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ABSTRACT

Piezoelectric elements are a key component of modern non-destructive testing (NDT) and structural health
monitoring (SHM) systems and play a significant role in many other areas involving dynamic interaction with
the structure such as energy harvesting, active control, power ultrasonics or removal of surface accretions using
structural waves. In this paper we present a wave-based technique for modelling waveguides equipped with
piezoelectric actuators in which there is no need for common simplifications regarding their dynamic behaviour
or mutual interaction with the structure. The proposed approach is based on the semi-analytical finite element
(SAFE) method. We developed a new piezoelectric semi-analytical element and employed the analytical wave
approach to model the distributed electric excitation and scattering of the waves at discontinuities. The model
is successfully validated against an experiment on a beam-like waveguide with emulated anechoic terminations.

Keywords: piezoelectric excitation, guided wave propagation, semi-analytical finite element method, wave
approach, smart structures

1. INTRODUCTION

The ability to describe the interaction between the piezo patch and the host structure accurately is an essential
aspect of both the design and operational stages of piezo-equipped dynamic systems. Over the past decades
this problem has been widely studied which resulted in a considerable number of modelling techniques.! Among
research published to date, two approaches can be distinguished.? The first group considers the dynamics of the
structure and piezo actuation separately, assuming that they are fully decoupled. A set of equivalent forces is
applied to the substrate model by means of some coupling strategy. The second group of models accounts for
the dynamic interaction between the actuator and the structure and is based on a solution to a boundary value
problem.

Most of the models belonging to the first (decoupled) group refer to the quasi-static and pin-force assumptions
presented first by Crawley and de Luis.? The quasi-static assumption states that the actuator behaves quasi-
statically provided that it operates at frequencies far below its own resonances and is thin and light compared to
the host structure. This also implies that the dynamics of the actuator are neglected and that for thin bonding
layers the shear load transfer is confined at the ends of the actuator. The pin-force model was employed in
the frequency domain spectral element method (SEM) to model coupled flexural-longitudinal-shear vibration of
beams based on Timoshenko and Mindlin-Hermann theories.* ©

In recent decades the interest of researchers in the field was focused on modelling piezoelectric excitation at
high frequencies, since piezoelectric elements have become a standard for high frequency wave-based NDT.” To
capture the structure dynamics, full elasticity equations need to be used. Pin-force assumption was applied to
the integral transform solution of elasticity equations by Raghavan and Cesnik.® Other researchers modelled
Lamb wave excitation with a single PZT wafer as a boundary problem, incorporating full Lamb wave equations
and accounting for the effect of the bonding layer.? '?2 Dynamic contribution of the piezo actuator was included
in the integral equation based methodology developed by Glushkov et al.'?

Apart from analytical solutions, many researchers investigated piezo-excited waves using conventional FE.
Being versatile and easily applicable to complex structures, this technique has important drawbacks in high
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frequency applications such as a very large computational cost and a limited insight into wave propagation
phenomenon. Some of these can be circumvented in other numerical methods, e.g. the spectral finite element
method.'*1% Various hybrid techniques employing full FE for modelling piezoelectric excitation and other tech-
niques such as normal modes expansion or Local Interaction Simulation A pproach (LISA) for wave propagation
have also been developed.'%:17

The wide range of models briefly recalled above serves many purposes well in NDT/SHM applications, but has
certain limitations both from the viewpoint of assumptions made and the model development (ability to model
multi-component waveguides). Moreover, there are many applications such as removal of surface accretions using
structural waves, where the actuators may operate close to their resonance frequencies and be of a similar to the
host structure thickness which violates the quasi-static assumption.

In this paper we present a method to model structural wave excitation with piezo actuators which accounts
for the dynamics of the actuator and its mutual interaction with the substrate (so far available only in FE) and
at the same time takes advantage of the wave-based formulation. It also supports modelling multi-component
structures without the need for employing full FE. The proposed coupled-field wave model originates from the
piezoelectric constitutive equations, so a distributed voltage is applied directly. The approximations in place
result from the finite element discretisation of the cross-section, the quasi-electrostatic approximation'® and the
fact that the electric field in the propagation direction is neglected. To the best knowledge of the authors such
a methodology has not been proposed to date.

