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A B S T R A C T   

Consider the problem faced by a decision maker (DM) who must select the order in which to evaluate the un-
known alternatives displayed by an online search engine. DMs do not know the distribution of the realizations 
that result from clicking on an alternative and must therefore account for the differences that may exist between 
the ranking provided by the engine and their subjective potential evaluations. The current paper formalizes the 
information retrieval incentives of DMs through a combinatorial function that incorporates the position of the 
results displayed by the search engine and the order in which they are evaluated. This function defines a 
benchmark framework measuring the ability of search engines to identify the preferences of DMs and the ca-
pacity of the latter to assimilate and evaluate the information provided by the engines. We compare the cu-
mulative frequencies derived from the implementation of evaluation models of varying complexity with the 
average traffic shares and click through rates of the alternatives ranked within the first page of Google results. A 
seemingly paradoxical result is obtained when simulating the information acquisition behavior of DMs after 
performing an online search, namely, artificial agents require more complex combinatorial abilities than actual 
DMs to approximate better the heuristic choices of the latter in online evaluation environments.   

1. Introduction 

The rankings delivered by online search engines condition to a large 
extent the preferences and choices of decision makers (DMs) due to the 
trust placed by the users in the corresponding orders, despite their 
complete lack of knowledge regarding the procedure implemented to 
generate the rankings [7,11,13]. Eye-tracking technology has been used 
to illustrate the fact that consumers scan the results in the order pro-
vided by the engine, fixating on the highest-ranked ones [10]. Epstein 
and Robertson [5] review the empirical literature describing the sub-
stantial effect that online search rankings have on the preferences and 
decisions of DMs. 

The limited capacity of DMs to retrieve and assimilate information 
has been consistently illustrated across different scientific domains [14]. 
DMs are incapable of computing all 3,628,800 permutations resulting 
from the first ten results ranked and select a subset of them on which to 
base their evaluation processes. It may therefore seem plausible to as-
sume that DMs simply follow the order of the ranking when evaluating 
the alternatives. Given an average of two clicks per search [1], this 

behavior should lead to identical percentages on the first two alterna-
tives ranked by the search engine. 

That is, if the first two alternatives deliver the subjective utility 
requested, the retrieval process should end with the DM having clicked 
just on the first and second alternatives. Note that if all DMs do so based 
on the assumption that, given their ranking positions, the first two al-
ternatives deliver the highest utility, then we should observe all DMs 
clicking on the first two alternatives and ending their searches right 
after. 

The behavior observed would therefore consist of each alternative 
receiving half of the total clicks and accounting for half of the average 
traffic share. The click through rates (CTRs) should be equal to 100% for 
each alternative, since they are both clicked by DMs on a per-search 
basis. However, this is not what is observed [3,4], but a high propor-
tion of clicks concentrated on the top two results and decreasing per-
centages as we move towards the bottom of the page. 

From an intuitive viewpoint, the only requirement defined on the 
evaluation process should be the fact that DMs lack information 
regarding the realizations of the alternatives but trust the order 
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displayed by the search engine. This requirement follows from the un-
certainty inherent to the evaluation of the alternatives and the limited 
capacity of DMs to acquire and process information. Given the fact that 
DMs do not know the distribution of the realizations that result from 
clicking on an alternative, a uniform density should be assigned to the 
potential set of evaluations. Moreover, the intervals defining the do-
mains of the corresponding probability functions should reflect the 
order of the ranking provided by the engine. 

A considerable causality problem arises when interpreting the data 
retrieved from search engines regarding the behavior of users. On one 
hand, it may be assumed that the ranking delivered by the search engine 
satisfies the preferences of DMs. This assumption implies that any 
divergence from the suggested alternatives represents frictions on the 
evaluation capacities of DMs, generally dealt with by psychologists and 
neuroscientists. On the other hand, it may be assumed that search en-
gines try to elicit the preferences of DMs from their search keywords and 
the frictions observed highlight their inability to do so. A combination of 
any of these scenarios could also be considered, with a higher emphasis 
placed on any of them depending on a series of preselected factors. 

