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Abstract – The proliferation of distributed energy resources and 
plug-in electric vehicles is expected to change present distribution 
systems, thus stressing the role of measurement instrumentation 
enabling safe and flexible smart grid operation. In this context, 
Phasor Measurement Units (PMUs) are required to measure 
amplitude, phase, frequency and rate of change of frequency 
(ROCOF) of AC waveforms not only in steady state, but also, and 
above all, under dynamic conditions, while still ensuring 
extremely low measurement uncertainty and high reporting 
rates. In this paper a lightweight signal processing algorithm 
based on the so-called Teager’s energy operator is adopted to 
measure amplitude, phase, frequency and ROCOF of AC 
waveforms in some of the testing conditions prescribed by the 
IEEE Standard C37.118.1-2011 and the IEEE Amendment 
C37.118.1a-2014. The reported analysis shows that the Teager’s 
algorithm can provide high-rate and reasonably accurate 
measurement results under dynamic conditions. However, due to 
its sensitivity to wideband and narrowband disturbances, a 
preliminary band-pass filter is needed. In addition, instantaneous 
frequency and, above all, ROCOF estimates should be averaged 
to remove the residual effect of disturbances and to meet the 
limits reported in the IEEE Standards. 

Keywords – Phasor Measument Unit (PMU), power system 
monitoring, signal processing, estimation uncertainty.  

I. INTRODUCTION  

A Phasor Measurement Unit (PMU) is an instrument able to 
measure amplitude, phase, frequency and rate of change of 
frequency (ROCOF) of AC voltage or current signals at times 
synchronized to the Coordinated Universal Time (UTC) and 
with reporting rates in the order of tens of Hz [1]. Till now, 
PMUs have been mainly used for transmission systems 
monitoring, e.g., to support power system state estimation 
over wide geographical areas and to detect possible anomalous 
conditions or faults, thus triggering timely protection actions 
[2]. However, with the evolution of the so-called active 
distribution grids, the use of PMUs has become more and 
more appealing also at the distribution level. In this context, 
PMUs can be used, for instance, to detect and to locate 
possible faults [3], to evaluate the trade-off between 
distribution grid reliability and regulation market efficiency 
[4], and to monitor possible state fluctuations due to 
increasing photovoltaic penetration [5]. The integration of 
PMUs and Intelligent Electronic Devices compliant with the 

IEC Standard 61850 can indeed greatly support substation 
automation [6]. 

It is known that the metrological requirements of PMUs for 
distribution systems have to be stricter than those for 
transmission systems, particularly as far as phase 
measurements are concerned [7]. Indeed, the magnitude and 
angle phasor differences across distribution systems in steady-
state conditions are usually much smaller than at the 
transmission level. On the other hand, the need to track 
synchrophasors as well as frequency variations under dynamic 
operating conditions (e.g., when power demand and supply 
change quickly) require high accuracy even in the presence of 
time-varying quantities. To this end, several innovative 
measurement techniques for PMUs have been proposed over 
the last few years to estimate electrical AC waveform 
parameters in dynamic conditions. Most of them rely on the 
idea to model synchrophasor variations over time using its 
Taylor’s series truncated to the second- or third-order terms. 
In this way, synchrophasor magnitude and phase as well as 
fundamental frequency and ROCOF can be derived from the 
series coefficients, whose values can be estimated either in the 
time domain (e.g., through least-squares or weighted least-
squares fitting of a data record [8], [9], possibly enhanced 
through a preliminary fundamental frequency estimation [10]), 
or in the frequency domain (e.g., by solving a linear complex-
valued system [11]). The use of Taylor’s series to model time 
varying phasors has been also extended to estimate harmonics 
parameters both in quasi steady-state conditions (e.g., through 
the so-called Taylor-Fourier Transform – TFT [12], [13]) and 
during fast transients [14]. Moreover, several researchers 
explored the possibility to further improve waveform 
parameters estimation in time-varying conditions through 
Kalman filters [15], [16], [17], or compressive sensing [18].  