2. MODELLING STRUCTURAL DYNAMICS IN THE WAVE DOMAIN

We first briefly describe the concept of formulating models in the wave domain. The advantage of this modelling
paradigm becomes prominent at high frequencies, where many vibration modes exist or when the interest is in
investigating wave propagation effects on their own. Analytical descriptions are available for a limited range
of simple structures such as beams, rods or plates. Multi-component waveguides are therefore often modelled
using conventional finite element method, which at high frequencies requires dense meshes and hence high
computational resources. The alternative approach — wave-based modelling — exploits the fact that steady-
state response of a structure is essentially a superposition of travelling waves.'® 2% This enables reducing the
computational load but also gaining an additional physical insight (wave propagation effects).

Building models in the wave domain involves two main stages. The first stage is the calculation of the wave
characteristics — wavenumbers and wave mode shapes — of each uniform part of the waveguide (called a wave
element in this paper) and the corresponding excited waves. The second stage is the assembly of the wave-based
model performed using matrix algebra. The approach is illustrated in detail in Fig. 1, where a finite structure
excited with a PZT actuator and a mechanical force is presented. The structure has a small notch and is fixed
at its left end and attached via springs to a rigid wall at the other end.

The first step is to subdivide the structure into wave elements. The structure is split at any point at which a
discontinuity (e.g. change of the cross-section or a mechanical force) occurs. Each wave element is then analysed
using any capable method to obtain the wavenumbers and wave mode shapes (which together are called a wave
basis in this paper). At this step, the excited wave amplitudes resulting from both piezoelectric and mechanical
excitations are computed. Note that the excited waves are calculated as if the affected wave elements were
infinite.

After the wave bases and the excited wave amplitudes are obtained, the reflection matrices are calculated
based on the wave mode shapes and the boundary conditions.?! Scattering matrices describing wave conver-
sion/reflection at the junctions are also found.?!2® To enable the calculation, the meshes of the overlapping
parts of the subsequent adjacent cross-sections must conform to each other.

In the last step, the travelling waves amplitudes in each wave element are computed by means of matrix
algebra. The term travelling waves denotes waves that represent superimposed contributions of subsequent
reflections, scattering and appropriate excitations. The response within each of the elements is then computed
from the wave mode shapes and the travelling wave amplitudes as denoted in Fig. 1.

In this paper we chose the semi-analytical finite element method for computing the wave bases and solving
the excitation problem. The SAFE framework was proposed in the 1970s.242® The method is suitable for
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Figure 1: The general concept of modelling structural dynamics in the wave domain

solving one-dimensional wave propagation problems for structures of an arbitrary cross-section, which is its
great advantage over the analytical approaches. It utilises an FE-like procedure to discretise the plane cross-
section and assumes a space-harmonic variation along the out-of-plane (waveguide) direction to find a steady-state
solution of the equations of motion. The SAFE element has finite dimensions in the cross-section plane and is
initially of an indefinite extent along the propagation direction. Further details of the method can be found in
the literature.?6-29

The SAFE method for elastic waveguides is well described and established within the scientific community. In
this paper we formulate a SAFE element for materials with piezoelectric coupling to enable modelling piezoelectric
excitation directly without a need for assumptions on the dynamics of the actuator or its mutual interaction
with the structure. Wave based approach allows us to use both SAFE formulations (elastic and piezoelectric) to
model complex multi-component smart structures equipped with piezoelectric actuators.

