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1. Introduction

This thesis is rooted in the extremely broad field of mathematical epidemiology. More precisely,
in the two main chapters we provide an analysis of multiple mathematical models of infectious
diseases, under the characteristic assumption that the mechanisms involved evolve on time scales
which differ by many orders of magnitude. As we will explain shortly, such an assumption is of
interest, and justified, in this and various other contexts.

Multiple time scales are extremely common in natural phenomena; instances of time scales
separation are present in engineering, ecology, chemistry, celestial mechanics, and many more
fields [30, 51]. The study of such phenomena has been tackled through various methods of
singular perturbation, which eventually evolved in the branch of mathematics which is now
called Geometric Singular Perturbation Theory, or GSPT, as we will denote it throughout this
introduction.

The fundamental idea of GSPT is the use of a small quantity, possibly originating from the
ratio of the time scales involved, as a perturbation parameter. The pioneering paper by Fenichel
[20] is often considered to be the foundation stone of GSPT, although perturbed systems had
been studied for decades already.

Indeed, in the vast field of perturbed systems, we must mention the works of Tikhonov,
Levinson, Hoppensteadt and Friedrichs & Wasow. We briefly recall the contributions to the
theory these five authors made.

Tikhonov’s main result in this field, also known as Tikhonov’s theorem, regards systems of
the form

d

— = f@,z¢),

dz (1.
.ua :g(I,Z,t),

where 0 < p < 1 is a small parameter, = z(t) € R™, z = z(¢t) € R"”, with m,n > 1, f and g
are functions of class C*, with k as large as needed. If we let 4 — 0, system (1.1)becomes

dz
a :f(IL’,Z,t), (1 2)
= ¢($, t),
with z = ¢(x,t) a solution of g(z, z,t) = 0. We define the so-called “adjoined system”
dz
a :g(xaz7t)a (13)

where both x and t are considered parameters. In this setting, in 1952, Tikhonov proved that,
on a finite interval ¢ € (0,77, solutions of system (1.1) tend to corresponding solutions of system
(1.2) as p — 0, under the assumption that z = ¢(z,t) is a stable root of system (1.3).

1



2 CHAPTER 1. INTRODUCTION

In 1950, Levinson published a paper [57] regarding a different kind of perturbed system,
namely
du d*u du
— =f— —_— — +h=0 1.4
- la T ap tog thEY (14)
where f, ¢, g and h are all regular enough functions of x € R™, and u, t and €, which are, instead,
all scalar.

Taking the limit as ¢ — 0 in system (1.4), we obtain

dx

dy dv
a—f&*‘%

dv
9% +h =0, (1.5)
where the variables were renamed for ease of notation.

Fix a starting time ¢ty = «; under some closeness assumptions between z(«) and y(«), u(a) and
v(a), 9% (a) and $%(), Levinson proved that the solutions of systems (1.4) and (1.5) remain
close for any finite interval t € [o, f], for any o < § < +00, for € small enough. We refer to [57]
for the precise formulation of this theorem and its proof.
Hoppensteadt, in his 1966 paper [34], extended Tikhonov’s results on closeness of the orbits

for systems of the form

x/ = f(t7 x? y7 6)7

Ey/ = g(ta Ty, 6)

to unbounded intervals ¢ € [a, 00).
Lastly, we recall a paper by Friedrichs and Wasow, which predates the three cited so far. In
their 1946 paper [21], the authors analysed another specific class of systems of ODEs of the form

X::Fz(Xla;Xn)a 2:1,2,,7171 (16)
GX%:Fn<Xla"'aXTL)7 .
giving conditions on the € — 0 limit system under which system (1.6) admits periodic orbits.
In a series of papers written and published in the 1970s, Fenichel then proposed his main
contribution, in the form of two theorems. He studied systems in a form identical to the ones
studied by Tikhonov, with a slightly different notation. Namely,

! __ r —
v =el@y,6) equivalent, for € > 0, to 33 f@y.9), (1.7)

Y =g(x,y,€), ey = g(x,y,¢€),

where from the leftmost system to the rightmost one we simply rescale the time from 7, the so-
called slow time variable, to t = 7 /e, the fast time variable. The prime and the overdot indicate,
respectively, the derivative with respect to 7 and t. In general, x € RY, y € R™, 0 < € < 1, and
f and g sufficiently regular.

Systems (1.7) are said to be in standard form, because the variables x are globally slow (notice
the small parameter multiplying their derivatives), whereas the variables y are globally fast.
The two systems correspond to two distinct limit systems as € — 0, namely

I/:()v x:f(xvyvo)a
and

1.8
Y = gl ,0), 0= g(z,4,0), (1.8)

called the layer equation and the reduced system, respectively. In the layer equation, the variables
x do not evolve in time, as they remain constant, and are considered parameters upon whose
variation the fast dynamics of y may change as well. The manifold described by the equation
g(z,y,0) = 0 is the critical manifold, and it is of fundamental importance; we denote it with Co.



In this setting, Fenichel proved two theorems.

Suppose there exists an m-dimensional compact submanifold M, possibly with boundary, con-
tained in Cy. Moreover, the manifold My is assumed to be normally hyperbolic, meaning that
the eigenvalues of the Jacobian D, f(x,y,0)|sm, are bounded away from the imaginary axis.
With such assumptions, the first theorem states that the submanifold My “survives” the per-
turbation, assuming € is “small enough”. This means that there exists a manifold M., locally
invariant under the flow of (1.7), which is O(e) close, and diffeomorphic, to M. Local invariance
means that trajectories may enter or leave M. only through its boundary.

The second theorem regards the corresponding stable and unstable manifolds of Mg, which are
proved to survive the perturbation in a similar fashion. We refer to [51, 30, 40] for more recent
and in-depth treatises on Fenichel theory. However, we will give a more formal introduction to
the subject in Section 2.2.

The presence of parameters differing by many orders of magnitudes from one another is
surprisingly common in real-world scenarios, and they often give rise to rich dynamics. Indeed,
Fenichel’s theory was applied to famous models such as the FitzHugh-Nagumo equation [51], Van
der Pol oscillator [24, 83], and to many other models of phenomena such as enzyme reactions
(62, 28], pattern formation [30], etc. However, as often happens in mathematical biology, the
systems analysed might not be in the standard form (1.7). Instead, they are presented in the
non-standard form

m/ = f(x’ y? 6)’
y' = g(z,y,e),

in which no variable is globally fast or slow with respect to the other, but only locally near critical
sets of the phase space. This is the case of all the systems studied in this thesis, and the main
focus of the recent treatise [86]. Moreover, the normal hyperbolicity assumption is often not
satisfied on the whole critical manifolds, and points or sets of non-hyperbolicity must be treated
carefully through more specialized analysis techniques.

In particular, the study of the simpler limit systems (1.8) is used to deduce information on the
original perturbed system. We refer to Section 2.2 of this thesis for a slightly longer introduction
to the subject, and to one specific, fundamental tool for our analysis: namely, the entry-exit
function, also known in literature as way-in/way-out function [49], or Pontryagin delay [67].

or, in short, 2’ = H(z,¢), (1.9)

Mathematical epidemiology is, now more than ever, an extremely important field, with evi-
dent and critical applications to real-world scenarios: a deep insight in the dynamics of infectious
diseases is fundamental to formulate control responses and prevention strategies to epidemics.

Over the last century, many different approaches have been chosen to try to balance the
trade-off between realism and complexity in epidemics modeling. The most famous and quoted
paper dates back to 1927 [44], in which an SIR, (Susceptible — Infected — Recovered) compartment
model was described through the use of renewal equations. The mathematical literature regarding
epidemics modelling has expanded considerably in the following decades, considering different
models and various techniques, including but not limited to the use of ODEs, PDEs, SDEs, and
analytical and numerical exploration of diseases spreading on various kinds of networks.

In particular, in this thesis we focus on compartmental models, expressed as systems of
singularly perturbed ODEs, which include the possibility of loss of immunity (i.e., the flow of
individuals from the R compartment to the S compartment).

There are multiple real-life diseases characterized by parameters which differ by several orders
of magnitudes [11, 43, 55, 70], e.g. the duration of infection vs. life expectancy, demographic
turnover or immunity window; this hypothesis was assumed in [2, 76]. This difference gives rise
to a separation of the phenomena involved into slow and fast ones, and this separation properly
motivates the study of such diseases through GSPT [70, 73]. The rigorous application of GSPT
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to epidemics models is still a relatively untrod path; however, we stress the contribution given
in particular by [70], which was part of the inspiration of the works contained in this thesis, and
[7, 29, 73, 85, 90]. The models we decided to study are of particular interest in the study of
compartment epidemics models: apart from the well-known SIR model, we focused on the SIRS
model (é.e., a model in which it is possible to lose immunity, and flow from the R compartment to
the S compartment) and on the SIRWS model. Both allow for loss of immunity, and the SIRWS
model in particular introduces a compartment for individuals with “waning immunity”: these
are individuals who still have partial immunity to the disease, but are on their way to losing
it; indeed, unless they encounter an Infected individual, which would boost their immunity and
move them back to the R compartment, these individuals would eventually lose their immunity
entirely, and become Susceptible again. Pertussis seems to be well modelled by this type of
scheme; varicella infection has apparently a similar behaviour, where however individuals do not
become susceptible to reinfection but to virus reactivation (zoster disease).

The research contained in this thesis aims at providing a novel point of view in the analysis
of compartmental epidemic models, exploiting an hypothesis of time scale separation. Such an
hypothesis, which as we said finds confirmation in different real world cases [10, 11, 55, 88|,
allows us to characterize the asymptotic behaviour of the underlying compartment models. In
particular, we propose a geometric argument which reveals, with the aid of numerical simulations,
whether a system will converge towards an (endemic) equilibrium, or it will be characterized by
(un)stable limit cycles. This technique is particularly useful in high dimensional systems, for
which analysis is harder, and which are often extremely stiff: our geometrical argument splits
the perturbed model into its two limit systems, which instead are not stiff.

The main body of this thesis consists of two papers, the first accepted by the journal Non-
linear Analysis: Real World Applications, soon to appear in their April 2021 issue; the second
submitted to Journal of Mathematical Biology, awaiting review. Both papers were co-authored
with Hildeberto Jardén-Kojakhmetov, Christian Kuehn and Andrea Pugliese.

The first paper, which constitutes the first chapter of this thesis, studies, with tools from
GSPT, three distinct compartment models, namely SIR with demography, SIRS without de-
mography, and SIRWS (the “W” standing for “waning immunity”) with demography. After the
theoretical analysis, the results are complemented by bifurcation analysis; moreover, the main
numerical geometrical argument is introduced and explained.

The second paper is a natural generalization of the SIRS model studied in the first one, and is
contained in the second chapter of this thesis. The introduction of the network structure brings
some more realism to the model, by dropping the homogeneous mixing hypothesis and allowing
each individual to have contacts, which potentially spread the infection, with a finite number of
“neighbors”. In particular, this specific network structure is used to obtain, through the so-called
pair approximation, a system of ODEs. This additional depth in the model unveils asymptotic
behaviours which were not possible in the homogeneous mixing settings, namely convergence of
the system towards stable limit cycles.

This thesis contains the main results we have reached over the course of my Ph.D. years.
Throughout our analysis we found numerous unexplored paths and prompts, which we believe
can lead to a significant amount of additional research; hence, we end both chapters with possible
outlooks for future works.



2. A geometric analysis of the
SIR, SIRS and SIRWS

epidemiological models

2.1 Introduction

Epidemic modelling has grown from the pioneering 1927 article by Kermack and McKendrick
[44] into a wide body of theory and applications to several diseases [1, 32, 42, 16, 63], used also
for developing appropriate control strategies.

The model by Kermack and McKendrick [44], formulated as renewal equations, was of S-
I-R type, meaning that individuals are classified as Susceptibles (S), Infected (I) or Recovered
(R), and that the only possible transitions are S — I (new infection) and I — R (recovery with
permanent immunity). As that model does not consider new births or deaths (other than because
of the disease), it is appropriate for an epidemic that develops on a time-scale much faster than
demographic turn-around. The epidemic SIR model was extended by Soper [77] and by Kermack
and McKendrick [45] in a second paper, in which they allowed for immigration, reproduction and
reinfection, arriving to the so-called SIR endemic model, that has been extensively analysed in
the following decades [31], especially to investigate how to explain the apparent periodicities in
the notifications of childhood diseases [76, 43]. The SIR endemic model can be seen as the basis,
over which more complex and realistic models have been built.

The difference in time-scales between epidemic spread and demographic turnaround has been
observed by several authors. Smith [76] introduced a small parameter € as the ratio between the
average lengths of the infection period and of life; he proved that, if the contact rate is a sinu-
soidal function of period 1 and € is sufficiently small, a subharmonic bifurcation of a 2-periodic
stable positive solution can occur. Andreasen [2] showed that, for € small enough, the endemic
equilibrium is always stable in a certain class of age-dependent SIR models. Diekmann, Heester-
beek and Britton [16] have exploited the fact that € is a small parameter in an informal argument
about the minimum community size in which a measles-like infection can persist. However, to
our knowledge very few authors have systematically used geometric singular perturbation theory
as a tool to investigate properties of epidemic models. We only know of the paper by Rocha
et al. [70] that used singular perturbation methods for the analysis of a SIRUV model for a
vector-borne epidemic, and we have recently been informed of [58].

Our main objective in this chapter is to show that under certain assumptions of the system
parameters (namely the transition rates between states), tools from Geometric Singular Pertur-
bation Theory (GSPT) are suitable to describe the intricate dynamics that such models exhibit
due to the presence of multiple time scales.

The first part of the chapter is devoted to the classical SIR and SIRS epidemic models, that
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we analyse in the limiting case of ¢ — 0. For such models, it is well known that, when Ry > 1,
there exists a unique endemic equilibrium, which is globally asymptotically stable.

The SIRS model analysed previously consists in a system of ODEs, in which individuals are
assumed to switch from totally immune to totally susceptible. A more complex and insightful
approach has been recently proposed by Breda et al. [8]. In the second part, we instead consider a
model, named SIRWS, introduced for pertussis in [55], and partially analysed in [11]. In the model
it is assumed that immunity wanes in two stages: after recovering from infection individuals are
totally immune, but then immune memory starts to fade: if they are challenged by the pathogen
when they are in the stage of partial immunity, they recover a complete immunity; otherwise,
they completely lose immunity, and re-enter the susceptible stage. A distinction between fully
and partially immune individuals was also studied, with a different modelling approach, in [78].
A large difference generally exists between the lengths of the infection period and of the period
of temporary immunity; see, for instance the studies on the loss of vaccine-induced immunity
[10, 88]). Thus we will assume a time-scale difference between recovery rate and the rate of
immunity loss.

Our main results can be summarized as follows:

e For the fast-slow SIR and SIRS models we capture the transient behaviour from an initial
introduction of the infection, and show that, when Ry > 1, the dynamics leads, in the slow
time-scale, to a neighbourhood of the endemic equilibrium, see Sections 2.3.1 and 2.3.3. Then
convergence to the equilibrium can be established by local methods.

e For the fast-slow SIRWS model, in particular, we confirm the result obtained numerically in
[11] that stable periodic epidemic outburst can exist. Moreover, we give a detailed description
of the system parameters for which such behaviour occurs and the corresponding time scales
involved, see Section 2.3.4.

Our mathematical analysis is largely based on GSPT, see more details in Section 2.2.

In such a context, it is worth mentioning that the models we study are not immediately, nor
globally, in a standard singularly perturbed form, but in each model the fast-slow decomposition
appears only in specific regions of the phase space, similarly to what is considered in e.g. [48,
53, 38]; see in particular the recent treatise [86], in which a thorough exploration of singular
perturbation problems beyond the standard form is available. As it is usually the case in such
biological models, the main difficulty for analysis is due to the loss of normal hyperbolicity of
the critical manifold. To overcome this obstacle, we use here the so called entry-exit function,
as presented by De Maesschalck and Schecter [13], which gives details regarding the behaviour
of an orbit in regions where the critical manifold changes its stability properties. Moreover,
for the modified SIRWS system we present a combination of analytical and numerical studies
regarding the dependence of the dynamics with respect to some of the parameters, and compare
our results with the ones obtained in [11]. In particular, we focus on the interplay between
life expectancy (or birth/death rate) and boosting rate, and on how different values of these
parameters can give rise to damped or sustained oscillations. Finally, the novelty of our analysis
is not confined to the usage of GSPT in the context of the well-known SIR model, but we also
show that our techniques can be potentially used in higher dimensional systems (as the SIRWS
model). This is rather important since the well-studied SIR and SIRS models often depend on
Lyapunov’s method to show stability of trajectories [66], and it is known that Lyapunov functions
are difficult to obtain. Our GSPT analysis does not require global Lyapunov functions.