A well-known common issue to all estimators based on the 
Taylor’s series synchrophasor model (particularly the TFT) is 
their considerable computational burden as the data record 
size grows. Even though this problem can be mitigated using 
real-valued equations and optimizing the number of harmonics 
included in the measurement model [19], alternative and 
simpler techniques would be definitely more suitable for low-
cost embedded platforms (such as those adopted within the 
OpenPMU project [20]), which could promote the diffusion of 
PMUs over a large scale. In this respect, the Teager’s 
algorithm (developed in the eighties to estimate the energy of 



time-varying audio signals on-the-fly [21]) is able to estimate 
amplitude and frequency of dynamic signals with good 
accuracy, low computational burden, and sample-by-sample 
temporal resolution [22]. This is indeed the basic idea 
developed in this paper. In Section II the Teager’s algorithm is 
briefly recalled along with the key expressions for 
fundamental frequency, amplitude, phase and ROCOF 
estimation. In Section III, the results of some preliminary 
simulations in the case of amplitude and phase modulated 
signals are reported. In Section IV, after a short discussion 
about the algorithm sensitivity to disturbances, two digital 
filters suitably designed to mitigate the effect of noise, 
harmonics and inter-harmonics in the Class P and Class M 
testing conditions specified in the IEEE Standard C37.118.1-
2011 and in the Amendment IEEE C37.118.1a-2014 are 
described [23], [24]. In Section V, the results of exhaustive 
Monte Carlo simulations with and without averaging the 
estimated values of amplitude, phase, frequency and ROCOF 
are summarized and commented. Finally, Section VI 
concludes the paper.  

II. ESTIMATION ALGORITHM DESCRIPTION 

A generic AC waveform acquired by a PMU at a sampling 
rate fs can be modeled as  

                  nnnnXnx wn   cos            (1) 

where: 
 X(n) = Xꞏ[1+xa(n)] is the time-varying amplitude of the 

AC waveform given by the superimposition of a 
constant value X and a modulating signal xa(n); 

     02   nxnn pf
f

s
is the instantaneous phase of 

the AC waveform at time n/fs. This is given by the sum 
of the initial phase θ0, a possible phase modulating 
signal xp(n), and the physiological angle increment due 
to the phasor rotation at frequency f = f0ꞏ(1 + ẟ), where 
f0 is the nominal frequency (i.e., 50 Hz or 60 Hz) and ẟ 
represents a fractional off-nominal frequency 
deviations depending on the load conditions of the grid; 

 function εn(ꞏ) represents the steady-state harmonics 
and/or inter-harmonics affecting the collected AC 
waveform; 

 finally, εw(ꞏ) is a wideband noise modeling the 
disturbance contributions due to transducers, 
acquisition circuitry, and synchronization jitter [25].  

Let us apply the discrete-time Teager’s energy operator 
   defined in [22] to signal x(n), i.e.  

                 112  nxnxnxnx .          (2) 

Assume that:  
i. the bandwidth BW of xa(ꞏ)  and xp(ꞏ) is much smaller than 

the fundamental frequency f; 
ii. the modulation indexes associated with xa(ꞏ) and/or 

xp(ꞏ) are much smaller than 1; 
iii. both narrowband and wideband disturbances are 

negligible (i.e. εn(ꞏ) ≈ 0 and εw(ꞏ) ≈ 0). 

By replacing (1) into (2), the following approximate 
expression results, i.e. [22], 
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Consider that, in power systems, assumptions i) and ii) above 
are generally met, unless some fault occurs. In fact, the values 
of amplitude modulation (AM) and phase modulation (PM) 
parameters are typically quite small [23], [24] a. Observe also 
that if amplitude and phase fluctuations are negligible [i.e. 
xa(ꞏ) = xp(ꞏ) = 0], expression (3) holds exactly and it is 
independent of time index n, even if f is affected by a nonzero 
static fractional off-nominal deviation ẟ.  

By applying the Teager’s energy operator    to the first-
order time derivative of (1) estimated through the backward 
Euler method (i.e., y(n) = x(n) - x(n-1)), after a few algebraic 
steps and under the same assumptions i)-iii) listed above, it 
results that [22]  

          














s

i

s

i

f

nf

f

nf
nXny 2

1
2
1

24 222  sinsin .     (4)  