3. SAFE FORMULATION FOR AN ELASTIC WAVEGUIDE WITH
PIEZOELECTRIC COUPLING

In the following paragraphs we derive the SAFE element for piezoelectric materials. Formulation for elastic
waveguides may easily be recovered from the one given by setting all the piezoelectric material constants to
zero. In most cases, the cross-sections of interest would contain both elastic and piezoelectric SAFE elements.
The bonding conditions can be represented by an additional layer of either elastic/viscoelastic SAFE elements or



spring SAFE elements.?® Global SAFE matrices are assembled in an FE-like manner, thus we focus our attention
on presentation of the SAFE formulation for a single element only.

3.1 Derivation of the SAFE element

We assume that the cross-section of the structure lies in the z-y plane and that the waves propagate along the z
direction (Fig. 2). The following derivation is written for the two-dimensional element, however other cases can
be formulated by removing appropriate degrees of freedom and altering the element shape functions.

The displacement, strain and stress fields over a SAFE element are defined as:2°

u= [uw Uy UZ]T , €= [Exm €yy  €zz Vyz Vxz %y]T , O = [Uwa: Oyy Ozz Oyz Ogz Ua:y] i (1)

where the time-harmonic term exp[ywt] is omitted for brevity. Following the cross-section discretisation, the
displacement at any point within the SAFE element is written as:

u(z,y,z) = N(z,y)q(2) (2)

where N(z, y) is the displacement shape function matrix (in the cross-section plane) and q(z) is the z-dependent
nodal amplitudes vector. The strain is also expressed in terms of the shape functions and the nodal amplitudes:

0 0 0 0
e(amy, Z) - Lz% + Lyaiy + Lz@ u(xa Y, Z) - qu(z) + BZ&q(z) (3)

where L, L,, L, indicate which displacement component is differentiated and can be deducted from Eq. (1). In
a piezoelectric element each node has an additional degree of freedom ¢ which represents the electrical potential.
Analogously to Eq. (2), electrical potential in the waveguide ¥ is expressed as

The behaviour of a piezoelectric material is governed by the following constitutive equations:3!

oc=CFe—e'E

5
D =ee+€eE (5)

where C¥, e, E, D, & are the stiffness matrix measured under zero-electric field (short-circuit) condition,
piezoelectric stress coeflicient matrix, electric field vector, electric displacement vector and permittivity matrix
measured at zero-strain (clamped) condition, respectively.

The electric field is assumed to be quasi-static (curl E is zero) and thus it is expressed as a scalar gradient
of the potential3?
E(J,‘, Y, Z) =-Vd (6)
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Figure 2: Waveguide with piezoelectric coupling modelled with SAFE - the coordinates system, labelling con-
vention and degrees of freedom.



Given the discretisation of the cross-section one writes?33°

.
E(r,y,2) =—VO=— % & 2| N (7)

where the electrical potential shape functions N, are chosen to be the same as the displacement shape functions
N. In this paper the piezoelectric SAFE element is developed for modelling actuators made of bulk piezoelectric
ceramic with two electroded surfaces. Driving voltage is applied across the thickness of the PZT element (the
y direction). To enable condensation of the potentials (though it is not necessary), the electric field is assumed
not to change along the propagation direction z. By doing so, the contribution of the piezoelectric coefficient
associated with the voltage gradient along z is neglected, which is not expected to invoke a significant error for
the calculation of excited waves. Eq. (7) is rewritten as

-
E(z,y,2) = — [N%gC Ny O] ¢ =-Byp (8)

Equations of motion are found with the aid of the virtual work and virtual electric potentials principles.3?
Given the constitutive equations and appropriate natural and essential boundary conditions,?? the virtual work
principle states that for every time ¢

work done by
external surface work done by work done by

tractions work done by inertia body forces  the stress field
A nodal forces
—~
/ su'tdl, + 6q'f; = / su' (pin)dV + / Se' o dV (9)
I's \% \%

where t is the external tractions vector, f; is the vector of nodal forces applied at the ends of the considered
section of the waveguide of length L and p is the density of the material.

Similarly, under the essential boundary conditions,?? the virtual electric potentials principle states that for
every time ¢

work done by work done by
external surface the electric
charges displacement field
T _ T
—/w odl, = /5]«3 DdV (10)
T, \%

where g is the external surface charge vector.

