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Abstract

Recent contributions to the financial econometrics literature exploit high-frequency
(HF) data to improve models for daily asset returns. This paper proposes a new class
of dynamic extreme value models that profit from HF data when estimating the tails
of daily asset returns. Our realized peaks-over-threshold approach provides esti-
mates for the tails of the time-varying conditional return distribution. An in-sample
fit to the S&P 500 index returns suggests that HF data convey information on daily
extreme returns beyond that included in low frequency (LF) data. Finally, out-of-
sample forecasts of conditional risk measures obtained with HF measures outper-
form those obtained with LF measures.

Key words: conditional risk measures, forecasting, peaks-over-threshold, realized volatility, tail

risk
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Tail risk has been at the heart of discussions among economists, bankers, and world leaders

in the aftermath of the 2008 stock market crash. Despite being an elusive notion, tail risk

tends to be associated to large negative events that have a positive but rather small prob-

ability of occurrence. Appropriate management of this kind of risk is of the utmost import-

ance from both policy and regulatory perspectives and for the internal risk control of

financial institutions. For this purpose, several risk measures have been defined which re-

quire forecasting quantiles deep in the lower tail of the asset return distribution.
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Traditional parametric methods based on estimation of entire densities are mostly ill-

suited for the assessment of extreme quantiles. These parametric methods strive to produce

a good fit in regions where most of the data fall, potentially at the expense of a good fit in

the tails. Similarly, it is well-known that non-parametric methods of density estimation

such as kernel smoothing perform poorly in the tails.

Extreme value theory (EVT) is a branch of probability theory that focuses on extreme

outcomes and provides models for them. In particular, instead of forcing a single distribu-

tion on the entire sample, this theory allows for the investigation of only the tails of the

sample distribution using limit laws. Estimates of probabilities associated with quantiles

even higher than the most extreme observations are then obtained by extrapolation.

The use of EVT in financial applications has become more and more common over the

last 20 years. Danielsson and de Vries (1997) and Longin (2000) use EVT to model the un-

conditional return distribution and emphasize its accuracy in predicting tail-risk. In a critic-

al discussion of the use of EVT in risk management, Diebold, Schuermann, and Stroughair

(2000) outline both the opportunities and the pitfalls of such applications. Their main criti-

cism regards the time dependence that characterizes financial returns. Specifically, while

the probabilistic results underlying the theory hold for iid observations, time series in eco-

nomics and finance usually do not satisfy this requirement. Despite that, these authors sup-

port the approach and foster its application to the tails of the conditional return

distribution.

To model the tails of the time-varying conditional return distribution, two different

paths have been taken. One consists in specifying a model for the conditional mean and

variance, and then applying an EVT-based model to the tails of the standardized residuals

(McNeil and Frey, 2000). If the model for the first two conditional moments completely

characterizes the dependence structure, then the standardized residuals should be approxi-

mately iid. A second strategy is to fit a dynamic extreme value model to account for the de-

pendence in the original data (Chavez-Demoulin, Davison, and McNeil, 2005; Chavez-

Demoulin, Embrechts, and Sardy, 2014). The benefit of the first strategy is that all the

available observations are exploited in the estimation of the dynamic model. However, if

the extremes of the estimated residuals present any form of heterogeneity, it will be neces-

sary to model them directly.

The claim that a model for the conditional mean and variance can produce iid residuals

implies that higher conditional moments are constant over time, but the evidence seems to

argue otherwise (Hansen, 1994; Harvey and Siddique, 1999). Furthermore, the possible

presence of switching-regimes, as suggested by Mikosch and St�aric�a (2004), makes the task

of pre-whitening the return time series even more difficult. These considerations support

direct modeling of the extremes of the original sample, and the current paper proposes a

novel dynamic extreme value approach to do so.

Dynamic EVT modeling in finance requires finding both an economically sound source

of information that can be used to explain the time-varying behavior of the extremes, and

an appropriate way of employing this information within a suitable model. Chavez-

Demoulin, Davison, and McNeil (2005) suggests using a self-exciting process to model the

probability of exceeding a high threshold of the negated return distribution (loss distribu-

tion), and use a time-varying generalized Pareto (GP) distribution with the past exceedances

as covariates to model the size of the excesses. Chavez-Demoulin, Embrechts, and Sardy

(2014) models the intensity parameter of the non-homogeneous Poisson process describing
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the exceedance rate and the time-varying scale parameter of the GP with non-parametric

Bayesian smoothers. Massacci (2017) and Zhang and Bernd (2016) propose two different

joint dynamic specifications for the exceedance probability and the distribution of the size

of the exceedances based on a generalized autoregressive score model (Creal, Koopman,

and Lucas, 2013).

The approaches listed in the previous paragraph exploit information in past daily

returns. We consider a completely different perspective grounded on the results of

Andersen et al. (2003). They show that, if the continuous-time return process of an asset

traded on a frictionless market evolves according to an Itô semi-martingale with a drift and

a diffusion component then, under certain conditions, the daily return distribution condi-

tional on the available information is Gaussian with mean equal to the integrated drift and

variance equal to the integrated variance. Empirical evidence, however, points toward the

existence of market frictions causing phenomena, such as jumps and leverage, inducing

heaviness in the tails. Moreover, jumps and leverage present dynamics that are often found

to be related to the level of volatility, see for instance Bandi and Renò (2012) and Bollerslev

and Todorov (2011). Based on this argument, we find sensible to link the dynamic of daily

extremes to that of the daily variance. Our intuition is well illustrated in Figure 1 where

losses for the S&P 500 are shown for the 2000–2014 period. Points indicate the days on

which the 98th quantile of the loss distribution is exceeded. They tend to be concentrated

in periods of high realized variance (RV).

We build models for the extremes based on realized measures of the daily asset price

variation obtained from high-frequency (HF) data, that is, intra-daily returns. From a meth-

odological perspective, we follow the Peaks-over-threshold (POT) method of Davison and

Smith (1990) and propose a realized POT (RPOT) approach. We model the probability of

exceeding a high threshold with a Logit model with realized measures as covariates. The

size of the excesses is modeled using a GP distribution with time-varying parameters that

are functions of the realized measure. We show that measures of the asset price variation

obtained from HF data hold information about the tail beyond that contained in the daily

exceedances. This result is robust across several proxies of the daily variance and it is not

affected by the inclusion of jump and illiquidity measures. Finally, we find that out-of-

sample risk measures forecasts from our model outperform those obtained from competing

models based on past exceedances.

There is a growing literature that attempts to exploit HF data to enrich models for

lower frequency (LF) data. Inclusion of HF data to model the conditional second moment

of the return distribution has been proposed by Shephard and Sheppard (2010);

Noureldin, Shephard, and Sheppard (2012); Hansen, Huang, and Shek (2012); Hansen,

Lunde, and Voev (2014); and Hansen and Huang (2016). De Lira Salvatierra and Patton

(2015) propose incorporating HF data into models for the time-varying dependence in a

copula function, while Oh and Patton (2016) use a HF-based measure of correlation to

disentangle the linear from the non-linear dependence in a portfolio of stocks and then

model the non-linear dependence with joint-symmetric copulas. We propose to model the

tails of the conditional return distribution with a class of EVT models that incorporate HF

information.

The remainder of the paper is organized as follows. Section 1 presents an overview of

the standard and the conditional POT approaches. Section 2 outlines our RPOT approach

and shows how realized measures are employed. Section 3 contains simulations assessing
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the small sample properties of our maximum-likelihood (ML) estimator, the effect of

microstructure noise, and the validity of our approach for a general return process. The

method is applied to daily S&P 500 index returns in Section 4 where in-sample results

show that HF data are more informative than LF data with respect to the tail behavior.

Section 5 shows that out-of-sample forecasts of standard risk measures obtained with the

RPOT approach are more accurate than those obtained with dynamic extreme value mod-

els that only include LF realized measures. Section 6 concludes. A proof is relegated to the

Appendix and the Supplementary Material contains additional details and results.

