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Abstract—An innovative transformation electromagnetics (TE)
paradigm, which leverages on the Schwarz-Christoffel (SC)
theorem, is proposed to design effective and realistic field
manipulation devices (FMD). Thanks to the conformal property,
such a TE design method allows one to considerably mitigate
the anisotropy of the synthesized metalenses (i.e., devices with
artificially-engineered materials covering an antenna to modify
its radiation features) with respect to those yielded by competitive
state-of-the-art TE techniques. Moreover, devices with doubly-
connected contours, thus including masts with arbitrary sections
and lenses with holes/forbidden regions in which the material
properties cannot be controlled, can be handled. A set of
numerical experiments is presented to assess the features of the
proposed method in terms of field-manipulation capabilities and
complexity of the lens material also in a comparative fashion.

Index Terms—Transformation Electromagnetics; Conformal
Mapping; Field Manipulation; Material-by-Design; Schwarz-
Christoffel Mapping.

I. INTRODUCTION AND RATIONALE

I
N the last few years, transformation electromagnetics (TE)

has emerged as a powerful paradigm for the design of

innovative electromagnetic (EM) devices with unprecedented

field manipulating capabilities [1]-[3]. The key idea of TE

is that the wave propagation properties of a reference radi-

ating device can be mimicked by another one with a dif-

ferent shape, but coated with a properly designed metalens

(i.e., a device whose constituent materials are artificially-

engineered/not already available in nature to achieve user-

defined/unconventional radiation features 1) [1]. Towards this

end, suitable coordinate transformations are applied in the

reference space in which the antenna operates to (i) derive new
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1It is worth remarking that the word “metalens” is here adopted to indicate
TE-synthesized devices and it is not limited to the concept of metasurfaces.

material specifications starting from transformed geometrical

parameters and to (ii) control the propagation of EM waves

within the surrounding environment [1]. The generality and the

flexibility of such an idea have been demonstrated in several

applications and TE-based devices have been implemented

across a broad range of frequencies and scenarios, includ-

ing carpet cloaks [4], optic graded-index metalenses [5][6],

conformal arrays and radiators [7]-[10], multibeam antennas

[11], compressed Luneburg lenses [12][13], flat reflectors

[14][15], waveguide couplers [16], focusing lenses [17][18],

miniaturized antennas and arrays [19][20], and compact horns

[21]. For instance, it has been already demonstrated that

TE can enable the design of L-shaped arrays coated with

metamaterial lenses able to generate, outside the lens support,

the same field distribution of circular layouts radiating in the

free space, thus avoiding scan loss/beam distortion issues [7].

The popularity of TE and its extensions [22][23] are motivated

by several factors such as the strong theoretical foundations,

which rely on the invariance of Maxwell’s equations under

coordinate transformations [2], and the availability of closed-

form exact expressions for the synthesis of the metalenses once

a suitable coordinate mapping between the reference geometry

and the designed one is available [1]. On the other hand, it

is worth pointing out that the derivation/computation of the

mapping functions is often a challenging task from both the

methodological and the practical viewpoint since (i) handling

non-canonical shapes has no trivial and general-purpose solu-

tions and (ii) yielding isotropic (or low anisotropy) lenses is

generally difficult even for elementary geometries [1]. In this

framework, Quasi-Conformal TE (QCTE) methods deal with

non-canonical shapes yielding a reduced material anisotropy

[1][7], but their direct (i.e., without intermediate steps and

approximations) application is limited to simply-connected

domains [7]. Therefore, the QCTE design of field manipulation

devices including holes/empty regions, which are of potential

interest for several applications such as mast-mounted 5G base

stations and/or radar antennas, is actually inefficient.

To overcome this issue, an innovative class of TE design strate-

gies is here proposed. Thanks to the Schwarz-Christoffel (SC)

theorem [24], a conformal mapping technique is customized

to the solution of the TE problem to derive a new synthesis

approach that (i) ideally avoids/minimizes the anisotropy of

the metalenses and (ii) successfully handles arbitrary doubly-

connected domains (i.e., lenses/devices including holes and/or

forbidden regions). Such an approach is mainly motivated by

the following reasons: (i) the exploitation of SC mapping is
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expected to considerably improve the lens performance and the

design flexibility with respect to standard QCTE approaches

because of the inherently conformal nature of the resulting

transformation [24], (ii) effective numerical implementations

of the SC mapping formula [25] can be customized to the

problem of interest also when very complex lens profiles

are at hand, (iii) the resulting theory is a generalization of

previously-derived conformal transformation approaches since

all conformal transformations with known analytic forms are

also SC maps, sometimes disguised by a change of variables

[24].

As for the key methodological and innovative contributions of

this paper, they include (i) for the first time to the best of the

authors’ knowledge, the customization and the application of

SC mapping strategies to the solution of TE design problems,

(ii) the introduction of a TE technique suitable for doubly-

connected domains, thus the possibility of designing lenses

with holes or forbidden regions, and (iii) the derivation of a

set of operative guidelines for the effective exploitation of the

proposed synthesis approach.

The outline of the paper is as follows. The formulation of

the design problem at hand, within the TE framework, is

presented in Sect. II. Section III details the customization

of the SC mapping to the solution of the arising conformal

TE formulation. A set of representative numerical results,

from a broad numerical validation, is then illustrated to assess

the effectiveness and the potentialities of the proposed SC-

CTE design technique also in comparison with state-of-the-art

QCTE methodologies (Sect. IV). Finally, some conclusions

and remarks are drawn (Sect. V).

II. FORMULATION OF THE DESIGN PROBLEM WITHIN THE

TE FRAMEWORK

Let us consider the problem of synthesizing the dielectric

properties [i.e., the relative permittivity and the permeability

tensors ε (r) and µ (r)] of a doubly-connected metalens with

user-defined shape Γ coating an N-element array [Fig. 1(a)] of

time-harmonic 2 current line sources Jn (r) = Jnδ (r− rn) ẑ,

n = 1, ..., N , so that the resulting device [i.e., the ensemble of

the N-element array and the metalens, which will be indicated

- in the following - as field manipulation device (FMD)]

radiates an electric, e, and a magnetic, h, field distributions

that comply with user-specified target fields, e
∗ and h

∗,

outside the FMD volume (r /∈ Γ)
{

e (r) = e
∗ (r)

h (r) = h
∗ (r)

r /∈ Γ. (1)

Then, let us consider an auxiliary space described by the

coordinate system r
∗ , (x∗, y∗, z∗) and let us assume

that the target fields e
∗ and h

∗ are the result of the

EM interactions between N electric current line sources,

{J∗
n (r

∗) = J∗
nδ (r

∗ − r
∗
n) ẑ

∗; n = 1, ..., N} (J∗
n =

e−j
2π
λ [ν∗

i cos( 2π
N

[n−1]) cos(ϕ0)+ν
∗

i sin( 2π
N

[n−1]) sin(ϕ0)], ϕ0 being

the beam-steering direction), and a doubly-connected annular

region Γ∗, with inner/outer radius equal to ν∗i /ν∗o [Fig. 1(b)],

characterized by the relative permittivity and the permeability

2The time dependence exp (j2πft) is assumed and omitted hereinafter.
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Figure 1. Problem Geometry. Sketches of (a) the doubly-connected metalens
with user-defined shape Γ, (b) the doubly-connected reference annular region
Γ∗, (c) the two auxiliary complex spaces (d) Ω (ζ: Γ → Ω) and (e) Ω∗ (ζ∗:

