SYMMETRIC TENSOR RANK WITH A TANGENT VECTOR: A
GENERIC UNIQUENESS THEOREM
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ABSTRACT. Let X, g C PN, N := (m:;d) — 1, be the order d Veronese em-
bedding of P. Let 7(Xp,q) C PV, be the tangent developable of X, 4. For
each integer t > 2 let 7(X,, 4,t) C PV, be the join of T(Xm,q) and t — 2 copies
of X,,,q. Here we prove that if m >2,d > 7and ¢t <1+ [(™97?)/(m +1)],
then for a general P € 7(X,, q,t) there are uniquely determined Py,...,P;_2 €
Xom,qd and a unique tangent vector v of X, 4 such that P is in the linear span
of vU{Pi,...,Pi_2}, i.e. a degree d linear form f (a symmetric tensor T of
order d) associated to P may be written as

t—2 t—2
— d—1
f:L;‘iilleﬁ*ZLil, (T:’U?jl )’UerZU;X’d)
=1 =1
with L; linear forms on P™ (v; vectors over a vector field of dimension m + 1
respectively), 1 < i < ¢, that are uniquely determined (up to a constant).

1. INTRODUCTION

In this paper we want to address the question of the uniqueness of a particular
decomposition for certain given homogeneous polynomials. An analogous question
can be rephrased in terms of uniqueness of a particular tensor decomposition of
certain given symmetric tensors. In fact, given a homogeneous polynomial f of
degree d in m + 1 variables defined over an algebraically closed field K, there is an
obvious way to associate a symmetric tensor 7' € S%(Vk), with dim(Vik) = m + 1,
to the form f. We will always work over an algebraically closed field K such that
char(K) = 0. Fix integers m > 2 and d > 3. Let jp, q : P™ < PY, N := ("F9) -1,
be the order d Veronese embedding of P™ and set X, g := jm,q¢(P™) (we often write
X instead of X, q). Let K[zo,...,&m]a be the polynomial ring of homogeneous
degree d polynomials in m + 1 variables over K and let Vg be the dual space of
Vk. Since obviously P ~ P(K[zo, ..., Zm]|1) ~ P(VF), an element of the Veronese
variety X, 4 can be interpreted either as the projective class of a d-th power of
a linear form L € K[z, ..., z,,]1 or as the projective class of a symmetric tensor
T € S4Vg) C (Vg)® for which there exists v € Vi s.t. T = v®%,

For each integer ¢ such that 1 < t < N let 04+(X) denote the closure in PN of
the union of all (¢ — 1)-dimensional linear subspaces spanned by ¢ points of X
(the t-secant variety of X). From this definition one can understand that the
generic element of o4(X,, 4) can be interpreted either as [f] = [L{+ ---+ LY] €
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P(K[zo, . . ., Zm]a) with Ly, ..., L; € Klzo,...,zm]1 or as [T] = P4+ ... + 029
P(S4(Vg)) with vy,...,v; € V. For a given form f (or a symmetric tensor T),
the minimum integer ¢ for which there exists such a decomposition is called the
symmetric rank of f (or of T). Finding those v;’s, ¢ = 1,...,¢ such that T = vi@)d +
s vt®d, with ¢ the symmetric rank of T, is known as the Tensor Decomposition
problem and it is a generalization of the Singular Value Decomposition problem for
symmetric matrices (i.e. if T € S?(V;)). The existence and the possible uniqueness
of the decompositions of a form f as L¢ + --- + L¢ with ¢ minimal is studied in
certain cases in [6], [8], [10], [11].

Let 7(X) C PV be the tangent developable of X, i.e. the closure in PV of the union
of all embedded tangent spaces TpX, P € X. Obviously 7(X) C 02(X) and 7(X)
is integral. Since d > 3, the variety 7(X) is a divisor of o2(X) ([5], Proposition
3.2). An element in 7(X,, 4) can be described both as [f] € P(K[zo, ..., Zm]a) for
which there exists two linear forms Ly, Ly € K|z, ..., Zmy]1 such that f = L‘li_ng,
and as [T] € P(€ S4(Vy)) for which there exists two vectors v1,ve € Vi such that
T = vf" toy ([5], [4]).

