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Abstract. We propose a novel Generative Adversarial Network (Xing-
GAN or CrossingGAN) for person image generation tasks, i.e., translat-
ing the pose of a given person to a desired one. The proposed Xing gener-
ator consists of two generation branches that model the person’s appear-
ance and shape information, respectively. Moreover, we propose two novel
blocks to effectively transfer and update the person’s shape and appear-
ance embeddings in a crossing way to mutually improve each other, which
has not been considered by any other existing GAN-based image genera-
tion work. Extensive experiments on two challenging datasets, i.e., Market-
1501 and DeepFashion, demonstrate that the proposed XingGAN ad-
vances the state-of-the-art performance both in terms of objective quan-
titative scores and subjective visual realness. The source code and trained
models are available at https://github.com/Ha0Tang/XingGAN.
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1 Introduction

The problem of person image generation aims to generate photo-realistic per-
son images conditioned on an input person image and several desired poses.
This task has a wide range of applications such as person image/video genera-
tion [41,9,2,11,19] and person re-identification [45,28]. Exiting methods such as
[21,22,31,45,35] have achieved promising performance on this challenging task.
For example, Zhu et al. [45] recently proposed a conditional GAN model that
comprises a sequence of pose-attentional transfer blocks. Wherein, each block
transfers certain regions it attends to and progressively generates the desired
person image.

Although [45] performed an interesting exploration, we still observe unsat-
isfactory aspects and visual artifacts in the generated person images due to
several reasons. First, [45] stacks several convolution layers to generate the at-
tention maps of the shape features, then the generated attention maps are used
to attentively highlight the appearance features. Since convolutional operations
are building blocks that process one local neighborhood at a time, this means
that they cannot capture the joint influence between the appearance and the
shape features. Second, the attention maps in [45] are only produced by using
one single modality, i.e., the pose, leading to insufficiently accurate correlations

https://github.com/Ha0Tang/XingGAN


2 H. Tang et al.

Fig. 1: Overview of the proposed Xing generator. Both the Shape-guided
Appearance-based generation (SA) and the Appearance-guided Shape-based
generation (AS) branches consist of a sequence of SA and AS blocks in a cross-
ing way. All these components are trained in an end-to-end fashion so that the
SA branch and AS branch can benefit from each other to generate more shape-
consistent and appearance-consistent person images.

for both modalities (i.e., the pose and the image modality), and thus misguiding
the image generation.

Based on these observations, we propose a novel Generative Adversarial
Network (XingGAN or CrossingGAN), which consists of a Xing generator, a
shape-guided discriminator, and an appearance-guided discriminator. The over-
all framework is shown in Fig. 1. The Xing generator consists of three parts,
i.e., a Shape-guided Appearance-based generation (SA) branch, an Appearance-
guided Shape-based generation (AS) branch, and a co-attention fusion module.
Specifically, the proposed SA branch contains a sequence of SA blocks, which
aim to progressively update the appearance representation under the guidance
of the shape representation, while the proposed AS branch contains a sequence
of AS blocks, which aim to progressively update the shape representation under
the guidance of the appearance representation. We also present a novel crossing
operation in both SA and AS blocks to capture the joint influence between the
image modality and the pose modality by creating attention maps jointly pro-
duced by both modalities. Moreover, we introduce a co-attention fusion model to
better fuse the final appearance and shape features to generate the desired per-
son images. We present an appearance-guided discriminator and a shape-guided
discriminator to jointly judge how likely is that the generated image contains the
same person in the input image and how well the generated image aligns with
the targeted pose, respectively. The proposed XingGAN is trained in an end-to-
end fashion so that the generation branches can enjoy the mutually improved
benefits from each other.

We conduct extensive experiments on two challenging datasets, i.e., Market-
1501 [44] and DeepFashion [20]. Qualitative and quantitative results demonstrate
that XingGAN achieves better results than state-of-the-art methods, regarding
both visual fidelity and alignment with targeted person poses.

To summarize, the contributions of our paper are three-fold:



XingGAN for Person Image Generation 3

– We propose a novel XingGAN (or CrossingGAN) for person image genera-
tion. It explores cascaded guidance with two different generation branches,
and aims at progressively producing a more detailed synthesis from both
person shape and appearance embeddings.