Appropriate terms are now substituted into Egs. (9) and (10) with the expressions coming from the finite
element discretisation of the cross-section. To clarify the formulation, the following notation is adopted which
results from the integration of the matrices over the cross-sectional element domain 2 or appropriate element

boundaries in case of mechanical or electrical surface loads (I, or T, respectively)23
M = /NTdeQ K; = /BJCB1 dQ Ko = /BICBldQ
Q Q Q
K, = /K]T —K;dQ K, = /B;CBQdQ p= /NTNtidFU
Q Q T

(11)
Ki¥ =Ko = /BlTeTBg, a0 KW =K' = /BQTeTBw A0 K*? = /B;eSBW o

Q Q Q
T = /gdPQ
FQ



After some mathematical manipulations of Eq. (9) and Eq. (10) one can conclude the governing equation for
wave propagation:

Ma—2 +Koq+ K 9 -K 8—2 +K;? —K“‘P2 =
a75201 0od 16201 282201 0o ¥ 1 8290—1) (12)
K{"q+ Kf“gq ~K*p=70
z
and the natural boundary condition stating that at the ends of the considered section of the waveguide:
0 wp
q=0 or fi:Kfq—l-Kz&q-&-Kl 02 (13)
which directly provides the expression for the resultant nodal forces.
Solution to Eq. (12) is performed using the Spatial Fourier Transform (SFT) defined as
o 1T
Flap=ak) = [ a@ewlklds and a= - [ alk)exp kel b (14

Applying Eq. (14) to Eq. (12) and Eq. (13) and performing the time derivation under the harmonic motion
assumption, one writes
} (15)

—w*M 0 " Ko — kK — (—jk)QKg Kg“’ + ]kK?f“” al _
0 0 K" — gkK{" —K*¥ e
f; = K;q— jkK.q+ K% (16)

kel

and

Eq. (15) is the governing equation for wave propagation in a piezoelectric waveguide in the wavenumber-frequency
domain whereas the resultant nodal forces in the wavenumber-frequency domain can be calculated from Eq. (16).

The focus of the procedure is the application to piezoelectric actuators where the outer surfaces perpendicular
to the propagation direction are electroded. It is then customary to express the above equation in terms of driving
voltage which can be done by condensing out the potentials at the internal nodes. Static condensation procedure
is standard and the details may readily be found in the literature.?33436 The tilde {} symbol in the following
equations indicates that the matrix is amended to account for the condensed potentials. Note, however, that
although condensation simplifies the notation and the solution procedure, it also involves the loss of sparsity of
SAFE matrices. Therefore, from a numerical performance viewpoint condensation is not the optimal choice.

3.2 Free waves and the wave basis

Free waves in a waveguide with piezoelectric coupling in the short-circuit condition may be found by setting the
voltage in the powered electrode to zero (v = 0) and assuming no external mechanical traction. This results in
a quadratic eigenvalue problem (QEP)

[KO FOK, - A2K, — w2M} $=0 (17)

where ¢ is the eigenvector and A = —jk.

QEP from Eq. (17) is most commonly solved by companion form linearisation.?” A new eigenvector is
introduced as ¢ = [d) )\¢>] " and the SAFE governing equation is rewritten as a generalised eigenvalue problem

(GEP) o o
(i o AL &) o) -0 o

[Aw) ~AB(w)]$=0 (19)

or more concisely as



where A, B are of dimensions 2n X 2n and n is the number of the displacement degrees of freedom in the
cross-section.

The GEP from Eq. (19) can be solved using any of the scientific computing packages. For a given frequency w
one finds a set of 2n eigenvalues \; (associated with n positive- and n negative-going waves), and 2n x 2n matrices
of the corresponding right and left eigenvectors denoted by & and ¥, respectively. The right eigenvectors dA)Z
are columns of ® and left eigenvectors djvl are rows of W. A more detailed description of the properties of the
matrices and free wave solutions can be found in the literature.??

