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Abstract. Currently, distributed cyber-physical systems (CPS) rely upon
embedded real-time systems, which can guarantee compliance with time
constraints. CPS are increasingly required to act and interact with one
another in dynamic environments. In the last decades, the Belief-Desire-
Intention (BDI) architecture has proven to be ideal for developing agents
with flexible behavior. However, current BDI models can only reason
about time and not in time. This lack prevents BDI agents from being
adopted in designing CPS, and particularly in safety-critical applica-
tions. This paper proposes a revision of the BDI model by integrating
real-time mechanisms into the reasoning cycle of the agent. By doing so,
the BDI agent can make decisions and execute plans ensuring compli-
ance with strict timing constraints also in dynamic environments, where
unpredictable events may occur.
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1 Introduction

Being able to act in time, Real-Time Systems (RTS) have been crucial in the
technological evolution (in particular, in safety-critical scenarios — e.g., air traf-
fic control). RTS led the development of dependable systems, mainly in pre-
dictable environments [10]. Nevertheless, recent studies proposed to adopt RTS’
features in open environments, detailing opportunities and challenges [3]. On the
one hand, RTS lose their e�cacy when dealing with highly-dynamic environ-
ments. On the other hand, bridging RTS with the Multi-Agent Systems (MAS)
approach can create a new generation of systems o↵ering a trade-o↵ in terms
of performance and flexibility while ensuring the underlying compliance with
strict-timing constraints [14, 12, 11, 21]. In the last decades, MAS researchers de-
veloped several agent-oriented languages [30, 5, 32, 16] and frameworks [9, 6, 2,
29, 20, 26, 8]. However, none of them is designed to consider and deal with strict
timing constraints explicitly. This lack, among other motivations discussed in [25,
14, 35, 27], has confined MAS to narrowed application domains rarely employed
into the real world. Indeed, most of the real-world applications (especially those
safety-critical) cannot operate regardless of time constraints and deadlines.
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To overcome such limitations, this paper presents RT-BDI, a revision of the
Belief-Desire-Intention (BDI) cognitive model [31] that integrates real-time no-
tions and mechanisms into the reasoning cycle of the agent. RT-BDI agents
are able to make and revise decisions based on the perceived state of the world,
their internal state, their computational resources, and the time at their disposal.
Moreover, the RT-BDI framework is demanded to either deal with the hardware
directly or to run over a real-time operating system (RTOS) able to handle the
primitives necessary to ensure compliance with deadlines and reservation.

The remainder of the paper is organized as follows. Section 2 introduces
both BDI and RTS basic notions. Section 3 analyzes the relevant state of the
art. Section 4 formally describes the proposed model. Section 5 tests the model
in a basic case study. Section 6 presents the ongoing work and proposes some
future improvements. Finally, section 7 concludes the paper.

2 Background
Belief-Desire-Intention model - The BDI model [31] is inspired by the
theory of human practical reasoning [7], which consists of deliberation (deciding
the targeted state of a↵airs), and means-ends reasoning (deciding how to achieve
it). In BDI, deliberation and means-end are implemented through the notions of
beliefs (knowledge about itself and the environment), desires (objectives), and
intentions (plans to achieve the committed goals). A goal is the instantiation of
a desire an agent committed to. A plan is a sequence of actions that an agent
can perform. The decision cycle of a BDI agent consists of (i) perception (or
inference) of an event’s occurrence, which may cause (ii) the update of the belief-
set of the agent. If a goal is triggered, (iii) a set of relevant plans are selected from
the plans library. Then, (iv) the applicability of the plans is checked. Through
a selection function, (v) a plan is selected, becoming an intention ready to be
executed.

Real-Time Systems - RTS are computing systems whose behavior correctness
depends not only on the value of the computation but also on the time at which
the results are produced [33]. An RTS can provide soft and/or hard real-time
guarantees, which are discriminated in the extent of the damage caused to the
system (or its environment) if the result is not delivered on time. In RTS, tasks
can be periodic, aperiodic or sporadic, and each of these task models di↵er by the
regularity of the tasks’ activation. Periodic tasks consist of a potentially infinite
sequence of regular activations. The activation of aperiodic tasks are irregularly
interleaved. Sporadic tasks are a particular case of aperiodic, where consecutive
jobs are separated by minimum and maximum inter-arrival time [10]. A possible
mapping between RTS tasks and Jade [2] behaviors is proposed in [13].