– We propose SA and AS blocks, which effectively transfer and update person
shape and appearance features in a crossing way to mutually improve each
other, and are able to significantly boost the quality of the final outputs.

– Extensive experiments clearly demonstrate the effectiveness of XingGAN,
and show new state-of-the-art results on two challenging datasets, i.e., Market-
1501 [44] and DeepFashion [20].

2 Related Work

Generative Adversarial Networks (GANs) [8] consist of a generator and
a discriminator where the goal of the generator is to produce photo-realistic
images so that the discriminator cannot tell the generated images apart from real
images. GANs have shown the capability of generating photo-realistic images
[3,14,30]. However, it is still hard for vanilla GANs to generate images in a
controlled setting. To fix this limitation, Conditional GANs (CGANs) [23] have
been proposed.
Image-to-Image Translation aims to learning the translation mapping be-
tween target and input images. CGANs have achieved decent results in pixel-
wise aligned image-to-image translation tasks [12,34,1]. For example, Isola et al.
propose Pix2pix [12], which adopts CGANs to generate the target domain im-
ages based on the input domain images, such as photo-to-map, sketch-to-image,
and night-to-day. However, pixel-wise alignment is not suitable for person image
generation tasks due to the shape deformation between the input person image
and target person image.
Person Image Generation. To remedy this, several works started to use poses
to guide person image generation [21,22,31,7,35,45]. For example, Ma et al. first
present PG2 [21], which is a two-stage model to generate the target person images
based on an input image and the target poses. Moreover, Siarohin et al. propose
PoseGAN [31], which requires an extensive affine transformation computation
to deal with the input-output misalignment caused by pose differences. Zhu et
al. propose Pose-Transfer [45], which contains a sequence of pose-attentional
transfer blocks to generate the target person image progressively. Besides the
aforementioned supervised methods, several works focus on solving this task
in an unsupervised setting [27,33]. For instance, Pumarola et al. propose an
unsupervised framework [27] to generate person images, which induces some
geometric errors as revealed in their paper.

Note that the aforementioned methods adopt human keypoints or skeleton as
pose guidance, which are usually extracted by using OpenPose [4]. In addition,
several works adopt DensePose [24], 3D pose [18], and segmented pose [6] to gen-
erate person images because they contain more information about body depth
and part segmentation, producing better results with more texture details. How-
ever, the keypoint-based pose representation is much cheaper and more flexible
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than the DensePose, 3D pose, segmented pose representations, and can be more
easily applied to practical applications. Therefore, we favor keypoint-based pose
representation in this paper.
Image-Guidance Conditioning Schemes. Recently, there were proposed
many schemes to incorporate the extra guidance (e.g., human poses [21,45], seg-
mentation maps [25,36,37], facial landmarks [35,42], etc) into an image-to-image
translation model, which can be divided into four categories, i.e., input concate-
nation [35,40,43], feature concatenation [21,22,7,18,16,17], one-way guidance-to-
image interaction [31,25,10,26], two-way guidance-and-image interaction [45,1,5].

The most straightforward way of conditioning the guidance is to concatenate
the input image and the guidance along the channel dimension. For example,
C2GAN [35] takes the input person image and the targeted poses as input to
output the corresponding targeted person images. Instead of concatenating the
guidance and the image at the input, several works [21,22,7] concatenate their
feature representations at a certain layer. For instance, PG2 [21] concatenates
the embedded pose feature with the embedded image feature at the bottleneck
fully connected layer. Another more general scheme is to use the guidance to
guide the generation of the image. For example, Siarohin et al. [31] first learn an
affine transformation between the input and the target pose, then they use it to
‘move’ the feature maps between the input image and the targeted image. Unlike
existing one-way guidance-to-image interaction schemes that allow information
flow only from the guidance to the input image, a recent scheme, i.e., two-way
guidance-and-image interaction, also considers the information flow from the
input image back to the guidance [45,1]. For example, Zhu et al. [45] propose an
attention-based GAN model to simultaneously update the person’s appearance
and shape features under the guidance of each other, and show that the proposed
two-way guidance-and-image interaction strategy leads to better performance on
person image generation tasks.