The remainder of this chapter is arranged as follows: in Section 2.2 we provide some necessary
mathematical preliminaries which will be later used for the analysis of the models. Afterwards, we
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present in Section 2.3 the mathematical analysis of the SIR, SIRS, and the STIRWS epidemiological
models. We finish in Section 2.4 with a summary and an outlook of open-problems regarding
modelling and analysis of epidemiological models with fast-slow dynamics.

2.2 Preliminaries

In the main part of this chapter we study three compartment models whose dynamics evolve at
distinct time scales. Therefore, we now provide a brief description of Geometric Singular Pertur-
bation Theory (GSPT), and in particular of the entry-exit function [13], which is fundamental
in our analysis.

2.2.1 Fast-slow systems

The term “fast-slow systems” is commonly used to model phenomena which evolve on two
(or more) different time scales [4, 51]. Often such behaviour can be described by a singularly
perturbed ordinary differential equation (ODE), that is

et = f(x,y,¢€),

y:g(x7y7€)’ (21)

where z = z(7) € R™, y = y(7) € R”, with m,n > 1, are the fast and slow variables respectively,
f and g are functions of class C*, with k as large as needed, and 0 < € < 1 is a small parameter
which gives the ratio of the two time scales. Here the overdot (") indicates £=. The system (2.1)
is formulated on the slow time scale 7. When studying fast-slow systems we often define a new
fast time t = 7/e with which (2.1) can be rewritten as

x' = f(z,y,e),

(2.2)
y/ = 69(1’, Y, 6),

where now the prime (/) indicates %. Clearly, since we simply rescaled the time variable,

systems (2.1) and (2.2) are equivalent for € > 0.
Fast-slow systems given by (2.1)-(2.2) are said to be in standard form. In a more general
context, it is possible to have a fast-slow system given by

2= F(z,¢), (2.3)

where the time scale separation is not explicit. In fact, many biological models [48, 53], among
others, and in particular the models we study in this thesis are in such non-standard form.

The main idea of GSPT is to consider (2.1)-(2.2) in the limit € — 0 and then use perturbation
arguments to describe the dynamics of the full fast-slow system. The motivation behind this
strategy is that one expects that the analysis of the limit systems (e = 0) is simpler compared
to the analysis of (2.1)-(2.2) with € > 0.

Taking the limit € — 0 in systems (2.1) and (2.2) yields, respectively

0= f($7y70)7
and .
T :f(xay70)7 (25)

y' =0,
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where (2.4) is called reduced subsystem (or slow subsystem), and (2.5) is called the layer equa-
tion (or fast subsystem). We note that the reduced subsystem describes a dynamic evolution
constrained to the set

Co={z eR™,y eR"| f(z,y,0) =0},

which is called the critical manifold. On the other hand, we note that Cy defines the set of
equilibrium points of the layer equation. See for example [3, 56] for techniques to approximate
and estimate such a manifold.

Fenichel’s theorems, which are the basis of GSPT, require certain assumptions on Cy. Namely,
we suppose there exists an n-dimensional compact submanifold My, possibly with boundary,
contained in Cy. Moreover, the manifold My is assumed to be normally hyperbolic, meaning that
the eigenvalues of the Jacobian D, f(z,y,0)| s, are bounded away from the imaginary axis. In
such a setting, the following can be proved (see [20]):

Theorem 2.2.1. For e > 0 sufficiently small, there exists a manifold M, called slow manifold,
which lies O(e) close to My, is diffeomorphic to My and is locally invariant under the flow

of (2.2).

We note that the manifold M. is usually not unique, but all the possible choices lie O(e’K/ )-
close to each other, for some K > 0. Therefore, in most cases the choice of slow manifold M.
does not change the analytical and numerical results.

With the usual definitions for stable and unstable manifolds (see, for example, equations (6.3)
in [51])

W3 (Mo) = {(z,y) : ¢e(x,y) = Mo as t — +oo},
WH(Mp) = {(z,y) : ¢¢(z,y) = My as t — —oc},

where ¢ denotes the flow of system (2.5), Fenichel’s second theorem ensures that W*(M,) and
WY(My) persist under perturbation as well:

Theorem 2.2.2. Fore > 0 sufficiently small, there exist manifolds W(M.) and W™ (M.) which
lie O(e) close to and are diffeomorphic to W*(My) and W™ (M) respectively, and are locally
invariant under the flow of (2.2).

However, local invariance does not imply the same strong property of Ws(M) for W3(M.),
as trajectories might leave the latter as ¢ increases, through its boundary.

In practical terms, Fenichel’s theorems show that for ¢ > 0 sufficiently small, the dynam-
ics of (2.1)-(2.2) are a regular perturbation of the limit dynamics (2.4)-(2.5) within a small
neighbourhood of the critical manifold.

When the manifold My is not normally hyperbolic, some more advanced tools, such as the
blow-up method (see [37]), may need to be invoked. All of the systems we analyse below have one
non-hyperbolic point in the biologically relevant region. Thus, in order to describe the relevant
dynamics we need to use extra techniques besides Fenichel’s theorems. Due to the properties of
the models to be studied, it turns out that the entry-ezit function [12, 13] is suitable.

2.2.2 Entry-exit function

The entry-exit function gives, in the form of a Poincaré map between two sections in phase space,
an estimate of the behaviour of the orbits near the point in which the critical manifold changes
stability (from attracting to repelling), in a class of singularly perturbed systems. Intuitively,
the result can be interpreted as a “build up” of repulsion near the repelling part of the slow
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manifold, which needs to compensate the attraction which was built up near the attracting part
before the orbit can leave an O(€) neighbourhood of the critical manifold.

More specifically, this construction applies to systems of the form

f(x7 y? 6):1;7

ol 1,6, (26)

/
T =

I
Yy =

with (z,y) € R?, g(0,4,0) > 0 and sign(f(0,y,0)) = sign(y). Note that for ¢ = 0, the y-axis
consists of normally attracting/repelling equilibria if y is negative/positive, respectively.

R
o peo)

Figure 2.1: Visualization of the entry-exit map on the line x = z¢

Consider a horizontal line {z = z}. An orbit of (2.6) that intersects such a line at y = yg < 0
(entry) re-intersects it again (exit) at y = pe(yo), as sketched in Figure 2.1. De Maesschalck [12]
shows that, as € — 0, the image of the return map p.(yo) to the horizontal line = x( approaches

po(yo) given implicitly by

P0(Y0) £(0,5,0)
1D Zdy = 0. 2.7
/yo 9(0,4,0) "7 27

In the following sections, the entry-exit function py plays a crucial role in the analysis of three
different epidemiological models. In particular, the analysis of the SIRWS model relies on a
multi-dimensional version of the entry-exit map, provided in a recent paper by Hsu and Ruan
[35].

2.3 Analysis of the SIR, SIRS and SIRWS models

In this section we analyse three different epidemiological models, giving a short interpretation
of the equations and then proceeding to use the techniques of GSPT, especially the entry-exit
function, to deduce information about the behaviour of each one.

2.3.1 SIR model

We consider a SIR compartment model (presented in a similar form in [32]) as depicted in Figure
2.2 and with corresponding equations given as in (2.8)
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By
RN 5 S:f—fS—%SL
§ i=Bsr_2r_er (2.8)
€ €

J
S .
e R=—¢rR+11
€

Figure 2.2: Flow diagram for (2.8).

where S(7), I(7), R(7) denote the susceptible, infected and recovered proportion of the pop-
ulation respectively. Since the (5,1, R) variables represent fractions of a population, they are
assumed to be non-negative for all 7 > 0. Observe that the non-negative octant of R3, to be
denoted by R%, and in particular the set {(S,1,R) € R%;|0< S+ I+ R <1}, are invariant
under the flow of (2.8).

The parameter £ in (2.8) refers to the birth rate and is assumed to be equal to the death rate.
Furthermore, as depicted in Figure 2.2, we also assume that all individuals are born susceptible.
Similarly, the parameters 8 = 3/ and 4 = /e are, respectively, the contact rate and the recovery
rate of infectious individuals. In our analysis the parameters £, 5 and v are of order O(1). Note
that we introduce a small positive parameter 0 < € < 1, which gives rise to the difference in
magnitude between the large infection rate /¢, the large recovery rate /e and the birth/death
rate. Such a difference represents a highly contagious disease with a short infection period.

Remark 1. We notice that the total population N := S+ I + R in system (2.8) is governed by
the ODE N = £(1 — N); hence, the total population converges exponentially fast to 1.

As stated above, S(7), I(7) and R(7) represent proportions of the population. Consistently
the plane {S + I + R = 1} is invariant for system (2.8) . Hence, we can assume R=1—5 —1,
which allows us to reduce (2.8) to

S=¢—¢S— gsL
(2.9)
i=Ber_Yr_er
€ €
By rescaling time, system (2.9) can also be written as
S =e(1-8)—pBSI,
= c€1-9) 7 210)
I' = 1(8S -5 — €€).
We briefly recall definitions (3.1) and (3.2) from [86].
Definition 1. Consider a perturbed system of n ODFEs of the form
2= H(z,¢) = h(z) + eG(z,¢). (2.11)

We call system (2.11) regular if the set
So:={z € R"|H(z,0) = h(z) =0}

is empty, or consists of isolated singularities. We call it singular otherwise, and Sy is then the
eritical manifold of system (2.11).
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Note that system (2.10) is a fast-slow singular system, which is not in the standard form
(2.2), as it often occurs in biological models [48, 53, 86]. Later we perform a convenient rescaling
that brings (2.10) into a standard form.

The corresponding critical manifold is the set Co = {(S,I) € R?|I = 0}, and the slow flow
along it is given by S’ = £(1 — S), which implies flow towards the point S = 1. In the e — 0
limit, we recover from (2.10) the basic dynamics for the (S, I) couple in a standard SIR system
(see [32]), namely

S" = —BSI,

I'=1(8S —7).

In particular, it follows from linearization of (2.12) along Cy that the critical manifold is
attracting for S < 2, repelling for S > 2, and loses normal hyperbolicity at S = %

(2.12)

B
Yt
From here on, we assume that its limiting value Ry = 3/~ satisfies Ry > 1. This implies that

the disease is able to spread through the population, at least for € small enough. In particular,
as stated in the well known next Lemma [33, 44], the previous assumption implies that, for every
initial condition S(0) = Sy > 1/Ry, there exists a unique Soo < 1/Rp such that a trajectory
of (2.12) with initial conditions (S, Iy) converges towards (S, 0) as t — +oc.

It is well known [33] that the basic reproduction number R for system (2.10) is equal to

Lemma 1. T'(S,I) = yIn(S) — B(S+ 1) is a constant of motion for system (2.12); all the orbits
of the system in the first quadrant are heteroclinic to two points on the S-azis.

Proof. By direct derivation with respect to time, we see that
I = —yBI — BSI + BST +~BI = 0.

Moreover, all the equilibria of system (2.12) belong to I = 0, i.e. the S-axis; they are attracting
for S < %, repelling for S > % We notice that

dr

R — _]_ + 17

ds B8S

which implies that I is increasing if S > %, and decreasing otherwise.
Finally, (2.12) is topologically equivalent, for I > 0, to the linear system

S"=—-p8,
I/ = /BS -7
which can be easily integrated to show heteroclinic orbits. O

From Lemma 1 we define S, € (0, R%)) to be the unique non-trivial solution of the equation
I'(S,0) =T'(Sp,0) where Sy > R%)'
For future use, let us define the map

I : {S € (1/Ro, 1]} — {S € (0,1/Ro)} (2.13)

that maps Sy into Ss, and which is induced by the flow of (2.12), or is equivalently given by T

So far, we know that the solutions of (2.10) away from the critical manifold are close to
I'(S,I) as shown in the right side of Figure 2.3. Therefore, the next step is to focus on a small
region close to Cy. That is, for the analysis that follows, we assume I to be O(e)-small. In
particular, and following Lemma 1, if we choose Iy € O(€?), we have an explicit relation (up to
a O(e) error) between Sy, and Sy, namely, I'(S, 0) = I'(Sp, Iy) = I'(Sp, 0) + O(e).



12 CHAPTER 2. THE SIR, SIRS AND SIRWS EPIDEMIOLOGICAL MODELS

S Ty S

AR
v
n

Figure 2.3: Left: function I'(S,0), intersection with horizontal lines give the starting and ending
points of a heteroclinic orbit of the layer equation (2.12). Right: qualitative comparison between
perturbed and unperturbed SIR systems in fast time scale. In red we show an orbit of (2.12)
given by I'(S,I) = I'(Sp, Ip) and in blue a small perturbation of it, the corresponding orbit of
(2.10). Notice that I € O(€?).

Considering the signs of the derivatives in the perturbed system (2.10), we see that orbits
spiral counterclockwise. Moreover, system (2.10) has a two equilibria, namely (S,I) = (1,0)
and one which is O(e)-close to the point (1/Ry,0), as shown in Figure 2.4, given by (S,I) =
(Sg,Ig) == (R%) + e%,ae(S’E)), where

e€(1-09)
a.(9) = ~ 55 (2.14)

is obtained from the nullcline for S in (2.8). Regular perturbation arguments imply that an
orbit of the perturbed system (2.10), starting from a point (Sp, ly) with Iy € O(e) and Sy > Sg,
follows O(e)-closely from below, since the O(e) contribution is negative, a level curve of T'(S, I),

until it reaches the nullcline of S given by I = 65(/;;3), as shown on the right half of Figure 2.3,

at a point with S coordinate O(¢)-close to Soo.
It is also well known [33, 66] that the endemic equilibrium (Sg, Ig) is globally asymptotically
stable, as stated below.

Theorem 2.3.1. Consider (2.10). All trajectories with initial conditions 0 < S(0) < 1, 0 <
I(0) < 1 with S(0) + I(0) < 1 converge asymptotically towards the (endemic) equilibrium point
(Sg,Ig).

The theorem can be proved using the Lyapunov function
Li(S,I)=S+1—-Sgn(S)—Igln(I) — Cg, (2.15)

with Cg = Sgp+ Ig — Sgln(Sg) — Ig In(Ig), together with Lasalle’s invariance principle [54]; or
with [66, 74]

_B
2(2p+ )

Here we are going to describe how solutions approach the equilibrium, for € > 0 small. Once
it is shown that solutions are in a neighbourhood of the equilibrium, local methods can be used

Ly(S,I)=1—1Ig—Igln(I/Ig) + (S+1—Sp+1p) (2.16)
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I“ . . . .
S$<0,I<0]5<0,1>0

S">0,I'<0]|S5>0,I'">0

Figure 2.4: Schematic representation of the orbits of (2.10) on the two time scales. Red: fast
orbit; blue: slow orbit; green: non-hyperbolic point.

to prove convergence to the equilibrium. Such an approach will be used for the other models
as well. Our motivation is to present a method of analysis that does not depend on finding a
Lyapunov function, which is, in general, a difficult task.

A convenient step, which is justified by the following Lemma, is to bring (2.10) to a standard
form, in order to then apply the entry-exit formula.

Lemma 2. Consider (2.10) and an initial condition (S, L) with 0 < S, < %—A < Sgand I, >
0, where A € O(1) and I, € O(e) < a(Sx). Let 0 < Ay < A, Ay € O(1), and (S*,1*) denote
the point where the corresponding trajectory intersects the line ¢ = {(S, I)eR?|S = % — Al}

Then, for sufficiently small € > 0 we have that I* is exponentially small. Furthermore, the first
point at which the trajectory intersects the line w. = {(S, IHeR?|I= I*ek}, for any k € N>y,
satisfies S = S, + O(elog(e)) for e — 0.