Γ∗ → Ω∗), and (e) the anulus region Ω̃ (χ: Ω∗ → Ω̃; ψ: Ω̃ → Ω) with
internal and external radius equal to µ [µ ∈ (0, 1)] and to 1, respectively.

tensors ε
∗
(r∗) and µ

∗
(r∗) (r∗ ∈ Γ∗),3 respectively. It means

that {
e
∗ (r) , e

∗ (r∗)⌋
r
∗=r

h
∗ (r) , h

∗ (r∗)⌋
r
∗=r

.
(2)

By adopting the TE guidelines [1], the solution of this problem

can be found if a suitable mapping between the two coordinate

systems, r∗ and r, is derived by defining the transformation

function τ

r = τ (r∗) , [τx (r
∗) , τy (r

∗) , τz (r
∗)] (3)

that fits the contour mapping equation

τ (r∗)⌋
r
∗∈{∂iΓ∗∪∂oΓ∗} = {∂iΓ ∪ ∂oΓ} (4)

∂i and ∂o being the inner and the outer contour operators

of a generic doubly-connected region. Indeed, because of the

3Without loss of generality, Γ∗ can be always defined as an annular
region as Γ∗ , {νi ≤ r

∗ ≤ νo} such that Γ∗ ⊃ {r∗n, n = 1, ...,N},

Γ∗ ⊃ supp
[
ε
∗

(r∗)− 1
]

, and Γ∗ ⊃ supp
[
µ
∗

(r∗)− 1
]
, supp [·] being

the support operator.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2019.2948771

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 0, 2019 3

form-invariant nature of the Maxwell’s equations under spatial

transformations and by exploiting the “material interpretation”

concept [1], one can prove that (1) is exactly satisfied by a

FMD defined by the following conditions:
{

rn = τ (r∗n)
Jn = J∗

n
n = 1, ..., N (5)

(Source Mapping Condition)




ε (r) = J [τ(r∗)]ε(r∗)J T [τ(r∗)]
det{J [τ(r∗)]}

⌋
r
∗=r

µ (r) = J [τ(r∗)]µ(r∗)J T [τ(r∗)]
det{J [τ(r∗)]}

⌋
r
∗=r

if r ∈ Γ (6)

(Material Mapping Condition)

where det {·} stands for the determinant, J [·] is the Jacobian

tensor, and ·T is the transpose operator.

Accordingly, the original FMD synthesis problem can be

formulated as the following transformation function design:

TE-Based Design Problem (TEDP) - Given ∂iΓ,

∂oΓ, ∂iΓ
∗, and ∂oΓ

∗, find the transformation func-

tion τ (τ : Γ∗ → Γ) such that the contour mapping

equation (4) holds true.

Indeed, once τ is known, the lens dielectric properties and the

resulting array configuration that radiate exactly the target field

(1) can be simply found by using (5)-(6) given the reference

line sources configuration, {J∗
n (r

∗); n = 1, ..., N}, and the

reference material tensors ε
∗
(r∗) and µ

∗
(r∗), r∗ ∈ Γ∗.

In principle, any mapping function solving the above TE

problem can be employed to deduce a suitable lens and array

design. However, the transformation function τ often turns

out to be non-smooth even for simple geometrical config-

urations, unless additional constraints are forced. Generally,

the result is that the synthesized lens has a strong anisotropy

or unpractical ε (r) and µ (r) distributions [26]. Moreover,

analytically expressing ∂iΓ, ∂oΓ, ∂iΓ
∗, and ∂oΓ

∗ is usually

a hard task with no obvious solutions except for canonical

shapes [26]. Therefore, a more effective reformulation of the

transformation function design problem is proposed.

III. CTE-SYNTHESIS BY SCHWARZ-CHRISTOFFEL

MAPPING

To address the TE-Based Design Problem, while yielding a

minimum-complexity lens [26], the anisotropy of the dielectric

parameters in (6) must be minimized. As a matter of fact,

non-negligible deviations from the isotropic behavior, which

usually arise in TE problems, are very difficult in practice to be

accurately matched [26] with simple manufacturing processes.

Otherwise, microstructure resonances are required, but the

resulting bandwidth is severely limited [26]. To overcome

these issues, the synthesis problem is recast to the following

conformal transformation electromagnetics (CTE) mapping

one:

CTE-Based Design Problem (CTEP) - Given ∂iΓ,

∂oΓ, ∂iΓ
∗, and ∂oΓ

∗, find the transformation func-

tion τ that identifies a conformal mapping between

the coordinate systems, Γ∗ → Γ, and it also fits the

contour mapping equation (4).

As a matter of fact, the anisotropy of the metalenses from a

CTE transformation is expected to be minimized [26] since

a conformal mapping preserves the angles as well as the

orientation between any directed curves through each r
∗ in

Γ∗ [24]. On the other hand, one should consider that the

Liouville’s theorem [27] states that 3D conformal mappings

exist only for few geometries that do not comply with generic

definitions of ∂iΓ, ∂oΓ, ∂iΓ
∗, and ∂oΓ

∗. However, a 2D

version of the CTEP can be defined since the mapping of

the z variable for the bi-dimensional nature of the scenario

at hand [Fig. 1(a)], no deformation taking place along the ẑ

direction, is known to be

τz (r
∗) = z∗ (7)

and the actual unknown dependences reduce to τx (r
∗) ,

τx (x
∗, y∗) and τy (r

∗) , τy (x
∗, y∗) only, while the Jacobian

tensor in (6) is given by [28]

J [τ (r∗)] =




∂τx(x
∗,y∗)

∂x∗

∂τx(x
∗,y∗)

∂y∗ 0
∂τy(x

∗,y∗)
∂x∗

∂τy(x
∗,y∗)

∂y∗ 0

0 0 1


 . (8)

According to the conformal mapping theory [24], the arising

2D problem can be more effectively solved in the auxiliary

complex spaces Ω [Fig. 1(c)] and Ω∗ [Fig. 1(d)] defined by

the following coordinate transformations (ζ: Γ → Ω; ζ∗: Γ∗ →
Ω∗) {

ζ , x+ jy

ζ∗ , x∗ + jy∗
(9)

through an auxiliary transformation function ξ

ξ (ζ∗) , τx (r
∗) + jτy (r

∗) r
∗ = (R {ζ∗} , I {ζ∗}) (10)

so that the original CTEP turns out to be equivalent to its

complex counterpart

Complex CTE-Based Design Problem (CCTEP) -

Given ∂oΩ, ∂oΩ, ∂iΩ
∗, and ∂oΩ

∗, find the auxiliary

transformation function ξ such that the correspond-

ing complex contour mapping equation

ξ (ζ∗)⌋ζ∗∈{∂iΩ∗∪∂oΩ∗} = {∂iΩ ∪ ∂oΩ} (11)

is satisfied, ξ (ξ: Ω∗ → Ω) being a complex

conformal mapping function.