Contrary to the existing two-way guidance-and-image interaction schemes
[45,1] that allow both the image and guidance to guide and update each other in
a local way, we show that the proposed cross-conditioning strategy can further
improve the performance of person image generation tasks.

3 Xing Generative Adversarial Networks

We start by presenting the details of the proposed XingGAN (Fig. 1) consisting
of three parts, i.e., a Shape-guided Appearance-based generation (SA) branch
modeling the person shape representation, an Appearance-guided Shape-based
generation (AS) branch modeling the person appearance representation, and a
Co-Attention Fusion (CAF) module for fusing these two branches. In the follow-
ing, we first present the design of the two proposed generation branches, and then
introduce the co-attention fusion module. Lastly, we present the proposed two
discriminators, the overall optimization objective and implementation details.

The inputs of the proposed Xing generator are the source image Is, the
source pose Ps, and the target pose Pt. The goal is to translate the pose of the
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Fig. 2: Structure of the proposed SA block which takes the previous appearance
code F I

t−1 and the previous shape code FP
t−1 as input and obtains the appear-

ance code F I
t in a crossed non-local way. The symbols ⊕, ⊗ and s○ and c○

denote element-wise addition, element-wise multiplication, Softmax activation,
and channel-wise concatenation, respectively.

person in the source image Is from the source pose Ps to the target pose Pt, thus
synthesizing a photo-realistic person image I

′

t . In this way, the source image Is
provides the appearance information and the poses (Ps, Pt) provide the shape
information to the Xing generator for synthesizing the desired person image.
Shape-Guided Appearance-Based Generation. The proposed Shape-guided
Appearance-based generation (SA) branch consists of an image encoder and a
series of the proposed SA blocks. The source image Is is first fed into the image
encoder to produce the appearance code F I

0 , as shown in Fig. 1. The encoder
consists of two convolutional layers in our experiments. The SA branch contains
several cascaded SA blocks which progressively update the initial appearance
code F I

0 to the final appearance code F I
T under the guidance of the AS branch.

As we can see in Fig. 1, all SA blocks have an identical network structure. Con-
sider the t-th block in Fig. 2, whose inputs are the appearance code F I

t−1∈Rc×h×w

and the shape code FP
t−1∈Rc×h×w. The output is the refined appearance code

F I
t ∈Rc×h×w. Specifically, given the appearance code F I

t−1, we first feed it into a
convolution layer to generate a new appearance code C, where C∈Rc×h×w. Then
we reshape C to Rc×(hw), where n=hw is the number of pixels. At the same time,
the SA block receives the shape code FP

t−1 from the AS branch, which is also
fed into a convolution layer to produce a new shape code B∈Rc×h×w and then
reshape to Rc×(hw). After that, we perform a matrix multiplication between the
transpose of C and B, and apply a Softmax layer to produce a correlation matrix
P∈R(hw)×(hw),

pji =
exp(BiCj)∑n
i=1 exp(BiCj)

, (1)

where pji measures the impact of the i-th position of B on the j-th position of the
appearance code C. In this crossing way, the SA branch can capture more joint
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influence between the appearance code F I
t−1 and shape code FP

t−1, producing a
richer appearance code F I

t .
Note that Eq. (1) has a close relationship with the non-local operator pro-

posed by Wang et al. [38]. The major difference is that the non-local operator in
[38] computes the pairwise similarity within the same feature map to incorporate
global information, whereas the proposed crossing way computes the pairwise
similarity between different feature maps, i.e., the person appearance and shape
feature maps.