3.3 Excitation of structural waves in an elastic waveguide covered with a piezoelectric
layer powered over a finite length

We consider a steady-state response in an infinite elastic layer covered over its whole length by an electroded
piezoelectric layer (Fig. 3). A finite section of the electrode is driven with a time-harmonic voltage vg. Note that
the ‘driving’ section is electrically isolated from adjacent parts of the waveguide which are in the short-circuit
condition. Vectors p~ and p™ represent waves generated by the distributed patch-like piezoelectric excitation
as they enter the non-powered region. A local coordinate system (z’) is introduced with the origin in the middle
of the length of the piezoelectric actuator. The spatial distribution of voltage v(z’) is a rectangular box function
as shown in Fig. 3, such that

. (20)
0 otherwise

o
o(2) = {vo if 2/ < |L/2|

Excited wave amplitudes are found by solving the SAFE equation in the wavenumber—frequency domain
directly, given the spatial distribution of voltage (the solution is similar to the distributed force case38). Let us
first recall the top row of the governing equation for wave propagation in the piezoelectric waveguide in Eq. (15),
assuming no external tractions for the sake of clarity of the formulation

(Ko — kK1 — (—gk)* Kz — w2M) q= (_Kgso - Jk/’f{gw) v (21)

where v is the SF'T of the voltage spatial distribution given by

(oo}
in (kL/2
U= / v(2') exp [pkz'] dz’ = 2110% (22)
The solution is performed on the linearised form of Eq. (21) which enables the use of GEP properties
A@W) ~ (~)B(w)]d = ’ : (23)
B B <M e
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Figure 3: Elastic waveguide covered with a piezoelectric layer driven over a finite length. Excited waves ampli-
tudes and voltage spatial distribution.



After pre-multiplying by in and exploiting the orthogonality of the eigenvectors with respect to B one writes

the solution as
2n

2ug sin (kL/2) - 0 A
~ uQp u Ds 24
; Tk — k) 1p—KO—kK“"i" ;‘bzp (24)
where v was substituted with the expression from Eq. (22).

The form of Eq. (24) is similar in appearance to the wave basis expressions, i.e. the solution to the voltage

excited wave problem is already written as a weighted superposition of the travelling waves. The modal weighting
factor representing the amplitude of wave ¢ in the space domain is found via the inverse SFT defined in Eq. (14)

“+o0
, 1 2vgsin (kL/2) - 0
pi(#) = / osin (kL/2)

% jk(k‘ — k’) i |:_Kg _ JkKuap:| exp[ ]kz/] dk (25)

— 00

The above integral is evaluated using Cauchy’s residue theorem?? yielding excited wave amplitudes in the
space domain

Quosin (k7 L/2) 0
! (26)
_ 2uosin (k; L/2) ~_ 0 _
p () = %ﬂd’i 7KO%" — gk KWJ} exp[—gk; 2']
i

Excited wave amplitudes p; (), p; (2') are expressed with reference to the local coordinate system as depicted
in Fig. 3. In order to obtain the excited waves amplitudes as they appear at the ends of the electrically driven
region, they need to be multiplied by appropriate space harmonic term representing propagation over L/2

o w0 enlk ) [ 0 ]

p; =

gk ~K,” - gk K (27
_ (exp [7k; L] — 1) 1[1_ [ 0 }
b= Jk; ! Kosp —Jk’i_Kf

Eq. (27) provides expressions for wave amplitudes excited by voltage uniformly distributed over L in an infinite
piezo-covered waveguide as they appear at the ends of the powered region. Identical expressions can be found
from convolving the response to a point voltage excitation with the spatial voltage distribution.