Again, (4) holds for   BWfnfi   and turns into an exact 

expression (i.e., independent of n) for xa(ꞏ) = xp(ꞏ) = 0. Note 
that the backward difference introduces a ½ sample delay, 
whose effect on estimation results should be properly 
compensated. In this respect, by applying the Teager’s energy 

operator    to the derivative of (1) computed using the 
forward Euler method, i.e. z(n) = x(n+1) - x(n), the following 
dual expression results: 
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Therefore, by averaging (4) and (5), the respective systematic 
contributions due to the ±½ sampling period offsets are 
approximately cancelled out, i.e. [22] 
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Ultimately, by computing the ratio between (6) and   nx2 , 

where   nx  is given by (3), and using basic trigonometric 

properties, the fundamental frequency of the AC waveform is 
given by   
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Moreover, by replacing (7) into (3), the time-varying phasor 
amplitude is given by 
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Finally, once fi(n) and X(n) are known, still assuming that 
narrowband and wideband disturbances are negligible, the 
phasor instantaneous angle can be obtained from (1), i.e.  
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while the ROCOF can be estimated from the average of the 
backward and forward Euler differences of (7), which leads to  
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It is worth emphasizing that expressions (7)-(10) are very 
light from the computational point of view, since they require 
just 5 samples [i.e., x(n-2), x(n-1), x(n), x(n+1) and x(n+2)] 
and basic scalar algebraic and trigonometric functions to 
return sample-by-sample values of frequency, amplitude, 
phase and ROCOF, respectively. Therefore, the approach 
based on the Teager’s energy operator in principle can provide 
high-rate results. However, in practice the computational 
burden is larger because a preliminary bandpass filter (which 
requires from tens to hundreds of Multiply-Accumulate 
operations) is needed to remove critical disturbances, a 
explained in Section IV. Observe that the forward Euler 
difference used to derive (7) and (10) makes the proposed 
approach formally noncausal. However, this problem can be 
easily addressed by introducing a 2-sample delay. Such a 
delay is definitely acceptable (i.e. much smaller than 1 power 
line cycle), since the sampling rate fs is usually quite larger 
than f0.  

III. PROOF OF CONCEPT 

The correct operation of the proposed approach under the 
assumptions reported in Section II (i.e. negligible disturbances 
and narrowband AM or PM signals) was proved through 
Monte Carlo simulations. The main simulation parameters are: 
fs = 6.4 kHz, X = √2 p.u., f0 = 50 Hz and ẟ = 0. AM and PM 
were implemented using cosinusoidal signals, i.e. 
xa(n) = kacos(2πfa/fsn + φa) or xp(n) = kpcos(2πfp/fsn + φp), 
included alternatively in (1). The modulating signal 
parameters (i.e., ka = 0.1 and kp = 0.1 rad with fa and fp ranging 
from 0 Hz to 5 Hz) were set in accordance with the maximum 
values reported in [24]. The initial phases of the fundamental 
and the modulating tones (i.e., θ0, φa and φb) were generated 
randomly with a uniform probability within [0, 2π]. Globally, 
50 waveforms of about 5 s each were used to evaluate 
estimation algorithm accuracy. Fig. 1 shows the maximum 
Total Vector Error (TVE), Frequency Error (FE) and ROCOF 
Error (RFE) computed over such repeated tests in the AM 
case (solid lines) and PM case (dotted lines), respectively, as a 
function of the modulating frequency. Observe that the TVE, 
FE and RFE values are negligible when the modulating 
frequency tends to zero. This is due to the fact that, as 
explained in Section II, expressions (3)-(5) hold exactly when 

no AM or PM is present. On the contrary, when the 
modulating frequency increases, the approximation error 
affecting (3)-(5) grows as well. Consider that the frequency 
estimation based on (7) is more sensitive to AM than to PM. 
As a result, the estimation uncertainty in the AM case is worse 
and the gap between the TVE, FE and RFE curves tends to 
increase as the modulating frequency grows. However, while 
the TVE and FE values remain within reasonable limits, the 
RFE tends to grow much more quickly. This is due to the 
inherent higher sensitivity of ROCOF estimation based on 
(10) to noise and disturbances. 