Proof. We first note that the assumption on S, simply means that S, is bounded away from Sg
uniformly in e. For the proof it is convenient to define new coordinates (S,v) by (S, I/€e) = (S, v).
Then (2.10) becomes

S' = e(€(1~ 5) — ASv),
o' = v(8S — v ct).

By classical Fenichel theory, a trajectory of (2.17) with initial condition (S, v.) with S, < 3

(2.17)

and v, = I, /e € O(1) converges exponentially fast towards and stays O(e)-close to the S-axis for
some time. We know from the reduced system that S’ > 0 on the critical manifold I = 0. Thus,
since /£ is sufficiently away from the non-hyperbolic point Sg, Fenichel’s theory also guarantees
that the trajectory crosses the line £ in a O(¢e) neighbourhood of the critical manifold. Let T
denote the (slow) time it takes the trajectory to reach ¢. During such time, 85 — v < —8A; <0
and therefore

T T T T
v < —Kv = v() < e KT — I<> < evee K<,
€ €

with K = gA; > 0.
The last claim follows immediately from v(t) < vee Kt O
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Note in particular from Lemma 2 that, before the trajectory intersects ¢, its corresponding
I-coordinate is eventually O(€?), which is what we need for the forthcoming arguments.

2.3.2 Applying the entry-exit function
We are now going to apply the entry-exit formula to describe the way trajectories pass near the
non-hyperbolic point (S,I) = (1/Ry,0).

From Lemma 1 and 2, we can consider an initial point for system (2.10) with Sy < 1/Rg and
Inp = O(€?). Next, we apply a change of variables defined by

u+1
Ry’
which brings the system to the standard form (2.2), with u slow and v fast, that is

S:

I =ev, (2.18)

v =7(u— €, (2.19)
u =€el€(Rp—u—1)— Bv(u+1)). '
So, using the notation of Section 2.2.2,
f(vv u, 6) = ’Y(U - 65)7 (2 20)

g(v,u,e) = €<RO —Uu-—= 1) _5U(u+ 1)a

which satisfy the hypotheses of the entry-exit function. Indeed, S < 1 implies u < Ry — 1, which
means ¢g(0,u,0) > 0 in the relevant region. Moreover, f(0,u,0) = yu, which clearly has the same
sign as u.

Since vg = Iy/e = O(e), we can now apply the entry-exit formula, which gives py(ug) as the

only positive solution of
po(uo) m
—du=0. 2.21
/uo Ro —1—-u Y ( )

The integral (2.21) can be solved explicitly, giving po(ug) as the positive solution of

_po(’u,o) + ug — (R() — ].) In <m> =0. (222)

We now change back to the original (S, ) variables, and introduce, beyond II; defined in
(2.13), the map
I, : {S €(0,1/Ry)} — {S € (1/Ro, 1)} (2.23)

defined by %

0
state the following:

, where ug = RgSyp — 1. Combining together the previous results, we can

Proposition 1. Consider the solution of (2.9) with an initial condition Sy > 1/Ry and Iy =
O(€?). Then the orbit {Sc(t),I.(t), t € [0,T]} converges for ¢ — 0 to the union of the orbit
under the fast flow

{(S, I) : F(S7 I) = 1—‘(5070), Hl(So) S S S So}

and under the slow flow
{(5,0) : 1 (So) <5 < Ta(I1(S0))}
), S

where T is such that the solution of 8" = &(1—S), S(0) =11;(Sy) satisfies S(T) = Iz(I1;(Sp)).
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Figure 2.5: Sketch of the fast and slow dynamics defining the maps II; and ITy. The fact that
S1 < Sp is shown below.

The limit orbit is sketched in Figure 2.5. Considering the composition of 11y and Il gives
the Poincaré map
II: {S S [SE,l),I = Io} — {HQ(Hl(S)) S [SE, 1),[ = Io}
In this notation, we define Py = I11(Sp), S1 = Ia(FPy) = II(Sp). These correspond, in the

u-coordinate, to
ug = RoPy — 1= RoSec — 1, po(ug) = RoSy — 1.

We rewrite (2.22) as
1 1-5;
PO—Sl_ (1_R0>1n(1—P0> = 0.

Which means that S, the exit point, is the only root greater than P, of

Flz)=x— Py + (1 - ];(]) In (11__;0) (2.24)

It is clear that when the trajectory is in a neighbourhood of (51, Iy), as implied by the entry-
exit map, one can reapply Proposition 1, obtaining P; = IT;(S1) (reached through the fast flow),
Sy =1I3(Py) (slow flow), and so on, obtaining two sequences

So, S1 =1s(Py)s..,Sp =Ta(Pot)s-.  Po=10,(S0))s ..., Py = I (Sn),...  (2.25)

Lemma 3. The sequence {Sy} is decreasing and bounded below by 1/Ry; the sequence {Py,} is
increasing and bounded above by 1/Ry.

Proof. Werecall S7 = IIy(Py) = II(Sp), so if, for any Sy € (1/Ro, 1), such value is smaller/greater
than Sy, {S,} is decreasing/increasing.
We notice that TI(Sp) < Sp if and only if o (Ppy) < II7H(Pp), where TI7H(Py) > Py is the only
such root of

G(z) =z — P +i1n (PO> (2.26)

- 0 RO T ) .

which comes from I'(xz,0) = I'(FP,0); we recall that I" describes the trajectories of the layer
equation. The functions F' and G are sketched in Figure 2.6.
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F(x)

Py S

1
1
I G(x)
1
Figure 2.6: Sketch of the functions F' and G, which implicitly define IIs and Hl_l7 respectively.

Then, since G is increasing for x > 1/ Ry,
Hg(Po) < Hl_l(Po) — G(HQ(P())) < 0.

The fact that S; < Sp can be shown as a particular case of the following, more general
proposition, by taking a = Py, b = 1/Rg, z* = 5.
Lemma 4. Let 0 < a<b<1, F(z) =z —a+ (1 -b)In(:=%), G(z) = 2 —a+bIn(2). Let
x* € (a,1) be the only zero greater than a of F'. Then G(z*) < 0.

Proof. We use the auxiliary function H(z) = F(z) + 12 G(x), which, under the hypotheses, is
decreasing for = € (0,1). Next we have that H(a) = ( ) 4+ 125G(a) = 0 which implies

l_bG( ) = G(z*) < 0.

Figure 2.7: «.(S) = O(e); the red parts of the orbit are fast for both variables, the blue parts
are fast for I, slow for S.

Since II; is a decreasing function, from the fact that {5, } is decreasing, it follows that {P,}
is increasing. O

Proposition 2. The sequences {S,} and {P,} defined in (2.25) both converge to 1/Ry.

Proof. The convergence can be shown reasoning by contradiction, for example by looking at the
sequence S;. We know it is decreasing, and bounded below by 1/Rg, so if it is not converging
to this value, it must be converging to some other value Sy, > 1/Ry. But if this is the case,
I1(S)im) < Siim, which contradicts the nature of Syy,.

Completely analogously we can see that P; — 1/Ry. O
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Extending Proposition 1, one can easily show that, if Sy > 1/Ry and Iy = O(e?), the orbits
{Sc(t), I(t),t € [0,T]} for any T converge for € — 0 to a finite union of orbits (under the fast
flow) from (S,,0) to (P,,0), and slow flows on the S-axis from (P,,0) to (S,+1,0).

The same can be shown for any initial condition, since starting from any (Sp, Iy) with Iy > 0,
the solutions will approach a point (S, 0) with Ss < 1/Rp, so that setting Py = S, one can
repeat the above argument.

What can we say of the orbits {Sc(t), I(t)} for e small but fixed as t — co? When 1/Ry—FP,, =
O(e), the argument of Lemma 2 does not work. Hence, we cannot say, and indeed it is no longer
true, that I(t) becomes O(e?) afterwards, and we cannot apply the entry-exit Lemma as above.

However, the previous argument shows that {S.(t), I(t)} reaches an e-neighbourhood of the
equilibrium (Sg, Ig). Linearization at the equilibrium then shows that all trajectories of (2.10)
starting in the set {(S,I) € R?|S > 0,1 > 0,5 + I < 1} converge towards (Sg, Ig), as already
known (Theorem 2.3.1). This analysis provides an alternative proof, valid for ¢ > 0 sufficiently
small.

Biologically, the above analysis tells us that between two consecutive peaks of infection there
is a long (O(1/¢€)) time during which the fraction of infected population is exponentially small.
On the other hand, the duration of high infected portion of the population is rather small
(it occurs on the fast time scale). Ultimately, however, under the setting of this section the
only possible asymptotic outcome is convergence towards the endemic equilibrium (Sg, Ig) via
damped oscillations.

2.3.3 SIRS model

We now consider a SIRS compartment model. The SIRS model is a slight modification of the SIR
model and thus we keep the same notation. The SIRS model is given by the following system:

2l . B
$=-"914 4R,
€
i=Psr-2r (2.27)
€ €
R=21-4R.
€

Figure 2.8: Flow diagram for (2.27).

In this model there is no birth nor death, so the population remains constant. The small
positive parameter 0 < € < 1 gives rise to the difference in magnitude between the large infection
rate /¢, the large recovery rate /e and the rate of loss of immunity §. This difference models
a highly contagious disease with a short infection period with possibility of reinfection. The
main distinctions with the SIR system presented in Section 2.3.1 are the absence of demographic
dynamics (no birth/death) and the possible loss of immunity (meaning that individuals can
move from R to S). As we will see shortly, however, this important biological difference does not
modify the qualitative behaviour of the system.

As we noticed in Section 2.3.1, N=S+I+R= 0, that is, the total population remains
constant, so we assume without loss of generality N (0) = 1, which implies N(7) = 1 for all 7 > 0;
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this allows us, using R =1— .5 — I, to reduce the system to

S=—951+5(1—s—1)7

66 (2.28)
i=2sr-1r1.

€ €

Proceeding as in the first model, we introduce the fast time variable ¢ = /¢, which gives

S' = —BSI+e5(1—S—1),
I, = I(ﬂsf’y)a

where now the prime (/) indicates the derivative with respect to ¢t. Note that system (2.29) is
not in the standard form (2.2).

The critical manifold is, as before, the set Co = {(S,I) € R?|I = 0}, and the slow flow along
it is given by S = §(1 — S), which implies flow towards the point (S, 1) = (1,0).

The € — 0 limit system corresponding to (2.29) is

(2.29)

/

' = —BSI,
I/ = I(BS_,Y))

which is exactly the limit system we obtained in Section 2.3.1. Hence, we can apply the same
qualitative reasoning as before, with some small changes: in the perturbed system the nullcline
for S is slightly different, giving I = «(S) = (ed(1—S5))/(8S +€d), and the value of Sg is exactly
1/Ry.

The previous ansatz for the Lyapunov function does not work here; we could find another one,
following what was done in [66], but we instead follow the analysis with the entry-exit function
which, as we show below, does not change.

The trajectory starting from (So, Io), with Iy € O(€?), follows the same qualitative behaviour:
after it intersects I = «a(S) at a point (S + O(€), O(€)), it eventually intersects the horizontal
line I = Iy. At that moment, we change the variables as before:

(2.30)

u+1

S:
Ry’

I = ev,

and we obtain a system in standard form:

v = yuw, (2.31)
u =e(—Pv(u+1)+ &Ry —u—1—ev)). '
In the notation of the entry-exit function, then,

g(v,u,e) = —Po(u+ 1)+ &(Ry —u— 1 — ev),
which satisfy the hypotheses in the relevant region; hence, we can compute pg(up) with exactly

the same integral equation
po(uo) m
—du =0, 2.33
/u Ro—1—u " (2.33)

0

and the procedure we followed for the SIR model can be applied to this SIRS one identically to
show the global convergence to the unique equilibrium.
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By following a similar analysis as the one performed so far one can also show that considering
a SIRS model with demography would not change the qualitative behaviour of the system.

The results obtained so far for the SIR and SIRS models are summarized in the following
Proposition.

Proposition 3. The SIR, SIRS without and with demographic dynamics, with infection and
recovery rates O(1/€) big compared to the other parameters, are all qualitatively equivalent. Their
main common features are:

e boundedness of solutions in the set {(S7 I,R) € RBZO |[0<S+IT+R< 1},

e population either constant, or converging uniformly and exponentially fast to a constant, which
allows to reduce the number of compartments from 3 (S,I,R) to 2 (S,I),

e cristence of an endemic equilibrium point of the form (Sg,Ig) = (Ri0 + O(e),0(¢)),

e fast-slow decomposition in the I and S coordinate, respectively, O(e)-close to the critical man-

ifold Co = {(S,1) € [0,1]*| I =0},

e counterclockwise spiralling of the orbits towards (Sg,Ig), and consequent absence of periodic
orbits.

These common features mean that, in the long run, the population in each of these models con-
verges to an equilibrium O(e) close to (S,I,R) = (1/Ro,0,1 — 1/Ry), in the first octant of R3;
each of the three variables have damped oscillations around the equilibrium value.

In the next section we study a more complete (but also more complicated) epidemic model,
where the techniques developed so far shall be extended.

2.3.4 SIRWS model

We consider the SIRWS compartment model suggested by Dafilis et al. in [11]. As in the pre-
vious models, we assume that some parameters are O(¢) small compared to others, making the
corresponding processes slow, and the remaining ones fast (the changes correspond to every oc-
currence of € in system (2.34)). This allows us to build on the analysis done in sections 2.3.1 and
2.3.3, and to apply the entry-exit function to a more challenging model.

The model we are concerned with in this section is given by:

B

é S =—E8T+2:W +£(1-5),
—> €
P=Csr- el
€ €

8 (2.34)

BR=21—2kR+v2IW —¢R,
€ €

W = 2kR — 2kW — JEw EW.
€

Figure 2.9: Flow diagram for (2.34)

As in the previous models, susceptible individuals (S(7)) become infectives (I(7)) upon con-
tact with infectious individuals, who, at rate /e become immune at their first stage (R(7)), and
then, at a rate 2x, become second-stage (‘weakly’) immune (W (7)). Weakly immune individuals
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may then lose totally their immunity at rate 2k, or, upon contact with infectious individuals,
revert back to fully immune individuals (R(7)), thanks to the so-called immunity boosting. The
constant v is the ratio between the rate at which immunity boosting occurs in weakly immune
individuals, and the rate at which susceptibles become infected. Finally, we assume a constant
birth rate £, equal to the death rate, and that all individuals are born susceptible. Through the
introduction of the small parameter ¢ we consider a highly contagious disease with a very short
infection period, compared to other typical times of the system; indeed, the average length of
the infectious period is €/, while the average length of life is 1/£ and the total average length of
the immune period is 1/k for individuals whose immunity is not boosted. Such relation between
the parameters has been assumed, for example, for diseases such as pertussis, as described in
[65], where the authors estimated 8 = 260, v = 17, £ = 0.01, k = 0.1, v = 20; hence, the analysis
which follows may be useful in the modelling of such diseases.

Analogous to the previous models, the set {(S, ILLRW)eRL|O0<S+I+R+W< 1} is
invariant. We can thus scale the total population to 1, so that wecanuse R=1—-S—-I—W. We
notice that system (2.8) can be recovered from system (2.34) by setting k = v = 0, and ignoring
the consequently decoupled W coordinate.

As we shall describe in our analysis below, incorporating the waning state W modifies con-
siderably the dynamics of the model; in fact, it induces the possibility of periodic limit cycles,
a feature that the previous simpler models did not have. This is particularly important when
comparing the dynamics of the SIRWS model with that of the SIRS model where, even if recov-
ered portions of the population may become again susceptible, there is still no “long run periodic
behaviour”.

As we have done before, introducing the fast time variable t = 7/e brings the system into a
fast-slow system, not in the standard form (2.2),

S' = —BSIT+e(26W +&(1 - 9)),
I = BST — AT — eI,
R =~I +vBIW — ¢(26R + £R),
W — —uBIW + e(26R — 26 — W),

(2.35)

Remark 2. Note that the critical manifold is (similarly to the previous models) given by
Co={(S,I,R,W)€[0,1]*|I=0}. (2.36)

Furthermore, in the € — 0 limit, S and I become independent of R and W, and orbits follow
the same behaviour we have seen in the fast phases of the first two models. In other words,
the (S, I)-orbits of the layer equation follow a power level of T'(S,T) = vIn(S) — 8(S + I), and
converge towards (Ss,0)!. These observations motivate the following lemma.