Thus, even though DMs have consistently stated their trust in the 
rankings delivered by search engines [9] and psychologists have 
emphasized the volatility inherent to the preferences of consumers [8], 
the dominant causal effect cannot be identified, especially if we want to 
avoid observer bias-related phenomena. The current paper defines a 
benchmark framework to measure the frictions arising between the 
ranking provided by a search engine – and its ability to identify the 
preferences of users –, and the capacity of DMs to assimilate and eval-
uate information. 

More precisely, we formalize the sequential evaluation patterns of 
the alternatives ranked by a search engine. We illustrate the capacity of 
pairwise comparisons to approximate the actual online search behavior 
of users and how increments in the complexity of the evaluation 
mechanism provide better approximations. This finding constitutes a 
somehow paradoxical result, since a better approximation of the fre-
quencies observed is obtained when endowing DMs with a higher degree 
of combinatorial complexity. The complexity of the combinatorial 
problem increases considerably as we add alternatives to the 

permutations since we must consider both the order in which the al-
ternatives are observed and the different domains of the evaluation 
intervals. 

To the best of our knowledge, the sequential evaluation structure 
introduced in the current paper is completely novel, while being based 
on a basic set of assumptions consistent with rational information 
acquisition processes [12]. The remaining of the paper proceeds as fol-
lows. Section 2 introduces the main assumptions required to develop the 
sequential structure defined in Section 3 and enhanced in Section 4. 
Section 5 simulates several numerical evaluations and compares them 
with the results obtained by different empirical studies. Section 6 con-
cludes and suggests potential extensions. 

2. Basic assumptions 

We formalize and analyze the optimal behavior that should be 
exhibited by a DM deciding in which order to observe the results dis-
played in the first page of an online search engine. The only assumption 
required to formulate the retrieval process is the fact that DMs trust the 
engine to provide them with a ranking that reflects their subjective 
preferences [6]. As a result, the subjective utility assigned to each 
alternative before browsing through the results should be determined by 
the order in which they are displayed, with the first one receiving the 
highest value and the others continuing in descending order. 

As described in the introduction, DMs are constrained in their in-
formation acquisition and assimilation capacities and are therefore 
prone to define heuristic mechanisms that simplify their evaluation 
processes [15]. Fig. 1 illustrates a direct consequence from this fact, 
namely, the average number of terms per online search query in the 
United States both in 2017 and 2020. DMs have increased the 
complexity of their searches from mainly of one-word queries in 2017 to 
two-word queries in 2020. Despite this tendency, a three-word upper 
limit prevails across periods, with queries containing three words or less 
accounting for 80% of total searches in both years. 

We will consider two evaluation scenarios, accounting for pairwise 
and triple comparisons across alternatives based on the ranking posi-
tions displayed by the engine. Pairwise comparisons between 

Fig. 1. Average number of search terms for online search queries in the United States: August 2017 vs. January 2020. 
Data retrieved from Statista (https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/). Original source: key-
worddiscovery.com. 
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alternatives constitute a standard heuristic mechanism implemented in 
evaluation techniques such as the Analytical Hierarchy Process and 
several other decision-making models [16]. The increase in complexity 
derived from the incorporation of a third alternative to evaluate and 
compare constitutes the main focus of analysis of the current paper. 

As a measure of complexity of the combinatorial process, we have 
considered the number of permutations that may be defined using the 
alternatives provided within the first page of results and their grouping 
in ordered categories. For instance, the pairwise evaluation scenario 
requires accounting for two sets of ordered alternatives. The number of 
permutation categories that must be defined increase to a total of six 
when considering the evaluation of three alternatives. The complexity of 
the process increases until a total of 3,628,800 permutations is reached 
when incorporating to the analysis the ten alternatives displayed by the 
engine. The inherent complexity of the corresponding categorization 
process is summarized in Table 1. 

