group members to follow the same path. The
probability of selecting the same path increases with the trail
strength, which on its turn is usually directly proportional to
the number of agents following the path. Resources for these
agents are supposed to be in patches and ask for a sufficiently
large group to be manipulated or used. Apart from navigation
towards a goal, group members also use pheromones to
rapidly recruit random individuals for a raid. Hence, the inputs
provided to the group members are “Navigation and resource
recognition” as well as “artificial pheromone recognition and
understanding” [10, [7].

Another type of recruitment strategy involves direct
signalling between individuals. Unlike stigmergy, signalling
requires both the signaller and the receiver to be present at the
same time, but the environment no longer needs to be altered
by trails [2]. In some cases, such a direct contact is even used
to enforce pheromone trail following. Similarly to stigmergy,
a richer and easier-to-obtain resource has a higher frequency
of returning foragers and it thus attracts more individuals.
However, unlike in stigmergy, non-linear effects, like structure
of a group, may influence the way that information is spread
among the individuals [10} [15].

From the previous description, it is clear that different
solutions are available and there is not a one-size-fits-all
solution. Surprisingly, the selection criteria adopted for the
different choice is almost entirely neglected, whereas the main
guideline seems to be empirical: if the chosen algorithm works
in the provided scenario, it is adopted [7]. Of course, this
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Figure 1. Finite state machine model of the robots implementing the foraging
algorithm.

trial and error approach cannot offer an exhaustive selection
criterion, which is instead the aim of this paper. In order
to prove the effectiveness of the different solutions and
a comparison common-ground, we will use the following
problem. We consider large swarms of simple autonomous
robots for an exploration task, which covers a vast area. The
resources, i.e. the object to be found, are clustered in random
locations within an ARGoS simulation. These algorithms will
be compared to the each other in the simulation designed arena
and a quantitative analysis will be provided.

II. MODELS

We assume that the autonomous agents can communicate
to each other through a range-and-bearing communication
device, which allows robots in line-of-sight to exchange
messages within a limited range. The peculiarity of this
communication system is that a robot, upon reception of a
message, computes the relative position (distance and angle)
of the sender [3]. We assume, as customary [13], that two
modules are implemented in the robot: a sensor (that manages
the reception of the messages from other agents) and an
actuator (that sets the message to send). In this paper, we
assume that the communication is visual: the sender emits
signals through a lighting system of changing colours (where
each colour is coded for specific messages) and the receivers
in range may detect the light locations through a calibrated
omnidirectional camera.

To account for the different modalities of the agents, either
Searching (i.e. agent in exploration mode) or Homing (i.e.
agent returning to the starting location), a finite state machine
is defined (see Figure [I). An additional module of Avoiding
Obstacle is implemented in order to avoid collisions with other
agents and/or fixed obstacles. In each modality, the agent sends
a different message (i.e., emits a different colour) to the rest of
the group in line of sight and within the limited visual ranging.

A. Autonomous system model

Autonomous systems with multiple entities are in general
challenging to be analysed since they most often require
a bottom-up approach to behavioural design. The emergent
macro behaviour of the team as a whole is specified by the
micro behaviour of the individual agents, which makes the
programming of each individual very difficult. However, there
are solutions in the literature helping to solve this problem, as
listed below.

o Information-Cost-Reward (ICR) framework [11] for

collective behaviour analysis represents a novel approach
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Figure 2. Proposed system model for the communication between Scout and
Worker/Broadcaster (or Robot 1 and Robot 2. (a) State chart, (b) class diagram
and (c) sequence diagram.

to understand robot swarms that perform foraging.
Indeed, in foraging algorithms, robots search for work-
sites in an unknown environment and (a) either perform
work on them (e.g., in the case of area surveillance),
or (b) collect items from the work-sites and bring them
to a designated location (e.g., in resource collection
applications). The ICR framework allows to relate the
way in which robots obtain and share information
about the work-site to the swarm ability to use that
information to work efficiently given a particular task and
environment [11]].