Lemma 5. Consider the layer equation corresponding to (2.35). Then, as (S,I) = (Sx,0) one
has W — Wa := Wy exp ¥ Fo(Sotlo=5<) “yyhere Wy = W(0).

Proof. We note that

/OOC (S/(u) +I'(u))du = —7/000 I(u)du = So+ I — Soc = 7/000 I(w)du,

due to the fact that lim;_, 4, I(t) = 0. Next, note from (2.35) that in the limit ¢ = 0 one has

WWI = —vfB1, which implies W(t) = W exp*”ﬁff; I(wdu  Tetting t — oo leads to the result,
recalling that Ry = % O

1'We recall that Soo is defined as the nontrivial solution of I'(S,0) = I'(Sp, 0).
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Since we have already shown that the layer equation is in the (.9, I')-coordinates the same as
before, we proceed just in the same way, that is, we apply first the change of coordinates

u+1
Ry’

S = I =ev,

which gives a system in standard singular perturbation form, with u, W slow and v fast, namely

U/ = (’yu - €£)’U = f(’U,U, €)U7
u =e(—Pv(u+ 1)+ 26ReW + £(Ro —u — 1)) =: eg(v,u, W,e), (2.37)
W' = e(—vpoW + 2k — 2nu;_ I AW — EW) + O(€).
0
And, accordingly, in the slow time scale 7:
b = (yu— &),
= —pBv(u+1)+2RW + &(Rg —u — 1), (2.38)

W = —vBoW + 2k — 2/{u;— L

— KW — EW + O(e).
0

Naturally, the critical manifold in these new coordinates is Cy = {(u7 v, W) eR3|v= 0}.

We want to compute the time during which a trajectory of (2.35) stays O(€?)-close to the crit-
ical manifold, as described in [35, equation (12)] and in [60, equation (11)]. A direct application

of their result gives
Te
/ u(r)dr = 0.
0

In other words, Tg is defined as the time it takes to go from u = ug to u = po(ug). Then,
remembering u(7) = RoS(7) — 1, Tk is given by

/ " RoS(r) — 1)dr = 0. (2.39)
0

To proceed with the calculations, let us look at the (S, W)-dynamics in the slow time variable
t on the critical manifold I = 0:

§ =26 +£(1 - 5), .10)
W =2k(1— S) — (dk + E)W.

This system of ODEs can be solved explicitly, assuming initial conditions
(5(0), W(0)) = (Seo, Weo), the limit values of the fast loop, we have:

S(T) =14 [Seo — 1 + 26(So0 + Weo — 1)7] exp(—(26 + &)T),
W(r) = [Wo — 26(See + Weo — 1)7] exp(— (26 + &)T (2.41)
=1-51)—(1— S — W) exp(—(2k + &)7).

The phase-portrait of (2.40) is illustrated in Figure 2.10, where the only feasible region is the
triangle 0 < S+ W <1, S, W > 0, and all trajectories converge to (S, W) = (1,0).
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Figure 2.10: Phase plane for the S, W couple; values for £ = 0.1 and £ = 0.0125 taken from [11]

Using the explicit equation for S(7) given in (2.41), and introducing, for ease of notation,
A:=2k4+¢&, B:=26(S« + Woo — 1), C := S, — 1 so that

S(1) =14 Cexp(—AT) + Btexp(—Ar),
the equation for the exit time Tg (2.39) becomes

— A2

Ro(AC + B)
A2

+ (RO — 1)TE + =0. (2.42)
Clearly Tr = 0 is a solution. Moreover, there is only one strictly positive solution, since S(7) is
strictly increasing and tends to 1 as 7 — 400. Such solution provides the exit time.

Substituting the positive solution Tk of (2.42) it in (2.41) we obtain the exit point
(S(Tg),W(Tg)). However, due to the implicit formulae we have obtained above, such a com-
putation is only suitable numerically (see Section 2.3.4.1). Despite the previous obstacle, we
can still check how the exit points depend on certain parameters. For example, from the first
equation of (2.41) we observe that

%(T, €) = —7[Soo — 1+ 2(Se0 + Wao — 1)7] exp™"F7 > 0, (2.43)
which immediately suggests that the exit time is decreasing in £. Namely, let T ; denote the
exit time with £ = &; and i = 1,2. If & < & then, using (2.43), one sees that Tg 1 > Tk 2.

To provide more insight on the dynamics of the SIRWS model, we are now going to comple-
ment our previous study with a numerical analysis, where the computed exit time T shall play
an essential role.

2.3.4.1 Periodic orbits

Recall that in the SIR and SIRS models no periodic trajectories are possible. In this section
we show that the SIRWS does have periodic solutions, and of particular biological relevance,
stable limit cycles. Our motivation is that if a stable limit cycle exists, then a disease would have
periodic outbursts. Furthermore, due to the time scales present in the model, there is the danger
of missing such periodicity if only short time scale analysis is considered. Moreover, information
regarding the parameter regions in which damped/sustained oscillations occur can give directions
as to which parameter(s) to modify in order to have a desired control of the epidemic.
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As it is usual in GSPT, the general idea to show existence of limit cycles of the perturbed
(fast-slow) system is to first find a singular cycle, see for example [48, 80]. A singular cycle is
a concatenation of limiting slow and fast orbits that form a cycle. Afterwards, given that some
conditions are met, we argue that such singular cycle gives rise to a limit cycle of the fast-slow
system. We further remark that a mixture of analytical and numerical methods is relevant since
we have to combine local analytical results with global numerical results, which is a key theme
in multiple time scale systems [26, 27, 50].

The steps to form a singular cycle of the STIRWS model are as follows:

1. Choose a section J; = {(S,I,W) = (S0,0,W)| Sy > RLO’ W e (0,1-— So)}. This section is
transversal to the reduced slow flow and is located on the unstable region of the critical
manifold.

2. Consider the map II; defined by the layer equation. Under such a map one obtains a new
section on the critical manifold Js := II; (J1). The coordinates of Js are given by (Ss, 0, Wso),
as in Lemma 5.

3. Cousider the map II, defined by the slow flow for a time Ty implicitly given by (2.42), i.e.
I (J2) = (S(Tw), W(Tg)) with (S(7), W (7)) given by (2.41), and let Js3 := II3(J2). Recall
from the last part of section 2.3.4 that we can tune the exit time, for example, by changing
the parameter £, without changing the map II;.

4. If Js intersects transversally Ji, then we have a robust singular cycle given precisely by the
orbit corresponding to a fixed point of I, o Il;, see Figure 2.11 for a schematic representation
of these four arguments.

In the present context, robust means that the singular cycle persists under small smooth
perturbations as a periodic orbit of the fast-slow system precisely due to the transverse inter-
section of J; and J3 [81] (if it occurs).

It is clear that for the particular SIRWS model, there is a priori no guarantee that such a
transverse intersection occurs for a particular set of parameters and initial conditions. To
clarify that indeed such a fixed point exists upon variation of parameter values, we refer
to the situation shown in Figure 2.12 varying the parameter £, we argue as follows: let
F¢ = (Ff,Fg) =TIy o II; : Cy — Co using the parameter &, and X = {£ : J3NJ; # 0}. We
can then define, for £ € X, w(€) as the value of w such that Ff(So, w) = Sp. Note moreover
that for all w, the inequalities 0 < F§(S0, w) < 1 — Sy hold, as can be seen by (2.41).
Consider finally
giX SR, g(€) = w(€) — FE(So,w)
If X = [&,&], we have w(§1) = 0 and w(&2) = 1 — Sp, or vice versa. Hence g(&1) < 0 < g(&2),

or vice versa. In either case, there exists & € (&1, &) such that g(€) = 0, i.e. F*(So,w(£)) = So

and FQE(SO,E)(S_)) = w(§) as claimed.

Moreover, since we know that both II; and IIy are contractions in the W-direction (refer to
(2.35), Lemma 5 and to Figure 2.10), such a singular cycle is locally attracting. Hence it
persists as a locally attracting periodic orbit for € > 0 sufficiently small. We remark, however,
that this does not mean that there are no other limit cycles for € > 0 sufficiently small. As we
show in our numerical analysis of the forthcoming section, there is in fact a range of parameter
for which a stable and an unstable limit cycle co-exist. The existence of the unstable limit
cycle, however, does not follow from our previous perturbation arguments.
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Figure 2.11: Schematic representation of the singular cycle, shown in magenta. The red arrows
depict the map II; : (Sp, Wp) = (Sec, W) so that II1(J;1) = Jo. The blue arrows depict the
map IIz given by the reduced flow on Cy and induced by (2.40) (for a finite time Tg(S«, Wso))
so that I (J2) = (111 (J7)) = Js. If the sections J; and Jj intersect, then such an intersection
defines closed singular orbits. If J; and J3 intersect transversally, then such intersection persists
for € > 0 sufficiently small giving rise to a periodic orbit of the SIRWS model.

Naturally, the above procedure is only sufficient to show existence of limit cycles that pass
close to the critical manifold and provides no information on other possible limit cycles of the
fast-slow system, compare with [79]. Yet our attention is precisely focused on describing those
limit cycles arising from the time scale separation.

An example of the above procedure is shown in Figure 2.12 where we set {# = 260,y =
17,k = 0.1, = 0.0125,» = 5}, values taken from [11]. Figures in the left column show the
evolution of J; (dashed red) in the fast system (red) and of J3, too small to be visible, in the
slow system (blue). Figures in the right column zoom to the interval J5 (blue) for each parameter
value, and its position relative to J; (dashed red). Note that

e For £ = 0.01 (Figures 2.12 (a) and (b)) the interval J3 lies to the right of J;, so there might
be a larger limit cycle further away from Jj.

e For & = 0.0125 (so Figures 2.12 (c) and (d)) the interval J5 intersects transversally J;, and
the intersection certifies the existence the singular periodic orbit.

e For ¢ = 0.015 (so Figures 2.12 (e) and (f)) the interval J5 lies to the left of Jq, so there might
be a smaller limit cycle further away from .Jj, or the system might converge to the unique
equilibrium point in the first octant.

It is worth noting that we chose to investigate the role of ¢, the birth/death rate, due to
its biological relevance. However, by the same method one is able to numerically approach the
existence of limit cycles upon variation of any other parameter. It is important to note that,
in the limit systems, there is a clear separation between “fast parameters” (3, v, v) and “slow
parameters” (£, k); changing a single parameter will only influence either the layer or the reduced
dynamics, and not both.
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Figure 2.12: Numerical illustration of the effect of changing ¢ on the slow dynamics. This
numerical analysis shows that there is an interval around £ ~ 0.0125 for which periodic orbits
of (2.35) exists, for € > 0 sufficiently small. The dashed red line is J;, while red curves indicate
the evolution of such interval under the layer equation. Blue curve(s): evolution of the image
of J; under the reduced flow on the critical manifold. The blue segments in (b), (d) and (f)
correspond to Js.
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Remark 3. One may also consider a finer decomposition of the return map and analyse each
piece separately [50]; this would explain what happens for values of the parameters corresponding
to a breakdown of transversality. Although this does add structural understanding, we leave this
finer scale analysis as a problem for future work, since it would be lengthy and it would not add
much to the analysis we present.

Since we have already demonstrated the existence of limit cycles, the next question to inves-
tigate is the possible bifurcations that may arise upon variation of the parameters. Such analysis
is presented in the forthcoming section.

2.3.4.2 Bifurcation analysis

In this section we carry out a bifurcation analysis, motivated by the one developed in [11], which
we perform with MatCont [15]. Our goal is to investigate the way the bifurcation diagrams
change as € is decreased, i.e., we want to understand via numerical continuation how the fast-
slow singular limit is approached; see also [14, 25, 36] where such a strategy has considerably
improved our understanding of several fast-slow models. In our context, decreasing ¢ means,
from a biological point of view, modelling an epidemiological system in which the difference in
duration between life expectancy and infectious episodes becomes large. In the limit as ¢ — 0,
infectious episodes become instantaneous, and the analysis of this limit case helps to understand
the behaviour of the system for € > 0 small enough.

In fact, we note that the system studied in [11] is system (2.35), for the particular choice of
e = 1. In what follows, we set 3 = 260, v = 17, x = 0.1, as in [11], and vary ¢, &, v, and later
B as well. Notice that the values of the parameters 3, v, x and £ already appear of different
order of magnitude. It would be possible to use a different parametrization, letting 8 = 0.26,
4 = 0.017 and € = 0.001. All the following analysis would be identical, except that the values
obtained for €, 8 and v would be multiplied by 1073,

For consistency, we start by replicating Figure 5 from [11], by setting e = 1 and & = 0.01,
in Figure 2.13a. For all parameter values there is a unique equilibrium in R4>0, as can be
easily proved, but its stability changes varying v through a subcritical and a supercritical Hopf
bifurcation.

Next, in order to get the dependence of the bifurcation points with respect to €, we continue
the two Hopf points H; and Hy and the Limit Point of Cycles (LPC) L in a (v, €) bifurcation
diagram, obtaining the diagram shown in Figure 2.13b.

We notice from Figure 2.13b that H; converges to a positive value for v ~ 1.32 as ¢ — 0,
while Hy and L diverge; the latter much faster than the former. Moreover, we know from the
analysis performed in Section 2.3.4 that as e — 0 the equilibrium curve (black curve in Figure
2.13a) approaches the {I = 0} axis. These two observations suggest that as e — 0 the bifurcation
diagram on Figure 2.13a gets stretched. One must also point out that the computation of the
bifurcation diagrams for small € becomes considerably expensive due to the high stiffness of the
problem.

We next produce the analogous to Figure 2.13a, but for a smaller value of €, namely ¢ = 0.05,
in Figure 2.14. In order to do so, due to stiffness of the problem, it is necessary to rescale the
system by introducing a new variable v = In(I). We emphasize that this rescaling is motivated
by the fact that trajectories get exponentially close to the critical manifold, recall Lemma 2.
Moreover, this rescaling might be useful for bifurcation analysis of systems with similar dynamics
in which an exchange of stability of the critical manifold occur at a non-hyperbolic point, and
trajectories of interest pass exponentially close to such a singularity. With the aforementioned
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(a) One-parameter (v) bifurcation diagram for (b) The blue lines represent the Hopf points H; and
(2.35) with € = 1: blue stars labelled Hi and Hs, and the LPC point L, plotted in Figure (2.13a),
H> correspond to Hopf points; blue dot labelled which are then continued while decreasing €; com-
L corresponds to the Limit Point of Cycles (LPC); pare with Figure 2.13a. We observe that H; does
red lines correspond to stable (solid) and unstable not tend to v = 0 as e — 0 while Hy and L diverge.
(dashed) limit cycles; the stable (solid) and unsta-

ble (dashed) equilibrium point is depicted by the

black line.

Figure 2.13: One and two parameter bifurcation diagrams for (2.35).

rescaling one obtains the following system of ODEs:

S' = —BSe” + e(26W +£(1 - 8)),
v =0v(BS — v — €f), (2.44)
W' = —vBWe" +e(26(1 =S — €’ = W) — 26W — EW).

~

Thus, the bifurcation diagram in Figure 2.14 is obtained from (2.44) and confirms the be-
haviour anticipated in Figure 2.13b: as € decreases, the distance between H; and Hs increases,
thus stretching the parameter region in which stable periodic solutions are to be observed. Most
importantly, as is already evident in Figure 2.13b, we have that for € sufficiently small the LPC
is undetectable, implying that an eventual transition to stable (endemic) equilibrium due to
increase of the immunity boosting rate v is not possible any more.

Another important parameter is 8, which regulates the infection rate. Thus, in order to
further investigate the role of € in the model, we next present in Figure 2.15 a (v, 8) bifurcation
diagram.

For ease of notation, let us denote by v(P) the value of v corresponding to a point P. From
Figure 2.15 we have that v(GH;) = 9.96 and v(GHs) ~ 106.9 for ¢ = 1. Furthermore, for
v < v(GHy), the system only exhibits stability of the equilibrium or of the limit cycle (zones 1
and 3). For v(GH;) < v < v(GHz) there are two intervals of values for § which correspond to
a stable equilibrium, one to a stable limit cycle and one to bistability (zones 1, 2, and 3). For
v(GHs3) < v < Umax, With vmax & 195.46, there are two intervals of values for 8 which correspond
to a stable equilibrium, one to a stable limit cycle and two to bistability, one of them being very
thin. At v = vpax the two Hopf points H; and Hs collide, and a codimension-2 Hopf-Hopf
bifurcation occurs.