Real-Time Agent - According to Dragoni et al. [17] a Real-Time Agent (RTA)
extends and embodies a RT process. Thus, its correctness depends both on the
soundness and completeness of the code it executes (w.r.t. a certain I/O transfer
function) and on its response time, which is the interval between the moment
at which it starts to be “executed” and the instant at which its execution is
completed. Moreover, focusing on the ontological di↵erences between the con-
cepts of “code” and “process” acting in the real world, the authors argued that
dealing with Time (in both virtual and real environments) is a concrete and
basic requirement crucially entangled with deadlines, precedence, priority, and
constrained resources. RTAs usually operate in highly dynamic environments.
Thus, according to Calvaresi et. al [12], the Earliest Deadline First (EDF) [10]
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is the most appropriate real-time compliant scheduling algorithm to power RTAs.
However, EDF, as is, can only handle periodic tasks. Therefore, to execute also
aperiodic tasks, an RTA should combine it with a bandwidth reservation mech-
anism [11], such as the Constant Bandwidth Server (CBS) [10] mechanism.

In the context of RTAs and RT-BDI, soft RT means that missing a deadline
may cause performance degradation. Conversely, in hard RT, it entails a failure.
Our work considers both soft and hard RT guarantees. Providing solely hard RT
guarantees in open-world assumption is not reasonable — unless making strong
assumptions about the environment [34] and the agents interactions [14]. Hence,
a MAS can be considered real-time compliant only if all the agents and their
mechanisms (interactions included) operate accordingly [14].

3 Related Work
Since the early 90s, several studies envisioned the need for RT behavior in
MAS [18, 28, 19, 22]. Nevertheless, these approaches failed to achieve the over-
all reliability neglecting the need for the contemporary RT-compliance of the
MAS pillars (i.e., scheduler, communication middleware, and negotiation pro-
tocol) [14]. In particular, focusing on RT applied to BDI models, [34] and [1],
attempted to reach soft RT guarantees for BDI agents by introducing in it RT
concepts such as priority for goals and duration for plans. Nevertheless, since
these approaches involve only the deliberative part, they can guarantee a “quick”
commitment to an intention, however, still being unable to provide any guarantee
on its execution. In [15], the problem of achieving hard real-time compliance is
faced by considering an agent composed by in-agents. For every task, an in-agent
is responsible for assuring a minimal quality response, while a second in-agent
tries to improve this response if there is enough time. However, although this
system works under hard real-time constraints, the part responsible for plan-
ning - which is the one where BDI is used - is again designed to only operate
in the shortest possible time, without providing any compliance with strict RT
constraints. In [14], the authors identify in the agent’s internal scheduler, commu-
nication protocol, and negotiation protocol the fundamental elements character-
izing a MAS that, all-together, provide the expected real-time compliance. Since
the presented model concerns a single RT-BDI agent, the internal scheduler is
the first pillar we focus on. In our BDI model, the scheduler uses RT techniques
for both choosing the intentions among the applicable plans, and executing the
related tasks, enabling the guarantees for the aimed RT requirements.

4 RT-BDI Model
An agent a is represented by a tuple a = {B,D,P,�A,�I}, where B,D and P are
the set of beliefs, desires and plans of the agent, while �A and �I are selection
functions. �A chooses a plan (among the applicable ones) to be executed for
achieving a selected goal, thus becoming an intention. �I selects the intention
to be executed at each cycle (see section 4.1).

The belief-set B of an agent a is composed of beliefs b. According to Rao [30],
if p is a predicate symbol, and t1, . . . , tk are terms, then p(t1, . . . , tk) is a belief
atom. Therefore, a belief b is a ground belief atom. Yet, di↵erently from Rao,
we adopt the closed-world assumption, hence either a knows that p is true, or it
assumes p to be false.