IV. SENSITIVITY TO DISTURBANCES AND SOLUTIONS  

The preliminary results presented in Section III 
(particularly those related to ROCOF estimation) suggest that 
the algorithm based on the Teager’s operator, although 
computationally simple and potentially very effective, could 
lead to poor results when the features of the input signal 
deviate significantly from assumptions i)-iii). The sensitivity 
of this algorithm to noise is indeed a known issue [22], and it 
is confirmed by further simulations (not reported here for the 
sake of brevity) performed in the same conditions described in 
Section III, but with noisy waveforms. In that case, assuming a 
Signal-to-Noise Ratio (SNR) of 60 dB (which is in line with 
the value determined experimentally in [25]), the TVE, FE and 
RFE values become huge (i.e., from 2 to 4 order of magnitude 
larger than those shown in Fig. 1), and, consequently, 
unacceptable for PMU applications. This problem can be  

Fig. 1 – Maximum values of TVE, FE and RFE computed over 50 
repeated trials under the effect of AM (solid lines) or PM (dotted lines) 
signals of given amplitude (i.e. ka = 0.1 or kp = 0.1 rad) and increasing 

frequency.  



addressed by filtering the digitized sequence (1) prior to 
applying expressions (7)-(10). In particular, a zero-phase 
bandpass Finite Impulse Response (FIR) filter should be used 
to avoid that its phase response affect synchrophasor angle 
estimation. It is worth emphasizing that, unlike the model 
described in Annex C of the IEEE Standard C37.118.1-2011 
[23], no low-pass filters after signal frequency down-
conversion can be used in the case at hand. Indeed, the 
technique based on the Teager’s energy operator can be 
successfully applied only to AC signals; otherwise accuracy of 
(7) drops. As a consequence, the filter must have a passband 
centered at f0 and its bandwidth must be large enough not to 
affect the estimation of amplitude, phase, frequency and 
ROCOF when such quantities change over time. Moreover, 
the filter transition bandwidth has to be narrow enough to 
reduce second-order harmonics and out-of-band inter-
harmonics to negligible levels. In addition, filter attenuation in 
the stopband has to be particularly large. 

Based on the considerations above, two FIR filters were 
designed by adapting the general approach described in [26] to 
bandpass filters. The main features of both filters are 
summarized in Tab. I, while the magnitude of their frequency 
response is plotted in Fig. 2(a)-(b). The first filter is conceived 
for Class P (i.e., protection) applications and its impulse 
response is 3 power-line cycles long [23]. The second filter is 
instead intended for Class M (i.e., measurement) applications, 
which typically require higher accuracy [23]. This filter 
exhibits indeed a much longer impulse response (10 vs. 3 
power line cycles), but it ensures a good rejection of possible 
out-of-band inter-harmonics. Two different optimization 
techniques were used to design either filter. The Class M filter 
results from a minimax optimization procedure based on the 
classic Parks-McClellan algorithm. In this way, the attenuation 
of both out-of-band inter-harmonics and harmonics is kept 
under tight control, at the expense of impulse response length. 
On the contrary, the Class P filter relies on least-squares error 
minimization.  
This approach relaxes the ripple magnitude at the edges of the 
passband and the stopband (since out-of-band inter-harmonics 
are not considered in Class P PMU testing), but it ensures a 
narrower transition bandwidth and, consequently, a much 
shorter impulse response. 

TABLE I –  MAIN FEATURES OF TWO BANDPASS FILTER (FOR CLASS P AND 

CLASS M APPLICATIONS, RESPECTIVELY) DESIGNED PURPOSELY TO REMOVE 

POSSIBLE DISTURBANCES PRIOR TO APPLYING THE EXPRESSIONS (7)-(10). 

Feature Class P Class M 

Impulse response length [cycles] 3 10 

Passband edge frequencies [Hz] 48.2 – 51.8 45.3 – 54.7 

Stopband edge frequencies [Hz] 3 – 100 19.5 – 80.5 

Max. passband ripple magnitude [dB] 0.015 0.0022 

Max. stopband ripple magnitude [dB] -70 -120 

Optimization technique Least-squares  Minimax  

 

V. SIMULATION RESULTS IN THE TESTING CONDITIONS OF 

THE IEEE STANDARDS C37.118.1 AND C37.118.1A 

The accuracy of the estimation algorithm based on Teager’s 
operator after applying either filter described in Section IV 
was analyzed through Monte Carlo simulations in most of the 
Class P and Class M testing conditions reported in [23], [24], 
i.e. considering 

a. signals with off-nominal static frequency deviations 
within ±2 Hz (Class P) or ±5 Hz (Class M) and voltage 
amplitudes between 80% and 120% or between 10% 
and 120% of the rated value, respectively;  

b. signals affected by the same off-nominal frequency 
deviations as in case a and up to 50 harmonics 
(considered one at a time) of amplitude equal to 1% 
(Class P) or 10% (Class M) of the fundamental tone; 

c. AM signals with a modulating tone frequency up to 2 
Hz (Class P) or 5 Hz (Class M) and amplitude equal to 
10% of the fundamental component; 

(a) 

(b) 

Fig. 2 – Magnitude of the frequency response of a Class P (a), and a Class 
M (b) FIR filter removing wideband and narrowband disturbances prior to 

applying the Teager’s algorithm. 