For € = 0.05, the diagram is qualitatively the same, but as already pointed-out before the
diagram gets stretched both in 5 and in v. The points GH; and GH> correspond now to v ~ 7.04
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Figure 2.14: One-parameter (v) bifurcation diagram for (2.44) with e = 0.05: blue stars labelled
H, and H> correspond to Hopf points; red lines correspond to stable (solid) and unstable (dashed)

limit cycles; the stable (solid) and unstable (dashed) equilibrium point is depicted by the black
line.

and v ~ 2282.6, respectively. In particular, the bistability region 2 is enlarged.

To complement the previous description, and similar to Figure 9 (a) to (d) in [11] in Fig-
ures 2.16a-2.16¢, we present the g-bifurcation diagram for different values of v and continue all
the Hopf points for decreasing €, as shown in Figures 2.16d-2.16f.

As before, and for ease of notation, we denote by S(P) the value of 8 corresponding to a
point P. For each value of v considered, we find two values 17 < 5(H;) < B(Hz) (17 was the
fixed value of v in each simulation; recall Ry = 3/v) corresponding to Hopf points, and we
continue them in €, as shown in Figures 2.16d-2.16f. For 17 < 8 < 8(H;) the equilibrium point
is stable, and there is no limit cycle. For §(H;) < 8 < S(Hz) the equilibrium point is unstable,
and the limit cycle stable. For v > v(GH;y) (resp. v > v(GHy)), there is an interval (resp. there
are two intervals) of values of 8(Hz) < 5 < (L) (with L a LPC, whose existence and position
depend on the choice of v) for which the system exhibits bistability; eventually these two limit
cycles collapse, and for 8 > (L) the system is characterized by a unique asymptotically stable
equilibrium. Note, interestingly, that as the Hopf-Hopf bifurcation is approached, a new LPC
(L in Figure 2.16¢) becomes visible.

We note that in the limit ¢ — 0, one has 8(H;) — 17. This is due to the influence on
the dynamics of the basic reproduction number Ry = /7, which should remain greater than
1 for the endemic equilibrium to exist. Related to this, one has that 8(Ly) — 17 as ¢ — 0,
whenever v > v(GHy). The values 5(Hz) and B(Ly), instead, diverge to +oo as € — 0; the
region corresponding to the stable limit cycle stretches, as in the v case. Lastly, we compute a
(&, v)-diagram and compare them for e = 1 and e = 0.05 in Figure 2.17, as we did for (8,v) in
Figure 2.15.

We observe in Figure 2.17 that not only the bifurcation diagram is stretched as e decreases
but also that the bistable region (region 2) is enlarged. GH; corresponds to & = 0.0147 for e = 1
and to £ = 0.03871 for € = 0.05. Furthermore, in Figure 2.17 we show the existence of another
Generalized Hopf point GH3 (not considered in [11]), corresponding to £ ~ —0.1276 for e = 1
and to £ =~ —0.1263 for ¢ = 0.05. We do not show the 2-parameter continuation of GHj since
such a computation is not numerically feasible due to the high stiffness of the system in such
parameter range. However, the previous observation suggests that all the bifurcation branches
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Figure 2.15: Two parameter bifurcation diagram for (2.35). Left and right represent e = 1 and
e = 0.05, respectively. The red points labelled GH; are generalised Hopf points. The blue (resp.
magenta) branch is a curve of subcritical (resp. supercritical) Hopf bifurcation while the green
branches correspond to limit point of cycles. We label the regions in the diagram according to
the attractor as 1: Limit cycles, 2: Bistability, and 3: Point attractor. The insets in the right
picture are “zoom-ins” near the two GH points.

corresponding to GHgy are close to each other.

The numerical analysis shown in this section supports the existence of stable limit cycles for
an increasing parameter range as € — 0. Nonetheless, the dependence of the behaviour of the
orbits on the parameters stays the same for sufficiently small parameters. This means that as in
the € = 1 case, one still observes parameter ranges corresponding to the stability of the endemic
equilibrium, and other parameter ranges corresponding to stable periodic orbits.

Based on the analysis performed so far, we can now give an interpretation of our results: first
of all, the interplay between birth/death rate £ and immune boosting v remains qualitatively
similar to the one described in [11], for small e. However, the Hopf point Hs moves according
to the increasing difference in the time scales involved in the respective dynamics. H; does
not converge to 0, supporting the result obtained in [11], where the authors showed that, for
v small enough, the dynamics are close to a SIRS system. The main difference, however, is
that as e decreases the role of the parameters can drastically change due to the changes in the
bifurcation diagram. For example, for € = 1, a life expectancy of 50 years (£ = 0.02) corresponds
to convergence to the endemic equilibrium for all the possible values of v. In contrast, for smaller
values of € the same £ could correspond to stability of the limit cycle, bistability, or stability
of the endemic equilibrium, depending on the value of v (see Figure 2.17). Moreover, the effect
of increasing life expectancy, i.e. decreasing &, results in the transition from point stability to
stability of a limit cycle, possibly passing through a region of bistability. This means that, the
higher the life expectancy of a certain population, the larger the interval for v for which a stable
limit cycle exists. Biologically, this means that v must be sufficiently small to obtain a stable
endemic equilibrium, otherwise periodic epidemic outbursts turn out to be robust.

2.4 Summary and Outlook

We have analysed the behaviour of three models given as a nonstandard singularly perturbed
ODE. The first two models presented in Sections 2.3.1 and 2.3.3 proved to behave, under mild
hypotheses on the parameters, qualitatively in the same way. In particular, their trajectories
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Figure 2.16: First row: one-parameter () bifurcation diagram for (2.35): blue stars labelled H;
and Hy correspond to Hopf points; blue circles labelled L and Ly correspond to Limit Point of
Cycles; red lines correspond to stable (solid) and unstable (dashed) limit cycles; the stable (solid)
and unstable (dashed) equilibrium point is depicted by the black line. The insets correspond to
zoom-in near S = 17. Second row: continuation of the Hopf and LPC points while decreasing
e. We observe that H; (and Lo, when it exists) tends to § = 17 as e — 0, while Hy (and Ly,
when it exists) diverges. The inset in (f) shows a zoom-in at the continuation of H; and Ly from
e=1toe=0.38.

converge to the only (endemic) equilibrium in the open first quadrant, as long as the initial
population of infected individuals is strictly positive. The SIRWS model, instead, proved to be
much richer, with parameter regimes allowing for damped oscillations or sustained oscillations,
or both.

The applications of such simplified models to actual data have to be viewed with some
caution. Indeed, the fact that the solutions are exponentially close to the S-axis implies that, if
e is small, the values predicted for I(t) are, over long stretches of time, very close to 0. Thus, in
reality the infection will be prone to extinction, and may depend on reinfections from outside for
persistence (see the discussion in [16] about the minimum community size). Our analysis aims
at the qualitative properties of the system, rather than at precise predictions.

For our analysis we have combined techniques from GSPT, and in particular the entry-exit
function, introduced in section 2.2.2. One must point-out that GSPT is usually employed for
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Figure 2.17: Two parameter bifurcation diagram for (2.35). Left and right represent ¢ = 1 and
e = 0.05, respectively. The red points labelled GH; are generalised Hopf points. The blue (resp.
magenta) branch is a curve of subcritical (resp. supercritical) Hopf bifurcation while the green
branch corresponds to a limit point of cycles. Thus, we label the regions in the diagram according
to the attractor as 1: Limit cycles, 2: Bistability, and 3: Point attractor.

singular perturbation problems in standard form, and just recently it has been shown that non-
standard problems can also be dealt with. More precisely, GSPT allowed us to show the existence
of stable limit cycles for certain parameter ranges. Based on such analysis, we further performed
numerical studies and computed several insightful bifurcation diagrams, which allowed us to
provide a complete qualitative description of the perturbed SIRWS model.

We concluded comparing previous results appearing in [11], and extending them by taking
into account the role of the (small) parameter ¢, which does not change the overall qualitatively
behaviour of the system, but it does drastically change the parameter ranges corresponding to
each dynamic regime. The parameter region characterized by stable limit cycles becomes un-
bounded as € tends to 0. It would be interesting to properly analyse this extra singular behaviour.
Likewise, our analysis does not suggest the presence of MMOs, however it would be interesting
to consider such problem more thoroughly in epidemic models under further conditions, see for
example [19]. We leave these, and other interesting problems motivated by our work, as future
research topics to be explored.

Finally, our studies show that GSPT together with numerical tools seem to be suitable to
analyse and comprehend epidemiological models with vastly different rates.

Once the bifurcation structure of epidemic models is known, one can then be more ambitious
and aim to not only control epidemic outbreaks better after they have occurred but even try to
anticipate them using early-warning signs [69, 87]. Therefore, our results on bifurcation structure
presented here are strongly expected to contribute to the design of these warning signs.






3. A geometric analysis of the
SIRS epidemiological model on a
homogeneous network

3.1 Introduction

Mathematical epidemics modelling is, now more than ever, an important and urgent field to
explore. A deep understanding of how diseases evolve and spread can give, and has given, us
strategies to contain, treat and even prevent them.

Over the years, mathematical modellers have made a variety of different assumptions, in order
to obtain a tractable trade-off between simplicity, which allows for more in-depth analysis, and
realism, which allows to make more precise predictions.

In particular, compartment models build on the core idea that the population can, at any time,
be portioned into compartments characterized by a specific state with respect to the ongoing
epidemic. The first of such models divides the population into Susceptible, Infected and Re-
covered individuals, from which the SIR acronym is used. A Susceptible can become Infected
(S — I) by making contact with an already infected individuals, and can then either Recover
(I — R) or die, if we assume the disease to be characterized by permanent immunity after a
first infection. If we do not make such an assumption, and allow recovered individuals to become
susceptible again (R — S), we obtain a so called SIRS model. Many more models, with different
compartments, have been proposed and analysed in the past, see e.g. [32, 59, 11, 23].

Classical compartmental models are based on the homogeneous mixing assumption, i.e. the
assumption that any individual in a population may have contacts with any other. Such an
assumption, however, is quite unrealistic for many situations in which the observed population
is large, and possibly divided in classes, families or generally sub-populations. One possible ex-
tension is to subdivide the population into groups, assuming homogeneous mixing within each
group, but representing inter-group interactions through a contact matrix [65]. Another possible
approach is to take into account the network structure of contacts. Often, epidemic dynamics
on a network is analysed only through simulations [61, 75, 89, 9, 84, 22]. The method of pair
approximations, introduced in epidemiology by Sato et al. [71] and Keeling et al. [41], allows to
build a system of differential equations that retains some aspects of the network structure. The
ideas and some applications of the methods are presented in detail in the monograph by Kiss
et al. [46]. However, not much analytical progress has been made in the study of the resulting
systems, possibly because they are generally rather complex.

This chapter aims at introducing methods from Geometric Singular Perturbation Theory (GSPT)
to analyse these systems, building on the ideas introduced in Chapter 2. The difference in time-
scales between epidemic spread and demographic turnover, which can be observed in many
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diseases, is the motivation for the use of techniques from GSPT. We refer to Chapter 2 for a
brief introduction of the techniques we use, or to the references therein, and in particular to [39]
and [51], for a more detailed explanation. In particular, we will exploit the entry-exit function
[12, 13] to analyse the behaviour of the system on its critical manifold, which is characterized by
a change in stability over a hyperplane.

In this work, we assume homogeneity of the network, in order to obtain analytical results, before
validating them numerically. Even with such an assumption, the additional complexity brought
by the network structure must be treated properly. In fact, in order to completely describe the
evolution of a network in time, one needs to have an equation for each possible state of its nodes,
one for each possible state of its edges (along which the epidemic spreads), one for each possible
state of triples, i.e. three nodes connected by two edges, and so on. This procedure, however,
would generate an infinite system of ODEs, which would once again be hardly treatable with
analytical tools. In order to overcome this difficulty, one can apply the so-called moment closure
[62, 46], i.e. approximation formulas which allow us to truncate the dimension of the objects
we want to analyse. If we truncate at the node level, we lose the network structure, and we
recover a homogeneously mixing system. Instead, we truncate at the edge level, using the pair
approximation discussed above, and analyse the system which derives from this choice.

To our knowledge, there are relatively few articles in which GSPT has been applied rigorously
to epidemics models [70, 29, 90, 7, 85]; however, for most infectious diseases, the presence of dif-
ferent time scales is natural. Moreover, though a SIR model on networks has been studied with
moment closure already [5, 46], the SIRS extension has not. Likewise, a thorough bifurcation
analysis on compartment models such as the one we analyse in this chapter is not present in the
literature.

The additional feature of the network structure, even in its most simplified version, i.e. homo-
geneous network, unravels new dynamics for the SIRS system we study. Indeed, there exists a
set in the parameter space which allows the system to exhibit a stable limit cycle. To comple-
ment the bifurcation analysis, we extend the geometrical argument from Chapter 2 to the higher
dimensional system we study, providing additional justification for the existence of stable limit
cycles.

It is worth noticing that the model we study is not globally in fast-slow standard form; as in
[63, 48] and Chapter 2, the fast-slow dynamics are only evident in specific regions of the phase
space, in which a local change of coordinates brings the system to a standard two time scales
form. In particular, we refer to the very recent monograph [86], in which the properties of per-
turbed systems in non-standard form are thoroughly analysed.

The chapter is structured as follows: in Section 3.2, we recall the derivation of the model, and
introduce the moment closure technique. In Section 3.3, we obtain analytical results on the
model, in particular on the fast and slow limit systems and on the application of the entry-exit
function. In Section 3.4, we perform a bifurcation analysis and numerical exploration of the
model. Finally, in Section 3.5, we conclude with a summary of the results, and with possible
research outlooks.

3.2 Formulation of the SIRS model on a network

In this section we describe and propose an SIRS model for epidemics on graphs, building on
the model proposed in [46, Sec. 4.2.2]. We are interested in the graph generalization of the
model studied in Chapter 2, in order to drop the homogeneous-mixing hypothesis, under which
we assumed that each individual in the population could have contacts with any other. We
then assume loss of immunity to be slower, compared to the other rates (this is the case e.g.
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for pertussis [11, 55], and it could potentially be true for the recent SARS-CoV-2 [47, 68]); this
assumption brings the model to a non-standard perturbed system of ODEs, which we study with
techniques from GSPT.

3.2.1 The model

The construction of the model is essentially what is presented in detail in [46, Ch. 4], extended
to the SIRS case. For ease of reading, we briefly repeat the whole method.

We consider a network of N nodes, with IV large, representing the individuals of a population, and
we assume this network to be homogeneous, meaning that each node has fixed degree n € N>,
representing the number of direct neighbours each individual has. We assume the network to be
undirected and connected, meaning that, given any two nodes in the network, there is a finite
sequence of edges (or an undirected path) which starts in the first and ends in the second.

Each node can be in three states, namely S (susceptible), I (infected) or R (recovered). We
will indicate the number of each state at time ¢ with [-](¢); we stress the distinction between the
notation X, indicating a state, and [X], indicating the number of individuals in the state X.
We indicate the number of edges connecting a node in state X to one in state Y at time ¢ with
[XY](¢) for all t > 0. We distinguish between an edge XY, counted starting from a node in state
X, and the same edge counted starting from the other node in state Y, for a reason of conserved
quantities, namely (3.7a), (3.7b) and (3.7c) to be defined below. For example, we count the
number of edges ST by “visiting” each node in state S, and counting all its neighbours in state
I, then summing over all the nodes in state S; this implies that, at all times, by definition,
[SI] = [IS]. The edges connecting a node with another in the same state, such as S5, hence,
will always be counted twice.

Infection can only spread if a node in state S is connected to a node in state I through an edge
SI; we denote the infection rate with 8 > 0. Nodes in state I recover, independently from their
neighbours, at a rate v > 0; and nodes in state R lose their immunity, again independently from
their neighbours, at a slow rate €, with 0 < € < 3,~. Based upon these modelling assumptions,
it is then straightforward to prove using the master equation of the epidemic model, that one
obtains the following system of ODEs:

[S]" = — B[SI] + €[R],
[1]" = BSI] —~[1], (3.1)
[R]" =[I] - €[R].