4. EXCITATION OF STRUCTURAL WAVES WITH A FINITE LENGTH
ACTUATOR - AN ILLUSTRATIVE EXAMPLE

In this section we present how the SAFE element developed in the previous section is used to calculate piezo-
electric excitation in waveguides. The approach is demonstrated on an infinite waveguide with a rectangular
cross-section equipped with a finite piezo actuator. The structure consists of three wave elements, i.e. two (iden-
tical) elastic elements and one elastic element covered with a piezoelectric layer. Each wave element is analysed
using SAFE to find the wave bases and the amplitudes of waves generated by the voltage excitation as outlined
in the previous section.

In the following paragraphs we present the calculation of the travelling waves and desired responses in the
considered structure. There are two possible outputs of such calculation, namely either the excited wave field
propagating in the elastic substrate or the electrical impedance of the actuator. Both cases are considered below.
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Figure 4: Infinite waveguide excited with a piezoelectric actuator - schematic diagrams for calculating the
travelling waves outside the PZT-covered section; the excited waves p*, p~ are defined at the edges of the
actuator just before they are incident on the discontinuity.

4.1 The response outside the piezo-covered region

The interest is in finding the wave amplitudes induced in the substrate waveguide at a position z, to the right
of the actuator, denoted hereafter by b™. Travelling waves at different stages and excited waves at the ends of
the actuator are depicted in Fig. 4.

The wave amplitudes resulting from the distributed voltage excitation p~, p™ as found in Section 3.3 are
immediately incident upon the discontinuities at the ends of the piezoelectric actuator, and therefore scattered
according to the appropriate scattering matrices.?! 22

The boundary conditions are ideally absorbing (located at +00), hence there is no negative-going wave in
element 3 and the response of the structure at z, is written in the wave domain as

q(zr) = ¢+b+(zr) = ¢+T(Zr)a§_ (28)

where 7(z,) = diag (exp [—7k;z]).

To obtain the response at a desired location z,, one needs to find the travelling wave amplitude ag™t first.
We write it in terms of the excited wave and the positive travelling wave in element 2:

aj = TRp" + Trr(L)ag (29)
where

ajy =R{’p~ + R{’1(L)a; (30)
and

a; =Ry pt + Ry 7(L)af (31)

After appropriate manipulations we obtain
-1 _
aj = T'p* + TR 7(L)[I-RP’T(L)Re 7(L)] ~ [Ri’p™ + RI'T(L)Ry pY] (32)
which after substituting into Eq. (28) leads to the desired response.

4.2 The response within the piezo-covered region: electrical impedance extraction

Many engineering applications take advantage of the electromechanical coupling in piezoelectric elements to sense
the dynamic behaviour of the structure by means of the frequency dependent electrical impedance of the PZT
actuator. We show how the presented model can be used to extract the electrical impedance.

The driving voltage v is kept fixed, whereas the current drawn is obtained from the second row of Eq. (15)
which provides an expression for the total reaction charge on the electrode. Since the reaction charge needs to
be summed over the length of the actuator, a methodology for evaluating the response inside the actuator is
required. At each location z; along the length of the PZT-covered wave element we split it into two parts: the
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Figure 5: Infinite waveguide excited with a piezoelectric actuator - schematic diagrams for calculating the
travelling waves inside the PZT-covered section; the excited waves p2+L, Par» p2+R7 P, are defined at the edges
of the actuator just before they are incident on the discontinuity.

one to the left from 2; (2 < z;) and that to the right from 2; (z > 2;).3® Excited waves are calculated separately
for each part using the framework presented in the previous paragraphs and substituting the correct lengths
depending on z;. A schematic diagram for the calculation is shown in Fig. 5.

The excited waves pérL, Par, ngR, Py as depicted in Fig. 5 are the wave amplitudes excited in an infinite
waveguide covered by the piezoelectric layer powered over a finite length (Section 3.3) and in case of a finite
piezoelectric actuator they are immediately incident upon a discontinuity.