1 Extreme Value Theory

1.1 The Peaks over Threshold Approach

Let Ytf gT
t¼1 be a sequence of iid random variables from a distribution function F with upper

end point vF :¼ sup Yt : F Ytð Þ < 1
� �

. Define the extremes of Ytf gTt¼1 to be the exceedances

of a high threshold u, u < vF. As u! vF, Pickands (1975) shows that the distribution of

the excesses Yt � uð Þþ converges to a GP distribution G with shape parameter n and scale

parameter � > 0. That is, Pr Y � u� yjY > uð Þ goes to

G y; n; �ð Þ ¼ 1� 1þ ny=�f g�
1
n for n 6¼ 0

1� exp �y=�f g for n ¼ 0 :

(
(1)

When n > 0, F has a Pareto-type upper tail with tail index 1=n. For a given threshold u,

the POT approach is based on the decomposition of the tail of F as

1� F uþ yð Þ ¼ 1� F uð Þð Þ 1� Fu yð Þ
� �

; (2)

where / � 1� F uð Þð Þ ¼ Pr Y > uð Þ and Fu yð Þ ¼ Pr Y � u� yjY > uð Þ. Letting E ¼
t 2 1; . . . ;Tf gjYt > u
� �

be the set of times at which an exceedance occurs, the number of

Figure 1 S&P 500. Daily negative returns (losses) and RV (RV) from January 1, 2000 to December 31,

2014. Dots indicate days for which a threshold set at the 98th quantile of the loss distribution is

exceeded.
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exceedances Nu Tð Þ ¼ card Ef g can be modeled as a binomial random variable1 with

exceedance probability /, and the size of excesses Wj ¼ Yj � ujj 2 E
� �

with the limiting GP

distribution (Coles, 2001). An estimate of the tail probability in Equation (2) can thus be

obtained as

bF yð Þ ¼ b/ 1þ bn y� bub�
� ��1=bn

; (3)

where F ¼ 1� F; bu is an appropriately chosen threshold, bn and b� are estimates of the GP

parameters, and b/ is an estimate of the exceedance probability. The joint likelihood func-

tion for the POT model can be written as

L �; n;/ð Þ ¼
YT
t¼1

1� /ð Þ1�It
/
�

1þ
n yt � uð Þ

�

� 	�1=n�1

þ

 !It

;

¼
YT
t¼1

1� /ð Þ1�It /It

" # YT
t¼1

1

�
1þ

n yt � uð Þ
�

� 	�1=n�1

þ

 !It
24 35;

¼ L /ð ÞL n; �ð Þ:

(4)

where L /ð Þ and L n; �ð Þ are the Binomial and GP likelihoods, respectively. Separate maxi-

mization leads to the ML estimators b/; bn, and b� . We have the closed-form estimatorb/ ¼ Nu=T. Numerical optimization (Hosking and Wallis, 1987) is required to find bn and b�
and their asymptotic normality is established for n > �0:5 (Smith, 1985).

1.2 The Conditional Peaks over Threshold Approach

Following Davison and Smith (1990), the tail of the conditional distribution of Yt can be

decomposed as

Pr Yt > uþ yjF t�1ð Þ ¼ Pr Yt > ujF t�1ð ÞPr Yt � u > yjYt > u;F t�1ð Þ; (5)

where F t�1 is the information set of the process up to time t – 1. An estimate of the condi-

tional tail probability at time t can be obtained combining a dynamic model for /t ¼
Pr Yt > ujF t�1ð Þ such as a generalized linear model for the counts Nu tð Þ and a GP distribu-

tion with parameters depending on covariates for Pr Yt � u > yjYt > u;F t�1ð Þ.
With a slight misuse of notation, the joint likelihood of the conditional tail can be writ-

ten as

Lð/; n; mÞ¼ f/1 ;n1 ;�1
/1; n1; �1ð Þ

YT
t¼2

f/t ;nt ;�t jF t�1
/t; nt; �tjF t�1ð Þ; (6)

where f/t ;nt ;�t jF t�1
/t; nt; �tjF t�1ð Þ is the joint density of the model at time t conditional on in-

formation at time t – 1. Assuming conditional independence between the rate and the mag-

nitude of the exceedances, one obtains

f /t; nt; �tjF t�1ð Þ ¼ f /tjF t�1ð Þf nt; �tjF t�1ð Þ; (7)

1 An alternative modeling strategy for the exceedance probability is based on the Poisson

approximation.
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where f /tjF t�1ð Þ and f nt; �tjF t�1ð Þ are, respectively, the density of the model for the

exceedance rate and the density of the GP distribution. The joint likelihood can thus be sep-

arated into two components that can be maximized separately,

L /; n; mð Þ ¼ f /1ð Þ
YT
t¼2

f /tjF t�1ð Þ
( )

f n1; �1ð Þ
YT
t¼2

f nt; �tjF t�1ð Þ
( )

; (8)

leading to the sequence of ML estimators b/; bn, and bm. The validity of the assumptions of

conditional independence of rates of exceedances, sizes of exceedances, and joint condition-

al independence of rate and size of exceedances is assessed empirically in Section 4.4 and

we find that the assumptions are justified.

2 The Realized Peaks over Threshold Approach

In order to model the tail of the conditional return distribution, Chavez-Demoulin,

Davison, and McNeil (2005) and Chavez-Demoulin, Embrechts, and Sardy (2014) develop,

respectively, fully parametric and non-parametric extensions of the POT approach, consid-

ering F t to be the information set generated by the daily price path. We propose to augment

the available information set with HF data and model daily extremes with measures built

upon these data. We denote this new information set byHt, where F t � Ht.

Realized measures are non-parametric estimators of the variation of the price path of an

asset. They ignore the variation of prices overnight and sometimes the variation in the first

few minutes of the trading day when recorded prices may contain large errors. A good

background for realized measures can be found in the survey articles by Barndorff-Nielsen

and Shephard (2007) and Andersen et al. (2009).

As our approach includes realized measures as covariates in the models for the exceed-

ances, throughout we refer to it as RPOT. In what follows, we discuss the two components

of the conditional likelihood in Equation (8) individually and show how realized measures

can be incorporated in each. We present the model for the exceedance rate, then the one for

excess size. In both cases, we rely on parametric specifications of the dynamic parameters

and base the inference on standard asymptotic arguments from ML theory.

2.1 Modeling the Exceedance Rate

We start following Davison and Smith (1990) who propose combining the approach for

stationary data with regression modeling. We model the time-varying exceedance probabil-

ity with a Logit function,2

/t ¼
1

1þ exp u0 þ u1RMt�1ð Þ ; (9)

where RMt�1 is a generic realized measure. More generally, p realized measures can be

included in a pþ1 vector RMt of regressors at time t. The parameters u ¼ u0;u1; . . . ;up½ �

2 An alternative approach to obtain an estimate of the time-varying exceedance rate is to model the

number of exceedances Nu tð Þ with a non-homogeneous Poisson process (Chavez-Demoulin,

Davison, and McNeil, 2005).

Bee et al. j Realized Peaks over Threshold 259

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/17/2/254/5369812 by guest on 28 January 2021

Deleted Text: ,
Deleted Text: .
Deleted Text: 5
Deleted Text: 3
Deleted Text: realized peaks
Deleted Text: threshold approach
Deleted Text:  etal.
Deleted Text:  etal.
Deleted Text: .
Deleted Text: Realized Peaks over Threshold (RPOT).
Deleted Text: 3
Deleted Text: l
Deleted Text: l
Deleted Text: function2,
Deleted Text:  etal., ).


are easily estimated through maximization of the likelihood function

L u; It;RMtð Þ ¼
YT

t¼lþ1

exp RM0
tu

� �� �It 1

1þ exp RM0
tu

� � ;
where l is the lag at which realized measures in RMt

0 become available,
3

and It takes value

1 if t 2 E ¼ t 2 1; . . . ;Tf gjYt > u
� �

and zero otherwise. ML estimates of the parameters

are obtained through numerical techniques and asymptotic results follow from the standard

arguments of Newey and McFadden (1994).

2.2 Modeling the Excess Size

The natural model for the excesses of a high threshold is the GP distribution. In the case of

a non-stationary process, Davison and Smith (1990) suggest adding linear covariates in the

scale �t and shape nt parameters. We model �t as a log-linear function of the realized meas-

ure, that is, with one covariate we have

�t j0; j1ð Þ ¼ exp j0 þ j1RMt�1ð Þ: (10)

We keep n constant to gain stability as in Chavez-Demoulin, Davison, and McNeil

(2005; Chavez-Demoulin, Embrechts, and Sardy, 2014), and check the empirical validity of

this assumption in Section 4.2. Define the exceedance Zt ¼ Yt � u. For p realized measures

the dynamic GP distribution has the functional form,

Gt zt; RMt;j; nð Þ ¼ Pr Yt � u < ztjYt > u;Ht�1ð Þ ¼ 1� 1þ n

exp RM0
tj

� � zt

 !�1=n

; (11)

with zt � 0 when n > 0 and 0� z� � exp RM0
tj

� �
=n when n < 0. Moreover, the function-

al form is different if n¼0 zero, see Equation (1). The corresponding likelihood function

can be written as

L j; n; zt;RMtð Þ ¼
YT

t¼lþ1

1

exp RM0
tj

� � 1þ n

exp RM0
tj

� � zt

" #�1=n�1

þ

0@ 1AIt

; (12)

where j ¼ j0;j1; . . . ; jp½ � and n are the parameters that must be estimated. ML estimates of

the parameters are obtained through numerical techniques.