From our assumptions, the sum of [S]+ [I] + [R] = N is conserved at all times; we normalize by
dividing both nodes and edges by N, and we do not rename the new variables, which now indicate
the density of nodes, and a rescaled fraction of edges, in each state. Now [S] + [I] + [R] = 1, so
we can reduce the dimension of system (3.1) by removing [R], obtaining the system

[S]" = = BIST] + (1 = [S] = [1]),

111 = BIST] — 1] (32)
In order to fully describe the dynamics of the system, we need an ODE for [SI] as well. To
understand how the number of edges [ST] evolve in time, we need to consider the role of triples,
as exemplified in Figure 3.1. A triple is a path of length 2 through a central node in state Y,
connected to two nodes in state X and Z, respectively; we indicate such a triple with XY Z.
The positions of X and Z are interchangeable, and the most important node is the central one,
as we will explain shortly.
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Figure 3.1: Example of the role of triples. The rightmost edge (of the triple on the left) turns
from ST to II because the infection spreads to the central node; the leftmost edge turns from
SS to ST because it belongs to a triple SSI.

The only change of the system which depends on the presence of a specific edge is the con-
tagion which brings ST — II. Direct neighbours of a node in the state S which get infected, i.e.
the node X in a triple X SI, see their edge XS change to X I due to their belonging to the triple.
The two other possible changes in the system, namely the recovery (a node in state I becoming
R, which happens at a rate ) and the loss of immunity (a node in state R becoming S, which
happens at a rate €) only happen at a node level, so the only nodes which see this change are the
direct neighbours of the node changing state, and we do not need to consider their belonging to
a triple.

Figure 3.2: Complete description of the edges dynamics considering edges and triples. Straight
lines: infections; wobbly lines: recovery; dashed lines: loss of immunity. The base diagram is the
same which appears in [46], to visually describe their SIR model; the new, slow dynamics in our
model are the dashed blue arrows, symbolizing loss of immunity.

For clarity, we fix a lexicographic order S < I < R for nodes and edges, and write the explicit
equations for the edges which follow this order only. If we take into account all the triples with a
central node in state S and at least one node I, which could infect the central one (as described
in Figure 3.2), we obtain the following system of ODEs, which describes the evolution in time of
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nodes and edges:

Notice the 2 which multiplies the right hand sides of edges connecting nodes in the same state:
as we mentioned above, they are always counted twice, whether they are created or lost. To fully
describe the system, we would then need to have ODEs for triples, quadruples, etc. Instead, we
proceed as in [46], and apply moment closures.

3.2.2 Moment closures

Moment closure methods are approximation methods used in many contexts, in order to reduce
large (or infinite) dimensional systems of equations to a smaller finite dimension [52]. Proceeding
as in [46, Sec. 4.2], one can approximate the edges as functions of the nodes, or triples as functions
of nodes and edges. If we choose the first option, assuming independence between the state of
nodes, we can approximate all edges as follows:

[XY] ~ n[X][Y]. (3.4)

This implies that we lose the network structure and, up to rescaling the infection parameter by
B = np, we recover the SIRS system already studied in Chapter 2.

Lemma 6. Consider (3.2). Applying approzimation (3.4) and rescaling B = nf, one recovers
the SIRS system studied in Chapter 2, which is characterized by an asymptotic stability of the
endemic equilibrium for orbits starting in the set {(S,I,R) e R3[| S+ 1+ R <1,1>0}.

Instead, in this chapter we choose to apply the second order approximation, and hence we
approximate each triple with the formula given in equation (4.6) of [46], namely
n—1[XY][YZ]

n Yl

(XY Z] ~ (3.5)

This approximation is based on the conditional independence between the states of neighbors of a
node, using a counting argument, which for clarity we recall from [46]. The total number of edges
starting from a node in state Y is n[Y], while the total number of edges in state XY is [XY]; this
means that a fraction [XY]/(n[Y]) of edges starting from a node in state Y reach a node in state
X. With the same procedure, we obtain a fraction [Y Z]/(n[Y]) of edges which connect a node in
state Y, from which we start, with one in state Z. Hence, selecting a node in state Y and two of
his direct neighbours w and v, and using the conditional independence of v and v, the probability
of them forming a triple XY Z is [XY][Y Z]/(n?[Y]?). Combinatorics tell us there are n(n — 1)
ways of picking u and v, and [Y] nodes in state Y'; multiplying n(n—1)-[Y]-[XY][Y Z]/(n?[Y]?),
we obtain formula (3.5).



38 CHAPTER 3. THE SIRS MODEL ON A HOMOGENEOUS NETWORK

3.3 Analysis of the model

In this section we present the pair approximation SIRS model, and give our main analytical
results. First, we are going to reduce the dimension of the system, exploiting three conserved
quantities. Second, we are going to introduce a formulation for the basic reproduction number
for the system, and we describe the behaviour of the fast limit system. Third, we are going to
derive the equilibria of the system in the biologically relevant region, and we show that the slow
manifold of our perturbed system is exponentially close to the critical manifold. Last, we are
going to rescale the system in an O(e)-neighbourhood of the critical manifold, with a scaling
similar to the one proposed in Chapter 2, and we apply the entry-exit procedure.

Throughout the analysis, we notice that the parabola [SS] = n[S]?, i.e. approximation (3.4)
applied to the edges in state [SS], on the critical manifold is of particular importance for the
dynamics.

3.3.1 Fast-slow model

In this section, we derive the system we will study for the remainder of the chapter, applying
moment closure to (3.3) and reducing its dimension.

Recall Definition 1. Applying approximation (3.5) to every triple in system (3.3), we obtain
the following singularly perturbed autonomous system, which is not in the standard form (2.2):

[S]" = = BIST] + (1 — [S] - [1]),
(1" = BIST] = ~[1],

[SS) = 2€[SR] - 28" l[SS[]S[]SI]’
. n e s L (188180
817 = = -+ lsn + e + 5" s (21 - B,
[SRI' = 5[S1] — e[SF] + e[RR] - 3" ! [5']{]513]7 (36)
1) = 28[ST] — 29[1T] + 28" [fb{r’
(IR =A111) - (r-+ U]+ 5" BT

[RR])' = 2y[IR] — 2¢[RR],

in which, as from our assumptions, the processes of infection and recovery are fast, and the
process of loss of immunity is slow. By construction, the sum of all the edges starting from a
node in the state [S] (or [I] or [R], respectively) is equal to

[SS] + [SI] + [SR] = n[S], (3.7a)
[SI]+ [II]+ [IR] = n|I], (3.7b)
[SR] + [IR] + [RR] = n[R], (3.7¢)

which allows us to remove the equation governing [SR] (and [IR] and [RR], respectively). This
can be checked by carefully computing the difference of the derivatives of the right hand side(s)
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and the left hand side(s) of (3.7). By doing so, we reduce the dimension of the system, obtaining

(S = — BlS1) +e(1 ~[8] - [1) (3.59)

[1]" = B[SI] — (1], (3.8b)

(SS] = 2€(nf$] — [55] ~ [51) ~ 28" ! [‘g‘?s[]‘gﬂ (3.8¢)
- cnttl—511 111 4 5" Lo (1881181

SI7 = =+ Bt + et - 511 - ) + 5" s (B - ). esa)
, n—1[SI)?

(11 = 28[S1] — 24[11] + 28 S (3.8¢)

The basic reproduction number Ry can be obtained [46, p. 140] for the limit as € — 0 of system
(3.8) as

-2

Ry = M (3_9)

Y
We notice that, for (3.9) to be well-defined and dependent on the parameters of the system, we
need n > 2. The equality n = 2 describes the very special case of a ring network, i.e., a connected
network in which all nodes have exactly two neighbours. In the remainder of the chapter we
assume Ry > 1 and n > 2.

Remark 4. We notice that the threshold Ry < 1 in (3.9) is equivalent to

pln—1) pn

Ry = 1,
YT B4y 28+~ =

S1 <= Ry:=

(3.10)

since they all correspond to B(n—2) S v. A formula corresponding to Ry is given in [46], shortly
after the definition of Ry.

We notice that R; has a much more intuitive biological interpretation than Ry. Consider a
network with all the nodes in susceptible state S, except one in state I. Consider one of the
n edges in state [.S: this could either transition to RS, at a rate -, and the epidemics would
die out immediately, or spread the infection to the node in state S, at a rate 5, and become an
edge II. If the latter happens, with probability 8/(8 + 7), (n — 1) new edges move to state SI;
hence, R; can be interpreted in the classical meaning of “the number of edges infections caused
by one infected edge in an otherwise susceptible population”. Recall that the disease spreads
only through edges ST (or IS, equivalently), so their number should be the quantity we measure
in order to quantify the contagiousness of the disease; an edge I can not be used to spread the
disease.

Now we compute the basic reproduction number R; for system (3.8) and € > 0 sufficiently small.

Proposition 4. The basic reproduction number Ry for system (3.8) is given by

_Bn-Di+e

YT (v + B e (8.11)

Proof. We use the method first introduced in [17], and then generalized in [82] (see also [18]).
We linearize system (3.6) at the disease free equilibrium

([S1, 111, 1SS, [S1I],[SR], 11}, [IR], [RR)]) = (1,0,n,0,0,0,0,0)
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focusing on the infected compartments. In this case we choose as variables describing the infected
compartments [ST], [II]/2 and [IR] obtaining

!

[S1] [S1]
2| = a2 .
[IR] [IR]
with the matrix A given by
Bn—2)—~y 0 ¢
A= B —2v 0
0 2y —(y+¢e

We split A = M —V, with V invertible, M and V' ~! having non-negative entries. There are clearly
many ways of doing that, but the preferred splitting is such that M and V can be interpreted
as the transmission (i.e. relative to new infections) and transition matrix (i.e. relative to any
other change of state), respectively. Then, we compute

Ry = p(MV_l),
where p indicates the spectral radius of a matrix. The choice for the two matrices is
Bn—=1) 0 O y+8 0 —€
M = 0 0 0, V=| —-pB 2 0
0 0 0 0 -2y y+e

It can easily be checked, then, that V' ~! has non-negative entries, and that, since MV ~! has two

rows of zeros,

Bn—1)(v+e)
Yy +B8+e)

This finishes the proof. O

p(MV™1) =MV~ =Ry := (3.12)

Remark 5. The perturbed Ry given in (3.11) has a similar biological interpretation for the
perturbed system to the one given for the corresponding Ry (3.10) of the limit system as € — 0.
We need to compute Ry, the average number of SI edges produced by an SI edge in a totally
susceptible population; as in the previous case, an edge ST will become an edge I with probability
B/(B + ), producing in this case n — 1 edges SI; however, the original edge II, after having
become IR can become again an 1S edge with probability €/(e + 7). After having returned SI,
the edge will produce other Ry SI edges, since the pairwise model does not consider higher order
correlation and does not “remember” that the neighbours of S had already been infected once.

Hence 5
€
Rl =— —-14+—R),
! ﬁ+v(n e+ O

from which one obtains (3.12).
Through this argument, we see that threshold for the SIRS model is different from the one for
the SIR model, while in the homogeneous mizing case the two coincide.

Lemma 7. System (3.8) is well posed in the convex set
A = {([S], [1],[SS], [S1], [11]) € RS,
0<[S]+[I] <1}Nn{0<[SS]+ [SI] <n[S],0 < [SI]+ [I1I] < nll]}.

The set is forward invariant under the flow of (3.8), for € > 0, so that solutions of (3.8) are
global in time.

(3.13)
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Proof. Apparently the right-hand side of (3.8) has a singularity at [S] = 0; however, in the set
A, the terms [SI]/[S] and [SS]/[S] are both bounded by n, so that the right-hand side is indeed
Lipschitz. Hence, system (3.8) has a local solution. Furthermore, it can be easily checked that
the system is forward invariant by showing that the flow is pointing inwards on the boundary of
A. Hence, solutions of system (3.8) are global in time. O

3.3.2 Fast limit

In this section, we study the fast subsystem (or layer equations) corresponding to the limit of
system (3.8) as € — 0 on the fast time scale. Hence, we have to take the limit ¢ — 0 in system
(3.8), to obtain the layer equations

(ST = — B[S1], (3.14a)

[1]" = B[SI] — (1], (3.14b)

[SS]' = — 2Bn; 1[55[‘}S[]SI]7 (3.14c)

[SI]' = — (v + B)[ST] + ﬁn; ! [ST] (ﬁf}] - Eﬁ) (3.14d)
n—1[SI)?

(1) = 2B[ST] — 24[11] + 28

S (3.14e)

For ease of notation, we introduce

[Jo = [](0),

e = Jim_[](0)
In the fast dynamics, the susceptible population can only decrease, and eventually the infected
population will not have any more susceptibles to “recruit” and will decrease as well. In partic-
ular, we prove the following:

Proposition 5. Consider system (3.14); [S] and [SS] are decreasing for allt > 0, and they tend
to positive constants [Sleo and [SS]ec. The variables [I], [SI], [II] and [IR] all have the limit
oo = [ST]oo = [[]oo = [IR]s = 0.

Proof. We proceed to show the claims of the proposition: for [SS] (and implicitly for [SR],
referring to (3.7a)), we give the limit value as a function of [S]e, [S]o and [SS]o. We introduce

the auxiliary variables u := % and v := % From (3.14a) and (3.14d) we see that
u = —(v+ﬁ)u+6u<" mE iu)
while from (3.14a) and (3.14¢) we see that
v = —Bn72uv. (3.15)

From our analysis, for any initial point we have 0 < [SS] + [SI] < n[S] and [SS], [SI] > 0. This
implies that, for all times
u>0, v>20, u+t+v<n.
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Note that from (3.15) v is clearly decreasing for n > 2, and we see that

u'+v'_—7u—ﬂu(l—u+v> <o. (3.16)
n

Recall Lemma 7, which implies v > 0; if v = 0, then [SS] = 0, and from equation (3.14c) we
observe that [SS] will not change, so 0 is its corresponding limit value. Assume then v > 0: since
v’ < 0, v — vo monotonically as t — oo, and since 0 < u + v < n, this implies that u — us as
t — oo as well. Then we notice that

0< —/Oo(u’(z)—i—v'(z)) dz = ug + Vg — Uoo — Voo < 0. (3.17)
0
We notice that we can rewrite (3.17) using (3.16) and obtain
—+o0 , , - +oo B l
o > — /O (W () + v/ (2))dz = /0 (’yu(z) + Bu() (1 L(u(e) + v(z))>>d2(3.18)

+oo
> 7/0 u(z)dz. (3.19)

This means that

—+oo
/ u(z)dz < +00 = Uso =0, (3.20)
0

which implies, recalling that [SI] = u[S] and [S]ec < 00, that [SI]e = 0. We can now rewrite
(3.14a) as

[S]" = —BulS],
which implies
+oo
[S]oo = [S]o exp < - [3/ u(z)dz) >0, (3.21)
0
Similarly, using (3.15), we can show that
n—2 [T
Voo =Vpexp | — f - u(z)dz | >0, (3.22)
0

which implies, using (3.20) and (3.21), and recalling that [SS] = v[S], that [SS]ec > 0. In
particular, combining (3.21) and (3.22), we can write

[Ss]oo:[SS]o([g]?) . (3.23)

We notice, from (3.7a), that this implies that [SR] converges to a non-negative limit as well.
Combining (3.14a) and (3.14b) as above, we show that [I] vanishes as t — co as well:

1S+ [1]" = —l1] <.

Since [S] — [S]ec as t — 400, also [I] = [I]eo. Proceeding as in (3.19), it can be shown that
[I]oo = 0. This yields, by (3.7b), that [[I]oc = 0 and [[R]w = 0. O
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Remark 6. A relation between [SS|(t) and [S](t) for system (3.14) analogous to (3.23) holds
for all t. Indeed, noticing that

n—1

V() = In([SS](t)) — 2 In([S](#)),

is a constant of motion for system (8.14), we observe that for any t > 0 the relation

[5S](t) = [SS]o ( [fs]](z)> 7 (3.24)

holds.