TABLE II - MAXIMUM TVE, FE AND RFE VALUES IN CLASS P TESTING CONDITIONS OBTAINED I) FROM (7)-(10) AFTER BANDPASS FILTERING ONLY AND II) BY 
AVERAGING THE PREVIOUS SAMPLE-BY-SAMPLE DATA OVER 1-CYCLE-LONG INTERVALS. THE LIMITS REPORTED IN IEEE STANDARD C37.118.1-2011 OR IN THE 

AMENDMENT C37.118.1A-2014 FOR A REPORTING RATE OF 50 FPS ARE ALSO SHOWN FOR THE SAKE OF COMPARISON. 

 Test type 
TVEmax [%] FEmax [mHz] RFEmax [Hz/s] 

Limit No avg. 
With  
avg. 

Limit No avg. 
With  
avg. 

Limit No avg. 
With  
avg. 

a  Freq. dev. only (±2 Hz) 1 0.89 0.89 5 0.0 0.0 0.4 0.0 0.0 

b  Freq. dev.+ 1% harmonics 1 0.98 0.98 5 24. 0.3 0.4 149.7 1.2 

c   AM (fa=2 Hz, ka=10%) 3 0.15 0.14 60 7.3 4.8 2.3 1.6 0.1 

d  PM (fp=2 Hz, kp=0.1 rad) 3 0.06 0.06 60 2.5 0.9 2.3 1.4 0.1 

e  Frequency ramp1 (±2 Hz @ ±1 Hz/s) 1 0.89 0.89 10 1.8 0.7 0.4 1.0 0.1 

f Wideband noise (SNR = 60 dB) - 0.04 0.04 - 3.5 2.2 - 11.8 0.3 

1Results obtained considering an exclusion interval of 40 ms (i.e., twice the maximum mandatory reporting period at 50 Hz) at the beginning and at the end of the ramp. 

TABLE III - MAXIMUM TVE, FE AND RFE VALUES IN CLASS M TESTING CONDITIONS OBTAINED I) FROM (7)-(10) AFTER BANDPASS FILTERING ONLY AND II) BY 
AVERAGING THE PREVIOUS SAMPLE-BY-SAMPLE DATA OVER 1-CYCLE-LONG INTERVALS. THE LIMITS REPORTED IN IEEE STANDARD C37.118.1-2011 OR IN THE 

AMENDMENT C37.118.1A-2014 FOR A REPORTING RATE OF 50 FPS ARE ALSO SHOWN FOR THE SAKE OF COMPARISON. 

2Results obtained considering an exclusion interval of 140 ms (i.e., 7 times the maximum mandatory reporting period at 50 Hz) at the beginning and at the end of the ramp. 

 
d. PM signals with a modulating tone frequency up to 2 

Hz (Class P) or 5 Hz (Class M) and amplitude equal to 
0.1 rad; 

e. chirp signals with frequency changing linearly between 
48 Hz and 52 Hz (Class P) or between 45 Hz and 55 
Hz (Class M) at a rate of ±1 Hz/s; 

f. a pure sinewave affected by wideband noise, so that 
SNR = 60 dB (this testing condition is not considered in 
the IEEE Standards, but it is interesting due to the high 
sensitivity of the estimation algorithm to noise, as 
explained in Section IV); 

g. signals affected by out-of-band inter-harmonic tones of 
amplitude equal to 10% of the fundamental and 
frequency within [10 Hz, 25 Hz] or [75 Hz, 100 Hz], 
assuming a reporting rate of 50 fps (Class M only). 

The Monte Carlo simulations were performed following the 
same approach described in Section III, i.e. by generating 50 
signals of 5 s each (except in the Class M chirp case, which 
requires at least 10-second signals) with initial phases chosen 
at random in [0, 2π] and for different waveform parameters 
depending on the specific testing conditions considered. 