Hall and Tajvidi (2000) and Beirlant and Goegebeur (2004) establish the asymptotic

normality of several semi-parametric classes of estimators bn and b� , both when the true con-

ditional distribution is GP and when the conditional distribution of the excesses converges

to the GP. In the following proposition, we establish the consistency and asymptotic nor-

mality of our ML estimators under the assumption that the exceedances z1; . . . ; zkð Þ are in-

dependent with distribution (11) and n > 0. We relegate the asymptotic properties for the

exponential case (n¼0) to the Supplementary Material, as this requires changing the func-

tional form of the distribution in Equation (11). Note that these are the relevant cases with

financial data, as the case n < 0 implies that the log-losses have finite support. Despite

3 In the simplest case, RMt ¼ 1;RMt�1½ � as in Equation (9). When the regressors are functions of

past observations, it may require several lags before all are available. For example, for a sequence

of observations y1; . . . ; yT , if we use a 30-day moving average of the yt’s as a regressor, then the

first observation will be available at l¼ 30.
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this, throughout the analysis we fit the GP model without constraining n�0, as this allows

a better fit in finite samples (Cohen, 1982). Note that the randomness of the binary variable

It may have some effects on the asymptotic variance of the ML estimator, but they are not

considered in Proposition 1.

Proposition 1. Let h ¼ j; nð Þ 2 H � R
pþ1� (0, 1) and z1; . . . ; zkð Þ be an independent se-

quence. Define the ML estimator bhk as

bhk ¼ arg max
h2H

log L h; zt;RMtð Þ;

where L h; zt;RMtð Þ is given in Equation (12). Assuming that (i) the true vector of parame-

ters h0 is identifiable and interior to the parameter space H which is compact, (ii)

E RMtRMt
0½ � is positive definite, and (iii) E Ckexp RMtð Þk


 �
< 1 for any C> 0, thenffiffiffi

k
p bhk � h0


 �
!d N 0; J�1

� �
;

where J ¼ E rhlog gt zt;RMt; h0ð Þrhlog gt zt;RMt; h0ð Þ0

 �

with gt zt;RMt; hð Þ the density of

the dynamic GP in Equation (11).

Proof. See Appendix. h

We derive the asymptotic properties of ML estimators under the assumption of independent

extremes. To make sure that the estimated standard errors in the empirical analysis are not

biased by any dependence left in the observations after conditioning, we use a robust

“sandwich” estimator as in Chavez-Demoulin and Davison (2005). In Section 4.4, we ver-

ify empirically that the independence assumption holds, and find that robust estimates are

almost indistinguishable from standard ones.

2.3 Estimation of the Conditional Risk Measures

Quantile-based risk measures such as the Value-at-Risk (VaR) and the Expected

Shortfall (ES) are central tools for quantitative risk management in the financial industry.

Denote by Lt xð Þ ¼ �Ft xð Þ the loss distribution at time t. The one-day-ahead VaR and ES

at level a are, respectively, defined4 as VaRa
tjt�1 ¼ inf x 2 R : Ltjt�1 xð Þ�1� a

� �
and

ESa
tjt�1 ¼ 1

a

Ð a
0 VaRc

tjt�1dc, where Ltjt�1 xð Þ denotes the loss cumulative distribution function

conditional on the information at time t – 1. To obtain a forecast of the VaR and ES with

the RPOT approach, it is necessary to invert Equation (3) and plug-in the forecast of the

parameters obtained for the loss distribution, that is,

dVaR
a

tjt�1 ¼ bu þ b� tjt�1bn
b/tjt�1

a

 !bn
� 1

264
375
; (13)

cES
a

tjt�1 ¼
dVaR

a

tjt�1

1� bn þ
b� tjt�1 � bnbu

1� bn ; (14)

4 In Section 4, we compute the VaR and ES at level a ¼ 0:01. They are often called the 99%-VaR and

the 99%-ES in the literature.
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where b� tjt�1 and bn are the estimates from the dynamic GP distribution and b/tjt�1 is the esti-

mate from the threshold exceedance model: b/tjt�1 ¼ 1= 1þ exp cu0 þcu1 RMt�1

� �� �
for the

model in Equation (9).dVaR
a

tjt�1 and cES
a

tjt�1 are point forecasts. To obtain the confidence interval estimates, we

use a post-blackened bootstrap (Davison and Hinkley, 1997). First, we fit a RPOT model

to the observations and obtain the residuals Rj ¼ bnj

�1
log 1þ bnj Zj � bu� �

=b� j


 �
for each

exceedance Zj, j 2 E. Then, we obtain B bootstrap samples of the residuals Rj and apply the

RPOT model to each sample to obtain a percentile-based confidence interval of the VaR

and ES.

3 Simulations

We perform Monte Carlo simulations with the purpose of: (i) assessing the finite sample

properties of the ML estimator of both the Logit model for the exceedance rate and the dy-

namic GP model for the size of the exceedances; (ii) evaluating the impact of microstructure

noise on the ML estimators and (iii) assessing the ability of the RPOT model to estimate

tail quantiles when observations are generated from a general return process.

3.1 Finite Sample Properties and Microstructure Noise

Let r2
t be the return variance on day t and Et a random variable taking a value in Rþ if an

exceedance occurs and 0 otherwise. A random sample of exceedances is generated accord-

ing to the following system of equations:

log r2
t ¼ b0 þ bdlog r2

t�1 þ bwlog ~r2
t�1:t�5 þ bmlog ~r2

t�1:t�22 þ �t;
logit /tð Þ ¼ u0 þ u1log r2

t ;

log �t ¼ j0 þ j1log r2
t ;

Et ¼Wt1 Ut </tf g;

(15)

where �t 	 N 0;r2
�

� �
; Wt 	 GP �t; nð Þ; Ut 	 Unif 0; 1ð Þ and log~r2

t�1:t�s ¼ 1
s�1

Ps
i¼1 log r2

t�i.

The variance process follows a stochastic volatility model akin to the HAR model of

Corsi (2009) which can replicate the typical persistence pattern of the volatility. The

parameters of this model are set in order to obtain realistic dynamics of the variance. The

parameters of the extreme value models are similar to empirical estimates obtained in

Section 4 with a threshold at the 90th quantile. We generate B¼ 500 samples of T¼2000

observations and estimate the Logit and GP model parameters with the ML estimators set

forth in Section 2.

Table 1 reports the results using as covariate the true volatility and the realized measure,

defined here as r2
t and RMt ¼ r2

t þ gt, where gt 	 N lg;t; r
2
g;t


 �
, respectively. The random

variable gt reflects the uncertainty of the realized measure with respect to the true variance.

In Table 1, we assume that RMt is unbiased, lg;t ¼ 0, but subject to uncertainty,

r2
g;t ¼ 0:15r2

t . The results show that the estimates obtained using the realized measure in-

stead of the true variance are only slightly affected by the uncertainty characterizing the

observed proxy.

Table 2 reports the results adding microstructure noise to the realized measure. The

presence of microstructure noise induces an upward bias in the realized measure. We inflate
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RVt by fixing lg;t to a positive value. In particular, in Table 2 we consider two types of

microstructure noise: constant noise, lg;t ¼ 0:3E r2
t

� �
, and a time-varying noise,

lg;t ¼ 0:3r2
t . The results suggest that the two types impact the estimated parameters differ-

ently: when the noise is time-varying, only the constants (/0, j0) are affected by the micro-

structure noise, while the parameters capturing the dynamics (/1, j1) continue to be well

estimated; in contrast, a constant noise has a deleterious effect on all the parameters.

In conclusion, as long as the dynamic of the extremes depends on the latent variance

process, a good proxy of the latter is able to unveil it. The effects of microstructure noise

can be mitigated by careful selection of the realized measure. In the empirical analysis, we

assess whether the microstructure noise is an issue considering several robust realized

measures.

3.2 RPOT under Misspecification

We assume that the returns rt are generated according to the following t-HAR process,

rt ¼ rt�t;

log r2
t ¼ b0 þ bDlog r2

t�1 þ bW log r2
t�1:t�5 þ bMlog r2

t�1:t�22 þ gt;

where gt 	 N 0; r2
g


 �
and �t 	 t 10ð Þ, with t �ð Þ denoting the Student’s t with � degrees of

freedom. We found informative to consider two scenarios: high volatility-of-volatility

Table 2 Simulation with microstructure noise

Constant noise Time-varying noise

/0 /1 j0 j1 n /0 /1 j0 j1 n

True 9.460 0.840 �2.270 0.310 0.100 9.460 0.840 �2.270 0.310 0.100

Mean 13.660 1.435 �1.431 0.438 0.102 9.171 0.831 �2.374 0.307 0.099

Std. dev. 1.822 0.231 0.334 0.044 0.025 0.793 0.093 0.223 0.028 0.027

Mean ASE 1.537 0.191 0.308 0.040 0.025 0.775 0.091 0.215 0.027 0.025

Notes: True parameter values along with mean of estimates (Mean), mean of standard errors based on plug-in

estimate of the asymptotic covariance matrix (Mean ASE), and standard deviation of the estimates (Std. dev.)

over B¼ 500 replications.