In (11), ∂jΩ (∂jΩ , {ζ ∈ Ω : (R {ζ} , I {ζ}) ∈ ∂jΓ}) and

∂jΩ
∗ (∂jΩ

∗ , {ζ∗ ∈ Ω∗ : (R {ζ∗} , I {ζ∗}) ∈ ∂jΓ
∗}) j ∈

{i, o} are the contours of the regions Ω and Ω∗, which are the

counterparts, in the complex plane, of the doubly-connected

regions Γ and Γ∗, respectively [Fig. 1(c) vs. Fig. 1(a) and Fig.

1(d) vs. Fig. 1(b)].

It is worthwhile noticing that, through the CCTEP formulation,

the solution process has been shifted from the search for a

two-dimensional real-valued transformation function, τ (r∗) ,
[τx (x

∗, y∗) , τy (x
∗, y∗) , z∗] (CTEP), to that of a 1D complex

auxiliary one, ξ (ζ∗). As a matter of fact, the solution to the

original CTEP problem can be found by inverting (10) as

follows
{
τx (r

∗) = R {ξ (ζ∗)}⌋ζ∗=x∗+jy∗

τy (r
∗) = I {ξ (ζ∗)}⌋ζ∗=x∗+jy∗

r
∗ ∈ Γ∗. (12)
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Thanks to this complex-plane reformulation, fundamental re-

sults from complex analysis can be exploited to find the

mapping between Ω and Ω∗. More specifically, since the

Riemann Mapping (RM) theorem [24] guarantees that any

doubly-connected domain Ω is conformally equivalent to an

annulus Ω̃ in the complex plane (R
{
ζ̃
}

,I
{
ζ̃
}

) with internal

radius µ [µ ∈ (0, 1)] and unitary external radius [Fig. 1(e)], the

CCTEP turns out to be univocally described as the composition

of two conformal mappings

ξ (ζ∗) = ψ
(
ζ̃
)⌋

ζ̃=χ(ζ∗)
(13)

defined by the conformal mapping functions ψ
(
ζ̃
)

and χ (ζ∗)

between the domains Ω̃ → Ω and the domains Ω∗ → Ω̃,

respectively. While the former mapping ψ certainly exists, as a

consequence of the RM theorem, the Schottky’s theorem [29]

states that the latter one, χ, can be defined if and only if

ν∗o
ν∗i

=
1

µ
(14)

1
µ being the conformal modulus of Ω [24]. Let us now observe

that the choice of ν∗o is arbitrary in our synthesis problem,

since it represents the outer boundary of the reference doubly-

connected annular region Γ∗ that can be arbitrarily extended

[Fig. 1(b)]. Therefore, (14) holds true when setting the value

ν∗o =
ν∗

i

µ and deducing that [29]

χ (ζ∗) =
µ

ν∗i
ζ∗. (15)

As for the computation of ψ
(
ζ̃
)

, while the RM theorem does

not provide rules for the definition of the mapping between Ω
and Ω̃ [24], otherwise the SC theorem gives explicit formulas

useful towards this end [24][25][30]. More specifically, the

following numerical procedure can be inferred. Let the inner

and the outer contours of Ω be discretized in P internal

vertexes, {ζ
(p)
i ∈ ∂iΩ; p = 1, ..., P}, and M external vertexes,

{ζ
(m)
o ∈ ∂oΩ; m = 1, ...,M}, respectively [Fig. 1(c)]. The

conformal mapping function ψ is then computed by applying

the explicit SC formula [24][25][30]

ψ
(
ζ̃
)
= ζ

(1)
i + C

∫ ζ̃

ζ̃
(1)
i

Q (s) ds (16)

where the complex-plane integral is path-independent and the

SC integrand Q (s) is given by

Q (s) ,

M∏

m=1

[
Θ

(
s

µζ̃
(m)
o

)]β(m)
o P∏

p=1

[
Θ

(
µs

ζ̃
(p)
i

)]β(p)
i

,

(17)

the Θ-function being defined as [25]

Θ(s) ,

∞∏

d=1,3,5

[(
1− µds

)(
1− µd

s

)]
, (18)

and the turning parameters β
(m)
o , m = 1, ...,M , and β

(p)
i ,

p = 1, ..., P , being equal to [30]
{

β
(m)
o ,

α(m)
o

π − 1 m = 1, ...,M

β
(p)
i ,

α
(p)
i

π − 1 p = 1, ..., P,
(19)

where α
(m)
o (α

(p)
i ) is the m-th (p-th) vertex angle of the

polygonal discretization of ∂oΩ (∂iΩ) at the corners ζ
(m)
o

(ζ
(p)
i ) measured counterclockwise from the interior of Ω [m =

1, ...,M (p = 1, ..., P ) - Fig. 1(c)], respectively. Moreover, the

(unknown) outer, {ζ̃
(m)
o , ψ−1

(
ζ
(m)
o

)
; m = 1, ...,M}, and

the inner, {ζ̃
(p)
i , ψ−1

(
ζ
(p)
i

)
; p = 1, ..., N}, prevertexes, the

internal radius µ [Fig. 1(e)], and the complex constant C are

the SC “accessory parameters” to be numerically determined

as shown in the Appendix.

Once determined from the minimization of (29), these SC

parameters are substituted in (16), which is then combined

with (15) to yield (13). As a result, the Complex CTE problem

turns out to be solved by the following mapping function

ξ (ζ∗) = ζ
(1)
i + C

∫ µ
νi
ζ∗

ψ−1
(
ζ
(1)
i

) Q (s) ds, (20)

which is used in (12) to obtain the final 2D SC-CTE solution




τx (r
∗) = x

(1)
i + R

{
C
∫ µ

νi
(x∗+jy∗)

ψ−1
(
x
(1)
i +jy

(1)
i

) Q (s) ds

}

τy (r
∗) = y

(1)
i + I

{
C
∫ µ

νi
(x∗+jy∗)

ψ−1
(
x
(1)
i +jy

(1)
i

) Q (s) ds

} r
∗ ∈ Γ∗

(21)

where x
(p)
i = R

{
ζ
(p)
i

}
(x

(m)
o = R

{
ζ
(m)
o

}
) and y

(p)
i =

I

{
ζ
(p)
i

}
(y

(m)
o = I

{
ζ
(m)
o

}
), p = 1, ..., P (m = 1, ...,M ) are

the coordinates of the P (M ) vertexes of the discretization of

∂iΓ (∂oΓ) [Fig. 1(a)].

The expressions (21) and (7) are finally substituted in (3) to

define the overall mapping function τ to be used in (8) and

in (5)-(6) for synthesizing the FMD that exactly radiates the

desired field.

It is worth remarking that (i) the proposed approach naturally

handles arbitrarily-shaped lens with contours ∂iΓ and ∂oΓ
modeled through their P /M -vertexes polygonal representa-

tions, P and M being user-defined parameters [Fig. 1(c)]

and that (ii) no other control parameters have to be set,

thus inherently avoiding possible misconfiguration/calibration

issues.

IV. NUMERICAL RESULTS AND ANALYSIS

This section has a twofold objective. On the one hand, it

is aimed at illustrating the application of the proposed SC-

CTE solution strategy to the design of advanced FMDs. On

the other hand, it is devoted to assess the advantages and

the potentialities of such a paradigm, also in comparison

with state-of-the-art TE methods, when dealing with radiating

systems featuring doubly-connected metalenses.