Again, fs = 6.4 kHz, X = √2 p.u., f0 = 50 Hz. The maximum 
TVE, FE and RFE values resulting from simulations are 
reported in Tab. II and III, for Class P and Class M conditions, 
respectively, along with the limits specified in [23] or [24] for 
a reporting rate of 50 fps. Besides the results related to 
sample-by-sample estimates, the values of TVE, FE and RFE 
obtained by averaging synchrophasor magnitude, frequency 
and ROCOF data over one-cycle intervals are shown.  

Observe that, in general, the output average does not have a 
significant impact on TVE, since the average operator tends to 
smooth the tracking ability of the dynamic estimator. This is 
not a problem, since the TVE limits reported in the IEEE 
Standards are met in both Class P and Class M conditions, 
although the maximum TVE values in the presence of 
harmonics are borderline. On the contrary, the values of FE 
and RFE obtained by averaging the sample-by-sample 
estimates over one-cycle intervals are smaller (and sometimes 
much smaller) than those obtained when no average is applied. 
This behavior is particularly evident in the presence of large 
steady-state disturbances, such as harmonics or inter-
harmonics. Therefore, the band-pass filters alone, although 
effective in making the effect of wideband noise negligible on 

 Test type 
TVEmax [%] FEmax [mHz] RFEmax [Hz/s] 

Limit No avg. 
With  
avg. 

Limit No avg. 
With  
avg. 

Limit No avg. 
With  
avg. 

a  Freq. dev. only (±5 Hz) 1 0.59 0.59 5 0.0 0.0 0.1 0.0 0.0 

b  Freq. dev.+ 10% harmonics 1 1.00 0.98 25 71.1 0.6 - 414 3.8 

c   AM (fa=5 Hz, ka=10%) 3 0.57 0.55 300 68.0 44.3 14 14 1.8 

d  PM (fp=5 Hz, kp=0.1 rad) 3 0.12 0.12 300 22.8 6.0 14 13 0.6 

e Frequency ramp2 (±5 Hz @ ±1 Hz/s) 1 0.65 0.62 10 2.0 0.2 0.2 1.0 0.1 

f Wideband noise (SNR = 60 dB) - 0.02 0.02 - 1.4 1.2 - 2.7 0.1 

g  10% Out-of-band inter-harmonics 1.3 0.04 0.04 10 18.1 9.9 - 4.8 1.8 



estimated results, are not sufficient to meet the FE and RFE 
limits of the IEEE Standards when heavily distorted 
waveforms are considered. The output one-cycle average 
addresses this problem easily in almost all conditions. In fact, 
only the Class P RFE limit in the presence of harmonics is 
occasionally exceeded. 

A further analysis that, due to space constraints, will be 
expanded in a future work, concerns with the ability of the 
proposed Class P and Class M FIR filters to extract the In-
phase and Quadrature (I/Q) components of the input digitized 
waveform, in order to estimate synchrophasor magnitude and 
phase directly from such components. Some preliminary 
results show that the TVE values obtained with this alternative 
approach are generally comparable with those reported in 
Tabs. II and III. However, using the filter-based approach both 
frequency and ROCOF (namely the first- and second-order 
derivatives of the instantaneous phase) should be estimated by 
applying Euler differences once and twice, respectively. On 
the contrary, the Teager’s operator returns the waveform 
frequency directly from (7). Therefore, in this case the Euler 
difference derivative estimator (which is notoriously quite 
sensitive to noise) can be applied just to estimate the ROCOF. 

VI. CONCLUSION 

The time-domain estimation algorithm based on the 
Teager’s energy operator (originally conceived to track the 
energy of time-varying audio signals) can be successfully used 
to measure amplitude, phase, frequency and ROCOF of 
voltage or current waveforms under dynamic conditions. The 
main benefits of the Teager-based approach area low 
computational burden and the ability to return estimates with a 
sample-by-sample time resolution. Its main drawback instead 
is the high sensitivity to noise and disturbances. This problem 
can be addressed (at the expense of an increment of 
computational burden) in two complementary ways, i.e. i) by 
using ad-hoc bandpass filters to attenuate both narrowband 
and wideband disturbances before waveform parameters 
estimation and ii) by averaging the sample-by-sample 
frequency and ROCOF estimates over at least one power line 
cycle.  
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