Fix integral positive-dimensional subvarieties A,..., A, C PV, s > 2. The join
[A1, As] is the closure in PV of the union of all lines spanned by a point of A; and a
different point of Ay. If s > 3 define inductively the join [Aq,. .., A;] by the formula
[A1, ..., As] :==[[A1,...,As_1], As]. The join [Aq, ..., A is an integral variety and
dim([Ay,..., As]) < min{N,s — 1+ 7, dim(4;)}. The integer min{N,s — 1 +
>, dim(A;)} is called the ezpected dimension of the join [Aj, ..., A]. Obviously
[A1, ..., Ag] = [As1), - -+ Ag(sy] for any permutation o : {1,...,s} — {1,...,s}.
The secant variety o4(X), t > 2, is the join of ¢ copies of X. For each integer
t > 3 let 7(X,t) C PN be the join of 7(X) and ¢t — 2 copies of X. We recall that
min{ N, t(m+1)—2} is the expected dimension of 7(X, t), while min{N, t(m+1)—1}
is the expected dimension of o;(X). In the range of triples (m, d, t) we will meet in
this paper both 7(X,t) and o;(X) have the expected dimensions and hence 7(X t)
is a divisor of o4(X). An element in 7(X,,q,t) can be described both as [f] €

P(K[zo,...,Zm]q) for which there exist linear forms L;...,L; € K|zg,...,Zm)
such that f = LY} L; + Zf;f L¢, and as [T] € P(S(Vy)) for which there exist
01, ..., v € Vi such that T = v Vo, + 3122 ®9,

After [3], it is natural to ask the following question.

Question 1. Assume d > 3 and 7(X,t) # PV. Is a general point of 7(X,t) in
the linear span of a unique set {Py, P1,..., P_o} with (Py, Py,..., P,_5) € 7(X) X
Xt=2?

For non weakly (t — 1)-degenerate subvarieties of PV the corresponding question
is true by [8], Proposition 1.5. Here we answer it for a large set of triples of integers
(m,d,t) and prove the following result.

Theorem 1. Fix integers m > 2 and d > 6. If m < 4, then assume d > 7.
Set B := L(m+n‘f_2)/(m +1)]. Assume 3 <t < g+ 1. Let P be a general point
of T(X,t). Then there are uniquely determined points Py,...,P_o € X and Q €
7(X) such that P € ({P1,...,Pi—2,Q}), i.e. (since d > 2) there are uniquely
determined points Py, ..., Pi_o € X and a unique tangent vector v of X such that

P€<{P1,...,Pt_2}UI/>.
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In terms of homogeneous polynomials Theorem 1 may be rephrased in the fol-
lowing way.

Theorem 2. Fiz integers m > 2 and d > 6. If m < 4, then assume d > 7. Set
8= L(mti_Q)/(m—i— 1)]. Assume 3 <t < B3+41. Let P be a general point of 7(X,1)
and let f be a homogeneous degree d form in K|xo, ..., Tm] associated to P. Then
f may be written in a unique way

t—2

f=LiZiLe+) LY

i=1

with Lz € ]K[II?(), ‘e ,$m]1, 1 S 1 S t.

In the statement of Theorem 2 the form f is uniquely determined only up to a
non-zero scalar, and (as usual in this topic) “ uniqueness ” may allow not only a
permutation of the forms Lq,...,L;_ 5, but also a scalar multiplication of each L;.

In terms of symmetric tensors Theorem 1 may be rephrased in the following way.

Theorem 3. Fiz integers m > 2 and d > 6. If m < 4, then assume d > 7. Set
B = L(mtffd)/(m—i- 1)]. Assume 3 <t < 3+41. Let P be a general point of 7(X,t)
and let T € SY(ViF) be a symmetric tensor associated to P. Then T may be written

mn a unique way
t—2
d—1
T:'U?jl )’Ut+ZU;®d
i=1
with v; € Vi, 1 <i <t

As above, in the statement of Theorem 3 the tensor T" and the vectors v;’s are
uniquely determined only up to non-zero scalars.

To prove Theorem 1, and hence Theorems 2 and 3, we adapt the notion and the
results on weakly defective varieties described in [6]. It is easy to adapt [6] to joins
of different varieties instead of secant varieties of a fixed variety if a general tangent
hyperplane is tangent only at one point ([7]). However, a general tangent space of
7(X) is tangent to 7(X) along a line, not just at the point of tangency. Hence a
general hyperplane tangent to 7(X,t), t > 3, is tangent to 7(X,t) at least along a
line. We prove the following result.