After that, we feed F I
t−1 into a convolution layer to produce a new appearance

code A∈Rc×h×w and reshape it to Rc×(hw). We then perform a matrix multi-
plication between A and the transpose of P and reshape the result to Rc×h×w.
Finally, we multiply the result by a scale parameter α and conduct an element-
wise sum operation with the original appearance code F I

t−1 to obtain the refined
appearance code F I

t ∈ Rc×h×w,

F I
t = α

n∑
i=1

(pjiAi) + F I
t−1, (2)

where α is 0 in the beginning and but is gradually updated. By doing so, each
position of the refined appearance code F I

t is a weighted sum of all positions
of the shape code FP

t−1 and the previous appearance code F I
t−1. Thus, it has

a global contextual view between FP
t−1 and F I

t−1, and it selectively aggregates
useful contexts according to the correlation matrix P .
Appearance-Guided Shape-Based Generation. In our preliminary exper-
iments, we observe that only the SA generation branch is not sufficient to learn
such a complex deformable translation process. Intuitively, since the shape fea-
tures can guide the appearance features, we believe the appearance features can
also be used to guide the shape features in turn. Therefore, we also propose
an Appearance-guided Shape-based generation (AS) branch. The proposed AS
branch mainly consists of a pose encoder and a sequence of AS blocks, as shown
in Fig. 1. The source pose Ps and target pose Pt are first concatenated along
the channel dimension and then fed into the pose encoder to produce the initial
shape representation FP

0 . The pose encoder has the same network structure as
the image encoder. Note that to capture the dependency between the two poses,
we only adopt one pose encoder.

The AS branch contains several cascaded AS blocks, which progressively
update the initial shape code FP

0 to the final shape code FP
T under the guidance

of the SA branch. All AS blocks have the same network structure, as illustrated
in Fig. 1. Consider the t-th block in Fig. 3, whose inputs are the shape code
FP
t−1∈Rc×h×w and the appearance code F I

t−1∈Rc×h×w. The output is the refined
shape code FP

t ∈Rc×h×w.
Specifically, given the shape code FP

t−1, we first feed it into a convolution
layer to generate a new shape code H, where H∈Rc×h×w. We then reshape H
to Rc×(hw). At the same time, the AS block receives the appearance code F I

t−1

from the SA branch, which is also fed into a convolution layer to produce a new
appearance code E and then reshape it to Rc×(hw). After that, we perform a
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Fig. 3: Structure of the proposed AS block, which takes the previous shape code
FP
t−1 and the previous appearance code F I

t−1 as inputs and obtains the shape
code FP

t in a crossing way. The symbols ⊕, ⊗ and s○ and c○ denote element-
wise addition, element-wise multiplication, Softmax activation, and channel-wise
concatenation, respectively.

matrix multiplication between the transpose of H and E, and apply a Softmax
layer to produce another correlation matrix Q∈R(hw)×(hw),

qji =
exp(EiHj)∑n
i=1 exp(EiHj)

, (3)

where qji measures the impact of i-th position of E on the j-th position of the
shape code H. n=hw is the number of pixels.

Meanwhile, we feed FP
t−1 into a convolution layer to produce a new shape code

D∈Rc×h×w and reshape it to Rc×(hw). We then perform a matrix multiplication
between D and the transpose of Q and reshape the result to Rc×h×w. Finally,
we multiply the result by a scale parameter β and conduct an element-wise sum
operation with the original shape code FP

t−1. The result is then concatenated
with the appearance code F I

t and fed into a convolution layer to obtain the
updated shape code FP

t ∈Rc×h×w,

FP
t = Concat(β

n∑
i=1

(qjiDi) + FP
t−1, F

I
t ), (4)

where Concat(·) denotes the channel-wise concatenation operation and β is a
parameter. By doing so, each position in the refined shape code FP

t is a weighted
sum of all positions in the appearance code F I

t−1 and previous shape code FP
t−1.

Co-Attention Fusion. The proposed Co-Attention Fusion (CAF) module con-
sists of two parts, i.e., generating intermediate results and co-attention maps.
These co-attention maps are used to spatially select from both the intermediate
generations and the input image, and are combined to synthesize a final output.
This idea of the proposed CAF module comes from the multi-channel attention
selection module in SelectionGAN [36]. However, there are three differences: (i)
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We use two generation branches to generate intermediate results, i.e., SA branch
and AS branch. (ii) Attention maps are generated by the combination of both
shape and appearance features, so the model learns more correlations between
the two features. (iii) We also produce the input attention map, which aims to
select useful content from the input image for generating the final image.