Table 1 Simulation with realized measure versus true volatility

True variance Realized measure

/0 /1 j0 j1 n /0 /1 j0 j1 n

True 9.460 0.840 �2.270 0.310 0.100 9.460 0.840 �2.270 0.310 0.100

Mean 9.455 0.839 �2.286 0.308 0.099 9.294 0.818 �2.352 0.300 0.101

Std. Dev. 0.791 0.090 0.222 0.027 0.026 0.871 0.100 0.215 0.026 0.026

Mean ASE 0.802 0.091 0.223 0.027 0.026 0.796 0.091 0.222 0.027 0.025

Notes: True parameter values along with mean of estimates (Mean), mean of standard errors based on plug-in

estimate of the asymptotic covariance matrix (Mean ASE), and standard deviation of the estimates (Std.dev.)

over B¼ 500 replications.
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(r2
g ¼ 0:56) and low volatility-of-volatility (r2

g ¼ 0:18). For each scenario, we generate

B¼100 samples of T¼ 2000 observations. We perform model estimation of the t-HAR

model and RPOT model using r2
t to drive the dynamic of the exceedance probability and

the size of the exceedances. We estimate the conditional tail quantiles at level a for both

models, and compute the proportion of times that the estimated quantiles are exceeded. If

the model is correctly specified, the latter proportion should be a. Figure 2 reports the pro-

portion of exceedances of the estimated quantiles at level a ¼ 0:01 over the B¼100 replica-

tions. These results confirm that the RPOT model is able to recover the tail quantiles under

a general t-HAR process. When the volatility-of-volatility is high, the simple log-linear

volatility model is unable to accurately capture the high variation in the tail, leading to

many over-rejections, while the RPOT is somewhat conservative. When the volatility-of-

volatility is low, both RPOT and t-HAR yield the correct average number of exceedances,

with RPOT results being less variable.

4 Empirical Analysis

4.1 Data Description

The empirical analysis is based on the S&P 500 index from January 1, 2000 to December

31, 2014. The data come from the Oxford-Man Institute “Realised Library” version 0.25

(Heber et al., 2009). We consider open-to-close returns and overnight returns are not

included in the analysis.

We consider three 5-year sub-samples: 2000–2004, 2005–2009, and 2010–2014. This

allows us to discuss the fitted models in three different regimes of the stock market. The

first sub-sample contains the downward trend that followed the dot-com bubble explosion,

Figure 2 Simulation under misspecification. Proportion of exceedances of the estimated quantiles

under high volatility-of-volatility and low volatility-of-volatility scenarios. Results from B¼ 100 replica-

tions are shown. The horizontal line shows the correct a ¼ 0:01 level.

5 This dataset provides a large number of realized measures, but does not include certain interesting

measures that could be useful predictors of the extreme dynamics. We leave exploration of the in-

formational content of such measures to future research.
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and part of the subsequent rebound. The second sub-sample contains the 2008 crash after

several banks and insurance companies went bankrupt. The last sub-sample contains the re-

covery and the bullish trend of the most recent years.

We start the analysis with the most common realized measure, that is, the 5-min RV (RVt),

see Andersen et al. (2001). We assess how various lags of this proxy affect the dynamic of the

extremes. We then use the 5-min bipower variation (BVt) of Barndorff-Nielsen and Shephard

(2004) to disentangle the contribution of the jumps to the realized variation from that of the

Brownian path. We obtain the realized jumps measure as Jt ¼ max RVt � BVt; 0ð Þ, where the

censoring is needed to avoid negative values due to finite sample effects. We also assess the ef-

fect of microstructure noise by considering realized measures sampled at a frequency lower

than 5-min and noise-robust realized measures. Finally, we assess whether other market fric-

tions can affect the analysis by considering two proxies for illiquidity.

The sequence of extremes is obtained by fixing a threshold level u. The choice of the

threshold is important, implying a balance between bias and variance. On the one hand, a

smaller u means more observations used for inference. On the other hand, probability the-

ory suggests choosing a larger u for limiting results to apply. We use graphical analysis and

tests to accurately choose the threshold when fitting a model for the extremes. Throughout

the analysis, unless otherwise stated, we consider a threshold level corresponding to the

90th quantile of the loss distribution.

4.2 Model Specification

This section is devoted to the estimation of different specifications of the models presented

in Section 2. For each model, we consider four different specifications with sets of covari-

ates of increasing size. The sets of covariates at time t are based on the following realized

measures: RVt, BVt, Jt, RV
W

t ¼ 1
4

P4
i¼1 RVt�i, and RV

M

t ¼ 1
17

P21
i¼5 RVt�i.

The first set contains the RV, and it constitutes the baseline model to assess the relation-

ship between extremes and the asset price variation. The second set contains the bipower

variation and the realized jumps. This choice follows the argument of Andersen, Bollerslev,

and Diebold (2007), who suggest that distinguishing between the information coming from

the continuous and discontinuous sample paths could be valuable. The third and fourth sets

can be considered extensions where we add the information coming from the average week-

ly and monthly RV. This gives a HAR structure (Corsi, 2009) that allows us to see whether

realized measures at different time-horizons are useful to predict the behavior of the

extremes. We consider the logarithmic transformation of these realized measures as it is

preferable from a modeling perspective.6

The threshold level defining the sequence of extremes is set at the 90th quantile of the

loss distribution in the first two sub-samples (2000–2004 and 2005–2009). The third sub-

sample (2010–2014) presents tail decay close to exponential that requires increasing the

threshold level to obtain a good fit. Over this period, we set the threshold at the 97th, 98th,

96th, and 96th quantile for the first, second, third, and fourth specification, respectively.

For each specification in the third sub-sample, we use a different threshold, the lowest one

to yield a good fit.

6 In Section 4, we scale the jump component in order to have covariates of similar magnitude.

Indeed, while log RVtð Þ is much greater, in absolute value, than RVt, log 1þ Jtð Þ 
 Jt , with the

consequence that the parameter associated to the latter would be huge.
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Table 3 reports the estimated parameters for the Logit model in Equation (9) and more

elaborate specifications. Results for specification I show that the coefficient for RV is

strongly significant across the three windows. This substantial statistical evidence confirms

the usefulness of HF data for modeling the exceedance rate. Decomposing the RV in the

contribution from the continuous and the discontinuous sample paths in specification II

allows us to see that the jump component plays a negligible role on the exceedance rate. In

particular, while the coefficient for BV is strongly significant across the windows, the jump

coefficient is never significant. Finally, information on the variance at further lags in a

Table 3 Fitted Logit models

u0 u1 u2 u3 u4 u5

2000–2004

I 5.46*** 0.84***

(0.96) (0.10)

II 6.78*** 0.97*** �0.07

(1.12) (0.12) (0.08)

III 8.15*** 0.38* 0.52* 0.25

(1.34) (0.18) (0.24) (0.23)

IV 9.07*** 0.62*** �0.10 0.37 0.24

(1.44) (0.18) (0.09) (0.25) (0.23)

2005–2009

I 5.02*** 0.79***

(0.68) (0.08)

II 5.13*** 0.78*** 0.00

(0.78) (0.08) (0.07)

III 5.85*** 0.30 0.30 0.29

(0.74) (0.17) (0.22) (0.17)

IV 5.86*** 0.27 0.00 0.31 0.29

(0.81) (0.18) (0.07) (0.22) (0.17)

2010–2014

I 5.63*** 0.96***

(1.13) (0.12)

II 10.28*** 1.46*** �0.30

(1.75) (0.19) (0.19)

III 7.29*** 0.52** 0.21 0.36

(1.56) (0.20) (0.22) (0.23)

IV 8.88*** 0.64** �0.11 0.21 0.39

(1.74) (0.22) (0.12) (0.23) (0.22)

Notes: Specifications are:

I logitð/tÞ ¼ u0 þ u1 log RVt�1

II logitð/tÞ ¼ u0 þ u2 log BVt�1 þ u3 log ð1þ Jt�1Þ
III logitð/tÞ ¼ u0 þ u1 log RVt�1 þ u4 log RV

W

t�1 þ u5 log RV
M

t�1

IV logitð/tÞ ¼ u0 þ u2 log BVt�1 þ u3 log ð1þ Jt�1Þ þ u4 log RV
W

t�1 þ u5 log RV
M

t�1

on S&P 500 returns. *,**,***Significance at the 5%, 1%, and 0.1% levels, respectively.
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HAR fashion does not seem to add significantly to the prediction of the exceedance rate.

Indeed, in specifications III and IV, the coefficients for RV
M

are never significant and those

for RV
W

are significant on only one occasion.