Let pi ∈ X denote the ranking position of alternative i, while pj, pk ∈ X 
correspond to the positions of alternatives j and k, with i ∕= j ∕= k. Each 
alternative receives a numerical evaluation according to its ranking 
position as displayed by the engine. Empirical analyses generally focus 
on the first ten alternatives delivered by the engine [5], thus, a 
descending categorization of the alternatives is defined by assigning a 
value of 10 to the first and a value of 1 to the last. 

It should be emphasized that the results described do not rely on 
these numerical values but on the relative ranking positions assigned by 
the engine. 

In the following, we will use xi to denote the value assigned to the 
ranking position pi of alternative i. Furthermore, we will let the real 
interval [0, yiM] be the set of potential realizations that can be observed 
when the ith link is clicked by the DM and yi ∈ [0, yiM] denote one of 
these potential realizations. The superscript M denotes the maximum 
value of the interval being considered. 

As stated above, we will be working under the assumption that xi =

10 − (i − 1), for i = 1, ...,10, so that the alternatives ranked in the first 
ten positions by the engine are assigned a decreasing value from 10 to 1. 
However, the value scale used to categorize the ranking order assigned 
by the engine can be any scale based on ten decreasing values. 

To better reflect the ranking position of the alternatives, we assume 
that for i, j and k such that i ∕= j ∕= k and xi > xj > xk, we have yiM > yjM 

> ykM. We further simplify notations and calculations by assuming that 
yiM = xi for every alternative i. 

Finally, Y will denote the set of all potential realizations, that is, the 
set of all yi with i = 1,...,10, where yi is the potential realization that can 
be observed after clicking on the i-th link. Hence, Y =

⋃

i
[0, yiM] = [0,

y1M]. Under the assumption that for each alternative i, yiM = xi, the set Y 
reduces to the interval [0,10]. 

Fig. 2 provides a graphical representation of the notations and as-
sumptions introduced above, summarizing the basic framework of 
analysis. 

In order to illustrate numerically the information retrieval and 
evaluation processes, it will be assumed that the DM is endowed with a 
utility function u : Y→R, representing his subjective preferences on Y, 
and a probability function f : Y→[0, 1], describing his beliefs about the 
distribution of potential realizations when evaluating an alternative. 

2.1. Uncertain evaluations 

Given the ranking position of an alternative, pi ∈ X, and its value, xi, 
on a 10 to 1 scale, the DM defines the set of potential evaluations that 

may be retrieved within the interval [0,yiM]. That is, the DM considers an 
interval of feasible realizations to be derived from clicking on a link and 
evaluating an option in detail. This assumption follows from the 
importance placed by cognitive scientists on the subjective perception of 
DMs when evaluating an alternative [2]. 

Given the uncertainty inherent to the actual characteristics of each 
alternative, with DMs being required to click on a ranking item to obtain 
additional information about a set of unknown potential realizations, we 
maximize information entropy by defining a uniform density over the 
potential realizations within [0,yiM]. That is, ∀i = 1, ...,10, we define the 
following density function: 

fi
(
yi) =

⎧
⎪⎨

⎪⎩

1
xi if yi ∈

[
0, yiM] =

[
0, xi]

0 otherwise

(1) 

The main results obtained are independent of the density chosen and 
hold when considering any alternative probability function, such as a 
normal. Figs. 4 and 5, which illustrate the distribution of probability 
through intervals [0, yiM] and [0, yjM], provide additional intuition 
regarding this statement. 

As stated earlier, we have assumed that xi = yiM, a notational choice 
that aims at simplifying the description of the model. For the same 
reason, the utility function on Y is assumed to be the identity function, 
that is: ∀y ∈ Y, u(y) = y. 