The first benchmark experiment is devoted to the synthesis of

a FMD conformal to a square mast [Fig. 2(c)] that radiates the

same field of an ideal circular layout [Fig. 2(b)]. More specif-

ically, the FMD is composed by a N = 65 elements array

arranged on a square contour ∂iΓ of side 10λ (νi = 5
√
2λ)

and coated with a metalens extended over a doubly-connected

region Γ whose inner boundary coincides with ∂iΓ, while the

external circular contour has a radius equal to νo = 14λ
[“Square mast” - Fig. 2(c)]. The target field [Fig. 2(a)] is equal
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Figure 2. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30)
- Plot of (a) the target electric field distribution, e∗z (r), radiated by the (b)
circular target geometry and geometry of (c) the SC-CTE synthesized FMD.

to that generated in free-space by a N = 65 isophorically-fed

(i.e., {J∗
n = 1.0; n = 1, ..., N}) circular reference array [Fig.

2(b)].

In order to apply the proposed SC-CTE strategy, the inner and

the outer contours of the FMD (i.e., ∂iΓ and ∂oΓ) have been

uniformly sampled in P = 4, {
(
x
(p)
i , y

(p)
i

)
; p = 1, ..., P},

and M = 30, {
(
x
(m)
o , y

(m)
o

)
; m = 1, ...,M}, points with

coordinates y
(p/m)
i/o = νi/o cos

[
π
4 + (P/M − 1)× π

2

]
and

y
(p/m)
i/o = νi/o sin

[
π
4 + (P/M − 1)× π

2

]
[Fig. 2(c)]. Suc-

cessively, the SC Accessory Parameters problem has been

solved by minimizing (29) and yielding the values C =
1.39 × 101 + j6.63 × 10−9, µ = 4.23 × 10−1 [λ], and the

prevertexes in Fig. 2(b). These latter values/coordinates have

been then substituted in (21) to determine the desired mapping

function τ (r∗), which has been finally used in (8) and in (5)-

(6) to derive the lens dielectric properties and the resulting

array configuration. For the sake of numerical efficiency and

accuracy, the cylindrical components of the material tensors

in (6) have been actually computed as in [32]

ε (r) =



ερρ (r) ερϕ (r) ερz (r)
εϕρ (r) εϕϕ (r) εϕz (r)
εzρ (r) εzϕ (r) εzz (r)




=
Jcyl[τ(r

∗)]ε(r∗)J T
cyl[τ(r

∗)]

det{Jcyl[τ(r∗)]}

⌋

r
∗=r

(22)

where Jcyl [τ (r∗)] is the Jacobian tensor in cylindrical coor-

dinates given by

Jcyl [τ (r∗)] =




∂τρ(r
∗)

∂ρ∗
1
ρ∗

∂τρ(r
∗)

∂ϕ∗
0

τρ (r
∗)

∂τϕ(r∗)
∂ρ∗

τρ(r
∗)

ρ∗
∂τϕ(r∗)
∂ϕ∗

0

0 0 1


 ,

(23)

(a) (b)

(c) (d)

(e)

Figure 3. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30)
- Permittivity distributions of the SC-CTE lens layout: (a) ερρ (r), (b) ερϕ (r),
(c) εϕρ (r), (d) εϕϕ (r), and (e) εzz (r).

τρ (r
∗) = cos (ϕ∗) τx (r

∗) + sin (ϕ∗) τy (r
∗) and τϕ (r

∗) =
− sin (ϕ∗) τx (r

∗)+cos (ϕ∗) τy (r
∗) being the cylindrical com-

ponents of the SC-CTE transformation. Analogous expressions

hold true for µ (r). It is worth pointing out that the cylindrical

representation significantly simplifies the calculations since, by

substituting (23) in (22), it turns out that ερz (r) = εϕz (r) =
εzρ (r) = εzϕ (r) = 0, regardless of the geometries at hand.

Figure 3 shows the plots of the relative permittivity distribu-

tions within the lens support, Γ, the permeability maps being

equal for symmetry reasons. As it can be observed, the off-

diagonal elements of ε (r) are exactly zero [Figs. 3(b)-3(c)],

while the values of the ρ-th and ϕ-th diagonal entries are equal

to the free-space permittivities [i.e., ερρ (r) = εϕϕ (r) = 1.0 -

Fig. 3(a) and Fig. 3(d)]. In the overall, the synthesized material

turns out to be uniaxially anisotropic, with optic axis along to

the ẑ direction, unlike the metalenses yielded from advanced

QCTE strategies that only approximate uniaxiality [7]. As

for the εzz (r) distribution, relatively stronger inhomogeneities

arise in correspondence with the mast corners [Fig. 3(e)], as

actually expected from TE theory, since sharp corners in the

transformed regions are generally associated to permittivity

peaks [7]. However, they are not so high [i.e., εzz (r) ≤ 2.0 -

Fig. 3(e)] thanks to the adopted formulation, which relies on

the availability of the explicit SC formula (16) for conformal

mapping [24][25][30].
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Figure 4. Numerical Validation (“Square Mast”, N = 65, P = 4,M = 30) -
Plot of the magnitude of the normalized difference,|∆ez (r)|, when the array
radiates (a) in free-space (i.e., without the lens) and (b) with the SC-CTE

anisotropic lens.

Concerning the matching of the SC-CTE field and the target

one, the plot and the values of the magnitude of the normalized

difference ∆ez [7]

∆ez (r) ,
ez (r)− e∗z (r)

maxr∈Γ |e∗z (r)|
(24)

with [Fig. 4(b)] and without the lens [Fig. 4(a)] assess the

efficiency of the SC-CTE device [i.e., |∆ez (r)| ≤ 1.7× 10−1

- Fig. 4(b)] and the performance improvement with respect to

the array without the lens [i.e., |∆ez (r)| ≤ 5.7× 10−1 - Fig.

4(a)].

Although such a result points out the effectiveness of the

SC-CTE in designing doubly-connected metalenses, the syn-

thesized FMD features uniaxially anisotropic materials (Fig.

3) whose implementation may be non-trivial. Thus, it is of

practical interest to check the possibility of achieving similar

performance with an isotropic approximation of the lens ma-

terial to enable simpler fabrication procedures [10]. Towards

this end and owing to the transverse-magnetic (TM) nature of

the propagation problem at hand [7], the isotropic and non-

magnetic (i.e., its permeability being set to unity ∀r ∈ Γ)

approximation of (22), hereinafter referred to as isotropic SC-

CTE (ISC-CTE), is derived ε (r) = εiso (r) I , I being the

unitary tensor [εiso (r) - Fig. 5(a)], starting from the computed

SC-CTE mapping function, as follows [28]
{
εiso (r) , (det {Jcyl [τ (r∗)]})−1

⌋
r
∗=r

µiso (r) , 1.0
if r ∈ Γ.

(25)

The result is very promising in this case, as well, as confirmed

by the distribution of the normalized difference field in Fig.

5(b), whose maximum value does not exceed the threshold of

|∆ez (r)| ≤ 2.0 × 10−1, which is slightly greater than that

for the full anisotropic case [Fig. 5(b) vs. Fig. 4(b)]. Such an

outcome highlights a key advantage of the SC-CTE technique

with respect to state-of-the-art QCTE numerical methods,

since the isotropic approximations of the synthesized FMDs

behave almost identically [Fig. 5(b) vs. Fig. 4(b)] thanks to

the conformal nature of the SC mapping formula.

The next experiment deals with the same mast structure [Fig.