o Design Pattern Catalogue (DPC) [11] for robot swarm
foraging algorithms describes the design pattern that the
swarm should follow. A design pattern provides high-
level guidelines for the implementation of a particular
robot behaviour and describes its impact on swarm
performance. In this paper, we explore information
exchange design patterns for robot swarm foraging [[11].
The patterns are split into two categories that identify
the pattern roles: Information Transmitter Patterns (entity
transmission and information storing) and Information
Aggregation Patterns (information exchange and type of
behaviour data exchange)

The description of pattern feedback loops, parameters,
forces and results utilises terminology of the ICR framework
and considers a variety of experiments reported in the swarm
robotics literature. Of course, not all pattern descriptions
include all the properties listed above. For example, when a
pattern has no parameters (e.g., for the solitary foraging), it
does not influence the agent behaviour. Using this modelling
approach, we identify three behaviours for the agents in the
swarm, which are Scout (i.e. exploration in search for items),
Worker (i.e. when an item has been found and needs to be
processed on spot or brought back to the starting location)
or Broadcaster (e.g. when the agents spreads its information
in the swarm). The general system model for communication
stemming from this analysis is summarised in Figure 2] while
Figure [3] reports the Behaviour-Data Relations Modelling
Language (BDRLM) representation for a generic foraging
algorithm and implementing the general system model.
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B = {Scout, Work}

D; ={Worksite location : object}

trans(Scout, Work) : {p(F), 3 Worksite location}
trans(Work, Scout) : {*worksite depleted”}
write(Worksite location, Work) : {*}

read(Worksite location, Work) : {*}

send(Worksite location, Work) : {“Scout encountered”}

Figure 3. BDRML representation of the system model proposed in Figure
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Figure 4. The architecture of ARGoS for a single robot.

III. IMPLEMENTATION

ARGoS [9] is a discrete-time simulator conceived for
multi-robot systems acting in 3D spaces. The main code
is entirely written in C++ and it is all based on free
software libraries. Each entity active in the 3D space is
modelled as a combination of: a physical structure; a set
of sensors and actuators; a controller module. The simulator
includes an extensive set of sensors and actuators that allows
to simulate realistic scenarios. The simulator also includes
multiple physics engines embedding different levels of realism
for the motion and collisions among the agents. What makes
ARGoS extremely flexible is that, during the same simulation
run, the physics of different groups of robots can be handled by
different physical engines [9]]. A description of the architecture
is given in Figure ] In particular: the Swarmanoid Space is
the 3D arena, implemented as a scene graph, where all the
entities are simulated; the Common Interface is an abstraction
layer that allows the simulator to be executed with hardware
in the loop [9].

In this paper, each autonomous agent is equipped with: a
range and bearing system, comprising 12 RGB LEDs (to send
the message) and IR range and bearing sensor (to receive
the message in ling of sight); wheel actuators; IR proximity
sensor, for obstacle avoidance; gripper actuator, for collecting
the detected items.

A. ARGoS simulation

The implementation of the foraging algorithms in the
ARGoOS simulation has been built on the loop functions and

Figure 5. Representation of the foraging arena in the ARGoS simulator
through OpenGL.
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Figure 6. Graphical BDRML representation of the solitary foraging robot
control algorithm, derived from the individualist design pattern [12].

on the OpenGL graphical visualisation through the Qt user
functions. The arena is divided in two areas: a grey area that
serves as nest (i.e. homing area), where the robots are initially
deployed; a white area where resource items are scattered [9]]
(see Figure [3)). The task of the autonomous robots is to leave
the nest, search for target items, grab them and bring them
back to the nest. Resource items are represented as black spots
on the ground, which are collected with the gripper actuator
when the robot goes over it (hence, the agent switches from
Scout to Worker). When a robot is transporting an item and
goes back to the nest, a cylinder is represented on top of it
(see Figure [3)). Each robot can transport only one item per
time, as customary [9]. The status of the robot (i.e., begin a
Scout or a Worker) is detectable through light sensors. The
selected colours are green for Scout, blue for Worker and red
for Broadcaster (see Figure [5).