Note that alternatives located higher in the ranking may provide the 
DM with a lower utility than those in lower positions, though such an 
event occurs with a decreasing probability as we move down the 
ranking. Fig. 3 presents three graphical examples within a two- 
observation setting, namely, when the DM clicks on two alternatives 
per search query. 

3. Heuristic value functions 

Let xi, xj and xk be the values reflecting the ranking positions of al-
ternatives i, j and k, with i ∕= j ∕= k. The value functions defined in terms 
of the potential realizations of the different alternatives are determined 
by the order in which the latter are observed as well as their corre-
sponding positions in the ranking. 

The heuristic scenario considers the realizations associated with the 
ranking position pi relative to those associated with the ranking position 
pj, while accounting for the corresponding uncertainty on the side of the 
DM. Two potential evaluation settings must be considered, a scenario 
whose complexity increases considerably when incorporating a third 
potential alternative to the analysis, since the resulting framework must 
account for a total of six potential evaluation settings. 

3.1. The xi ≤ xj setting 

The initial evaluation case corresponds to the xi ≤ xj setting, with the 
first alternative clicked being ranked in a lower position by the search 
engine. We define the following value function for the pairs (yi, yj) of 
potential realizations that can be observed by the DM. 

V
(
xi,xj,yiM ,yjM)=

∫y
iM

0

1
xi

⎡

⎢
⎣

∫yi

0

1
xj

(
yi)dyj +

∫y
jM

yi

1
xj

(
y j − c j)dy j

⎤

⎥
⎦dy i, y iM ≤ yjM

(2) 

The value function V assigns an expected utility value to each pair (yi,

Table 1 
Evaluation scenarios and number of permutation categories.  

Number of alternatives evaluated 1 2 3 4 5 6 7 8 9 10 
Permutation categories 1 2 6 24 120 720 5040 40,320 362,880 3,628,800  
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yj). The quantities 1
xi and 1

xj represent the density functions associated 
with yi and yj, respectively. 

Note that the rank differences between alternatives i and j imply that 
yiM ≤ yjM. In this regard, the second alternative may improve upon the 
utility provided by the initial one, while incurring a penalty cost of cj, or 
it may not, implying that the initial alternative provides the highest 
utility. That is, after observing yi, the realization yj may belong to either 

[0, yi] or [yi,yjM]. The integrals 
∫yi

0

1
xj (y

i)dyj and 
∫y

jM

yi

1
xj (y

j − cj)dyj formalize 

the expected payoffs when yj ∈ [0, yi] and yj ∈ [yi,yjM], respectively. 
Fig. 4 shows the domains of the potential realizations yi and yj when 

considering the xi ≤ xj setting, illustrating how the value of yj can vary 
with respect to an already observed value of yi. 

The penalty cost has been included to reflect the inefficiency in the 
search process of the DM, as well as to distinguish the expected payoffs 
received from evaluating two alternatives in a different order. That is, 
without a penalty cost, the order in which the alternatives composing 
each pair are evaluated does not have an effect on the expected utility. 

3.2. The xi > xj setting 

Similarly to the above scenario, the xi > xj setting requires modi-
fying the value function so as to adapt it to the domains within which 
each alternative is defined 

V
(
xi, xj, yiM , yjM) =

∫y
iM

yjM

1
xi

[
yi]dyi

+

∫y
jM

0

1
xi

⎡

⎢
⎣

∫yi

0

1
xj

(
y i)dy j +

∫y
jM

yi

1
xj

(
y j − c j)dy j

⎤

⎥
⎦dy i, yiM

> yjM

(3) 

Note that the domain of yi is now allowed to exceed that of yj, a 
possibility accounted for by the first right hand side term. As was the 
case in the previous setting, yjM defines the upper limit of the yj domain, 
leading the second evaluation to either improve upon the initial one, at a 
cost of cj, or to provide a lower utility. More precisely, the second right 
hand side term comprises the payoffs relative to the cases where yj ∈

[0, yi] and yj ∈ [yi,yjM]. 
Fig. 5 illustrates the domains of the potential realizations yi and yj 

when considering the xi > xj setting. In particular, it is shown how the 
value of yj varies with respect to the observed value of yi. 