The equilibria of the limit system are all of the form [S] = S* € [0,1], [I] =0, [R] =1 — 5%,
[SS] = 8S8* >0, [SI] =0, [SR] = SR* > 0, [II] =0, [IR] = 0, [RR] = RR* > 0 with
SS* + SR* =nS* and SR* + RR* = n(1 — §*); i.e., they lie on the critical manifold (3.25).
The eigenvalues of the linearization of system (3.8) on the critical manifold

Co = {([S), 111,51, [ST1, [11)) € RE,|[1] = [ST] = [11] = 0}, (3.25)

are
M=) =0,

corresponding to the slow variables [S] and [SS],

Az = % =—7 <0,
e (n—1)[SS]
As = ﬂW - (v+B). (3.26)

In particular, A5 changes sign on the hyperplane 5(n —1)[SS] —n(vy + 8)[S] = 0. We notice that
B(n —1) > 0, since we suppose n > 2.
Considering (3.26), we define the loss of hyperbolicity line on the critical manifold C

n(B+ )
B(n—1)

We now give a closed formula for the value of [S]o.

159] = 1] =: L[S). (3.27)

Proposition 6. Consider a generic initial condition ([S]o, [SS]o) in the repelling region of Co,
i.e. satisfying R1[S]o > 1 and [SS]o > L[S]o. The entry point [S]e is given as the unique zero
smaller than [S]o of the function

T — (1) - [SSla(IS1E e - (517 (3.28)

Proof. We proceed as in [5, Sec. 3]. From our assumptions, [ST](0) = O(e).
Combining (3.14a), (3.14d) and (3.24), we obtain

H(x)=n

n—1[581] .,

_ Bty

[S1)" - 3

(S

8]~ " [8SJolS]g 7[S]
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Multiplying both sides by the integrating factor [S}I% we obtain

d o) _ B giznioy 1 290 1y
S (snisr= ) = S5 isy - P sslalsl s, (29)
Integrating (3.29) from t = 0 to ¢ = +o00, and recalling that, by Proposition 5, [SI]. = 0, we

obtain
+oo ) —+oo
-

— [SSlo[S)G 181

t=0

_[S1(0)52 7 = P ; i}

Since, by assumption, the left-hand side of (3.30) is O(e), we ignore it, and we consider the
right-hand side only. Hence, we find [S]s by solving

[S]%

. (3.30)
t=0

Hoo 2_9 n—1
= [SSJolS)§ 1]

t=0

—+o0

nﬂ;v

1
n

(5]

)
t=0

from which we immediately obtain that [S]s is given as a zero of the function H(z) defined in
(3.28). We now prove that such a zero is unique.

Recall 25l < n; we have

[Slo
1 SS
1) = 53§ (-5 B <o sr(isi) —o
Moreover,
1 —1 2 _ 1 1 -1 2 _ 2
H'(z) = %xrl e O NC x—(”f e CONG %1—)

Recall (3.27). We see that H'(z) > 0 for

LIS\ ™% o .
v < <[SS]§) ()0 = [S]. (S0 [SS]0)-

Clearly, [S]. = [S]«([So, [SS]0) < [S]o, since we assumed [SS]o > L[S]o. Lastly,

s - i (5252

)<0 it [5S]o > L[S]o.

Hence, H(x) increases on the interval [0, [S].), has a positive maximum in z = [S],, and then
decreases towards 0; in particular, it has a unique zero on the interval [0, [S].), and hence in the
interval [0, [S]o). O

Remark 7. Recall (5.27) and Proposition 5. Given a couple ([So, [SS]o) in the repelling region
CE above the line [SS] = L[S] (i.e., where A5 > 0), its image under the fast flow (3.14), approz-
imated up to O(€) by formulas (3.28) and (3.23), is in the attracting region C§' below the line
[SS] = L[S] (i.e., where A5 < 0); refer to Figure 3.3 for a visualization.

Remark 8. Recall (3.9), and that we assume Ry > 1. Then L = Zéifg = - <n. Hence, the

purple line [SS] = L[S] in Figure 3.3 is always below the line [SS] = n[S].
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([S]oo, [SS]s0) R .

1S] ([S)o, [SS]o)

Figure 3.3: Red curve: evolution of the point ([S]o,[SS]o) under the fast flow. Blue curve:
evolution of the point ([S]x, [SS]eo) under the slow flow. Green curve: curve [SS] = «([S])
defined in (3.39). Purple line: line of loss of hyperbolicity [SS] = L[S] of the critical manifold of
system (3.8), which divides the attracting region C(;‘ and the repelling one CZ.

3.3.3 Equilibria of the perturbed system
The following Lemma discusses the equilibria of system (3.8).

Proposition 7. For € > 0 sufficiently small and Ry > 1, system (3.8) has 2 equilibria in the
relevant region of R®.
Disease free equilibrium:

[S]=1, [I]=0, [SS]=n, [SI]=0, [1I]=0.
Endemic equilibrium: to their lowest order of € the components are given by:

[S]: (n_l)(’y+5)

(n*—n—-1)B—vy 00
[I] —¢ n((n_ 2)6_7) —1—0(62),

v ((n? —n—l)g—v)

951 = 3 n = =)
511~ G 5 ) + O

1=

Proof. The disease free equilibrium is trivial. The endemic equilibrium is computed by expanding

the variables in power series of €, e.g. [S] = Sy + €S1 + O(€?), substituting them in system (3.8),
equating the right-hand sides to 0 and matching powers of e. O

+O(e), (3.31)

+ O(é%).

Remark 9. Since we assume Ry = w > 1, recall Remark 4 and (3.11), the numerators of

(1], [SI] and [II] of (3.31), as well as all the denominators, are strictly positive for ¢ > 0 small
enough.

We notice that the disease free equilibrium belongs to Cy defined in (3.25), and by computing
the corresponding A5 = 8(n — 2) — v =~v(Ry — 1) — O(e) > 0, we show that it is unstable.
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Moreover, we notice that the endemic equilibrium is O(e) close to the line [SS] = L[S] defined
in (3.27); hence, it approaches it as e — 0.

3.3.4 Slow manifold

Next, we provide a multiple time scale description of the disease-free, or near disease-free states:

Proposition 8. The slow manifold of system (8.8) is exponentially close in € to the critical
manifold Coy given by (3.25).

Proof. The invariant manifold Cy is an invariant manifold also for system (3.8) with € > 0: by
direct substitution, we have that [I]’, [SI]’ and [II]' are zero on Cy. Hence, Cy is invariant
and satisfies all the conclusions of Fenichel’s theorem, and so it is one possible slow manifold.
By Fenichel’s theorem, all slow manifolds are exponentially close to each other in the normally
hyperbolic region; invariance allows us to extend at least one slow manifold across the line where
we do not have normal hyperbolicity, namely C. O

The slow dynamics on the slow manifold [I] = [SI] = [II] = 0 are given by:

(3.32)

Recall that [S]e and [SS]s are the initial conditions for the slow flow. Solving (3.32) explicitly
yields
[Sleo — 1)e™7 + 1,

(
[SS](7) = 2([S]oc — D)ne 7 (e” = 1) + ([SS]oc — n)e ™ +n, (3.33)

meaning that [S] — 1, [SS] — n exponentially fast, as we would expect, since in the slow
dynamics, on the node level, the variable [R] can only decrease, and [S] can only increase.
For its importance in the dynamics, we introduce the following notation

I = {([S], [S9]) € [0,1] x [0, n][[SS] = n[S]*}. (3.34)
Lemma 8. The parabola T' (8.34) is uniformly attracting for system (3.32).

Proof. Recall (3.33). Then, introducing the function d(-) to indicate the distance between a
point and the parabola, we have

d(1) = [[SS](T) — n[S]2(T)| =|2n([S]oc — 1)e™ T — 2n([S]oe — 1)e™2" + ([SS]oe — n)e 2T + n—
—n([Sloe — 1)?e™*" —n — 2n([S]ee — e 7| = e ?7([SS]0e — n[SI2,)| = e ?7d(0),

which means that an orbit starting in any point ([S]e,[SS]ee) € (0,1) X (0,n) approaches
exponentially fast the parabola I' (3.34). O
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Lemma 9. Consider an orbit starting (i.e. exiting the slow manifold) O(d2), where 0 < b2 < 1,
away from the parabola [SS] = n[S)?, in a point with [S](0) = [S]o in the repelling region of Co,
i.e. satisfying R1[S]o > 1, [SS]o > L[S]o. Its entry point in the slow flow [S]s after a fast piece
is given as the unique zero smaller than [S]o of

Gla) = P b~ (513) — [S)5 2t 4 (ST (3.35)

Proof. Notice that, considering Lemma 8, the assumption of starting close to the parabola is not
restrictive. The derivation of G(z) is analogous to the derivation of H(z) of Proposition 6, using

2n—2

[1SS](t) = n[S§ (1S]() ™

instead of (3.24), since we assume [SS]o = n[S]3. The uniqueness of the zero is obtained applying
Proposition 3 to this specific initial condition. O

Remark 10. Recall (3.23). Since we showed that the parabola T (8.84) is attracting in the slow
flow, we can assume that, after the first slow piece of any orbit, [SS]o = n[S]2 + O(61), where
0 < 6 < 1. We can then rewrite (3.23) as

951 = 1550 ) T s (%) - "[S]3°<[§]f)i7

where the = symbol indicates an O(d1) error. For n large enough, the last factor is close to 1,
and the entry point for the slow flow is approzximately on the parabola.

3.3.5 Rescaling

As we showed in Section 3.3.2, under the fast flow eventually [I], [SI] and [II] will be O(e);
recall (3.7b), from which we see that [I] = O(e) implies [SI], [II],[IR] = O(e). Proceeding as in
Chapter 2, we rescale [I] = €[v]. This implies, using (3.7b),

[SI] =¢€[Sv], [II]= e[vv].

This brings the model, after rearranging the variables, to a singularly perturbed system of ODEs,
namely

(S = — eB[Sv] + (1 — [S] — €[v]),
n —1[SS][Sv]
n [s]

[SS] = 2¢e(n[S] — [SS] — €[Sv]) — 2¢6
e[v]” = eB[Sv] — ev[u],

[So) = —e(y+ B)[Se] + (nlo] — [Se] - [oul]) + eB— “Ise Cﬁsﬁ] - [[SSD

(3.36)

n—1[Sv]?
no 8]

elvv) = 2¢B[Sv] — 2ey[vv] + €28
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which can be rewritten in a standard form, and rescaled to the slow time scale, denoting now
the time derivative with an overdot, giving

[S] = — BISv] + (1 — [S] — €[v]),

5] = 2(nls] - [55] - esul) — 26"+ R

e[v] = BLSv] =[], (3.37)
eSt] = = (7-+ )[50] + etule] — [50] ~ o)) + 5" g5l (B - L),
eluv] = 28[Sv] — 2y[v] + eﬁ”; ! [S[;fr.

Taking now the lim._,o, we obtain the system of algebraic-differential equations

[5] = — BISv] + (1 - [S)),

53] = 2(nls) - [55]) — 28"+ L,
0= 8180 = 1le], (3.39)
B n — 1 [Sv][SS]

0 = 2B8[Sv] — 2v[vv].

The last three equations of (3.38) are satisfied for [v] = [Sv] = [vv] = 0. This is exactly the
critical manifold of (3.8), on which the dynamics is described by (3.32).

Using (3.32), we can show how A5 changes in time, in the slow flow, by deriving its formulation
(3.26) with respect to time, obtaining

alz) = . (3.39)
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A [SS]

. (1,)

&

—>
1

Figure 3.4: Sign of the derivative in time of A5 under the slow flow. Blue: sketch of orbit starting
above/below the green curve [SS] = «([S]). Purple: loss of hyperbolicity line [SS] = L[S] (3.27).
Black: the parabola " (3.34). Notice that orbits always land below the purple line, which is the
region of the rectangle in which the critical manifold is attracting.

In Figure 3.4 we visualize the behaviour of two orbits in the slow dynamics. We note that,
even if an orbit enters the slow flow in a point below the purple line but above the green curve,
i.e. in the region where A5 < 0, it eventually has to cross the green line before crossing the purple
curve, since they represent respectively s = 0 and A5 = 0. Hence, any orbit will eventually
evolve in the region As > 0. We prove the following:

Proposition 9. The subset {([S],[SS]) € (0,1) x (0,n)|As > 0} is forward invariant for system
(3.32).

Proof. The normal vector to the curve a([S]) is given by v = (—&([5]), 1), with

2n[S)([S] +2)

If we take the scalar product of v with the vector field F' given by (3.32), we obtain

(ISP 318 —[S) en
o =z ML L 551) < 2(a(s) - [55),

meaning that on the curve [S'S] = «a([S]), this scalar product is negative, hence orbits approaching
the curve from below will not cross it. O

Remark 11. By comparing (3.34) and (3.89), we notice that the curve « is always above the
parabola T'; hence, by invariance of T' and Proposition 9, an orbit starting above the parabola will
eventually be “squeezed” between o and T.
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3.3.6 Entry-exit function

Dividing the last three equations of system (3.36) by € on both sides, we obtain
[S]" = e(=BSv] + (1 — [S] — e[v])),

[SS] = 6<2(7L[S] — [SS] — €[Sv]) — 28 - 9]

[v] = BlSv] - y[v],

()’ = = (v + B)[Sv] + elnlo] = [Sv] = [vv]) + B~ (5] ([ﬁés]*] - 6[597]]])

n—1 [SS][SU]>’

(3.40)

n —1[Sv]?

[vv]" = 28[Sv] — 2y[vv] + €8 P

System (3.40) can be rewritten as

' = ef(x,2) + Em(z,w),
2 = 2g9(z, 2) + eh(z, z,w), (3.41)
w' = — Dw+ Az + €l(z, 2),

where we denote x := ([gsgl), z = [Sv], and w := ([Eﬂ]). The critical manifold Cy = {z = 0,w =

(8)} is invariant for system (3.41) both when ¢ > 0 and ¢ = 0. Recall (3.26); it is clear that
g(x,0) = A5 < 0 when x € C§' or x € Cf¥, respectively.

To control the relation between the starting point of the slow dynamics and the transition point
back to the fast dynamics, we are going to employ the entry-exit function [13]. This tool relies
on calculating a fast variational equation along a slow orbit to calculate the exit point from the
slow dynamics after a change from fast attraction to fast repulsion has taken place. We now
describe this idea in more detail in our current setting, and we apply it to system (3.41).
Similarly to what was done in Chapter 2, we want to find a formulation for an entry-exit function
to apply to system (3.41), in order to obtain more information on the slow part of the dynamics.
We can not apply [60, equation (11)], since (3.41) has three fast variables; we refer to a general-
ization of such result, which is given in [72, p. 417]. However, one of the hypotheses necessary
for the application of such formula is not satisfied on the whole critical manifold Cy; namely, the
separation of negative eigenvalues from the eigenvalue which causes the loss of stability. The
eigenvalues on Cy are —2, —v and As; the result can be applied to trajectories contained in the
portion of Cy in which A5 > —v. Recall (3.26): indeed, we have that A5 < —v if

n—1

[55] < [S].

n

For trajectories which lie completely in the region of Cy in which [SS] > "T_I[S}, we can apply
the entry-exit formula given as the function 7 in [72, p. 417] to system (3.41), obtaining formula
(3.42). We conjecture that the same formula can be applied to the whole Cp, and leave the proof
of such conjecture as future research work.

We denote with zg := ([S]oo, [9S]e0). Then, if z(7;x¢) is the solution of

T = f(:E,070),
z(0) = o,

we can implicitly compute the exit time Ty of an orbit on the slow manifold through the integral

TE
/0 g(x(1520),0)dr = 0. (3.42)
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Recall (3.33); for ease of notation, we introduce A := [S]ec —1 < 0 and B := [SS]oc —n < 0.
Then, (3.42) becomes

/OTE As(r)dr = /OTE (— (r+8) +p [SS](T)>dT:

S
, S1(r) (3.43)
/ B ( JrB)Jrﬁn—12Ane*27(67—1)—|—Be’27—|—n dr—0
_ S
0 v n AB_T + 1 ’
which gives the following equation for Tg
n—1[(A*nTg + Ae T8 (2An — B) + (B — A(A+ 2)n)In(Ae™ "% + 1
4 T 4 g (AT (2 B) 1 (B — A+ 2 )
(3.44)
B 2An— B\ _ 0
— ) =0

Clearly, T = 0 is a solution of (3.44); the integrand of (3.43), i.e. A5, along the slow flow, is
eventually always increasing, recall Proposition 9; as we remarked, even though it is negative in
the first part of the flow, it becomes eventually (and definitely) positive.