2(c)], but only the N1 = 16 (N1 < N ) array elements, placed

as shown in the inset of Fig. 6(a), are isophorically-excited to

radiate a beam along broadside (i.e., ϕ0 = 90 [deg]). Since
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Figure 5. Numerical Validation (“Square Mast”, N = 65, P = 4, M =
30) - Permittivity distribution of (a) the isotropic simplification of the SC-
CTE metalens, εiso (r), and plot of (b) the corresponding normalized field
difference, |∆ez (r)|.

Table I
Numerical Validation (“Square Mast”, N = 65) - PATTERN FEATURES AND

MATCHING INDEXES.

No-Lens SC-CTE ISC-CTE

η [%] 73.4 1.31 1.36

SLL [dB] −0.18 −10.67 −10.44
Dmax 5.24 13.38 13.36

HPBW [deg] 23.23 6.78 6.81

the SC-CTE technique builds upon the invariance of Maxwell’s

equations under coordinate mapping [2], the FMD must actu-

ally afford equivalent performance regardless of the excitations

set, {J∗
n; n = 1, ..., N}. Therefore, the lens profile in Fig. 3

has been kept unaltered. As expected, such a new FMD (the

array excitations being different) behaves like the previous one,

with all N elements turned on, in matching the target field

(|∆ez (r)|N1
≈ |∆ez (r)|N ) being |∆ez (r)|N1

≤ 2.7× 10−1,

while the radiation without the lens is very far from the

objective [Fig. 6(a) and Fig. 6(b)]. It is also worth noticing that

the non-magnetic and isotropic approximation (25) of the SC-

CTE lens gives almost identical field manipulation capabilities

of its uniaxial counterpart [Fig. 6(d) vs. Fig. 6(c)], despite

the lens-material simplification. Those outcomes are further

pointed out by the behavior of the normalized far-field power

patterns, P (ϕ), in Fig. 6(a) and the corresponding far-field

matching errors (η ,

∫
π

−π
|P(ϕ)−P∗(ϕ)|dϕ∫
π

−π
P∗(ϕ)dϕ

, P∗ (ϕ) being the

normalized far-field power patterns of the target field) as well

as the values of the absolute (i.e., non-normalized) pattern

features in Tab. I.

The dependence of the field manipulation capabilities on the

variations of the array excitations, while keeping the same

array architecture with N1 = 16 active elements, is carried out

next (Fig. 7). The plots of P (ϕ) and P∗ (ϕ) when steering

the beam within the range ϕ0 ∈ [90, 120] [deg] show that

the patterns radiated by the SC-CTE FMD [Fig. 7(a)] as

well as from its isotropic version (25) [Fig. 7(b)] faithfully

match the target ones. For completeness, the behaviour of the

far-field figures of merit is shown in Fig. 8. As it can be

observed, the deviations from the target values are very limited

being ηSC−CTE (ϕ0) ≤ 6% and ηISC−CTE (ϕ0) ≤ 7%
[Fig. 8(a)],

∣∣DSC−CTE
max (ϕ0) −D∗

max (ϕ0)| ≤ 0.21 [dB] and∣∣DISC−CTE
max (ϕ0) −D∗

max (ϕ0)| ≤ 0.32 [dB] [Fig. 8(b)],
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Figure 6. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30 - N1 = 16, ϕ0 = 90 [deg]) - Plot of (a) the normalized power pattern, P (ϕ),
of the target/reference array along with those with/without the SC-CTE and the ISC-CTE metalenses. Map of the magnitude of the normalized difference
field,|∆ez (r)|, when the array radiates (b) in free-space and in the presence of (c) the anisotropic and (d) the isotropically-simplified SC-CTE metalenses.

∣∣HPBWSC−CTE (ϕ0) −HPBW ∗ (ϕ0)| ≤ 0.43 [deg] and∣∣HPBW ISC−CTE (ϕ0) −HPBW ∗ (ϕ0)| ≤ 0.46 [deg],

and
∣∣SLLSC−CTE (ϕ0) −SLL∗ (ϕ0)| ≤ 1.15 [dB] and∣∣SLLISC−CTE (ϕ0) −SLL∗ (ϕ0)| ≤ 1.75 [dB] [Fig. 8(c)],

despite the geometrical differences between the reference

circular array arrangement and the square actual one [Fig. 2(b)

vs. Fig. 2(c)].

The third numerical experiment is aimed at comparing the

proposed SC-CTE paradigm with recently introduced quasi-

conformal TE methods [1][7]. Towards this end, the gener-

alized QCTE technique [7] is considered hereinafter because

its flexibility, effectiveness, and reliability in approximating

conformal mappings as proven in different TE applicative

scenarios [7][19][21]. However, since QCTE methods cannot

natively handle doubly-connected regions such as those of

interest (Fig. 1) [7], the problem at hand has been addressed

by combining two “half-space” lenses analogous to those

designed in [7]. Figure 9(a) shows the plots of P (ϕ) for

the target, the SC-CTE, and the QCTE layouts when the

N1 = 16 array elements in the inset of Fig. 9(a) are

excited to steer the main beam along to ϕ0 = 100 [deg].

As expected, the SC-based FMD outperforms the QCTE

one as indicated by the red curve versus the blue one in

Fig. 9(a)] and numerically confirmed by the corresponding

far-field figures of merit [e.g., ηSC−CTE ≈ 2.01% vs.

ηQCTE ≈ 2.74%;
∣∣SLLSC−CTE − SLL∗

∣∣ ≈ 1.26 [dB]

vs.
∣∣SLLQCTE − SLL∗

∣∣ ≈ 3.15 [dB] - Fig. 9(a)]. The

improvement of the SC-CTE becomes impressive when an-

alyzing the isotropic realizations of the same lenses [i.e.,

orange vs. cyan lines - Fig. 9(a)]. As a matter of fact, the

ISC-CTE FMD works similarly to its anisotropic counterpart

[e.g., ηISC−CTE ≈ 2.24% - Fig. 9(a)] and, by the way,

even better than the fully-anisotropic QCTE-based design [e.g.,∣∣SLLISC−CTE − SLL∗
∣∣ ≈ 1.30 [dB] - Fig. 9(a)]. On the

contrary, the isotropic version of the QCTE device is not able

to control the sidelobe profile with a complete loss of the

main beam focusing [i.e., cyan line - Fig. 9(a)] resulting in

a very poor far-field matching [e.g., ηIQCTE ≈ 105% - Fig.

9(a)]. Such results are not surprising and they are theoretically

expected because of the quasi-conformal (i.e., not conformal)

nature of the QCTE formulation [7][19][21], unlike the the

proposed SC-CTE technique. Consequently, the QCTE lens

turns out considerably more anisotropic than the SC-CTE one

and an isotropic simplification often affords poor performance

especially when the array is fed with non-isophoric excitations

[7]. To give some insights on such an item, the degree of
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Figure 7. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30
- N1 = 16, ϕ0 ∈ [90, 120] [deg]) - Plot of the normalized power pattern,
P (ϕ), radiated by the reference array and by FMD with (a) a SC-CTE or
(b) as ISC-CTE lens.

anisotropy of the synthesized metalenses has been quantified

by computing the average fractional anisotropy [21]

αF ,
1

area (Γ)

∫

r∈Γ

√
3×∑3

i=1 [σi (r)− σave (r)]
2

2×∑3
i=1 [σi (r)]

2 dr

(26)

and the average relative anisotropy [21]

αR ,
1

area (Γ)

∫

r∈Γ

√∑3
i=1 [σi (r)− σave (r)]

2

3× σave (r)
dr (27)

where σave (r) ,
∑3

i=1 σi(r)

3 and σi (r), i = 1, ..., 3,

are the eigenvalues of ε (r). The values reported in Tab.