We consider two directions to generate intermediate results. One is generat-
ing multiple intermediate image synthesis results from the final appearance code
F I
T , and the other is generating multiple intermediate image synthesis results

from the final shape code FP
T . Specifically, the appearance code F I

T is fed into a
decoder to generate N intermediate results II={IIi }Ni=1, and followed by a Tanh
activation function. Meanwhile, the final shape code FP

T is fed into another de-
coder to generate another N intermediate results IP ={IPi }Ni=1, and also followed
by a Tanh activation function. Both can be formulated as,

IIi = Tanh(F I
TW

I
i + bIi ), for i = 1, · · · , N

IPi = Tanh(FP
T W

P
i + bPi ), for i = 1, · · · , N

(5)

where two convolution operations are performed with N convolutional filters
{W I

i , b
I
i }Ni=1 and {WP

i , b
P
i }Ni=1. Thus, the 2N intermediate results and the input

image Is can be regarded as the candidate image pool.
To generate the co-attention map which reflects the correlation between the

appearance F I
T and shape FP

T codes, we first stack both F I
T and FP

T along the
channel axes, and then feed them into a group of filters {WA

i , b
A
i }

2N+1
i=1 to gen-

erate the corresponding 2N+1 co-attention maps,

IAi = Softmax(Concat(F I
T , F

P
T )WA

i + bAi ), for i = 1, · · · , 2N+1 (6)

where Softmax is a channel-wise Softmax function used for the normalization,
and Concat(·) denotes the channel-wise concatenation operation. Finally, the
learned co-attention maps are used to perform a channel-wise selection from
each intermediate generation and the input image as follows,

I
′

t = (IA1 ⊗ II1 )⊕ · · · (IA2N ⊗ IP2N )⊕ (IA2N+1 ⊗ Is), (7)

where I
′

t represents the final synthesized person image selected from the multiple
diverse results and the input image. ⊗ and ⊕ denote the element-wise multipli-
cation and addition, respectively.
Optimization Objective. We use three different losses as our full optimization
objective, i.e., adversarial loss Lgan, pixel loss Ll1, and perceptual loss Lp,

min
G

max
DI ,DP

L = λganLgan + λl1Ll1 + λpLp, (8)

where λgan, λl1 and λp are the weights, measuring corresponding contributions
of each loss to the total loss L. The total adversarial loss is derived from the
appearance-guided discriminator DI and the shape-guided discriminator DP ,
which aims to judge how likely is that I

′

t contains the same person in Is and
how well I

′

t aligns with the target pose Pt, respectively. The L1 pixel loss is
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used to compute the difference between the generated image I
′

t and the real
target image It, i.e., Ll1=||It − I

′

t ||1. The perceptual loss Lp is used to reduce
pose distortions and make the generated images look more natural and smooth,
i.e., Lp=||φ(It) − φ(I

′

t)||1, where φ denotes the outputs of several layers in the
pre-trained VGG19 network [32].
Implementation Details. We follow the training procedures of GANs and
alternatively train the proposed Xing generator G and two discriminators (DI ,
DP ). During training, G takes Is, Ps and Pt as input and outputs a translated
person image I

′

t with target pose Pt. Specifically, Is is fed to the SA branch, and
Ps, Pt are fed to the AS branch. For the adversarial training, (Is, It) and (Is,
I

′

t) are fed to the appearance-guided discriminator DP for ensuring appearance
consistency. (Pt, It) and (Pt, I

′

t) are fed to the shape-guided discriminator DP

for ensuring shape consistency.
Adam optimizer [15] is used to train the proposed XingGAN for around 90K

iterations with β1=0.5 and β2=0.999. We set T=9 in the proposed Xing gener-
ator and N=10 in the proposed co-attention fusion module on both datasets.
λgan, λl1 and λp in Eq. (8) are set to 5, 50 and 50, respectively. For the de-
coders, the kernel size of convolutions for generating the intermediate images
and co-attention maps are 3×3 and 1×1, respectively.