Table 4 shows the estimated parameters of the dynamic GP distribution with �t as in

Equation (10) and more elaborate specifications. The inclusion of HF data contributes signifi-

cantly to explain the size of the excesses. The coefficients for RV and BV are positive and

strongly significant, though adding further lags of the RV reduces their significance. RV
W

is a

significant predictor in the third period and once in the second period, while RV
M

is

Table 4 Fitted dynamic GP models

j0 j1 j2 j3 j4 j5 n

2000–2004

I �2.27 0.31** 0.02

(1.19) (0.14) (0.09)

II �1.84 0.35** �0.04 0.01

(1.21) (0.14) (0.08) (0.09)

III �0.37 0.05 0.33 0.15 0.00

(1.46) (0.15) (0.20) (0.23) (0.09)

IV 0.82 0.09 �0.06 0.38 0.19 0.00

(1.54) (0.15) (0.08) (0.20) (0.23) (0.09)

2005–2009

I �0.95 0.42*** 0.00

(0.54) (0.07) (0.08)

II �0.83 0.42*** �0.01 �0.02

(0.62) (0.08) (0.03) (0.07)

III �0.51 0.06 0.48** �0.07 �0.10

(0.56) (0.12) (0.18) (0.14) (0.07)

IV 0.03 0.11 0.22 0.19 0.07 �0.86

(0.46) (0.20) (1.58) (0.36) (0.51) (0.73)

2010–2014

I 1.24 0.68*** �0.17

(1.33) (0.15) (0.16)

II 4.89 1.09*** �0.42 �0.14

(2.99) (0.35) (0.22) (0.25)

III 0.92** 0.23** 0.75*** 0.39*** �0.70

(0.17) (0.09) (0.09) (0.06) (0.43)

IV 2.18 0.43* �0.13 0.63* �0.32 �0.60

(1.30) (0.20) (0.10) (0.27) (0.24) (0.91)

Notes: The parameter n is constant, while �t is allowed to vary according to

I log �t ¼ j0 þ j1 log RVt�1

II log �t ¼ j0 þ j2 log BVt�1 þ j3 log ð1þ Jt�1Þ
III log �t ¼ j0 þ j1 log RVt�1 þ j4 log RV

W

t�1 þ j5 log RV
M

t�1

IV log �t ¼ j0 þ j2 log BVt�1 þ j3 log ð1þ Jt�1Þ þ j4 log RV
W

t�1 þ j5 log RV
M

t�1

*,**,***Significance at the 5%, 1%, and 0.1% levels, respectively.
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significant only once in the third period. This suggests that the inclusion of additional lags of

realized variation can improve the fit of the model in some cases. The coefficient for the jump

component J is never significant. One might find this counterintuitive, as jumps are typically

found to contribute substantially to explain the tails of the return distribution (Bollerslev and

Todorov, 2011). However, it is important to distinguish the explanatory power from the fore-

casting power. We consider the jump variation as a predictive component of future extremes.

Repeating the analysis using Jt instead of Jt�1, we find that the jump variation significantly

contributes in explaining the size of daily extremes (results in Supplementary Material).

As for the parameter n in Table 4, it is very close to zero or not significantly different

from zero. As we are trying to estimate the tail of the conditional return distribution, we do

not expect the parameter n to be strongly positive as it is usually observed for the uncondi-

tional return distribution.

In an option pricing setting, Bollerslev and Todorov (2014) find that the tail index of

the risk-neutral distribution presents time variation. Similarly, using a panel structure,

Kelly and Jiang (2014) find that the tail of a market-wide factor presents time variation.

We inspect whether assuming a constant tail index n is a sensible decision, and fit a GP dis-

tribution where we allow nt to change linearly with RVt. Results in the Supplementary

Material show that a constant n is justified.

Overall, it appears that HF data apport a meaningful contribution to understanding the

behavior of the excesses. While the 1-day lagged realized variation is useful for modeling

both the exceedance rate and the size of excesses, the contributions of jumps and past vola-

tilities are limited.

4.3 A Comparison of Realized Measures

In this section, we question whether the lack of efficiency of the realized measure and the

microstructure noise can have an impact on the explanatory power of the realized measure

on the dynamics of the extremes. We estimate the Logit and the dynamic GP models

with one lagged realized measure as covariate. We consider the 5-min (already shown in

Tables 3–4, but displayed again here for ease of comparison) and 10-min RV, respectively,

RVt and RV10t, and the corresponding sub-sampled version of these two measures, RVsst

and RV10sst. Sub-sampling provides a simple way to obtain more efficient estimators of

the integrated variance, though they are still biased in the presence of microstructure noise

(Zhang, Mykland, and Aı̈t-Sahalia, 2005). Finally, we consider the realized kernel RKt of

Barndorff-Nielsen et al. (2008) which is robust to microstructure noise.

Tables 5–6 report the estimates for the Logit and the dynamic GP models, respectively.

In both cases, the estimated parameters vary only slightly across the different realized meas-

ures, suggesting that the microstructure noise is not a concern in explaining the extremes

dynamic. This conclusion is supported by the log-likelihood plots in Figure 3, where an

overall winner does not appear.

4.4 Model Diagnostics

In this section, we make use of graphical methods and formal testing procedures to assess

the validity of the models fitted in Section 4.2.

First, we perform a deviance v2-test on the residuals of the Logit model, a standard

goodness-of-fit test in Logit regression literature (Hosmer and Lemeshow, 2004). Given a
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model M0 and a sequence of observations y, the deviance is defined as

Dðy;M0Þ ¼ �2ðlog Pr ðyjbh0Þ � log Pr ðyjbhsÞÞ, where bh0 denotes the fitted values of the

parameters in the modelM0 and bhs denotes the fitted parameters for the saturated model,

that is a model with a parameter for every observation. Two measures of deviance are par-

ticularly important in a Logit model: the null deviance which represents the deviance for a

model with only the intercept, and the model deviance representing the deviance of the fit-

ted model. To evaluate the contribution of the predictors, one can subtract the model devi-

ance from the null deviance, that is, Dnull �Dfitted ¼ �2 log Pr yjbhn


 �
� log Pr yjbh0


 �
 �
and assess the difference on a v2-distribution with degrees of freedom equal to the differ-

ence in the number of estimated parameters. If the model deviance is significantly smaller

Table 6 Dynamic GP model with other HF measures

2000–2004 2005–2009 2010–2014

RMt�1 j0 j1 n j0 j1 n j0 j1 n

log RVt�1 �2.27 0.31* 0.02 �0.95 0.42*** 0.00 1.24 0.68*** �0.17

(1.19) (0.14) (0.09) (0.54) (0.07) (0.08) (1.33) (0.15) (0.16)

log RVsst�1 �2.18 0.31* 0.03 �0.85 0.42*** �0.01 1.64 0.71*** �0.27

(1.29) (0.15) (0.09) (0.57) (0.07) (0.08) (1.13) (0.13) (0.15)

log RV10t�1 �2.54* 0.28* 0.04 �0.89 0.43*** 0.01 0.87 0.64*** �0.21

(1.15) (0.14) (0.09) (0.54) (0.06) (0.08) (1.23) (0.15) (0.17)

log RV10sst�1 �2.26 0.30* 0.03 �0.96 0.41*** 0.00 1.63 0.71*** �0.26

(1.26) (0.15) (0.09) (0.58) (0.07) (0.08) (1.04) (0.13) (0.16)

log RKt�1 �2.28 0.31* 0.03 �0.83 0.43*** �0.01 1.24 0.68*** �0.23

(1.27) (0.15) (0.09) (0.54) (0.07) (0.08) (1.14) (0.13) (0.16)

Notes: The parameter n is constant, while �t varies according to log �t ¼ j0 þ j1 log RVt�1.

*,**,***Significance at the 5%, 1%, and 0.1% levels, respectively.

Table 5 Logit models with other HF measures

2000–2004 2005–2009 2010–2014

RMt�1 u0 u1 u0 u1 u0 u1

log RVt�1 5.46*** 0.84*** 5.02*** 0.79*** 5.62*** 0.96***

(0.96) (0.11) (0.68) (0.08) (1.14) (0.12)

log RVsst�1 6.39*** 0.93*** 5.28*** 0.80*** 7.33*** 1.11***

(1.03) (0.11) (0.71) (0.08) (1.35) (0.14)

log RV10t�1 4.63*** 0.75*** 4.84*** 0.77*** 5.77*** 0.97***

(0.90) (0.10) (0.66) (0.07) (1.10) (0.11)

log RV10sst�1 6.09*** 0.90*** 5.24*** 0.80*** 7.66*** 1.13***

(1.01) (0.11) (0.71) (0.08) (1.41) (0.14)

log RKt�1 5.96*** 0.90*** 5.13*** 0.80*** 6.52*** 1.04***

(0.99) (0.11) (0.69) (0.08) (1.26) (0.14)

Notes: We consider the specification logitð/tÞ ¼ u0 þ u1 log RVt�1. *,**,***Significance at the 5%, 1%, and

0.1% levels, respectively.
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than the null deviance then one can conclude that the predictors significantly improve the

model fit.