II confirm the reduction of the anisotropy when exploit-

ing the SC-CTE approach instead of the state-of-the-art

QCTE one (i.e.,
αF ⌋SC−CTE−αF ⌋QCTE

αF ⌋QCTE ≈ −29% and

αR⌋SC−CTE−αR⌋QCTE

αR⌋QCTE ≈ −35%).

The advantages of using an SC-CTE FMD are even more

remarkable when the beam is focused towards the lens regions

with sharp permittivity variations, which usually yield to

severe pattern distortions in state-of-the-art QCTE devices [7].

To check such a critical condition, the test case with the beam

steered along ϕ0 = 145 [deg] and the N2 (N2 = 16) corner
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Figure 8. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30,
N1 = 16, ϕ0 ∈ [90, 120] [deg]) - Plot of (a) η, (b) Dmax, and (c) the SLL
and HPBW versus the steering angle value, ϕ0.

elements turned on has been addressed [Fig. 9(b)]. Unlike

the previous test case, the QCTE layout poorly matches the

target pattern even when exploiting the fully-anisotropic lens

[e.g., ηQCTE ≈ 69.42% - Fig. 9(b)]. On the contrary, the SC-

based implementation performs well in both the anisotropic

[e.g., ηSC−CTE ≈ 2.99% - Fig. 9(b)] and the isotropic [e.g.,

ηISC−CTE ≈ 3.83% vs. ηISC−QCTE ≈ 80.31% - Fig.

9(b)] cases. To give an idea of the matching/mismatching in

the near-field region, as well, Figure 10 presents a pictorial

representation of the field afforded by the different FMDs

in terms of normalized difference values, ∆ez [Figs. 10(b)-
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Figure 9. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30)
- Plot of the normalized power pattern, P (ϕ), of the reference array and of
the FMDs with the SC-CTE and the QCTE lenses when exciting (a) the top
(N1 = 16) array elements to steer the beam along ϕ0 = 100 [deg] and (b)
the corner (N2 = 16) array elements to steer the beam towards ϕ0 = 145
[deg].

10(e)], with respect to the target distribution [Fig. 10(a)].

By extending the comparative analysis between the SC-

CTE and the QCTE to different steering angles, still us-

ing the “corner element” setup in the inset of Fig. 11, it

turns out that the performance of the SC-CTE device does

not significantly degrade (e.g., ηSC−CTE
ϕ0=135 [deg] ≈ 2.35% vs.

ηSC−CTE
ϕ0=165 [deg] ≈ 10.76% - Fig. 11) and the correspond-

ing isotropic approximation (25) yields similar results (e.g.,∣∣ηISC−CTE (ϕ0)− ηSC−CTE (ϕ0)
∣∣
ϕ0∈[135,165] [deg]

≤ 1.4%

- Fig. 11). On the contrary, the QCTE FMD behaves anal-

ogously to the array without the lens regardless of ϕ0 (e.g.,

ηQCTEϕ0=165 [deg] ≈ 94.61% vs. ηNo−Lensϕ0=165 [deg] ≈ 106.43% - Fig.

11).

Moving from the “square mast” configuration [Fig. 2(c)] to

a more complex scenario, the next experiment is concerned

with an array of N = 65 elements uniformly-distributed on

an hexagonal contour ∂iΓ and it deals with the synthesis of

a FMD, which integrates a lens with a user-defined doubly-

connected shape Γ having an external circular contour ∂oΓ
(i.e., “Hexagonal mast” - Fig. 12), that radiates the target field

e∗ (r) in Fig. 2(a). Concerning the dielectric properties of
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Figure 10. Numerical Validation (“Square Mast”, N = 65, P = 4, M = 30
- N2 = 16, ϕ0 = 145 [deg]) - Plot of the magnitude of (a) the target field
distribution, e∗ (r), and of the normalized difference field,|∆ez (r)|, for the
(b)(d) SC-CTE and (c)(e) QCTE FMDs with (b)(c) anisotropic and (d)(e)
isotropic metalenses.
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angle, ϕ0, when the array radiates in free-space and in the presence of
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(a) (b)

(c) (d)

(e) (f )

Figure 12. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30) - Permittivity distributions of the SC-CTE lens [(a) ερρ (r), (b)
ερϕ (r), (c) εϕρ (r), (d) εϕϕ (r), and (e) εzz (r)] and of (f ) the ISC-TE
lens, εiso (r).

the SC-CTE lens, ε (r) [Figs. 12(a)-12(e)], and its isotropic

approximation, εiso (r) [Fig. 12(f )], the same conclusions

drawn from the “square mast” case hold true since (i) the

lens material presents a uniaxially anisotropy with ẑ optic axis

[i.e., ερϕ (r) = εϕρ (r) = 0.0 - Fig. 12(b) and Fig. 12(c);

ερρ (r) = εϕϕ (r) = 1.0 - Fig. 12(a) and Fig. 12(d)], (ii) the

permittivity distribution has peaks at the sharp corners of the

mast contour [Fig. 12(e)] with relatively limited magnitude

[i.e., εzz (r) ≤ 2.0 - Fig. 12(e)] as a consequence of the

CTE property of the SC-based method, (iii) the profile of the

εzz-component is quite continuous without abrupt permittivity

transitions, and (iv) the isotropic approximation yields a lens

with dielectric properties close to εzz (r) [Fig. 12(f ) vs. Fig.

12(e)]. The analysis of the field distribution, e (r), when all the

N = 65 array elements are uniformly excited and they radiate

in free space [Fig. 13(a)], in the presence of the SC-CTE lens

[Fig. 13(b)] or the ISC-CTE one [Fig. 13(c)] highlights the

effectiveness of the SC FMDs in fitting the user requirements

being
∣∣∆eSC−CTE

z (r)
∣∣ ≤ 2.16 × 10−1 [Fig. 13(b)] and∣∣∆eISC−CTE

z (r)
∣∣ ≤ 2.18× 10−1 [Fig. 13(c)], while unsatis-

factory results are obtained without adding field-manipulating

components [i.e.,
∣∣∆eNo−Lensz (r)

∣∣ ≤ 5.73 × 10−1 - Fig.

13(a)].

For completeness, the SC-CTE FMD performance are com-
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Figure 13. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30) - Plot of the magnitude of the normalized difference field,|∆ez (r)|,
when the reference array radiates in (a) in free-space and in the presence of
(b) the SC-CTE and (c) the ISC-CTE metalenses.

Table II
Numerical Validation (N = 65) - ANISOTROPY INDEXES FOR THE “Square

Mast” (FIG. 3) AND THE “Hexagonal Mast” (FIG. 12) TEST CASES.