The desire-set D of an agent a is a set of desires d defined as a tuple d =
{b, prec, pr}, where b 2 B [ B is a belief literal (a belief atom or its negation)
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representing the agent’s desire of either achieving or verifying a certain state of
the system. prec is the set of preconditions (i.e., the conjunction of belief literals
needed for the activation of the desire) and is formalized as prec =

V
�2⇤✓B[B �,

where � is a belief literal. Finally, pr represents the priority of the desire. We
intend such a parameter to be a normalized value (e.g., a real number between
0 and 1 to allow priority updates on-the-fly). In particular, pr is used by the
selection functions, discriminating most relevant goals for the agent.

When selected by the agent, d becomes a goal. We consider external goals
(desires activated by a triggering event — e.g., a change in the belief-set or a
request made by another agent) and internal goals (desires activated by a plan
during the execution of an intention, which require the instantiation of a sub-
plan). Since such goals must be achieved to complete the execution of the main
intention, their activation is not subject to preconditions. Nevertheless, they are
still characterized by a priority, which is inherited from the main goal. Moreover,
at each instant, a goal is either active, idle or inactive. A goal is considered
active if the agent is actively committed to it. An active goal becomes idle if the
corresponding intention requires the achievement of an internal goal. In turn,
the internal goal acquires the active state from the parent goal (which remains
idle until the internal goal is satisfied). Finally, a goal is inactive if the agent
is temporarily unable to achieve it – e.g., because the agent has higher-priority
goals to pursue.

An agent a has a library P of plans p. Similarly to Jadex [29], p is composed
of a head (containing the goal achieved by the plan, the preconditions for its
execution and the context conditions) and a body part (containing a predefined
course of action). p is a tuple defined as p = {d, pref, prec, cont, body}, where d
is the triggering desire and pref is a cost function sorting the possible plans by
preference.

Similar to the desire’s definition, prec is the set of preconditions (the con-
junction of belief literals needed for its activation), while cont is the context i.e.,
the set of predicates needed to be valid during the entire execution of the plan to
prevent its failure. Finally, body is a set of sequential actions {↵1, · · · ,↵n}, where
↵j can be either a RT task – e.g., the activation of an actuator – or an internal
goal. Inherited from RTS, such tasks can be either periodic or aperiodic [10].

The plans chosen by the means-end reasoning activity become intentions.
Since intentions are composed of both internal goals and real-time tasks, we
can define them as partially instantiated plans. In particular, if the chosen plan
requires the achievement of an internal goal g, a suitable plan for achieving
g is searched when the execution of the intention reaches such a stage. This
mechanism allows the agent to decide which course of action undertake when the
satisfaction of the internal goal becomes necessary. However, such an approach
also harms the a-priori predictability typical of RTS. A solution to this problem
is showed and discussed in eq. (1).

4.1 Selecting intentions

Figure 1 shows the agent’s reasoning cycle. It starts when the agent perceives
new information from the environment or the system. A Belief Revision Function
(BRF), which is in charge of preserving the consistency of the belief-set, revises
such information. If a new belief corresponds to the precondition of any desire,
an external goal is triggered. Moreover, an internal goal can be triggered in case
an active intention requires its achievement. Then, all the relevant plans are
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selected and filtered according to the preconditions of such plans, generating the
set of currently applicable plans (AP).

Fig. 1: Reasoning cycle of the agent. Rectangles, circles, and diamonds represent sets,
processes, and selections, respectively.

The selection function �A chooses among AP which plan has to be executed
by performing the schedulability test of the plans. This analysis is used in RTS to
discriminate the feasibility of a task-set based on the processor utilization [10].

According to [24], the processor utilization factor U of the agent a is the
fraction of processing time spent in the execution of the task set, and at a specific
time t is defined by U(t) =

P
⌧i2� (t) U⌧i with U⌧i = C⌧i/T⌧i where � (t) is the

set of periodic tasks scheduled at time t by the agent, C⌧i is the computation
time of periodic task ⌧i (i.e., the time necessary to the processor for executing
the task without interruption), and T⌧i is the activation period of the task ⌧i, so
the fixed time interval after which it repeats.