4 Experiments

Datasets. We follow [21,31,45] and conduct experiments on two challenging
datasets, i.e., Market-1501 [44] and DeepFashion [20]. Images on Market-1501
and DeepFashion are rescaled to 128×64 and 256×256, respectively. To generate
human skeletons as training data, we employ OpenPose [4] to extract human
joints. In this way, both Ps and Pt consist of an 18-channel heat map encoding
the positions of 18 joints of a human body. We also filter out images where no
human is detected. Thus, we collect 101,966 training pairs and 8,570 testing
pairs on DeepFashion. For Market-1501, we have 263,632 training and 12,000
testing pairs. Note that to better evaluate the proposed XingGAN, the person
identities of the training set do not overlap with those of the testing set.
Evaluation Metrics. We follow [21,31,45] and adopt Structure Similarity (SSIM)
[39], Inception Score (IS) [29], and their masked versions, i.e., Mask-SSIM and
Mask-IS, as the evaluation metrics. Moreover, we adopt the PCKh score pro-
posed in [45] to explicitly assess the shape consistency.
Quantitative Comparisons. We compare the proposed XingGAN with sev-
eral leading methods, i.e., PG2 [21], DPIG [22], VUnet [7], PoseGAN [31], Pose-
Warp [2], CMA [5], C2GAN [35], BTF [1] and Pose-Transfer [45]. Quantitative
results measured by SSIM, IS, Mask-SSIM, Mask-IS, and PCKh metrics are
shown in Table 1. Note that previous works [21,31] did not release the train/test
split, thus we use their well-trained models and re-evaluate their performance
on our testing set as in Pose-Transfer [45]. Although our testing set inevitably
includes some of their training samples, XingGAN still achieves the best results
in terms of SSIM, IS, Mask-SSIM, and Mask-IS metrics on both datasets. For
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Table 1: Quantitative results on Market-1501 and DeepFashion. For all metrics,
higher is better. (∗) denotes the results tested on our testing set.

Method
Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS PCKh SSIM IS PCKh

PG2 [21] 0.253 3.460 0.792 3.435 - 0.762 3.090 -
DPIG [22] 0.099 3.483 0.614 3.491 - 0.614 3.228 -
PoseGAN [31] 0.290 3.185 0.805 3.502 - 0.756 3.439 -
C2GAN [35] 0.282 3.349 0.811 3.510 - - - -
BTF [1] - - - - - 0.767 3.220 -

PG2∗ [21] 0.261 3.495 0.782 3.367 0.73 0.773 3.163 0.89
PoseGAN∗ [31] 0.291 3.230 0.807 3.502 0.94 0.760 3.362 0.94
VUnet∗ [7] 0.266 2.965 0.793 3.549 0.92 0.763 3.440 0.93
PoseWarp∗ [2] - - - - - 0.764 3.368 0.93
CMA∗ [5] - - - - - 0.768 3.213 0.92
Pose-Transfer∗ [45] 0.311 3.323 0.811 3.773 0.94 0.773 3.209 0.96
XingGAN (Ours) 0.313 3.506 0.816 3.872 0.93 0.778 3.476 0.95

Real Data 1.000 3.890 1.000 3.706 1.00 1.000 4.053 1.00

the PCKh metric, [45] obtains slightly better results than XingGAN. However,
we observe that the images generated by XingGAN are more realistic and have
less visual artifacts than those generated by [45] (see Fig. 4 and 5).

Qualitative Comparisons. Results compared with PG2 [21], VUnet [7] and
PoseGAN [31] are shown on the left of Fig. 4 and 5. We can see that the proposed
XingGAN achieves much better results than PG2, VUnet, and PoseGAN on
both datasets, especially at appearance details and the integrity of generated
persons. Moreover, to evaluate the effectiveness of XingGAN, we compare it with
a stronger baseline, i.e., Pose-Transfer [45]. Results are shown on the right of
Fig. 4 and 5. We can see that XingGAN also generates much better person images
having fewer visual artifacts than Pose-Transfer. For instance, Pose-Transfer [45]
always generates a lot of visual artifacts in the background as shown in Fig. 5.