Theorem 4. Fiz integers m > 2 and d > 6. If m < 4, then assume d > 7. Set
B:= L(mtz_z)/(m—i— 1)]. Assumet < +1. Let P be a general point of 7(X,t). Let
Pi,...,Pi9 € X and Q € 7(X) be the points such that P € ({Py,...,Pi—2,Q}).
Let v be the tangent vector of X such that Q is a point of (V) \ Vypeq. Let H C PN
be a general hyperplane containing the tangent space Tp7(X,t) of 7(X,t). Then
H is tangent to X only at the points Py,. .., Pi_2,Vypeq, the scheme H N X has an
ordinary node at each P;, and H is tangent to 7(X) \ X only along the line (v).

2. PRELIMINARIES

Notation 1. Let Y be an integral quasi-projective variety and @ € Yj..q. Let
{kQ,Y} denote the (k — 1)-th infinitesimal neighborhood of @ in Y, i.e. the closed
subscheme of Y with (IQ)k as its ideal sheaf. If Y = P, then we write k() instead
of {kQ,P™}. The scheme {kQ,Y} will be called a k-point of Y. We also say that a
2-point is a double point, that a 3-point is a triple point and a 4-point is a quadruple
point.



4 EDOARDO BALLICO, ALESSANDRA BERNARDI

We give here the definition of a (2, 3)-point as it is in [5], p. 977.

Definition 1. Let g C K[xo, .. ., Z;n] be the reduced ideal of a simple point @ € P™,
and let I C Klzg,...,zm,] be the ideal of a reduced line L C P™ through Q.
We say that Z(Q, L) is a (2,3)-point if it is the zero-dimensional scheme whose
representative ideal is (q° + [?).

Remark 1. Notice that 2Q C Z(Q, L) C 3Q.

We recall the notion of weak non-defectivity for an integral and non-degenerate
projective variety Y C P (see [6]). For any closed subscheme Z C P set:

(1) H(=2) = [Tzp-(1)].

Notation 2. Let Z C P" be a zero-dimensional scheme such that {2Q,Y} C Z
for all Q € Z,eq. Fix H € H(—Z) where H(—Z2) is defined in (1). Let H,. be the
closure in Y of the set of all ) € Y4 such that TpY C H.

The contact locus Hz of H is the union of all irreducible components of H. con-
taining at least one point of Z,.q4.

We use the notation Hz only in the case Z,oq C Yreg.

Fix an integer k > 0 and assume that o41(Y") doesn’t fill up the ambient space
P". Fix a general (k + 1)-uple of points in Y i.e. (Py,...,Py) € Y**! and set

(2) 7 = Ur_{2P,Y}.

The following definition of weakly k-defective variety coincides with the one given
in [6].

Definition 2. A variety Y C P is said to be weakly k-defective if dim(Hz) > 0
for Z as in (2).

In [6], Theorem 1.4, it is proved that if Y C P is not weakly k-defective, then
Hy = Z,..q and that Sing(Y N H) = (Sing(Y) N H) U Z,¢q for a general Z =
UF_o{2P;, Y} and a general H € H(—Z). Notice that Y is weakly 0-defective if and
only if its dual variety Y* C P™ is not a hypersurface.

In [7] the same authors considered also the case in which Y is not irreducible
and hence its joins have as irreducible components the joins of different varieties.

Lemma 1. Fiz an integer y > 2, an integral projective variety Y, L € Pic(Y') and
P € Yyeq. Set x:=dim(Y). Assume h°(Y,Z(,11)p ® L) = RO(Y,L) — (“1¥). Fiz a
general F € |I,p ® L|. Then P is an isolated singular point of F.

Proof. Let u : Y’ — Y denote the blowing-up of Y at P and E := u~!(P) the
exceptional divisor. Since dim(Y) = x, we have E = P*~!. Set R := u*(L). For
each integer t > 0 we have u,(R(—tE)) & Z;p ® L. Thus the push-forward u,
induces an isomorphism between the linear system |R(—tE)| on Y’ and the linear
system |Z;p ® L| on Y. Set M := R(—yE). Since Oy/(E)|E = Og(—1) (up to the
identification of E with P*~1), we have R(—tE)|E = Og(t) for all t € N. Consider
on Y’ the exact sequence:

(3) 0—M(-E)—> M — Og(y) —0

Our hypothesis implies that h°(Y,Z,p® L) = h°(Y, L) — (“Hg*l). Thus our assump-
tion implies h0(Y’, M(—E)) = h°(Y',R)— (*1¥) = hO(Y', R)— (*T¥" 1) - (*T¥]") =

hO(Y', M) — h°(E,Og(y)). Thus (3) gives the surjectivity of the restriction map
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p:HO(Y' M) — H°(E,M|g). Since y > 0, the line bundle M|E is spanned. Thus
the surjectivity of p implies that M is spanned at each point of E. Hence M is
spanned in a neighborhood of E. Bertini’s theorem implies that a general F’ € | M|
is smooth in a neighborhood of E. Since F is general and |M| = |Z,p ® L|, P is an
isolated singular point of F. O

3. 7(X,t) IS NOT WEAK DEFECTIVE

In this section we fix integers m > 2, d > 3 and set N = (mm“i) — 1 and
X = Xp4. The variety 7(X) is 0-weakly defective, because a general tangent
space of 7(X) is tangent to 7(X) along a line. Terracini’s lemma for joins implies
that a general tangent space of 7(X,t) is tangent to 7(X,t) at least along a line (see
Remark 3). Thus 7(X,t) is weakly O-defective. To handle this problem and prove
Theorem 1 we introduce another definition, which is tailor-made to this particular
case. As in [5] we want to work with zero-dimensional schemes on X, not on 7(X)
or 7(X,t). We consider X = jp, 4(P™) and the 0-dimensional scheme Z C X which
is the image (via jp, q) of the general disjoint union of ¢ — 2 double points and
one (2,3)-point of P, in the case of [5] (see Definition 1). We will often work by
identifying X with P™, so e.g. notice that H(—0) is just |Opm (d)|.

Remark 2. Fix P € X and Q € TpX \ {P}. Any two such pairs (P,(Q) are
projectively equivalent for the natural action of Aut(P™). We have Q € 7(X),eq
and To7(X) D TpX. Set D := ({P,Q}). It is well-known that D \ {P} is the
set of all O € 7(X)peq such that To7(X) = To7(X) (e.g. use that the set of all
g € Aut(P™) fixing P and the line containing P associated to the tangent vector
induced by @ acts transitively on TpX \ D).

Definition 3. Fix a general (O, ...,0;_2,0) € (P™)!"! and a general line L. C P™
such that O € L. Set Z := Z(O,L) U Uf;f 20;. We say that the variety 7(X,t) is
not drip defective if dim(Hz) = 0 for a general H € |Zz(d)|.

We are now ready for the following lemma.

Lemma 2. Fiz an integer t > 3 such that (m + 1)t < n. Let Zy C P™ be a
general union of a quadruple point and t — 2 double points. Let Zs be a general
union of 2 triple points and t — 2 double points. Fix a general disjoint union Z =
Z(0,L)U(U!Z22P;) , where Z(O, L) is a (2, 3)-point as in Definition 1 and O, L and
{Py,...,Pi_s} C P™ are general. Assume h*(P™, Iz (d)) = h'(P™,Zz,(d)) = 0.
Then:

(i) h' (P™,Iz(d)) = 0;

(i) (X, t) is not drip defective;

(iii) a general H € H(—Z) has an ordinary quadratic singularity at each P;.

Proof. Set W := 30U(U!Z2P;). The definition of a (2, 3)-point gives that Z(O, L) C
30. Thus Z C W C Z. Hence h'(P™,Zz(d)) < h'(P™,Zz,(d)) = 0. Hence part
(i) is proven.

To prove part (ii) of the lemma we need to prove that dim(Hz) = 0 for a general
H e H(-Z). Since W G Z; and h'(P™,Zz,(d)) = 0, we have H(—W) # (. Since
Wied = Zreq and Z C W, to prove parts (ii) and (iii) of the lemma it is sufficient
to prove dim((Hw).) = 0 for a general Hy € H(—W), where W is as above and
(Hw). is as in Notation 2. Assume that this is not true, therefore:
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(1) either the contact locus (Hw ). contains a positive-dimensional component
J; containing some of the P;’s, for 1 <i <t — 2,
(2) or the contact locus (Hy ). contains a positive-dimensional irreducible com-
ponent T' containing Q.
Set Zs := U!Z%2P; and Z’ := 30 U Zs.