We start the calculation from writing the expressions for travelling waves at different stages as

a2+R = ng + T(LL)a;L ap = R}zlp;R + R}%T(LR)a;R (33)
ay; = Py + T(LRr)agg aj, = RPpy, + RP°7(L)ay,

After some algebraic manipulations of the above equations we obtain the expressions for the positive- and
negative-going waves at a location z; within the piezoelectric actuator

ay, = [I - 7(Lr)RET(LRET(Lr)] " {pog + 7(Lr) [RYPin + RET(Lr) (pf, + T(LL)R¥p;)]}

(34)
ajp = py, + T(Lo)RT Py, + 7(Lo)RET(LL)ay,,
Therefore the total reaction charge is
L
Q=K vL - / [Kguq(z) — ]kf{fuq(z) dz (35)
0

where q(z;) = ®Taj, + & a;;.
The integral in Eq. (35) can be evaluated numerically and current is recovered after differentiating the reaction
charge with respect to time.

5. EXPERIMENTS

The framework proposed in this paper was validated with an experiment on a piezo-equipped beam with emulated
anechoic terminations. A schematic diagram of the experimental set-up is shown in Fig. 7. The piezoelectric
actuator (0.076 m x 0.0232 m x 0.0022 m made of Noliac NCE40 material - see Table 1) was driven by a signal
from the generator module of a Polytec PSV300 controller amplified with a PCB 790 Series power amplifier.

Prior to bonding to the beam the impedance of the free-free actuator was measured. Corresponding numerical
results were obtained from the wave model consisting of one 0.076 m long wave element with free-free boundaries.
The impedance was extracted from the wave model according to the technique outlined in Section 4.2.

The manufacturer of the piezoelectric actuators states that the properties listed in the datasheet®® are for
reference purposes only and the actual values depend on various conditions such as shape, finishing, electrode
type etc. The quoted standard tolerances are £10% for electrical properties and +5% for mechanical properties.



Property Steel Epoxy NCE40

0.0022 m 7
E, GPa 163 15 n/a 0.0001 m ¢
v \ 0.3 0.4 n/a p [
o, kgm™ 8000 1000 7850 v
n 0.0001 0.0001 0.007 0.00342 m
cfz = czEz, GPa n/a n/a 126.35 0.0232 m
cfy =c¢,,, GPa n/a n/a 58.68 0.0254 m
cE . GPa n/a n/a 99.88 < - >
Cgz GPa n/a n/a 62.93
c,., GPa n/a n/a 31.71
cfz = cfy, GPa n/a n/a 36.77 @
e, =e5,, Fm™?! n/a n/a 5.5e-09
Eqy Fm~! n/a n/a 5.196e-09 )
eyer = €yzz, NV Im™'  n/a n/a -3.239
€ryz = €zyz, NV m™'  n/a n/a 13.075 0.002 m >+ > 0.008 m
eyyy, NV Im™! n/a n/a 16.335 0.0127 m |

Table 1: Material constants used for experimen- Figure 6: Cross-section of the beam with and without
tal validation. the PZT layer - dimensions and scan points locations.
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Figure 7: Experimental setup.

The properties of NCE40 from*° were updated based on the free-free actuator impedance measurement to provide
the closest match (within stated tolerances) giving the values listed in Tab. 1.

The updated wave model prediction is compared with the measured data in Fig. 8. The electrical impedance
contains imprints of all strain components, therefore can serve as a validity indicator for a 3D wave field. The
response obtained from the wave model is slightly overdamped at high frequencies which is attributed to the
effect of the constant loss factor used in the SAFE routine to represent damping.?®

The actuator was attached to the beam using a thin (ca. 0.1 mm - inferred from thickness measurement)
layer of silvered epoxy (CircuitWorks CW2400 - properties of the epoxy were not measured and typical values
were adopted instead). Since the beam was a standard rolled mild steel profile, its cross-section was not ideally
rectangular (see Fig 6). The SAFE-wave model represents the cross-section with a rectangle, therefore to account
for that, the width in the model was amended and taken to be 0.024 m. All relevant material properties are
listed in Table 1.