Human Evaluation. We follow the evaluation protocol of [21,31,45] and re-
cruited 30 volunteers to conduct a user study. Participants were shown a sequence
of images and asked to give an instant judgment about each image within a sec-
ond. Specifically, we randomly select 55 real and 55 fake images (generated by
our model) and shuffle them. The first 10 of them are used for practice and the
remaining 100 images are used for evaluation. Results compared with PG2 [21],
PoseGAN [31], Pose-Transfer [45] and C2GAN [35] are shown in Table 2. We
observe that the proposed XingGAN achieves the best results on all measure-
ments compared with the leading methods, further validating that the generated
images by our model are more sharp and photo-realistic.

Variants of XingGAN. We conduct extensive ablation studies on Market-
1501 [44] to evaluate different components of our XingGAN. XingGAN has four
baselines as shown in Table 3: (i) ‘SA’ means only using the proposed Shape-
guided Appearance-based generation branch. (ii) ‘AS’ means only adopting the
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Fig. 4: Qualitative comparison with PG2 [21], VUnet [7], PoseGAN [31] and
Pose-Transfer [45] on Market-1501.

Table 2: User study of person image generation (%). R2G means the percentage
of real images rated as generated w.r.t. all real images. G2R means the percentage
of generated images rated as real w.r.t. all generated images. The results of other
methods are reported from their papers.

Method
Market-1501 DeepFashion

R2G G2R R2G G2R

PG2 [21] 11.2 5.5 9.2 14.9
PoseGAN [31] 22.67 50.24 12.42 24.61
C2GAN [35] 23.20 46.70 - -
Pose-Transfer [45] 32.23 63.47 19.14 31.78
XingGAN (Ours) 35.28 65.16 21.61 33.75

proposed Appearance-guided Shape-based generation branch. (iii) ‘SA+AS’ com-
bines both branches to produce the final person images. (iv) ‘SA+AS+CAF’ is
our full model and employs the proposed Co-Attention Fusion module.

Effect of Dual-Branch Generation. The results of the ablation study are
shown in Table 3. We see that the proposed SA branch achieves only 0.239 and
0.768 in SSIM and Mask-SSIM, respectively. When we only use the proposed AS
branch, the values of SSIM and Mask-SSIM are improved to 0.286 and 0.798,
respectively. Thus we conclude that the AS branch is more effective than the SA
branch for generating photo-realistic person images. The AS branch takes the
person poses as input and aims to learn person appearance representations, while
the SA branch takes the person image as input and targets to learn person shape
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Fig. 5: Qualitative comparison with PG2 [21], VUnet [7], PoseGAN [31] and
Pose-Transfer [45] on DeepFashion.

Table 3: Quantitative comparison of different variants of the proposed XingGAN
on Market-1501. For all metrics, higher is better. ‘SA’, ‘AS’ and ‘CAF’ stand for
the proposed SA branch, AS branch and co-attention fusion module, respectively.

Variants of XingGAN IS Mask-IS SSIM Mask-SSIM

SA 3.849 3.645 0.239 0.768
AS 3.796 3.810 0.286 0.798
SA + AS 3.558 3.807 0.310 0.807
SA + AS + CAF (Full) 3.506 3.872 0.313 0.816

representations. Learning the appearance representations is much easier than
learning the shape representations since there are shape deformations between
the input person image and the desired person image, leading the AS branch to
achieve better results than the SA branch.

Next, when adopting the combination of the proposed SA and AS branches,
the performance in terms of SSIM and Mask-SSIM further boosts. However,
the results in terms of IS and Mask-IS do not decline too much. Moreover,
Fig. 6 (left) shows some qualitative examples of the ablation study. We observe
that the visualization results of ‘SA’, ‘AS’, and ‘SA+AS’ are consistent with the
quantitative results. Therefore, both quantitative and qualitative results confirm
the effectiveness of the proposed dual-branch generation strategy.
Effect of Co-Attention Fusion. ‘SA+AS+CAF’ outperforms the ‘SA+AS’
baseline with around 0.065, 0.003, and 0.009 gain on Mask-IS, SSIM, and Mask-
SSIM, respectively. This means that the proposed co-attention fusion model
indeed learns more correlations between the appearance and shape representa-
tions for generating the targeted person images, confirming our design motiva-
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Fig. 6: Ablation study of the proposed XingGAN on Market-1501. (left) Results
of different variants of the proposed XingGAN. (right) Results of varying the
number of the proposed Xing blocks. ‘B’ stands for the proposed Xing Blocks.