(a) Here we assume the existence of a positive dimensional component J; C
(Hw). containing one of the P;’s, say for example J;_o 3 P;_o. Thus a general
element of |Zyy (d)| is singular along a positive-dimensional irreducible algebraic set
containing P;_o. Let w : M — P™ denote the blowing-up of P™ at the points
O,P1,...,P_3. Set By :== w1(0) and E; .= w}(P), 1 <i<t—3 LetA
be the only point of M such that w(A) = P;_5. For each integer y > 0 we have
Wi (Zya @w* (Opm (d))(—3Eg—2E1—---—2E,_3)) = Zzuyp, ,(d). Applying Lemma
1 to the variety M, the line bundle w*(Opm (d))(—3Ey — 2E; — --+- — 2E;_3), the
point A and the integer y = 2 we get a contradiction.

(b) Here we prove the non-existence of a positive-dimensional T' C (Hw ).
containing O. Let w; : M; — P™ denote the blowing-up of P™ at the points
Py,...,P 5. Set B := w;*(P), 1 <i<t—2 Let B € M be the only
point of M; such that wi(B) = O. For each integer y > 0 we have wi.(Zyp ®
wi(Opm (d))(—2E1 — -+ — 2E;_3)) = Zzuyo(d). Since h'(P™,Zz,(d)) = 0 and
|Zz,(d)| C |Zz(d)|, by Lemma 1 (with y = 3) we get a contradiction. O

In [3], Lemmas 5 and 6, we proved the following two lemmas:

Lemma 3. Fiz integers m > 2 and d > 5. If m < 4, then assume d > 6. Set
o= L(mt;ffl)/(m +1)|. Let Z; C P™, i = 1,2, be a general union of i triple

points and o — i double points. Then h'(Zz,(d)) = 0.
Lemma 4. Fiz integers m > 2 and d > 6. If m < 4, then assume d > 7. Set

8= L(mtzd)/(m +1)|. Let Z C P™ be a general union of one quadruple point
and 3 — 1 double points. Then h'(Zz(d)) = 0.

We will use the following set-up.

Notation 3. Fix any Q € 7(X)\ X. For d > 3 the point @) uniquely determines a
point B € X and (up to a non-zero scalar) a tangent vector v of X with v,..q = {B}.
We have Q € (v) \ {B} and Tg7(X) is tangent to 7(X) \ X exactly along the line
(v) = ({B,Q}). Let O € P™ be the only point such that j, 4(O) = B. Let
uo : X — P™ be the blowing-up of O. Let F := ual(O) denote the exceptional
divisor. For all integers z,e set O (x,eE) := u*(Opm(x))(eE). Let H denote the

linear system |O(d, —3E)| on X.

Remark 3. When d > 4, the line bundle O ¢ (d, —3E) is very ample, u. (O ¢(d, —3E)) =
Tz0(1), hO(X,05(d,—3E)) = (™) — ("F2) and h¥(X,0%(d,~3E)) = 0 for all
1> 0.

Lemma 5. Fiz integers m > 2 and d > 5. If m < 4, then assume d > 6. Set
o= L(mtff_l)/(m +1)]. Fiz an integer t such that 3 <t < «. The linear system
H on X is not (t — 3)-weakly defective. For a general O1,...,0:—o € X a general
H e |H(—201 — - -+ —20;_2)| is singular only at the points Oy, ..., Oy_o which are
ordinary double points of H.



WEAK DEFECTIVITY 7

Proof. Fix general Oq,...,0;_5 € X. Fix j € {1,...,t — 2} and set Z’' := 30, U
Ui; 20, 2" := UZ320; and W := 30, U, ., 20;. We have u.(Zz (d, —3E)) =
Twuso(1). The case i = 2 of Lemma 3 gives h'(Zz(d, —3F)) = 0. Lemma 1 applied
to a blowing-up of P at {O, O1,...,0:—2}\{O;} shows that a general H € H(—Z2)

has as an isolated singular point at O;. Since this is true for all j € {1,...,t — 2},
H is not (t — 3)-weakly defective (just by the definition of weak defectivity). The
second assertion follows from the first one and [6], Theorem 1.4. g

Now we can apply Lemmas 2, 3, 4 and 5 and get the following result.