Test SC-CTE QCTE

Case αF αR αF αR

Fig. 3 1.94 × 10−1 1.56 × 10−1 2.73 × 10−1 2.39 × 10−1

Fig. 12 1.03 × 10−1 8.93 × 10−2 1.33 × 10−1 1.18 × 10−1

pared with those of the QCTE alternative one when exciting

the 16 array elements (N = 65) on the top region of the

contour [N1-arrangement as shown in the inset of Fig. 14(a)]

or in one of the surface corners [N2-arrangement as in the

inset of Fig. 14(b)]. As expected, also from the outcomes of

the same analysis carried out for the “square-mast”, the QCTE-

based solution under performs with respect to the SC-CTE

device [e.g., ηQCTE
⌋
N1

≈ 2.01% vs. ηSC−CTE
⌋
N1

≈ 0.93%
- Fig. 14(a)] even more in the “corner excitation” case [e.g.,

ηQCTE
⌋
N2

≈ 16.23% vs. ηSC−CTE
⌋
N2

≈ 2.05% - Fig.

14(b)] since the beam energy is focused along the permit-

tivity peak-regions [Fig. 15(a) vs. Fig. 15(b)]. Dealing with

the “isotropic” implementation of the lens, the superiority

of the ISC-CTE FMD is very evident as indicated by the

values of the matching error: ηIQCTE
⌋
N1

≈ 70.31% vs.

ηISC−CTE
⌋
N1

≈ 1.01% [Fig. 14(a)] and ηIQCTE
⌋
N2

≈
80.11% vs. ηISC−CTE

⌋
N2

≈ 3.01% [Fig. 14(b)]. This is

clear not only at the “integral” level (i.e., η values), but

also at the “local” level of the field mismatch values. As a

matter of fact, it turns out that
∣∣∆eIQCTEz (r)

∣∣
N1

≤ 6.95 ×
10−1 vs.

∣∣∆eISC−CTE
z (r)

∣∣
N1

≤ 1.60 × 10−1 [Fig. 15(c)

vs. Fig. 15(e)] and
∣∣∆eIQCTEz (r)

∣∣
N2

≤ 9.31 × 10−1 vs.∣∣∆eISC−CTE
z (r)

∣∣
N2

≤ 2.17×10−1 [Fig. 15(d) vs. Fig. 15(f )].

The possibility of the SC-CTE method to synthesize an effec-

tive and reliable FMD also when enforcing supplementary, be-
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Figure 14. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30) - Plot of the normalized power pattern, P (ϕ), of the reference
array and of the FMDs with the SC-CTE and the QCTE lenses when exciting
(a) the top (N1 = 16) array elements to steer the beam along ϕ0 = 110
[deg] and (b) the corner (N2 = 16) array elements to steer the beam towards
ϕ0 = 140 [deg].

yond the isotropic approximation in (25), lens simplifications

has been then assessed. Towards this purpose and following

the tiling approach discussed in [19], the dielectric profile

εiso (r) of the isotropic lens in Fig. 12(f ) has been radially

tessellated in Nρ×Nϕ (Nρ =
νo−νi
∆ℓ

and Nϕ = 2πνo
∆ℓ

, ∆ℓ being

the discretization step) homogeneous regions. The analysis

of |∆ez (r)| when isophorically exciting all the N = 65
array elements indicates that, as expected, the effectiveness

of the FMD with the tiled lens worsen as coarser discretiza-

tions are used (e.g., |∆ez (r)|∆ℓ=0.5λ ≤ 2.11 × 10−1 [Fig.

16(b)], |∆ez (r)|∆ℓ=1.0λ ≤ 2.23 × 10−1 [Fig. 16(d)], and

|∆ez (r)|∆ℓ=2.0 λ ≤ 4.14× 10−1 [Fig. 16(f )]), but only when

∆ℓ ≥ 2.0λ the SC-CTE FMD starts loosing its beam-focusing

properties by generating multiple-beams as shown in Fig.

16(f ). This latter behavior arises earlier (i.e., ∆ℓ ≤ 1.0λ)

when considering the “top excitation” scenario [Fig. 17(a)] as

quantitatively confirmed by the η values in Fig. 17(b) [e.g.,

η∆=λ ≈ 5%). While further investigations, also taking into

account various manufacturing processes, are needed to reach

reliable operative guidelines, these outcomes are a preliminary

proof that the SC-CTE technique can be profitably exploited
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Figure 15. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30) - Plot of the magnitude of (a)(b) the target field distribution,
e∗ (r), and of (c)-(f ) the normalized difference field,|∆ez (r)|, for the (b)(d)
ISC-CTE and (c)(e) IQCTE FMDs when exciting (a) the top (N1 = 16)
array elements to steer the beam along ϕ0 = 110 [deg] and (b) the corner
(N2 = 16) array elements to steer the beam towards ϕ0 = 140 [deg].

Table III
Numerical Validation (“Irregular Masts”, N = 65) - ANISOTROPY

INDEXES.

Test Case αF αR

Fig. 18(a) 1.70 × 10−1 1.36× 10−1

Fig. 18(b) 2.03 × 10−1 1.86× 10−1

to design double-connected lenses with isotropic and tiled

compositions, thus, in turn, it can potentially enable simpler

fabrication procedures [10].

As for the computational efficiency of the SC-CTE paradigm,

it is worth pointing out that the overall time4 required to

synthesize the FMD turns out very limited for any ∆ℓ value

[i.e., ∆t ≤ 10.5 [s] - Fig. 17(b)]. Such a result is actually ex-

pected from the theoretical viewpoint because of the adoption

of a local search technique for the solution of (29) (see the

Appendix), which guarantees very effective convergence per-

formance regardless of the required transformation accuracy.

The final experiment is aimed at assessing the flexibility of the

SC-CTE synthesis approach in designing FMDs conformal to

irregular (non-canonical) mast geometries. For instance, the

internal contours, ∂iΓ, in Fig. 18(a) (“irregular heptagon”)

and Fig. 18(b) (“irregular octagon”) have been used as bench-

4For the sake of fairness, all simulations have been carried out exploiting
non-optimized MATLAB codes executed on a single-core CPU running at 2.6
GHz.
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Figure 16. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30) - Plots of (a)(c)(e) the permittivity distribution and of (b)(d)(f ) the
magnitude of the normalized difference field,|∆ez (r)|, for a tiled ISC-CTE

FMD with discretization step equal to (a)(b) ∆ℓ = 0.5 [λ], (c)(d) ∆ℓ = 1.0
[λ], and (e)(f ) ∆ℓ = 2.0 [λ].

mark examples by keeping the remaining setup of the other

examples [i.e., N = 65 and the target field in Fig. 2(a)].

Once again, the synthesized SC-CTE lenses present isotropic

dielectric distributions [Figs. 18(a)-18(b) and Tab. III] with

permittivity peaks in correspondence with the sharpest edges

of the inner surface [e.g., Fig. 18(b)]. Moreover, both the near

[“irregular heptagon” - Fig. 18(c); “irregular octagon” - Fig.

18(d)] and the far-field, P (ϕ) [“irregular heptagon” - Fig.

19(a); “irregular octagon” - Fig. 19(b)], field distributions,

radiated when isophorically exciting the whole array, assess

the effectiveness of the SC-CTE technique since |∆ez (r)| ≤
2.82 × 10−1 [Fig. 18(c)] and |∆ez (r)| ≤ 2.26 × 10−1 [Fig.

18(d)] as well as ηISC−CTE

ηNo−Lens ≈ 4.11 × 10−2 [Fig. 19(a)] and
ηISC−CTE

ηNo−Lens ≈ 8.72× 10−2 [Fig. 19(b)].