B. Implemented foraging strategies

To conduct the experiments for the respective strategies
mentioned in this paper, we utilised open-source FORDYCA
(FOraging Robots use DYnamic CAches) project, built on
ARGoS simulator [3]]. The robots are modelled as s-bot,
developed in the Swarm-bots project [3]. In the reported
experiments, we make the following assumptions: the robots
are homogeneous, have an unlimited battery supply, and
are able to communicate directly through range and bearing
sensors; robots are randomly distributed in the environment;
the arena size is known to the robots.

1) Solitary Foraging: The solitary foraging finite state
machine robot controller was created based on the individualist
design pattern using BDRML and represented in Figure [6]
The implementation involved copying the BDRML pattern
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Figure 7. Graphical BDRML representation of the behavioural matching
or local broadcaster foraging robot control algorithm, derived from the
Information Exchange near Worksites, Information Storage and Information
Transmitter design patterns [[12].

primitives and renaming its data structure to ‘“Work site
location”. In particular, the high-level representation in
BDRML given in [12] has been modified for the Scout
and Work behaviours. In the proposed implementation,
the “Work” behaviour is represented by two states,
“GO_TO_WORKSITE” and “GO_TO_BASE” in order to
account for repeated motion from the nest to the resource item
location if there is some leftover. The pseudocode provided for
the finite state machine controller of this case is shown below.

if (state == SCOUT) {
DoRandomWalk () ;
if (sensingWorksite) {
SaveWorksiteLocation () ;
state = GO_TO_WORKSITE;

} else if (state == GO_TO_WORKSITE) {
TakeStepTowardsWorksite () ;
if (isAtWorksite) {
if (worksiteNotEmpty) {
LoadResource () ;
state = GO_TO_BASE;
} else state = SCOUT;
} else if (state == GO_TO_BASE){
TakeStepTowardsBase () ;
if (isInBase) {
UnloadResource () ;
if (worksiteWasNotEmpty) {
state = GO_TO_WORKSITE;
} else state = SCOUT;

}
}

2) Behavioural Matching or Local Broadcaster: In
behavioural matching, individual foragers learn about
promising destinations using the patterns followed by other
foragers. A local broadcaster controller was created as a result
of combining the Broadcaster and the Information Exchange
near Worksites (IEW) patterns in BDRML (Figure [7). In our
implementation, the robots were equipped with a wireless
communication module for the Range and bearing system,
having a maximum range of 1.25 m. Because of the
large availability of this hardware in robotics applications,
we decided to modify the Information Transmitter and
Information Storage patterns, where additional devices or
chemicals would have to be placed by the robots into the
environment [15]. As a consequence, we implemented the
local broadcaster controller as specified by the following
pseudocode.

Figure 8. Graphical BDRML representation of the stigmergical foraging
robot control algorithm, derived from the Information Storage and Information
Exchange Anywhere design patterns [12].

if (state == SCOUT) {
DoRandomWalk () ;
if (sensingWorksite or
sharingFoodLocationSignal) {
SaveWorksiteLocation () ;
state = GO_TO_WORKSITE;

}
} else if (state == GO_TO_WORKSITE) {
TakeStepTowardsWorksite () ;
if (isNearWorksite) ShareLocation () ;
if (isAtWorksite) {
if (worksiteNotEmpty) {
LoadResource () ;
state = GO_TO_BASE;
} else state = SCOUT;
} else if (state == GO_TO_BASE){
if (isNearWorksite) ShareLocation () ;
TakeStepTowardsBase () ;
if (isInBase) {
UnloadResource () ;
if (worksiteWasNotEmpty) {
state = GO_TO_WORKSITE;
} else state = SCOUT;

}
}

3) Stigmergical Foraging: In stigmergy the detection and
release of pheromones on the followed trails should be
implemented. The data structures in the resulting control
algorithm are renamed to “Pheromone” and “Last pheromone
value”, as depicted in Figure [§] The pseudocode is similar to
the previous reported cases and thus it is not reported in the
interest of space.