4. Incorporating a third alternative 

The value function defined by DMs must incorporate two distinct 
combinatorial effects: those derived from the order in which alternatives 
are evaluated and those following from the order in which the alterna-
tives are ranked. In all cases, the DMs must account for the uncertainty 
inherent to the potential realizations of each alternative and adapt to the 
relative limits of the different domains defined by the ranking position 
and the order of evaluation. Moreover, the increments in utility (relative 

Fig. 2. Basic framework of analysis: notations and assumptions.  
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to the initial evaluation) following from the second and third alternative 
must include the respective incremental penalty costs of cj and 2cj. 

We describe below the whole set of permutations defining the 
function V(xi,xj,xk, yiM, yjM, ykM). A total of six different settings condi-
tioned by the relative ranking position of the alternatives and the cor-
responding uncertain evaluation intervals will be defined. 

For instance, consider the initial xi ≤ xj ≤ xk setting. In this case, part 
of the domain of yjsurpasses the upper limit defined by yiM as xj improves 

upon xi. This very same possibility applies to the domain of yk relative to 
both yiM and yjM. The whole set of possibilities is described within the 
right hand side of Eq. (4), where the terms have been adapted to account 
for the limits of the supports of the different density functions. 

In particular, the first term corresponds to the case where the initial 
evaluation delivers the highest utility, while the second term describes 
the case where the third evaluation delivers the highest utility at a cost 
of 2cj. Note that both cases take place within the scenario where the 

Fig. 3. Examples of observed realizations after two clicks.  

Fig. 4. Relative positions of the potential realizations yi and yj in the xi ≤ xj setting.  
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second evaluation underperforms relative to the first and the third one. 
The third and fourth terms are located within the interval where the 
second evaluation delivers a higher utility than the first one, with the 
third alternative delivering a lower and higher utility than the second, 
respectively. 

All in all, the relative ranking position of the alternatives constitutes 
an important determinant of the expectations defining the value func-
tion, with the incorporation of a third evaluation requiring the following 
combinatorial possibilities – whose intuition and description follow the 
ones just provided – to be considered 

(a) The xi ≤ xj ≤ xk setting 

V
(
xi, x j, x k, yiM , y jM , ykM) =

∫y
iM

0

1
x i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫yi

0

1
x j

⎡

⎢
⎣

∫yi

0

1
x k

(
y i)dy k +

∫y
kM

yi

1
x k

(
y k − 2c j)dy k

⎤

⎥
⎦dy j+

∫y
jM

y i

1
x j

⎡

⎢
⎣

∫y
j

0

1
x k

(
y j − c j)dyk +

∫y
kM

yj

1
xk

(
y k − 2c j)dy k

⎤

⎥
⎦dy j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(4)   

(b) The xi ≤ xk ≤ xj setting 

Fig. 5. Relative positions of the potential realizations yi and yj in the xi > xj setting.  
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V
(
x i,x j,x k,y iM ,y jM ,y kM)=

∫y
iM

0

1
x i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫y
i

0

1
x j

⎡

⎢
⎣

∫yi

0

1
xk

(
yi)dyk+

∫y
kM

yi

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
kM

y i

1
xj

⎡

⎢
⎣

∫yj

0

1
xk

(
yj − cj)dyk+

∫y
kM

yj

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
jM

ykM

1
xj

(
yj − cj)dyj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(5)   