In particular, according to [10], a task-set of a given agent is feasible if its
utilization factor is less or equal than the least upper bound (Ulub) of the schedul-
ing algorithm used. Ulub is the minimum of the utilization factors across all task
sets that fully utilize the processor.

Moreover, as mentioned in section 2, to bound the execution of aperiodic
tasks and guarantee isolation among periodic and aperiodic tasks, we employ
the CBS artifact (also known as server mechanism). Thus, similarly to U(t), the
utilization factor of a CBS server S is Us = Qs/Ts, where Qs is the maximum
budget (i.e., its reserved computational time) and Ts is the period of the server.

Here, we assume that for each “relatable class” of aperiodic tasks (e.g., motion
or actuators-related), the designer of the system dedicates a specific server. Due
to the sequential execution of the tasks composing an intention, there is at most
one server – while all the others are idle – or periodic task running at a time
per intention. We define a task-set �i as the set of tasks composing agent’s
intention to satisfy a goal i. Then, the Maximum Utilization factor Û�i of a
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task-set �i can be defined as Û�i = max⌧k2�i U⌧k . Thus, given the sequential
nature of the task release within an intention, the higher utilization factor of
the tasks composing �i represent the worst case for U�i . By doing so, we (i)
increase the e�ciency of computing the schedulability test (its granularity is
per task-set rather than per single task) and (ii) grant safety to the system
(allowing predictable delays –possibly due to the dynamic nature of EDF– while
still ensuring the compliance with the committed deadlines). This approach may
appear too conservative (pessimistic). Nevertheless, since the agent does not
know a-priori the interleaving of its intentions, it is crucial to provide timing
guarantees in RT-settings. However, we plan to optimize this strategy with more
e↵ective – yet complex – schedulability policies and mechanisms (see section 6).

Recalling that � includes all the task-sets corresponding to the intentions the
agent a has committed to, we define Û� =

Pk
i=1 max�i,�g2� (Û�i , Û�g ), where

i is an external goal and g is an internal goal triggered by the execution of the
intention for i. The schedulability test for an applicable plan’s task-set APi can
be formalized as � = � [APi, if Û� + ÛAPi  Ulub.

We define the remaining utilization factor as Ur = Ulub� Û� = 1� Û� , since
Ulub = 1 when using EDF with CBS. Consequently, � = � [APi, if ÛAPi  Ur.

At the start of a reasoning cycle, there could be more than one goal pending.
Hence, to define the selection function �A, we revised the well-known multiple-
choice knapsack problem [23] in the following variant:

�A(AP ) = maximize
kX

i=1

pri
X

j2APi

prefijxij (1)

subject to
kX

i=1

X

j2APi

Ûjxij  Ur

X

j2APi

xij  1 8i | 1  i  k

xij 2 {0, 1} 8i, j | 1  i  k ^ j 2 APi

where k is the number of goals for which the agent has not committed to an
intention yet, pri is the priority of the ith uncommitted goal, APi is the set of
applicable plans for i, prefij is the value computed by the cost function of the
plan j 2 APi, xij is a binary variable which assumes value one if and only if
j 2 APi is currently taken into consideration.

The selection function �A complies with the following rules:

(i) Try to schedule (commit to) an applicable plan for each pending goal.
(ii) If (i) is not possible, drop the plans for the goals having less priority.
(iii) Among plans for goals with the same priority, prioritize those that are most

preferred by the agent.

Given eq. (1), � = �[�A(AP ). Finally, we expect that an agent could achieve
the same goal with di↵erent priorities (depending on the situation). Furthermore,
the priority of a committed goal could change on the fly. For instance, a goal
could become more urgent upon the occurrence of some condition. Since the
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agent keeps track of the goals it is currently pursuing, it can easily manage this
case. The agent updates the priority of the goal and reschedules its intention
— via �A. In particular, it drops the currently active intention for the goal and
chooses a new feasible intention (if it has a higher priority).