Another commonly used goodness-of-fit test in Logit regression is the Hosmer–

Lemeshow test (Hosmer and Lemeshow, 2004). In our case, it tests the null hypothesis of

equality between the observed frequency of exceedances and that expected from the fitted

model. For each observation yi in the sample, the predicted probability pi of exceeding the

threshold is computed. Then, the yi’s are split into G groups of size Ng according to the

rank of their predicted probabilities, with g 2 f1; . . . ;Gg. Finally, for each group g, the

average predicted probability pg ¼ ðNgÞ�1PNg

ig¼1 yig and the expected number of exceedan-

ces Eg ¼ Ngpgð1� pgÞ are computed. The test statistic under H0 is a Pearson v2-statistic of

the form H ¼
PG

g¼1
ðOg�EgÞ2

Eg
where Og is the number of observed exceedances in the gth

group. The test statistic follows asymptotically a v2-distribution with G – 2 degrees of free-

dom. As there are no specific rules to choose the number of groups, we set G¼ 10 as it is

usual in this literature, confident that our large sample size leads to enough observations in

every decile.

Table 7 reports the p-values for both the deviance v2 and the Hosmer–Lemeshow tests.

In the first test, the null hypothesis of equal explanatory power between the null and the fit-

ted model is rejected for all the specifications, across the three windows. At the same time,

the null hypothesis of the Hosmer–Lemeshow is rejected on only one occasion, suggesting

that in general the observed exceedance rate and that implied by the model do not differ sig-

nificantly. These results indicate a good fit of the Logit model across the different windows.

To assess the goodness of fit of the dynamic GP distribution as a model for the size of

the excesses, we perform a graphical validation as in Coles (2001). When data are assumed

to be identically distributed, goodness of fit can be evaluated by means of a qq-plot or for-

mal testing as in Choulakian and Stephens (2001). However, the lack of homogeneity

among observations means that some modifications are required. Diagnostic procedures

Figure 3 Likelihood for several realized measures. Logit likelihood (left panel) and dynamic GP likeli-

hood (right panel). The three sub-samples are: 2000–2004 (solid), 2005–2009 (dotted), and 2010–2014

(dashed).
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are applied to a standardized version of the data, conditional on the fitted parameter values.

Consider a threshold u leading to k exceedances y1; . . . ; yk, where the estimated model is

Yj � u 	 GPðb� j;bnjÞ with j 2 1; . . . ;k and b� j and bn j are, respectively, the estimated scale and

shape parameters of the GP distribution at the time when the exceedance occurs.

Transforming the observations Yj � bu to standard exponentially distributed variables

~Y j ¼ 1bn j

logf1þ bnjð
Yj�bubr j

Þg and denoting the ordered values of the observed ~Y j’s as ~yð1Þ; . . . ;

~yðkÞ, a quantile plot is obtained using the pairs fð~yðiÞ;�log ð1� i=ðkþ 1ÞÞÞ; i ¼ 1; . . . ;kg.
The latter plot appears in Figure 4 for our dynamic GP models. The fits are generally

satisfactory for all the specifications across the three windows considered, confirming the

adequacy of the chosen thresholds.

We check whether the assumption of conditional independence between threshold

exceedances, required for the estimation of the Logit model, is sensible. Figure 5 reports the

autocorrelation of the Pearson residuals, qt ¼ ðIt � b/tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib/tð1� b/tÞ

q
, for the Logit model

with log RVt�1 as covariate, and a model with constant probability equivalent to the un-

conditional exceedance rate, / ¼ nu=n, where nu is the number of observations exceeding

the threshold u. If the dynamic model for the exceedance rate accounts for the serial de-

pendence, the corresponding Pearson residuals show zero autocorrelation while the

Pearson residuals from the constant model should still be autocorrelated. Figure 5 shows

this precisely, that is, conditional modeling based on RV completely filters out the depend-

ence in the exceeding events.

We verify that the exceedance sizes are conditionally independent. Figure 6 shows the

autocorrelation of the residuals Rj from the dynamic GP model with log RVt�1 as covariate

and an analogous model with constant parameters. The plots show that the dependence be-

tween exceedance sizes is strong only in the second sub-sample, while the conditional mod-

eling based on RV perfectly cleans this sequence. The autocorrelation in the third panel

exhibits higher variability due to the small number of observations (
40) over the required

higher threshold level (97th quantile).

Finally, we check the validity of the assumption of conditional independence between

the rate and the magnitude of the exceedances. This assumption was required to perform

separate maximization of the joint likelihood in Equation (8). We adopt the following

Table 7 Diagnostics for logit model

v2-test Hosmer–Lemeshow test

Model 2000� 2004 2005� 2009 2010� 2014 2000� 2004 2005� 2009 2010� 2014

I 0.000*** 0.000*** 0.000*** 0.319 0.627 0.589

II 0.000*** 0.000*** 0.000*** 0.009** 0.485 0.974

III 0.000*** 0.000*** 0.000*** 0.391 0.764 0.521

IV 0.000*** 0.000*** 0.000*** 0.777 0.618 0.383

Notes: P-values for the v2-test on the difference between the deviance residuals and the null residuals and for

the Hosmer–Lemeshow test on the null of equality between the expected and observed frequency of exceedan-

ces. *,**,***Significance at the 5%, 1%, and 0.1% levels, respectively.
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strategy: we obtain an estimate of the exceedance probability conditional on the lagged

log RVt�1; we obtain estimates of the conditional probability of the size of the exceedances

based on the dynamic GP model with log RVt�1, and on the model with constant parame-

ters; we then plot the filtered probability from the Logit model against the probability from

the dynamic and constant GP models, respectively. Figure 7 reports the results for each sub-

sample. The upper panel shows that the exceedance probability and the distribution of the

size of the exceedances as obtained from the constant GP model are positively and signifi-

cantly related. In contrast, the lower panel shows that when we model the size of the

exceedances with the dynamic GP model, this dependence disappears.

Figure 5 Logit residuals. Pearson residuals (upper panel) and corresponding autocorrelation (lower

panel) for the Logit model (dark (blue)) and for a constant probability (pale (red)). Dashed lines in the

lower panel correspond to the Bartlett confidence bands. Columns show results for 2000–2004, 2005–

2009, and 2010–2014, respectively.

Figure 4 QQ-plot for dynamic GP distribution. From top to bottom, time intervals 2000–2004, 2005–

2009, and 2010–2014, respectively. From left to right, Specifications I, II, III, and IV, respectively. Each

panel has the theoretical quantiles of a unit-rate exponential distribution on the x-axis, and the empir-

ical quantiles of the excesses transformed to exponential on the y-axis.
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4.5 The Value of HF Data

The previous sections have shown that RPOT models fit the data reasonably well, confirm-

ing that HF-based measures are informative with respect to threshold exceedances. An

interesting question is whether HF data add information beyond that carried by LF data. It

is important to note that our framework generalizes the past dynamic EVT models in fi-

nance, in the sense that LF realized measures, such as the squared returns can be easily

included. Chavez-Demoulin, Davison, and McNeil (2005) and Chavez-Demoulin,

Embrechts, and Sardy (2014) consider past daily exceedances to learn the behavior of the

future exceedances, but this is equivalent to using the daily semi-variance as realized meas-

ure in our framework.

Figure 7 Cross residuals. Scatterplot of the probability of the size of exceedances from the GP model

(x-axis) and the filtered exceedance probability from the Logit model (y-axis). The results for the con-

stant GP model and the dynamic GP model are in the upper and lower panel, respectively. Regression

lines are dashed with the following coefficients (standard errors): 0.09 (0.02), 0.27 (0.04), 013 (0.03)

(Upper); 0.03 (0.03), �0.02 (0.05), 0.02 (0.03) (Lower). Columns show results for 2000–2004, 2005–2009,

and 2010–2014, respectively.

Figure 6 GP residuals. Autocorrelation of residuals from the dynamic GP model (dark (blue)) and the

constant GP model (pale (red)). Dashed lines correspond to the Bartlett confidence bands. Columns

show results for 2000–2004, 2005–2009, and 2010–2014, respectively.
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To verify whether the HF-based measures add information to that conveyed by LF-

based measures, we now consider models for the exceedance rate and the size of excesses

that use both as covariates.

Let R2t be the squared returns, DRt be the daily range, and ht be the GARCH(1, 1) fil-

tered variance on day t. Table 8 shows the results for the Logit model with each lagged vari-

able It�1; log R2t�1; log DRt�1, and log ht�1 as a covariate. The realized measures are

significant in the LF models across the different periods, however, adding RV can reduce

the explanatory power of the LF measures. The coefficient uHF is strongly significant and

similar in magnitude to that observed in Table 3. Figure 8 reports the value of the maxi-

mized likelihood for the different models in the three sub-samples. The plot shows that

including HF measures always adds to the likelihood, with the size of the contribution

being greater for It�1 and smaller for log ht�1.

Let Wt be the excess size at time t 2 E, Chavez-Demoulin, Davison, and McNeil (2005)

assumes that exceedances are Markov with WtjWt�1 distributed as a GP distribution with

�t depending on Wt�1. In Table 9, we consider Wt�1; log R2t�1; log DRt�1, and log ht�1 as

covariates in the dynamic GP model. We see that the LF coefficient jLF tends to be signifi-

cant when LF realized measures are considered alone, but adding RV strongly reduces their

explanatory power and the HF coefficient jHF is mostly significant. Note that over the

period 2010–2014, the n parameter for the model with log ht�1 is negative and statistically

significant. This can happen in a finite sample when the true tail is exponentially decaying.