(c) The xk ≤ xi ≤ xj setting 

V
(
xi,xj,xk,yiM ,yjM ,ykM)=

∫y
iM

ykM

1
xi

⎡

⎢
⎣

∫yi

0

1
xj

(
yi)dyj+

∫y
jM

yi

1
xj

(
yj− cj)dyj

⎤

⎥
⎦dyi+

∫y
kM

0

1
xi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫yi

0

1
xj

⎡

⎢
⎣

∫yi

0

1
xk

(
yi)dyk+

∫y
kM

yi

1
xk

(
yk− 2cj)dyk

⎤

⎥
⎦dyj+

∫y
kM

yi

1
xj

⎡

⎢
⎣

∫yj

0

1
xk

(
yj− cj)dyk+

∫y
kM

yj

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
jM

ykM

1
xj

(
yj− cj)dyj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(6)   

(d) The xk ≤ xj ≤ xi setting 

V
(
xi,xj,xk,yiM ,yjM ,ykM)=

∫y
iM

yjM

1
xi

[
yi]dyi+

∫y
jM

ykM

1
xi

⎡

⎢
⎣

∫yi

0

1
xj

(
yi)dyj+

∫y
jM

yi

1
xj

(
yj − cj)dyj

⎤

⎥
⎦dyi+

∫y
kM

0

1
xi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫yi

0

1
xj

⎡

⎢
⎣

∫yi

0

1
xk

(
yi)dyk+

∫y
kM

yi

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
kM

yi

1
xj

⎡

⎢
⎣

∫yj

0

1
xk

(
yj − cj)dyk+

∫y
kM

yj

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
jM

ykM

1
xj

(
yj − cj)dyj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(7)   

(e) The xj ≤ xi ≤ xk setting 

V
(
xi, xj, xk, yiM , yjM , ykM) =

∫y
iM

yjM

1
xi

⎡

⎢
⎣

∫yi

0

1
xk

(
yi)dyk +

∫y
kM

yi

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyi+

∫y
jM

0

1
xi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫yi

0

1
xj

⎡

⎢
⎣

∫yi

0

1
xk

(
yi)dyk +

∫y
kM

yi

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj+

∫y
jM

yi

1
xj

⎡

⎢
⎣

∫yj

0

1
xk

(
yj − cj)dyk +

∫y
kM

yj

1
xk

(
yk − 2cj)dyk

⎤

⎥
⎦dyj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(8)   

(f) The xj ≤ xk ≤ xi setting 

V
(
x i,x j,x k,y iM ,y jM ,y kM)=

∫y
iM

y kM

1
x i

[
y i]dy i +

∫y
kM

y jM

1
x i

⎡

⎢
⎣

∫y
i

0

1
x k

(
y i)dy k +

∫y
kM

y i

1
xk

(
y k − 2c j)dy k

⎤

⎥
⎦dy i+

∫y
jM

0

1
x i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫y
i

0

1
x j

⎡

⎢
⎣

∫y
i

0

1
x k

(
y i)dy k +

∫y
kM

y i

1
x k

(
y k − 2c j)dy k

⎤

⎥
⎦dy j+

∫y
jM

y i

1
x j

⎡

⎢
⎣

∫y
j

0

1
x k

(
y j − c j)dy k +

∫y
kM

y j

1
x k

(
y k − 2c j)dy k

⎤

⎥
⎦dy j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dyi

(9)   

5. Numerical evaluations and cumulative frequencies 

Figs. 6 to 8 illustrate the expected utility obtained from the evalua-
tion of the triples corresponding to different sets of permutations. In all 
figures, the expected utility of the triples where the initial evaluation 
corresponds to the first alternative in the ranking is represented by a 
blue circle, an orange square is used when the initial evaluation corre-
sponds to the second alternative in the ranking, and a green diamond 
when it is the third one. Fig. 6 presents all triples simultaneously, while 
Figs. 7 and 8 illustrate the first and second subcases, and the first and 
third subcases, respectively. The ordering in expected utility terms 
generated by the different evaluation patterns can be clearly observed in 
these figures. 