4.2 Executing intentions

Once an agent has committed to a new intention i, it is added to the intention-set
I. In the presented RT-BDI model, �I – which selects the intention to be executed
at the next cycle – implements the EDF scheduling algorithm. This approach
di↵ers, for instance, from Jason [6], which implements a hierarchical round-robin
(RR) as the default intention selection function [13], and JACK [9], which allows
choosing between RR and FIFO. EDF has higher fairness among tasks with
respect to FIFO (which could lead to blocking task-sets) and is more e�cient
then RR (which grants fairness but may cause conflicts between interleaved steps
in di↵erent intentions). For a complete study supporting the employment of EDF
in the RT-MAS domain, see [12].

Besides scheduling the current intention in the ready queue, �I also manages
the precedence between tasks belonging to the same task-set. Indeed, the sequen-
tiality of the tasks of an intention (discussed in section 4.1) must be respected
to avoid unwanted and unpredictable behaviors. On the one hand, for aperiodic
tasks, an action is considered executed when the instance of the corresponding
task is completed. Hence, the activation of a successor can be automatically trig-
gered by the termination of its predecessors. Therefore, given the ready queue
 a of an agent a, a task-set �k including an aperiodic task ⌧i and its successor
⌧j , the current time t and the finishing time fi of ⌧i, ⌧j 2  a , fi < t.

On the other hand, for periodic tasks, the action is considered executed only
when the scheduler removes the task from the RT queue (when the last instance
of the task is completed).

If the dependency among the instances of periodic tasks is needed (i.e., an
instance ⌧kj of task ⌧j needs data produced by an instance ⌧ki of task ⌧i), non-
blocking communication mechanisms must be applied to avoid unbounded delays
in tasks execution (e.g., using the Logical Execution Time (LET) paradigm [4]).

5 Example: a real-time autonomous robot vacuum

Let us consider the simulation of an in-house automated robot vacuum able to
move around, check both levels of battery and garbage container, suck the dirt
from the floor, recharge the battery, and empty the garbage container.

5.1 Design of the agent

The knowledge of both its state and the surrounding environment is crucial for
the agent (see table 1). We assume the robot is equipped with sensors (i.e.,
proximity, battery level, and cameras) providing the required knowledge (e.g.,
its current position). Table 2 shows the agent’s desire-set and corresponding
priorities (based on the goals’ relevance). This example shows that both belief
atoms and their negations can be a desired state of the system. Furthermore,
the same desire can be triggered with a di↵erent priority upon the precondition
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Belief atom
clean(kitchen)
clean(bedroom)
clean(bathroom)
kitchenPos(X,Y)
bedroomPos(X,Y)
bathPos(X,Y)
currentPos(X,Y)
sensed(obstacle)
battCharge(B)
contLevel(C)
active(vacuum)
status(roaming)
checking(battery)
checking(obstacles)

Table 1: Agent’s belief-set.

Belief literal Preconditions Priority
clean(kitchen) ¬(clean(kitchen)) 0.6
clean(bedroom) ¬(clean(bedroom)) 0.6
clean(bathroom) ¬(clean(bathroom)) 0.6
checking(battery) ¬(checking(battery)) 0.95
checking(obstacles) ¬(checking(obstacles)) 0.95
battCharge(100) battCharge(10) 0.9
battCharge(100) battCharge(90) 0.3
contLevel(0) contLevel(100) 0.6
contLevel(0) contLevel(10) 0.3
¬(sensed(obstacle)) sensed(obstacle) 0.9
currentPos(X,Y) - -
active(vacuum) - -
¬(active(vacuum)) - -
status(roaming) - -
Table 2: Agent’s desire-set containing the possible goals.

that activated it. In this basic example, we assume 10% to be the minimum
battery level necessary to return to the charging station. For this reason, the goal
becomes urgent only when such a threshold is reached. However, in a real-world
application such a value should be calculated dynamically (position-dependent).

Moreover, recalling that an agent may need to verify the state of the system or
its components, goals such as checking(battery) and checking(obstacles)
can have remarkably high priority (having a minimum battery level is vital for
the robot) and need to be checked continuously.

The internal goals (e.g., currentPos(X,Y) and status(roaming)) are trig-
gered directly by the agent itself, so they have no explicit precondition (e.g., we
want the vacuum turning on when a running intention demands for it rather
then meeting a precondition). The plans are defined o✏ine by the designer and
could involve sub-plans if an internal goal is instantiated within the main plan.