Figure 9 reports the likelihood value at the maximum for the different dynamic GP models.

Again, the HF measure always contributes.

Table 8 Fitted logit models with HF and LF covariates

2000–2004 2005–2009 2010–2014

LMt�1 Model u uLF uHF u uLF uHF u uLF uHF

It�1 LF. �2.27*** 0.62* �2.26*** 0.60* �3.52*** 1.06

(0.10) (0.27) (0.10) (0.26) (0.17) (0.63)

HF. 5.60*** �0.11 0.86*** 5.71*** �0.63* 0.85*** 6.29*** �0.68 1.02***

(1.03) (0.29) (0.11) (0.76) (0.30) (0.08) (1.27) (0.76) (0.14)

log R2t�1 LF. �1.36 0.08 �0.15 0.20*** �2.05** 0.14*

(0.52) (0.05) (0.47) (0.05) (0.80) (0.07)

HF. 5.41*** �0.05 0.89*** 4.99*** �0.06 0.85*** 5.72*** �0.11 1.09***

(0.96) (0.04) (0.12) (0.69) (0.04) (0.09) (1.14) (0.05) (0.15)

log DRt�1 LF. 3.16*** 0.57*** 3.38*** 0.59*** 4.30*** 0.79***

(0.85) (0.09) (0.61) (0.07) (1.17) (0.12)

HF. 5.44*** �0.06 0.91*** 4.96*** �0.60** 1.41*** 5.55*** �0.12 1.08***

(0.96) (0.17) (0.20) (0.69) (0.18) (0.22) (1.14) (0.31) (0.33)

log ht�1 LF. 7.60*** 1.11*** 5.62*** 0.88*** 6.33*** 1.05***

(1.12) (0.13) (0.70) (0.08) (1.33) (0.15)

HF. 7.94*** 0.78*** 0.36* 5.74*** 0.49** 0.39* 6.97*** 0.47* 0.64***

(1.14) (0.22) (0.18) (0.71) (0.18) (0.17) (1.32) (0.24) (0.20)

Notes: LF. logitð/tÞ ¼ uþ uLFLMt�1

HF. logitð/tÞ ¼ uþ uLFLMt�1 þ uHF log RVt�1

for LMt�1 as in first column.

*,**,***Significance at the 5%, 1%, and 0.1% levels, respectively.
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Overall, this analysis shows that HF data convey information beyond that provided by

LF data on the behavior of the extremes, confirming the merits of the RPOT approach.

4.6 The Impact of Illiquidity

We investigate whether illiquidity can be an explanatory factor of the dynamics of the ex-

treme negative returns. The available data allow us to consider two proxies of illiquidity7:

first, following Brennan and Subrahmanyam (1995) we consider the inverse of the daily

volume, IVt ¼ 1=VOLt, with VOLt the transaction volume on day t; second, akin to the

ILLIQ measure of Amihud (2002), we consider the ratio of the daily absolute returns to the

daily volume of transactions, ILLIQt ¼ jrtj=VOLt. Both these measures are based on vol-

ume, and finer measures of illiquidity could possibly be obtained from microstructure data

on transactions and quotes. Given the limited dataset at our disposal, we do not pursue this

path, but consider it an interesting topic for future research.

Tables 10–11 report the estimates of the Logit and dynamic GP models with illiquidity

covariates. Illiquidity shows a significant effect on both the probability of an exceedance and

the size of the exceedance in the second and third sub-samples only when using the inverse of

daily volume as illiquidity proxy. The sign of this effect is negative, in agreement with the fact

that there exists a positive risk premium associated to illiquidity (Amihud, 2002). The signifi-

cance of these parameters vanishes however when we add the RV, with the latter presenting

again a positive and strongly significant effect on the negative extremes.

4.7 Adding Autoregressive Terms

We include autoregressive terms, adapting our modeling approach to the GAS framework

of Creal, Koopman, and Lucas (2013). We combine the Logit model for the exceedance

probability and the GP model for the size of the exceedances in a global censored model.

Let yt be the negative return time series and u a fixed threshold. Defining the sequence of

exceedances zt ¼ yt � u, we can write the cumulative distribution function of the model as,

Ht ztj�t;/t; nð Þ ¼
1� /t zt ¼ 0

1� /t 1þ n
�t

zt


 ��1=n
zt �0:

8<:

Figure 8 Logit likelihood with HF and LF covariates. Models with LF measures (solid line). Models with

both HF and LF measures (dotted line).

7 Note that the Ox-Realized Library does not provide volume of transaction. Records for this quantity

were downloaded free of charge from Yahoo Finance.
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Letting rt ¼ log �t and pt ¼ log /t

1�/t


 �
, we consider the following dynamics,

rt ¼ x1 þ b1rt�1 þ a1s1;t�1 þ c1log RVt�1;

pt ¼ x2 þ b2pt�1 þ a2s2;t�1 þ c2log RVt�1;
(16)

where st ¼ Strt is a score-based update suggested in Creal, Koopman, and Lucas (2013). In

particular,rt ¼ @log ht

@rt
; @log ht

@pt


 �0
, where ht is the density of Ht and St is a scaling matrix, that

is, the inverse Hessian or its square root. Details on the implementation of this model can

be found in the Supplementary Material.

Table 12 displays the estimated parameters of the model in Equation (16) for the S&P

500. The results show that the persistence parameters b1 and b2 are strongly significant,

even when the RV is added. In contrast, the coefficients related to the score-based updates,

a1 and a2, are significant in the baseline model (GAS), but not when the RV is included.

The coefficients of the RV are positive and significant. In sum, the inclusion of an autore-

gressive term along with a HF-based measure may be worthwhile.

5 Out-of-Sample Forecasts

In Section 4, we have shown that HF data contribute significantly toward explaining the

behavior of daily extreme returns. However, in-sample fit does not guarantee a satisfactory

out-of-sample forecast performance. In this section, we investigate whether HF data also

lead to good out-of-sample forecasts. To this end, we perform an out-of-sample analysis of

the 1-day-ahead VaR and ES forecasts defined, respectively, in Equations (13) and (14). We

consider Logit-type RPOT models with one lagged realized measure as covariate in both

the probability of exceedance and the size of the exceedances. We consider RV and BV as

HF measures and the LF measures used in Section 4.5: R2 and the I&W combination à la

Chavez-Demoulin, Davison, and McNeil (2005).

We apply a rolling-window scheme to obtain a time series of VaR and ES predictions at

level a ¼ 0:01. Let n be the size of the available sample and s be the length of the window.

We have two sequences of forecasts: VaRa
t

� �n

t¼sþ1
and ESa

t

� �n

t¼sþ1
of length m ¼ n� s,

where each prediction is obtained considering the observations lt�s; . . . ; lt�1. We produce

m¼1744 predictions when considering a window of size s¼2000. The threshold level is

fixed at the 90th quantile of the unconditional loss distribution obtained from the s

observations.

Figure 9 Dynamic GP likelihood with HF and LF covariates. Models with LF measures (solid line).

Models with both HF and LF measures (dotted line).
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We evaluate the performance of the RPOT approach by performing a battery of tests.

We consider the binary indicator of VaR failure Htþ1 ¼ I ltþ1 > dVaR
a

tþ1jt


 �n o
, where I �ð Þ

is the indicator function. Commonly used tests are the Unconditional Coverage (UC),

Independence (IND), and Conditional Coverage (CC) suggested by Christoffersen (1998)

and the Dynamic Quantile (DQ) test suggested by Engle and Manganelli (2004). We also

perform a Diebold–Mariano (DM) test on the null of equal predictive accuracy against the

model based on the I&W. To evaluate the performance for the ES, we test the hypothesis

that conditional upon exceeding the 99th quantile of the loss distribution, the difference be-

tween the actual return and the predicted ES has mean zero. In particular, we perform a

Table 11 Dynamic GP models with illiquidity measures

2000–2004 2005–2009 2010–2014

j0 j1 j2 n j0 j1 j2 n j0 j1 j2 n

I �14.47** �0.45 0.04 �30.18*** �1.15*** 0.11 �19.69 �0.66 0.19

(5.33) (0.25) (0.08) (6.11) (0.27) (0.10) (24.89) (1.12) (0.17)

II �2.04 0.11 �0.01 �2.72 0.06 0.13 �9.19 �0.15 0.17

(1.64) (0.06) (0.08) (2.15) (0.08) (0.09) (5.34) (0.19) (0.17)

III �1.62 0.03 0.32* 0.04 3.73 0.19 0.46*** �0.02 �12.54 �0.59 0.62*** �0.21

(8.04) (0.34) (0.16) (0.09) (11.10) (0.46) (0.12) (0.07) (13.67) (0.59) (0.15) (0.22)

IV �0.89 0.06 0.28* 0.02 �2.85 �0.08 0.44*** 0.01 �5.76* �0.27 0.72*** �0.19

(1.86) (0.06) (0.14) (0.09) (2.05) (0.08) (0.07) (0.08) (2.45) (0.10) (0.15) (0.13)

Notes: The following specifications are considered:

I log �t ¼ j0 þ j1 log IVt�1

II log �t ¼ j0 þ j1 log ILLt�1

III log �t ¼ j0 þ j1 log IVt�1 þ j2 log RVt�1

IV log �t ¼ j0 þ j1 log ILLt�1 þ j2 log RVt�1.