4) Signalling to guide others: The control algorithm for the
signalling foraging has four behaviours and one internal data
structure common to both patterns. The BDRML primitives are
renamed in order to facilitate understanding of the resulting
algorithm (see Figure 9). As in the behavioural matching
algorithm, the Work behaviour is represented by two states in
the pseudocode implementation, i.e. “GO_TO_WORKSITE”
and “GO_TO_BASE”. Again, the pseudocode is not explicitly
reported for space limitations.

IV. COMPARATIVE RESULTS

In this section we will propose the comparison results
among the different foraging algorithms detailed in Section [[TI}
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Figure 9. Graphical BDRML representation of the signalling foraging robot
control algorithm, derived from the Broadcaster and Information Exchange
Centre design patterns [12].

Since the main purpose is to offer quantitative guidelines
for helping researchers and practitioners in the selection of
the different approaches, we focus on the scouting efficiency
of the different solutions and then we offer an analysis of
the computation times necessary in each proposed simulation
scenario.

The swarm scouting efficiency can be effectively measured
by the time needed for the first worksite discovery and
retrieval to the nest in a given experimental run since the
longer it takes a swarm to discover its first worksite, the
worse scouting efficiency it has. Notice that the time of the
first detected location is not affected by interference between
robots, while instead the last or median worksite discovery
are [12]. The time needed to the first discovery (measured
in hours) for the different foraging algorithms is reported
in Figure [I0] as a function of the distance of the worksite
D (measured in metres). Since all foraging algorithms are
affected by the swarm dimension (i.e. number of agents V), we
report the results for N = {10, 25,50} agents. The negative
effect of large worksite distance D is observed for all the
approaches, even though the number of agents do play a role
(note the different scales of the y-axis for different values
of N). The scouting efficiency of stigmergy swarms and
signalling to guide other agents is affected more significantly
by worksite distance D than that of other foraging solutions,
since recruitment requires all the agents to travel the whole
way back to the base. One interesting result is that the
performance difference is proportionally invariant with respect
to the number of robots. This is evident for stigmergical and
signalling when D > 20 m. Moreover, when the number
of agents increases, the performance differences among the
different solutions becomes less evident for short distances:
for example, for N = 10 (Figure [I0}a) the difference becomes
evident for a distance D > 10 m, while for N = 50
(Figure [I0}c), the worksite should be placed at a distance
greater than D = 17 m. In all the scenarios, the solitary and
behavioural matching are the most efficient and has basically
the same performance almost everywhere.

A. Computation time analysis

Another parameter used for the simulative comparison is
the computation time. We analyse the computation time in

different cycles of foraging strategies using box and whiskers
plots, depicted in Figure The mean and the median of
the computation times are in practice independent from the
chosen algorithm when N = 10. Instead, when the number of
robots increases, the mean value is higher with respect to the
median, which denotes the presence of outliers (occasionally
large computation times). Stigmergic foraging has steadily
the highest computation times, while the individual and
behavioural matching proves to be, again, the most efficient
in all the considered scenarios.

V. CONCLUSION

The efficiency of the algorithms for swarm foraging
are currently difficult to compare and analyse due to the
nonlinear nature of the emergent collective behaviour [6].
The Information-Cost-Reward framework developed in this
paper demonstrates how information flow in swarms can be
formally related to the amount of reward that a swarm receives
from the environment during foraging. It can be observed
from the scouting efficiency that signalling is better than
stigmergy, while the individual and behavioural approaches
are the best for both swarm efficiency and computation times
when the number of robots increases. However, if the swarm
is relatively small, signalling is definitely the choice to make.
The comparison here proposed, albeit not complete, shows
some clear guidelines for the choice of the algorithm to
implement. Of course, test on real robots is foreseen for the
future developments. Furthermore, tests on more structured
and complex foraging algorithms will be considered as well,
e.g. group hunting which including coordinated foraging and
cooperative foraging.
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