Plan 1 shows a trivial example of a plan aiming at cleaning the bathroom
(cleaning kitchen and the bedroom are similar).

Plan 1 Bathroom cleaning
1: DESIRE: clean(bathroom)
2: PREFERENCE: 2
3: PREC: contLevel(C < 80) ^ battCharge(B > 40)
4: CONT: contLevel(C < 100) ^ battCharge(B > 20)
5: g : currentPos(bathPos.X, bathPos.Y )
6: g : active(vacuum)
7: g : status(roaming)
8: g : not(active(vacuum))

Plan 2 Change position
1: DESIRE: currentPos(X,Y)
2: PREFERENCE: 2
3: PREC: battCharge(B > f)
4: CONT: not(sensed(obstacle))
5: ac : path calculatePath(X,Y )
6: ac : followPath(path)

Such a plan is applicable only if at the very start the container has enough
capacity (i.e., container level does not exceed 80%) and if there is enough bat-
tery to perform all the needed operations. Furthermore, at run-time, container
and battery levels cannot exceed the respective thresholds. To perform plan 1,
the robot has to reach the bathroom, activate the vacuum, roam around the
room, and finally, when done, deactivate the vacuum. In plan 2 a possible plan
dealing with the currentPos(X,Y) goal is shown. This plan is composed of two
actions: (i) calculating the steps needed to reach the destination, and (ii) ex-
ecuting them. Here, the selection of the plan is subject to the charge of the
battery: the plan is applicable if f (function approximating the required bat-
tery) is enough. Moreover, besides minor obstacle avoidance, if unexpected and
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considerably obstructive obstacles are encountered, the plan might need an up-
date (demanding a re-planning to the agent) to avoid the obstacle. It is worth
noticing that, besides the plan-specific tasks (e.g., calculating the path towards
the bathroom), all the other operations are represented as internal goals. This
separation between the main-plan and its sub-plans gives the agent a flexible
behavior, since di↵erent sub-plans can be chosen depending on the context.

The assignment of the RT parameters (i.e., C and T for the tasks, and Q
and P for the servers) is crucial. While task periods are derived from the ap-
plication requirements (e.g., sampling frequencies, message rate, and physical
constraints), the computation time is dependent on platform and implementa-
tion. Typical approaches to compute them are the static analysis of the code and
the statistical estimation on profiled performances — which go beyond the scope
of the paper. Thus, we establish these values approximating the action complex-
ity. For example, to activate and deactivate the vacuum (switching on/o↵ the
actuator), we established the minimum computational time possible, C = 1.
The tasks’ computation time and period are specified in table 3, which shows
the complete tasks characterization. ⌧1, ⌧2 and ⌧3 are periodic tasks, ⌧4, ⌧5 and ⌧6
are aperiodic tasks (mapped on the related servers). Albeit the agent reasoning
process must be considered as a task itself, we preferred to initially relax this
aspect to keep the presented example intuitive. Since ⌧4 and ⌧5 act similarly

Task Behaviour C T
⌧1 Move one step 2 5
⌧2 Check obstacles 1 5
⌧3 Check battery 1 10
⌧4 Vacuum on 1 -
⌧5 Vacuum o↵ 1 -
⌧6 CalculatePath 5 -
Table 3: Agent tasks

Server Tasks Q T
S4,5 ⌧4, ⌧5 1 10
S6 ⌧6 5 20

Table 4: Agent Servers.

Belief atom
clean(kitchen)
clean(bedroom)
clean(bathroom)
kitchenPos(Xki, Yki)
bedroomPos(Xbe, Ybe)
bathPos(Xba, Yba)
currentPos(X,Y)
contLevel(0)
battCharge(100)

Table 5: Initial belief-set.

on the same component (switching the vacuum on/o↵), they are assigned to the
same server (see table 4).

Referring to plan 2, calculatePath(X,Y ) corresponds to the aperiodic task
⌧6, while the action followPath(path) is performed by the periodic task ⌧1.