V. CONCLUSIONS AND REMARKS

A new TE-based synthesis strategy, which leverages on the

Schwarz-Christoffel theorem, has been proposed. Owing to

the features of the SC mapping formula (16), such a method

theoretically avoids/minimizes the anisotropy of the arising

metalenses thanks to the conformal nature of the transforma-

tion function. Moreover, arbitrary doubly-connected domains

can be effectively handled, thus enabling the development
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Figure 17. Numerical Validation (“Hexagonal Mast”, N = 65, P = 6,
M = 30 - N1 = 16, ϕ0 = 90 [deg]) - Plot of (a) the normalized power
pattern, P (ϕ), of the reference array and of the ISC-CTE FMDs tiled with
different discretization steps (∆ℓ ∈ [0.1, 2.0] [λ]), and of (b) η and ∆t
versus ∆ℓ.

of FMDs installed on masts with arbitrary cross-sections.

Selected experiments drawn from a wide numerical validation

have been presented to point out the advantages and the

potentialities of the SC-CTE synthesis approach in comparison

with state-of-the-art TE approaches, as well.

The numerical assessment has shown that

• the proposed approach yields lenses with uniaxially-

anisotropic materials (e.g., Fig. 3), whose isotropic sim-

plifications similarly performs [e.g., Fig. 5(a)];

• both the SC-CTE and the ISC-CTE implementations

carefully match the target field distributions regardless of

the geometry and the excitations/steering at hand (e.g.,

Fig. 7 and Fig. 18);

• SC-based FMDs positively compare with the layouts

derived with state-of-the-art TE methods in terms of lens

anisotropy (Tab. II) and field control capabilities (Fig.

9 - Fig. 14) showing that the choice of SC mapping

potentially yields more effective metalens designs while

also enabling holes/empty regions within the synthesis

procedure;

• besides the isotropic approximation, further lens sim-
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Figure 18. Numerical Validation (“Irregular Masts”, N = 65) - Plots
of (a)(b) the permittivity distribution and of (b)(d)(f ) the magnitude of the
normalized difference field,|∆ez (r)|, of the ISC-CTE FMDs synthesized
for the (a)(c) the irregular heptagon and (b)(d) the irregular octagon mast
geometries.

plifications of the SC-CTE lenses, such as those based

on material tiling, turn out to be satisfactory (Fig. 17)

because of the bounded and low-amplitude peaks in the

synthesized permittivity distributions.

As for the main methodological advancements with respect

to the state-of-the-art, they include (i) the customization of

the SC mapping and its application to the solution of TE

synthesis problems concerned with the manipulation of the

EM radiation of arrays, (ii) the derivation of a TE paradigm

suitable for handling doubly-connected lenses such as those

for masts and/or for supports/domains with forbidden regions,

and (iii) the definition of operative guidelines for a reliable

application of the proposed SC-based method for the synthesis

of FMDs.

Future works, out-of-the-scope of this paper, will include the

generalization of the SC-CTE formulation to other geometrical

setups. The experimental implementation/validation of SC-

CTE designed FMDs is currently under investigation since be-

yond the possibilities of our current fabrication/measurement

facilities.

APPENDIX

Determination of the SC Accessory Parameters in (16)

According to SC theory, the mapping function ψ
(
ζ̃
)

is

uniquely determined up to one degree of freedom, which is

usually eliminated by assuming ζ̃
(M)
o = 1.0 [24][25][30]. The

computation of the remaining accessory parameters [i.e., the

outer prevertexes ζ̃
(m)
o , m = 1, ...,M − 1, and the inner

prevertexes ζ̃
(p)
i , p = 1, ..., P , the complex constant C, and

the internal radius µ] is carried out by solving the following
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Figure 19. Numerical Validation (“Irregular Masts”, N = 65) - Plot of
the normalized power pattern, P (ϕ), of the reference array and of the ISC-

CTE FMD when dealing with (a) the irregular heptagon and (b) the irregular

octagon mast geometries.

nonlinear system of equations [25]




C
∫ ζ̃(1)o

ζ̃
(M)
o

Q (s) ds = ζ
(1)
o − ζ

(M)
o∣∣∣C

∫ ζ̃(m+1)
o

ζ̃
(m)
o

Q (s) ds
∣∣∣ =

∣∣∣ζ(m+1)
o − ζ

(m)
o

∣∣∣ m = 1, ...,M − 3

C
∫ ζ̃(1)i

ζ̃
(P)
i

Q (s) ds = ζ
(1)
i − ζ

(P )
i∣∣∣∣C

∫ ζ̃(p+1)
i

ζ̃
(p)
i

Q (s) ds

∣∣∣∣ =
∣∣∣ζ(p+1)
i − ζ

(p)
i

∣∣∣ p = 1, ..., P − 1

C
∫ ζ̃(P )

i

ζ̃
(M)
o

Q (s) ds = ζ
(P )
i − ζ

(M)
o

(28)

taking into account the constraints (i) µ ∈ (0, 1), (ii) ∠ζ̃
(m)
o <

∠ζ̃
(m+1)
o , m = 1, ...,M − 1, and (iii) ∠ζ̃

(p)
i < ∠ζ̃

(p+1)
i , p =

1, ..., P−1, where ∠· stands for the complex number argument.

The solution of the SC system (28) is numerically not trivial

because of the presence of singularities in Q (s) and the (possi-

ble) occurrence of numerical instabilities due to the integration

path [25]. To address these challenges, the definite integrals

in (28) are (i) rewritten according to the Daeppen change of

variables [25], (ii) discretized with a Gauss-Jacobi quadrature

technique, and (iii) solved by choosing - whenever possible -

circular-arc integration paths to achieve the numerical stability
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of the integration [25]. The discretized system of equations is

finally solved, in the least square sense, as the minimization

of the cost function Φ
Φ
(
C;µ; ζ̃

(p)
i , p = 1, ....P ; ζ̃

(m)
o , m = 1, ...,M − 1

)
,

∣∣∣C
∫ ζ̃(1)o

ζ̃
(M)
o

Q (s) ds− ζ
(1)
o + ζ

(M)
o

∣∣∣
2

+

∑M−3
m=1

∣∣∣
∣∣∣C
∫ ζ̃(m+1)

o

ζ̃
(m)
o

Q (s) ds
∣∣∣−
∣∣∣ζ(m+1)
o − ζ

(m)
o

∣∣∣
∣∣∣
2

+
∣∣∣∣C
∫ ζ̃(1)i

ζ̃
(P)
i

Q (s) ds− ζ
(1)
i + ζ

(P )
i

∣∣∣∣
2

+

∑P−1
p=1

∣∣∣∣
∣∣∣∣C
∫ ζ̃(p+1)

i

ζ̃
(p)
i

Q (s) ds

∣∣∣∣−
∣∣∣ζ(p+1)
i − ζ

(p)
i

∣∣∣
∣∣∣∣
2

+
∣∣∣∣C
∫ ζ̃(P)

i

ζ̃
(M)
o

Q (s) ds− ζ
(P )
i + ζ

(M)
o

∣∣∣∣
2

.

(29)

with respect to the SC accessory parameters.

Towards this end and following the guidelines in [25], an

iterative gradient-based minimization technique based on the

Hybrid Powell method [31] is adopted.
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