During the test the response to the electrical excitation was measured at 0.164 m from the actuator and at a
few locations along the width of the beam using a Polytec PSV300 laser vibrometer. The grid of scanner points
was chosen to be close to the positions of the nodes in the wave model (see Fig. 6). The ends of the beam were
placed in boxes filled with sand in such a way that the thickness of the sand cover was gradually increased to
ensure a smooth change in the mechanical impedance of the boundary and minimise any reflections.

The corresponding wave model consisted of three wave elements (as described in Section 4): two single-
layer (steel) sections and one three-layer (piezo-bonding-steel) section. Appropriate continuity conditions at the
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Figure 8: The electrical impedance of the free-free actuator prior to bonding.

junctions of the wave elements were specified. Each cross-section was modelled with six 8-node biquadratic
quadrilateral elements across the width and one element across the thickness of each layer.

Recorded mobilities are compared with the wave model predictions in Figs. 9a-9d. The parts of the mobilities
where simple bending is dominant (< 20 kHz) are not presented in Figs. 9b—9d, as they do not differ from Fig. 9a.

If the terminations were perfectly anechoic, the measured response would only show the waves passing through
the position of the laser dot. In reality, the absorption is not perfect which imposes the fluctuations on the
response. We observed that the wave absorption in the sandboxes largely depended on the amplitude of the
excited waves indicating that the sandboxes behaved nonlinearly. Nevertheless, the mobilities presented in
Figs. 9a-9d show predominantly the effect of the propagating waves.

At low frequencies the mobility at the center of the beam (Fig. 9a) follows the behaviour expected from the
approximate theories with simple bending being dominant. The first sudden jump in magnitude at around 27
kHz corresponds to the cut-off frequency of the first transverse bending mode in the steel beam. At around 35
kHz the mobility reaches its maximum which is related to the cut-off frequency of the first transverse bending
wave in the PZT-covered section. The response experiences a dip whenever the length of the actuator matches
with a multiple of the predominantly excited wavelength. Figs. 9b—9d show the response measured at different
locations across the width of the beam (as indicated).

In order to show the potential of the proposed approach, the experimental and numerical mobilities are
supplemented with the results obtained from a model adopted from the literature.* Predictions obtained with
the Timoshenko-Mindlin-Hermann model* agree well with the experiment up to ca. 5 kHz but deviate at higher
frequencies, since the model from the literature is developed under the assumptions of beam/rod theories. Our
model enables gaining more physical insight into wave motion than the approaches originating from the pin-
force assumption or various approximate theories. The conventional approaches are not able to represent full
dynamics of the cross-section and to capture the higher-order waves (e.g. the one cutting of at ca. 35 kHz) which
in structural waveguides often govern the response at ultrasonic frequencies.

The comparison for other locations along the width of the beam show a very good agreement between the
wave model and the experiment. A slight drift in the phase at high frequencies can be partially attributed to
the phase wrapping routines and difficulty in capturing the phase change at cut-off frequencies correctly. The
fact that the phase slopes of both lines are almost identical is a better indication of the correspondence of the
two results.
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Figure 9: Magnitude and phase of the mobility with respect to the driving voltage measured at scan point marked
in Fig. 6.

6. CONCLUSIONS

The methodology for modelling piezoelectric excitation in structural waveguides was developed and validated
in this paper. The coupling of SAFE and the analytical wave approach enabled dropping the commonly used
quasi-static and pin-force assumptions and including the actuator’s dynamics in the wave model. Thanks to that
the actuator is allowed to be thick (convergence of SAFE must be ensured though) and to operate at frequencies
close to its resonance. The mathematical framework for calculation of the steady-state response to a distributed
voltage excitation was also outlined.

The electromechanical wave model was validated with an experiment. Piezo-actuated structural waves in a
beam-like waveguide with emulated anechoic terminations were captured using a laser vibrometer at different
locations and compared with the numerical calculation. The comparison showed a very good agreement and
proved the validity of the proposed approach.
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