Two empirical studies are used to contrast the validity of the simu-
lations. Chitika [3] computed the average traffic percentages of the first 
15 ranking results provided by Google from a sample of several million 
impressions in US and Canada that were retrieved in May 2013. More 
recently, Dean [4] analyzed the CTR of the organic results displayed in 
the first page of Google from a sample of five million searches. The 
percentages obtained by these studies are summarized in the second 
columns of Tables 2 and 3, respectively. 

Table 2 compares the average traffic percentages of the first ten 
search results with the cumulative frequencies obtained from imple-
menting both evaluation settings and computing the corresponding 
deciles. Note that an implicit assumption behind the computation of the 
cumulative frequencies is that each evaluation is equivalent to a search 
click. In this regard, Table 3 applies the same analysis to the average 
traffic shares derived from the CTRs reported by Dean [4]. In addition to 
the intuitive visual analysis derived from a direct comparison of the 
rankings, the squared Euclidean distance has been computed to illus-
trate the dissimilarities existing among the different evaluation 
categories. 

Note how the average traffic shares described by Chitika [3] fit 
within the second decile of the pairwise evaluation setting and the first 
decile of the triple one – both of which display relatively small Euclidean 
distances –. The simplicity of search queries illustrated in Fig. 1, with 
one-word queries constituting the most prominent category in 2017, 
provides a suitable complement to this finding. That is, pairwise and 
triple evaluation settings can be used to categorize the search behavior 
exhibited by DMs when the information retrieval incentives are con-
strained by a relatively low number of search terms. 

Consider Fig. 1 again and note the substantial increase exhibited by 
the two- and three-word categories in 2020. The average traffic shares 
obtained by Dean [4] illustrate that as DMs become more sophisticated 
and perform searches based on a larger number of words, the second 
decile of the triple evaluation scenario provides a more suitable fit. That 
is, as DMs perform more complex searches, they are willing to consider a 
larger number of potential alternatives – some of which correspond to 
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Fig. 6. Expected utility from triples of clicks (xi, xj, xk) with cj = 0.1 when xi = x1, xi = x2 and xi = x3.  

Fig. 7. Expected utility from triples of clicks (xi, xj, xk) with cj = 0.1 when xi = x1 and xi = x2.  
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links located in lower ranking positions –. 
From a causality perspective, the performance of queries including a 

larger number of search terms may be assumed to reflect the intention of 
DMs to consider a larger number of alternatives among those provided 
by the search engine within the first page of results. Alternatively, we 
could also conclude that as DMs become more sophisticated, the search 
engine distributes potentially suitable alternatives through a wider set of 
ranked elements. 

All in all, ranking similarities increase when incorporating a third 
observation to the combinatorial approach, particularly when consid-
ering the first and second deciles within the scenarios derived from 
Chitika [3] and Dean [4], respectively. The similarities are also sub-
stantial between rank categories when considering the second decile 
from the pairwise setting, which highlights the considerable importance 
of the heuristic mechanisms applied by DMs when dealing with complex 
evaluation environments. However, such similarities vanish when 
shifting to the scenario derived from Dean [4], with triples performing 
substantially better than pairs. 

We conclude by highlighting the higher similarities exhibited by the 
triples when compared to the pairs in both scenarios, while being aware 
of the fact that computing these permutations imposes a substantial 
burden on the DMs, who are unable to implement such complex struc-
tures when evaluating alternatives. In this regard, adding a fourth 
alternative to the value function would probably deliver better ranking 
approximations within both scenarios. However, the conclusions 
derived from the current analysis would remain unchanged. 

6. Conclusion 

We have formalized the evaluation process of the different alterna-
tives composing the ranking of an online search engine. The corre-
sponding value functions have been designed to determine the order in 
which to evaluate the alternatives, characterized by the uncertain in-
tervals following from the ranking positions displayed by the engine. 
These functions define a benchmark framework measuring the ability of 
search engines to identify the preferences of DMs and the capacity of the 

Fig. 8. Expected utility from triples of clicks (xi, xj, xk) with cj = 0.1 when xi = x1 and xi = x3.  