Table 10 Logit models with illiquidity measures

2000–2004 2005–2009 2010–2014

u0 u1 u2 u0 u1 u2 u0 u1 u2

(i) �9.57 �0.35 �52.10*** �2.26*** �76.42*** �3.29***

(10.50) (0.50) (5.29) (0.24) (14.02) (0.63)

(ii) 1.73 0.15 �0.02 0.08 �0.17 0.12

(2.62) (0.10) (2.34) (0.09) (4.01) (0.15)

(iii) 19.64* 0.65 0.90*** �19.98 �1.02** 0.51*** �18.50 �1.03 0.82***

(9.79) (0.45) (0.11) (8.69) (0.35) (0.12) (19.58) (0.83) (0.18)

(iv) 3.76 �0.08 0.87*** 1.08 �0.16* 0.83*** 0.33 �0.23 1.07***

(2.19) (0.09) (0.11) (2.03) (0.08) (0.08) (2.48) (0.11) (0.14)

Notes: The following specifications are considered:

(i) logitð/tÞ ¼ u0 þ u1 log IVt�1

(ii) logitð/tÞ ¼ u0 þ u1 log ILLt�1

(iii) logitð/tÞ ¼ u0 þ u1 log IVt�1 þ u2 log RVt�1

(iv) logitð/tÞ ¼ u0 þ u1 log ILLt�1 þ u2 log RVt�1.

278 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/17/2/254/5369812 by guest on 28 January 2021

Deleted Text: ,
Deleted Text: -


one-sided test with the alternative that the mean is greater than zero using a bootstrap that

makes no assumption about the distribution of the differences (McNeil and Frey, 2000).

The p-values in Table 13 show that the models based on HF data perform well, while

those based on LF data can be problematic. The p-values from the DM tests against the

model based on I&W confirm the superior performance of the RPOT: 0.02 (RV), 0.01

(BV), and 0.23 (R2). We conclude that the forecasting ability of RPOT models with HF

measures is superior to that of models based on LF measures.

To confirm the ability of the RPOT to produce good forecasts, we also provide an ana-

lysis using a window size of 1000 observations instead of 2000. Results in the

Supplementary Material show that the RPOT outperforms the model based on LF measures

in this case as well.

6 Conclusions

The availability of HF data has lead to breakthroughs in the financial econometrics litera-

ture, and models that exploit this source of information are superseding standard econo-

metric models. In this paper, we propose a novel HF extreme value approach where

realized measures are used to model the time-varying behavior of extreme returns. In-

sample fit of these models shows that measures of variation built from HF data add infor-

mation on the extremes, beyond that conveyed by LF data, illiquidity measures, and score-

based innovations. Moreover, out-of-sample forecasts of standard risk measures obtained

with HF covariates are superior to those obtained with LF covariates.

Table 13 Tests on conditional risk measures

Measure Violation UC IND CC DQ BOOT

RV 0.97 0.91 0.56 0.83 0.99 0.38

BV 1.03 0.89 0.54 0.81 0.99 0.54

R2 1.60 0.02 0.08 0.01 0.01 0.09

I&W 1.55 0.03 0.35 0.07 0.01 0.03

Notes: Percentage of violations (Violation); the p-values for the unconditional coverage (UC), the independence

assumption (IND), the conditional coverage (CC), and the DQ for the VaR predictions at level a ¼ 0:01, and

the bootstrap test (BOOT) for the ES predictions at level a ¼ 0:01. Rejection at the 5% significance level

appears in bold.

Table 12 RPOT models with autoregressive terms

x1 x2 a1 a2 b1 b2 n c1 c2

GAS �0.096* �0.016** 0.019*** 0.021*** 0.98*** 0.992*** �0.02

(0.052) (0.006) (0.005) (0.003) (0.108) (0.029) (0.03)

RPOT-GAS �0.048 0.991* 0.012 0.011 0.725*** 0.839*** �0.097** 0.140*** 0.144*

(0.139) (0.512) (0.008) (0.011) (0.051) (0.084) (0.035) (0.031) (0.074)

Notes: Estimates of the dynamic model in Equation (16) without (GAS) and with (RPOT-GAS) the RV as ex-

ternal regressors. Standard errors are in parenthesis. *,**,***Significance at the 5%, 1%, and 0.1% levels,

respectively.
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We are working on refinements and extensions of the RPOT with the aim of establishing a

complete framework where HF data are used within extreme value models. For example, adding

parametric or non-parametric smoothing components may enhance the stability of the extreme

value models. Furthermore, the intuition of this paper can be used to extend the time-varying

threshold model of Wang, Li, and He (2012) to financial returns. Finally, the development of

multivariate models where the realized covariance is used as a source of information would allow

for the modeling of the joint occurrence of extreme events. Such a framework could be used to

provide a much needed extreme value perspective measure of contagion effects among assets.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.

Appendix

Proof of Proposition 1. Let yt ¼ z;RMtð Þ and h ¼ j; nð Þ 2 H � R
pþ1 � 0;1ð �, we have

log gt yt; hð Þ ¼ �RM0
tj� 1þ 1

n

� �
log 1þ n

exp RM0
tj

� � z

 !
;

with z�0. The shape parameter n must be lower than 1 for z to have finite first moment.

We use yt to stress that the likelihood properties depend on both the random variables z

and RMt. To prove consistency, we verify the conditions of Theorem 2.5 of Newey and

McFadden (1994).

The first requirement is identifiability. The second requirement is h0 2 H and compactness

of H. These two requirements hold by Assumption (i).

The third requirement is continuity. Since the density of the GP and the exponential func-

tion used to link the GP scale parameter to the covariates are both continuous, the require-

ment is satisfied.

The last requirement is that E sup h2H jlog gt yt; hð Þj

 �

< 1. We need to show that there

exists a function dt ytð Þ such that jlog gt yt; hð Þj� dt ytð Þ8h 2 H and E dt ytð Þ
� �

< 1. We have

that,

jlog gt yt; hð Þj ¼ j � RM0
tj�

1

n
þ 1

� �
log 1þ n exp �RM0

tj
� �

zt

� �
j

� jRM0
tjj þ

���� 1n þ 1

����jlog 1þ n exp �RM0
tj

� �
zt

� �
j

� kRMtkkjk þ
����1n þ 1

����jlog 1þ n exp �RM0
tj

� �
zt

� �
j:

By Assumption (i), h belongs to a compact set, therefore there exist positive constants

bounding kjk and j 1n þ 1j, respectively. Since n exp �RM0
tj

� �
zt > 0, we have that the

term jlog 1þ n exp �RM0
tj

� �
zt

� �
j < 1þ n exp �RM0

tj
� �

zt. Besides, exp �RM0
tj

� �
�

exp kRMtkkjkð Þ, so we let

dt ytð Þ ¼ CjjRMtjj þ C 1þ exp CjjRMtjjð Þztð Þ;
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with C>0 a large enough positive constant. We can then compute the expected value of

dt ytð Þ. Let Ez dt ytð Þ
� �

denote the conditional expectation with respect to zt. For C large

enough, we have

Ez dt ytð Þ
� �

¼
ð1

0

CjjRMtjjþC 1þexp CjjRMtjjð Þztð Þð Þexp �RM0
tj

� �
1þn exp �RM0

tj
� �

zt

� ��1=n�1
dz

¼CjjRMtjjþCþC exp CjjRMtjjð Þ
ð1

0

zt exp �RM0
tj

� �
1þn exp �RM0

tj
� �

zt

� ��1=n�1
dz

¼CjjRMtjjþCþC exp CjjRMtjjð Þexp RM0
tj

� �
1�n

�CjjRMtjjþCþ2C
exp CjjRMtjjð Þ

1�n
;

so that E dt ytð Þ
� �

is finite by Assumption (iii).

Asymptotic normality follows from Theorem 3.3 of Newey and McFadden. Condition

3.3(i) holds by Assumption (i). Condition 3.3(ii) follows from the differentiability of the GP

distribution and of the exponential function. Then, we have that

J ¼ E rh log gt yt; h0ð Þrh log gt yt; h0ð Þ0
� �

¼ 1

1þ 2n0

EðRMtRMt
0Þ 1

1þ n0

� 2

1þ n0

0BB@
1CCA;

and condition 3.3(iv) is satisfied by Assumption (ii). Finally, Conditions 3.3(iii)–(v) follow

from arguments analogous to those used in the proof of the dominance condition for con-

sistency. Details on these computations can be found in the Supplementary Material. h
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