5.2 Execution of the agent

Table 5 reports the initial predicates composing the belief-set of the agent while
fig. 2 shows the task scheduling of the agent. For simplicity, we assume that the
robot can reach its destination in just n = 1 steps (hence, periodic task ⌧1 is
executed only once instead of a variable number of times).

At the very start, the agent commits to two goals: checking(obstacles) and
checking(battery). Since the intentions chosen to achieve them are composed
by periodic tasks, the corresponding goals are considered achieved when the
agent removes them from the ready queue (see section 4.2).

At the time t0, the agent perceives (or is told that) the bathroom is not clean.
This triggers the agent’s reasoning cycle, that tries to match this new belief with
any desires’ precondition, and instantiates the corresponding goal. Searching the
possible plans and selecting the best (via �A), the agent chooses plan 1 with the
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corresponding �plan1 composed of ⌧6, ⌧1, ⌧4, ⌧6, ⌧1, ⌧5 (sorted by release time). The
roaming goal is achieved with a plan similar to plan 2, which targets a “covering-
an-area” instead of a “direct” path to a pair of coordinates. The schedulability
test on the � allows an applicable plan to become an intention if U(t)  1 8t.
For simplicity, we assume that from time t0 to t42, the goal clean(bathroom) is
the only one being instantiated. Being U⌧2 = 0.2 and U⌧3 = 0.1, the utilization
factor of the agent at time t0 is 0.3. The utilization factors of periodic tasks
and servers serving the aperiodic tasks composing the bathroom cleaning’s task-
set are U⌧1 = 0.4, US4,5 = 0.1 and US6 = 0.25. Since U⌧2 + U⌧3 + Û�plan1 =
0.7  1 (the Maximum Utilization factor of plan 1 is at most 0.4, when ⌧1
is executing), the agent can always find a feasible schedule. Figure 2 shows a
graphical representation of the schedule of � produced by EDF.

" release # completion # deadline

Fig. 2: Representation of agent’s task scheduling.

Adopting an RT scheduler in the reasoning cycle of an agent ensures that
both hard and soft timing constraints are met. Hence, looking at figure 2, at
t4, ⌧6 is running. At t5, when a task with a earlier deadline d is released, it is
preempted (d⌧2 < dS6). Then, after ⌧2 has executed, the processor completes the
execution of ⌧6 enabling both to comply with their deadlines, which could be
missed in the current BDI implementations [13]. As formalized in section 4.2,
managing the precedence among the tasks within the same intention is crucial.
Hence, for example, we do not want that the robot starts moving (⌧1) before it
has finished to plan the route (⌧6).

6 Future work
As mentioned in section 4.1, to improve agent’s performance �A should be op-
timized. Inspired by [11], we aim at adapting their mechanism to compute both
real and potential utilization of the agent punctually, leveraging on the com-
mitment (possibly with parallel instances). In particular, �A will compute the
utilization relying on both accepted and pending (under evaluation) plans and
tasks. The computation of U(t) needs to be triggered only if interferences occur
(e.g., new releases) —being computed according to the related task model. More-
over, we will evaluate possible adaptations of the approach presented in [36] (yet
neglecting RT constraints), where the agent selects the intention to be progressed
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at the action level, possibly increasing the achievable goals. An important step
consists of extending the characterization of time from the tasks/plans to the
goals level. Besides ensuring compliance with strict-timing constraints (current
model), the agent will be able to define whether or not a goal can be satisfied
within a time interval, given its resources, capabilities, means, and constraints.
Moreover, the RT-BDI model can be extended from single to multi-agent set-
tings. Finally, handling the plan failures will be studied and modeled.

7 Conclusion
We presented RT-BDI, a revision of the BDI model that exploits RT mechanisms
to allow its employment in safety-critical applications. The main contribution of
this paper consists in the integration of RT mechanisms into the BDI reasoning
cycle, involving an RT scheduler in two distinct phases. A schedulability test is
first performed to choose a feasible set of intentions to be executed, and then
the scheduling algorithm provides the execution order of the actions composing
such intentions. This approach opens to promising developments and calls for a
simulator to allow verification and validation.
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