Table 2 
Comparing cumulative frequencies with the average traffic shares from Chitika [3].    

Pairwise Triple 

Google ResultPage Rank AverageTraffic Share First D9 pairs18 clicks Second D18 pairs36 clicks First D72 triples216 clicks Second D144 triples432 clicks 

1 32.5 38.9 36,1 33,3 28,7 
2 17.6 22.2 19,4 22,2 15,7 
3 11.4 22.2 11,1 13,9 15,7 
4 8.1 11.1 11,1 5,6 11,6 
5 6.1 5.6 8,3 5,6 6 
6 4.4 0 5,6 5,6 6 
7 3.5 0 5,6 4,2 4,6 
8 3.1 0 2,8 3,7 4,2 
9 2.6 0 0 3,2 3,9 
10 2.4 0 0 2,8 3,5 
11–15 3.5 – – – – 
Squared Euclidean Distance 242 49 37 57  
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latter to assimilate and evaluate the information provided by the 
engines. 

The complete uncertainty faced by the users, other than their belief 
in the ranking provided by the search engine, implies that DMs must 
account for the relative domains and potential realizations of all the 
alternatives being evaluated when computing the value functions. The 
increasing complexity of this combinatorial process has been illustrated 
formally and numerically throughout the paper. 

We conclude by noting that the evaluation scenario introduced can 
be adjusted to formalize interactions across alternatives within uncer-
tain environments in multi-criteria decision making techniques such as 
TOPSIS. From a strategic viewpoint, Epstein and Robertson [5] 
demonstrated empirically what they defined as the search engine 
manipulation effect, namely, the design of search rankings so as to 
modify the decisions of undecided voters. The current model could be 
applied to determine the basic requirements in terms of information 
acquisition for different disclosure strategies to be viable. 

Finally, further heuristic developments would be required to incor-
porate more complex combinatorial scenarios into the analysis, such as 
the unification of all the domains within a common framework while 
adjusting the shape of the probability density to account for the ranking 
position of the different alternatives and their effects on the expectations 
of the DM. 
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Table 3 
Comparing cumulative frequencies with the CTR from Dean [4].     

Pairwise Triple 

Google 
Result 
Page 
Rank 

CTR Average 
Traffic 
Share* 

First D9 
pairs18 
clicks 

Second 
D18 
pairs36 
clicks 

First D72 
triples216 
clicks 

Second 
D144 
triples432 
clicks 

1 31,7 26.96 38.9 36.1 33.3 28.7 
2 24,7 21.00 22.2 19.4 22.2 15.7 
3 18,7 15.90 22.2 11.1 13.9 15.7 
4 13,6 11.56 11.1 11.1 5.6 11.6 
5 9,5 8.08 5.6 8.3 5.6 6 
6 6,2 5.27 0 5.6 5.6 6 
7 4,1 3.49 0 5.6 4.2 4.6 
8 3,1 2.64 0 2.8 3.7 4.2 
9 3 2.55 0 0 3.2 3.9 
10 3 2.55 0 0 2.8 3.5 
11–15 – – – – – – 
Squared 

Euclidean 
Distance  

250 127 90 42  

* We must highlight the fact that Dean [4] does not provide the average traffic 
shares but the CTRs obtained from 5,000,000 search queries. Given the defini-
tion of click through rate as the ratio of users who click on a link to the number of 
total users who perform a search, we can easily derive the corresponding 
average traffic shares by performing the following calculations for i = 1,…,10:1. 
Total number of clicks on alternative i = CTR of alternative i times 5,000,000.2. 
Total number of clicks =

∑

i
Total number of clicks on alternative i.3. Average 

traffic share of alternative i = Total number of clicks on alternative i / Total 
number of clicks. 
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