Lemma 10. The exit time Tg is finite for any initial point ([S]eo, [SS]s) € C§.

Proof. Recall (3.43). For small positive values of 7, A\5(7) < 0, since the slow dynamics begins
in the attracting region C4'. Hence, for small values of 7 > 0 the integral

/ As(o)do < 0.
0

From (3.44), we observe that

Te
lim As(0)do = +o0,
Tg—+o0 0
hence there exists at least one finite T which satisfies (3.42). From our previous analysis, we
know that As5(7) = 0 only once during the slow flow, and it remains positive afterwards; hence,
such Tg is unique. O

3.3.7 Application of the entry-exit formula to the parabola

As we have remarked so far, the parabola (3.34) is of particular interest for the dynamics, even
more so for large values of n. Hence, we are interested in understanding the entry-exit relation
on this specific invariant set. We now consider the evolution, under the slow flow, of the point

([S]oo, [SS]oo) = (0,0); with these initial conditions, (3.33) becomes
Sl(r)y=1—¢"",
[S1(7) e o . 2 (3.45)
[SS](T) =n+ne™™" —2ne™" = n[S]* (7).

Being able to write [SS] as a function of [S] allows us to compute the exit point for the origin,
which in general is not possible, since A5 depends on both slow variables. Combining (3.45) and
(3.43) we obtain

/O[Sh <_(7+6) + B(n — 1)I>dx =0

1—2z

= B(n—1)(1—[Sh)+ (y— (n—2)8)In(1 - [S];) — B(n — 1) =0, (3.46)

)
= =B -1[Sh+ (- (n—-2)8)n(1 - [S]h) =0,
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where [S]; indicates the exit point of the orbit which starts at the origin.

It can easily be shown, by direct substitution, that orbits with initial conditions ([S]ee, [9S]eo) =
([S]oo, n[S]%,) evolve, under the slow flow (3.33), along the curve [SS] = n[S]?; moreover, this
follows from Lemma 8. The exit point of such an orbit can be computed implicitly, with the
same procedure as (3.46).

Lemma 11. Orbits entering the slow flow in a point of the form ([S]so, [SS]oo) = ([S]oo, n[S]%,)
ezit at a point of the form ([S]1,n[S]3), with [S]; given by

—B(n—1)[S)i + (v — (n=2)8) In(1 = [S]1) = —B(n— D[S]ec + (v — (n—2)8) In(1— [S]ac), (3.47)

which can be equivalently rewritten, introducing for ease of notation C := ((n—2)5—~)/(8(n—1)),
as

(1 —[8]1)%5h = (1 — [S]o0)CelSles. (3.48)

Proof. Straightforward computation from the integral in (3.46), where we substitute the lower
bound of integration 0 with a generic [S]s. O

Lemma 12. If two entry points on the parabola satisfy [S]eo,1 < [S]eo,2, then the corresponding
exit points satisfy [S]11 > [S]1,2-

Proof. Recall that the parabola is invariant under the slow flow. The entry-exit relation (3.48)
implicitly defines a function

h(z) := (1 —z)%",

meaning that the entry-exit relation can be written as h([S]s) = h([S]1) (see Figure 3.5 for a
sketch of the function h, and a visualization of the argument of this proof). We observe that
h(0) = 1 and h(1) = 0. Deriving h(z), we see that

_ +5 1
W) =1-2)° 1-C-2)e* >0 = a2<1-C=-—110_ = —

() = (1 - )77 ) T '
Hence, h(z) is increasing before x = 1/R;, decreasing afterwards. This implies that if [S]ee,1 <
[S]oo,2 we have that h([S]eo,1) < h([S]eo,2), and the corresponding exit points satisfy [S]11 >
[3]172 > 1/R1. O

Vs

[S]oo,l[S]ooaRil [S]1,2 [S]1,1 1

Figure 3.5: Sketch of the function h(z) used in the proof of Lemma 12.
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The study of the asymptotic behaviour of system (3.8) is then reduced to two 2-dimensional

maps, from Cy to itself; specifically, we have that II1([S]o,[SS]o) = ([S]oos[SS]e), while
I5([S] 005 [SS]eo) = ([S]1,[SS]1). We now explain the reasoning under the approximation that
IT; and II; map the parabola T' to itself, and can hence be seen as near one-dimensional (see
Figure 3.6); in fact, the occurrence of near one-dimensional return maps is an important theme
in multiple time scale systems [6, 26, 50, 64].
Next, consider a point with [S] coordinate [S]g, O(e) away from the parabola I' (3.34), in the
repelling part of the critical manifold. Its image [S]e under the fast flow, which defines the map
IT; sketched in Figure 3.6, is given by (3.35). We notice that this value depends on both 8 and
v, as well as on n. For n large enough, the entry point in the slow flow will be close to the
parabola, as argued in Remark 10; hence, we will be able to compute its exit point [S]; using
(3.47), which again depends explicitly on all the parameters of the system in a highly non-trivial
way. This is different from the SIRWS model studied in Chapter 2, in which there was a clear
separation between fast parameters, which dictated the fast dynamics, and had no influence on
the slow one, and slow parameters, which characterised the viceversa. The map Il in Figure
3.6 sketches the relation between the entry point [S]., and its corresponding exit point [S]q, i.e.
(3.35).

[So0 [STo

Figure 3.6: Sketch of the map which relates [S]p to [S]e (red) and [S]e to [S]1 (blue). The
green dot represents the value 1/R;: the epidemics can only start for values of [S]p > 1/R;.

Depending on the relative position of [S]g and [S];, we might be able to deduce the asymptotic
behaviour of the system. However, the high dimensionality of the layer equation and the complex
implicit relation between [S]o and [S]s hinders the analysis of the system with non-numerical
tools. See Figure 3.7 for comparisons between formula (3.35) and direct integration of the layer
system (3.14).

We proceed now to a bifurcation analysis of system (3.8), and finally, with a technique similar
to the one detailed Chapter 2, Section 2.3.4.1, to numerically investigate the existence of peri-
odic orbits by concatenation of fast and slow pieces. We stress the versatility of the numerical
argument we present, which is similar to the one we used in Chapter 2, applied now to a higher
dimensional system.

3.4 Bifurcation analysis and numerical simulations

In this section, we carry out a bifurcation analysis for the behaviour of system (3.8), which will
then be verified by numerical simulations and by a geometrical argument. Bifurcation analysis is
done on system (3.8), which for small values of € is stiff (as we showed in Proposition 8, the slow
manifold is exponentially close to the critical manifold), while the numerical simulation concern
a combination of systems (3.14) and (3.32), which are both non-stiff.

It is important to notice that, even though the layer system (3.14) converges to the critical
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n =3, f =15 05 n =5, 3 =15 n =50, 8 =15
5 /
0.8 Limit under (14) Limit under (14) 0.03 Limit under (14)
[S]oe 0.4 [S]oo (ST
0.6 03 0.02
0.2
0.4 0.01
0.1
0.2 0 0
0.85 0.9 0.95 1 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1
[STo [Slo [STo
(a) (b) (c)

Figure 3.7: Comparison of the limit value of [S] as ¢ — oo of system (3.14) (red) and formula
(3.35) (blue). We set [I]g = [SI]o = [II]p = 0.001, v = 1. With the values of the parameters
of (a) (respectively, (b) and (c)), 1/R; ~ 0.833 (resp., 0.417 and 0.034), and we only consider
values of [S]p > 1/R;, for which the epidemics can start.

manifold forwards in time, the slow flow (3.32) would converge to the point ([S], [SS]) = (1,n)
if we let it evolve freely; the derivation of the exit time (3.44) is fundamental, in this setting, to
carry out a meaningful numerical exploration of the model.

Without loss of generality, we set 7y, which is the inverse of the average infection interval, to 1; this
simply amounts to an O(1) rescaling of time, and we rescale the other parameters accordingly,
keeping however the same symbols, for ease of notation. System (3.8) then has only three
parameters, namely €, n and .

Using MatCont [15], we are able to completely characterize system (3.8) through numerical
bifurcation analysis. We only consider the first octant of R?, for the biological interpretation of
the parameters. Numerical analysis shows the existence of a Hopf surface X, whose “skeleton” is
depicted in Figure 3.8. For values of the parameters between the plane e = 0 and 3, the system
exhibits a stable limit cycle, while for values above 3, the system exhibits convergence to the
endemic equilibrium (3.31). Our bifurcation analysis suggests the existence of a value €* =~ 0.18
such that, for € > €*, the system only exhibits convergence to the endemic equilibrium, regardless
of the values of 3 and n.

To make Figure 3.8 more readable, we provide intersections of the surface ¥ with some planes
n = k (Figure 3.9a), 5 = k (Figure 3.9b), and finally e = k& (Figure 3.10). As in Chapter 2, we
see an expansion of the parameter region which exhibits stable limit cycles as e decreases, see
Figure 3.10. This means that, as € decreases, i.e. as the ratio between the average lengths of the
infectious phase and the immunity interval decreases, we are more likely to observe occurrence
of stable limit cycles in the disease dynamics. We do not observe, however, a divergence in the
n direction, as the limit as ¢ — 0 of the surface contained in the green curves of Figure 3.10 is
still bounded.

Counter-intuitively from a biological viewpoint, from which one would expect a greater diffusion
of an epidemic in a population consisting of more social individuals, our numerical exploration
of system (3.8) shows that limit cycles are only possible for small values of n (specifically 3, 4
and 5). This means that, for a disease with small enough ratio between the infection period
and the immunity window (i.e., €), each individual in the population having really few direct
neighbours can lead, depending on the force of infection 7, to periodic outbreaks, while having
more than 5 drives the population towards the unique endemic equilibrium. The homogeneous
mixing hypothesis can be interpreted, in this network setting, as having n large. In this regard,
the bifurcation analysis is in agreement with the results of Chapter 2, in which the SIRS model
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Figure 3.8: A skeleton of the bifurcation surface 3. Green (respectively, red and blue) curves
correspond to constant values of € (respectively, 5 and n). We notice that, for values of n > 6,
system (3.8) converges to the endemic equilibrium (3.31) regardless of the value of € and 5.
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Figure 3.9: A subset of the blue and red curves from Figure 3.8.

with homogeneous mixing is characterized by convergence towards the endemic equilibrium, as
long as Ry > 1; recall that the endemic equilibrium (3.31) is characterized by a quantity of
infected which is O(e) small.

In order to verify the accuracy of the surface X, we investigate the system via a numerical
implementation of the same geometrical argument used in Chapter 2, Section 2.3.4.1. There,
we numerically showed the existence of a candidate orbit by concatenating heteroclinic orbits of
the layer equation, from the critical manifold to itself, and orbits of the slow flow, truncating
each at the corresponding exit time. The system studied in Chapter 2 was 3-dimensional, but
the slow flow evolved on a 2-dimensional plane in R?; as we showed thus far, system (3.8) is
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Figure 3.10: Intersections of the surface ¥ with planes ¢ = k. The values of € are indicated near
the corresponding curves.

characterized by a 2-dimensional slow manifold, as well. We now briefly recall the construction
of the geometrical argument.

We fix e = 0, n = 4, and vary [ to be below and above X, respectively; we compare the results in
Figure 3.11. In both cases, a candidate starting point for a periodic orbit was found by iterating
multiple times the layer system (3.14) and the slow flow (3.32), stopped when the slow piece of
the orbit reached its exit time (3.44). Once we have obtained the candidate value for [S]y, we
take a small interval J; in the [SS] coordinate around its corresponding value [SS]y, and we map
it forward in time to obtain an interval of starting points for the slow flow, J,. Finally, we map
Jy forward in time, stopping each orbit at the corresponding exit time, obtaining a third interval
Js. In Chapter 2, we argued that if J3 intersects J; transversally, then the perturbed system,
for € > 0 small enough, exhibits stable limit cycles.

Figures 3.11 (a) and (c) depict the numerical realization of the two limit systems for a couple
(n,B) for which we do not expect limit cycles: indeed, J; and J3 (respectively, the vertical
red line and the blue line in (b)) do not intersect, and bifurcation analysis confirms that, for
this choice of the parameters, there are no limit cycles, but global convergence to the endemic
equilibrium.

Figures 3.11 (b) and (d), instead, depict the numerical realization of the two limit systems for
a couple (n, 8) for which we do expect limit cycles: indeed, J; and J3 intersect, and bifurcation
analysis confirms that, for this choice of the parameters, there is a stable limit cycle. Since the
underlying idea is the same as Chapter 2, Section 2.3.4.1, we refer to that for a more in-depth
explanation of the method.

Figures 3.11 (e) and (f), finally, are projections on the [S] — [I] plane of orbits of system (3.8),
starting from a random initial point. As we expected, for e sufficiently small, the perturbed
system exhibits either convergence to equilibrium, as the combination of the two limit systems
showed in Figures 3.11 (a) and (c), or towards a stable limit cycle, as argued from (b) and (d).
This numerical analysis shows that there is an interval around 8 ~ 2 for which periodic orbits
of (3.8) exists, for € > 0 sufficiently small.
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Figure 3.11: Numerical illustration of the effect of changing 8 on the system dynamics. Figures
(a) and (b): evolution under the layer system (red) of a small interval Ji, in the [SS] direction.
Its image defines the entry interval J; on the critical manifold; evolution of each point of J
under the slow flow (blue), stopped at its exit time, giving the exit interval J3. Notice that
the blue curves lie on the [S], [SS] plane, while the red curves represent a fast excursion in the
region [I], [SI],[II] > 0. Figures (c) and (d): zoom on the relative position of J; and J3 on the
critical manifold. Figures (e) and (f): projections on the [S] — [I] plane of numerical simulations
of system (3.8) from a random point, exhibiting convergence to the endemic equilibrium and the

stable limit cycle, respectively.
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3.5 Summary and Outlook

We have analysed the behaviour of a model for epidemics on networks, given in a nonstandard
singularly perturbed form, after reducing its dimension exploiting multiple conserved quantities.

Even though the model derived from the SIRS model studied in Chapter 2, which is charac-
terized by global convergence to equilibrium, our bifurcation analysis and geometric numerical
argument show that, for a significant open subset of the parameter space, the network generaliza-
tion exhibits stable limit cycles. The main characteristic of this set is the value of n, the number
of neighbours every individual has, which must be between 3 and 5 included. In practical terms,
this is not a major restriction as most real-world networks have sub-networks, where individuals
have around three to five very close friends. It is clear that there is further motivation to inten-
sify the investigation of more complex compartment networks with techniques from GSPT, since
dropping the homogeneous mixing hypothesis unveiled asymptotic behaviours which are impos-
sible in the corresponding system studied without network structure. In particular, it would be
interesting to check whether the periodic solutions identified in the pair-approximation model of
a network can be detected also in simulations of the original network model.

Moreover, the analysis of this network generalization of the SIRS model studied in Chapter
2 qualitatively confirmed its results, since for large values of n (in the homogeneous mixing
hypothesis, n = N — 1, which is by assumption large), the system only exhibits convergence
towards the endemic equilibrium.

We stress the versatility of our geometric procedure, which gives us a numerical intuition of
the asymptotic behaviour of a stiff system, i.e. system (3.8) with 0 < € < 1, without having
to actually integrate it, but through simple integration of the corresponding two non-stiff limit
systems, which we derived through the use of GSPT. This is particularly important for the
high(er) dimensionality of the system, which hinders analytical results on the perturbed system.
In particular, the same strategy is likely to generalize to more complicated network-based ODE
models derived from moment closure.

Furthermore, it would be interesting to rigorously investigate how the system changes as we
let n — 4+00. One intermediate step between having two independent perturbation parameters
(i.e., e = 0 and n — +00) could be to couple n and ¢, for example taking n = O(1/€*), for some
a > 0. However, this goes beyond the scope of this project, and we leave this as a prompt for
future research.
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