Theorem 5. Fiz integers m > 2 and d > 6. If m < 4, then assume d > 7. Set
8= L(mt?‘fd)/(m—i— 1)|. Fiz an integer t such that 3 <t < B+1. Then 7(X,t) is
not drip defective.

Proof. Fix general Py,...,P._5,0 € P™ and a general line L C P™ such that
O € L. Set Z := Z(O,L)uJZi2P;, W = 30 U'!Z} 2P, 5, W' := 30 U
30, U Uf;; 2P;_9 and W' := 40 U Uf;f 2P, 5. Take O; € X such that up(0;) =
P, 1 <i<t—2 Since uo,(Z20,u.-u20,_,(d, —4F)) = Ty (d), Lemma 4 gives
hY(Z20,0...020,_,(d, —4E)) = 0. Since Z(O, L) C 30, the case y = 3 of Lemma 1
applied to the blowing-up of P™ at Oy, ..., O;_5 shows that a general H € |Zy (d)]
has an isolated singularity at O with multiplicity at most 3. ([

Recall that Sing(7(X)) = X and that for each @ € 7(X) \ X there is a unique
O € X and a unique tangent vector v to X at O such that @Q € (v) and that
(v) \ {O} is the contact locus of the tangent space To7(X) with 7(X) \ X.

Let P be a general point of 7(X,t), i.e. fix a general (Py,...,P;_2,Q) € X!72x
7(X) and a general P € ({P1,..., P2, Q}).

Proof of Theorem 1. Fix a general P € 7(X,t), say P € ({Py,...,Pi_2,Q})
with (Pp,..., Pi_2,Q) general in X'~2 x 7(X). Terracini’s lemma for joins ([1],
Corollary 1.10) gives Tp7(X,t) = (Tp, X U---Tp, ,X UTo7(X)). Let O be the
point of P™ such that @ € Tj, ,0)X. Let H' (resp. H") be the set of all hyperplane
H C P¥ containing To7(X) (resp. Tp7(X,t)). We may see H' and ‘H” as linear
systems on the blowing-up X of P™ at O. Take O; € )Z', 1 <i<t—2, such
that P; = u(0;) for all i. We have H" = H'(-2P; — -+ — 2P;_5) and H C
H', where ‘H is defined in Notation 3. Since (Pi,...,P,_2) is general in X'=2
for a fixed Q@ and H C H’, Lemma 5 gives that a general H € H" intersects
X in a divisor which, outside O, is singular only at P;,..., P,_o and with an
ordinary node at each P;. Now assume P € ({P{,...P/_,,Q'}) for some other
(P|,...,P_5,Q") € X!72x 7(X). Since P is general in 7(X,t) and 7(X,t) has the
expected dimension, the (t — 1)-ple (Py,..., P/_,,Q’) is general in X'~2 x 7(X).
Hence H N X is singular at each P/, 1 < i <t — 2, and with an ordinary node
at each P/. Since O is not an ordinary node of H N X, we get {P1,..., P2} =
{P{,...,P/_5}. Thus O = O’. Hence H is tangent to 7(X),., exactly along the line
{Q,O0N\{O}. Hence Q' € ({Q,0}). Assume Q # Q’. Since P is general in 7(X, ),
then P ¢ 7(X,t—1). Hence Q' ¢ ({Py,...,Pi—2}) and Q ¢ ({P1,..., Pi_2}). Thus
<{P15"'apt—2;Q}> N <{P17"'3Pt—27Q/}> = <{P17"'3Pt—2}> if Q 7é Q/' Since
Pe{{P,...,P—2,Q}) N {Pr1,...,Pi_2,Q'}), we got a contradiction. O

Proof of Theorem 4. The case t = 2 is well-known and follows from the
following fact: for any O € X and any Q € TpX \ {O} the group Gp = {g €
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Aut(P™) : g(O) = O} acts on TpX and the stabilizer Gp g of @ for this action is
the line ({0, Q}), while To X \ ({0, Q}) is another orbit for Go,o. Thus we may
assume ¢ > 3. Fix a general P € 7(X,t) and a general hyperplane H D Tp7(X,t).

If

lin

H is tangent to 7(X) at a point Q' € 7(X) \ X, then it is tangent along a
e containing @’. Let E € X be the only point such that Q' € TgX. We get

TpX C 7(X,t) and that HNTgX is larger than the double point 2F C X. Theorem
1 gives that ), Q' and F are collinear, i.e H is tangent only along the line v. [
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