Table 4: Quantitative comparison and ablation study of the proposed Xing gen-
erator on Market-1501. For all metrics, higher is better.

Method IS Mask-IS SSIM Mask-SSIM

Xing Generator (1 blocks) 3.378 3.713 0.310 0.812
Xing Generator (3 blocks) 3.241 3.866 0.316 0.813
Xing Generator (5 blocks) 3.292 3.860 0.313 0.812
Xing Generator (7 blocks) 3.293 3.871 0.310 0.810
Xing Generator (9 blocks) 3.506 3.872 0.313 0.816
Xing Generator (11 blocks) 3.428 3.712 0.286 0.793
Xing Generator (13 blocks) 3.708 3.679 0.257 0.774

Resnet Generator (5 blocks) 3.236 3.807 0.297 0.802
Resnet Generator (9 blocks) 3.077 3.862 0.301 0.802
Resnet Generator (13 blocks) 3.134 3.731 0.300 0.797

PATN Generator (5 blocks) 3.273 3.870 0.309 0.809
PATN Generator (9 blocks) 3.323 3.773 0.311 0.811
PATN Generator (13 blocks) 3.274 3.797 0.314 0.808

tion. Moreover, the proposed CAF module obviously improves the quality of the
visualization results, as shown in the column ‘Full’ of Fig. 6.

Lastly, we show the learned co-attention maps and the generated intermedi-
ate results. These co-attention maps are complementary, which could be qual-
itatively verified by visualizing the results in Fig. 7. It is clear that they have
learned different activated content between the generated intermediate results
and the input image for generating the final person images.
Effect of The Xing Generator. The proposed Xing generator has two im-
portant network designs. One is the carefully designed Xing block, consisting
of two sub-blocks, i.e., SA block and AS block. The Xing blocks jointly model
both shape and appearance representations in a crossing way and enjoying the
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Fig. 7: Visualization of intermediate results and co-attention maps generated by
the proposed XingGAN on Market-1501. We randomly show four intermediate
results, the corresponding four co-attention maps and the input attention map.
Attention maps are normalized for better visualization.

mutually improved benefits from each other. The other one is the cascaded net-
work design, which deals with the complex and deformable translation problem
progressively. Thus, we further conduct two experiments, one is to show the
advantage of the progressive generation strategy by varying the number of the
proposed Xing blocks, and the other is to explore the advantage of the Xing
block by replacing it with the residual block [13] and PATB [45] resulting in two
generators named Resnet generator and PATN generator in Table 4, respectively.

Quantitative and qualitative results are shown in Table 4 and Fig. 6 (right).
We observe that the proposed Xing generator with 9 blocks works the best.
However, increasing the number of blocks further reduces generation perfor-
mance. This could be attributed to the proposed Xing block. Only a few blocks
are needed to capture the useful appearance and shape representations and the
connection between them. Thus, we adopt 9 Xing blocks as default in our ex-
periments for both datasets. Moreover, we see that the proposed Xing generator
with only 5 Xing blocks outperforms both ResNet and PATN generators with
13 blocks on most metrics, which further certifies that our Xing generator has a
good appearance and shape modeling capabilities with a very few blocks.

5 Conclusions

We propose a novel XingGAN for the challenging person image generation task.
It uses cascaded guidance with two different generation branches, and learns a
deformable translation mapping from both person shape and appearance fea-
tures. Moreover, we propose two novel blocks to effectively update person shape
and appearance features in a crossing way. Extensive experiments based on hu-
man judgments and automatic evaluation metrics show that XingGAN achieves
new state-of-the-art results on two challenging datasets. Lastly, we believe that
the proposed blocks and the XingGAN framework can be easily extended to
address other GAN-based generation and even multi-modality fusion tasks.
Acknowledgment: This work has been partially supported by the Italy-China
collaboration project TALENT.
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