
Received June 19, 2020, accepted July 16, 2020, date of publication July 27, 2020, date of current version August 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012203

Packet Length Spectral Analysis for IoT Flow
Classification Using Ensemble Learning
GENNARO CIRILLO AND ROBERTO PASSERONE , (Member, IEEE)
Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, 38123 Trento, Italy

Corresponding author: Roberto Passerone (roberto.passerone@unitn.it)

ABSTRACT With the proliferation of ubiquitous and autonomous devices for sensing, control, monitoring
and conditioning, the Internet of Things (IoT) holds a great potential for the development of innovative
applications. At the same time, network operators must support these devices with differentiated services,
which rely on the ability to automatically recognize and classify the nature of the communication flows. In
this paper, we present a supervised learning approach to discriminate between IoT and non-IoT traffic, and to
determine the class of the device originating the packet flows.Wemake use of a reduced set of features based
on the spectral analysis of the packet lengths of a flow, and evaluate an ensemble learning algorithm that uses
a Random Forest classifier. We first discuss the datasets and the procedure that we use to extract the features,
with examples from different devices. The evaluation is performed using both 10-fold cross validation and a
split between training, validation and test-set. The latter is used for hyperparameter tuning. The results show
that for reasonably large datasets the classifier achieves very high accuracy, as well as Precision and Recall
rates. We further improve the performance on individual devices by selectively replicating the flows in the
dataset, to achieve a better balance. We then evaluate a real-time implementation, and propose a runtime
procedure to evaluate the model confidence level and trigger a retraining phase to adapt to a changing
environment. A detailed analysis of the performance shows that the algorithm can support networks up
to 100 Gbps on standard computing platforms.

INDEX TERMS Ensemble learning, FFT, IoT, random forest, spectral analysis, traffic classification.

I. INTRODUCTION
Progress in wireless network connectivity, miniaturization,
and computing resources with advanced learning capabilities
have seen the proliferation in the last decade of ubiquitous,
independent and mostly autonomous devices dedicated to
new and diverse applications, including sensing, remote con-
trol, fleet tracking, health care, and environmental monitoring
and conditioning [1], [2]. This category of devices constitutes
what is known as the Internet of Things (IoT) [3]. Net-
work operators and component manufacturers must support
this array of applications by providing network management
functions such as resource planning, quality of service (QoS)
provisioning, load balancing and lawful intrusion detection.
At the same time, the diversity of IoT devices and appli-
cations results in infrastructure requirements that are vastly
heterogeneous, posing significant challenges in delivering an
optimized set of differentiated services. A key function and

The associate editor coordinating the review of this manuscript and

approving it for publication was Najah Abuali .

enabler for proper customization and network performance
analysis is therefore the ability to automatically recognize
and classify the nature of potentially a large number of com-
munication flows in the network [4]. In this paper, we are
interested in particular in distinguishing between traditional
user traffic, such as e-mail, web surfing and media streaming,
from traffic originating from IoT or other machine tomachine
communications.

IoT traffic could be very diverse in terms of network
parameters and bandwidth requirements, reaching the very
extremes of the available range. On one side, some devices
may be monitoring quantities that change infrequently, such
as a power meter or a temperature sensor. These devices
would therefore connect to the network from time to time, and
exchange minimal amount of data. The access pattern may
be periodic, such as the power meter, or sporadic, triggered
by the data itself, when the system is interested in detecting
certain events. Latency in these cases is often of little concern,
as long as it is reasonable. However, more and more often,
a guaranteed connection may be required in order to quickly

138616 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0248-8057
https://orcid.org/0000-0001-6315-1023
https://orcid.org/0000-0002-9777-9609

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

trigger an alarm, such as the detection of hazardous events.
On the other side of the spectrum, data may be streamed
in large amounts, for instance by surveillance cameras or
by telemetry systems on vehicles. Handling of the data is
key, especially since things often carry quality of service
requirements which are not easily supported by today’s best
effort communication networks [5]. One additional aspect is
the rapidly increasing and large number of devices which
may require the connection. Considering that communication
between things may be less tolerant to latency, errors and
failures than a corresponding human communication, and
together with the needed service guarantees, which are not
currently sufficiently supported by the network providers,
service providers could be prompted to shift their communi-
cation products which need to evolve from a simple, undiffer-
entiated dumb pipe to a more dedicated, performance aware
network [6]. Traffic classification is therefore an essential
feature to retrofit existing networks with devices that can
support extra and smart functionalities. This could help at the
infrastructure level, by supporting alternative routing deci-
sions, or at the computational level, for job balancing at the
server side. In addition, the value created by things is not lim-
ited to their specific functionality, but is more concentrated
on the information that they produce. This information often
acquires meaning when aggregated with the data produced
by a multitude of devices. For these reasons, information
processing does not generally occur on the individual devices,
but is rather delegated to geographically distributed servers,
known as cloud services, whether or not the device is tech-
nically able to handle the data. Communication is therefore
not just limited to data which gets collected in a central
repository, but is instead a key part of the functionality of
a large integrated and distributed system. A network that is
aware of the services can therefore take decisions that can
help optimize the overall performance.

Detecting and classifying traffic can be accomplished
using several techniques. Deep packet inspection (DPI) con-
sists in observing the contents of the individual packets in
order to detect characteristic patterns that identify the kind
of protocol in use [7], [8]. The simplest methods work at the
network level (TCP or UDP) and consider IP addresses and
port numbers, which in most cases are individually assigned
to particular services. More complete methods analyze also
the higher levels of the protocol, up to the application layer,
to avoid problems with port spoofing and to provide a more
general approach. From the protocol, one can then deduce
the class of service that is being used, and therefore classify
the underlying application. An alternative approach is deep
flow inspection (DFI), which considers the overall behavior
of the flow of packets, by analyzing, for instance, the size of
the packets, their inter-arrival times, and other statistics. Deep
flow inspection typically uses statistical classification and
machine learning to provide a result. Because of the working
principle of DFI, this method is also known as behavioral
classification. Statistical and behavioral classifiers work at
slightly different levels of abstraction, the first looking at

features of the packets, the latter focusing more on the flow as
a whole, looking at the access patterns. The benefits of sta-
tistical and behavioral classification are twofold. First, they
can be applied whenever packets cannot be inspected, either
because of the use of encryption or for privacy restrictions.
In the second place, they may provide results also when
applications use standard application level protocols, such
as HTTP, to exchange information. Valenti et al. [9] provide
a comprehensive review of statistical and behavioral meth-
ods, discuss the operation of support vector machines and
decision trees, and analyze in detail both Kiss, a statisti-
cal classifier [10], and the Abacus behavioral classification
algorithm [11].

In this paper we exploit a statistical flow classification,
distinguishing between traditional and IoT related commu-
nication, and further discriminating among the IoT devices.
To construct a classification procedure we use a supervised
machine learning algorithm that can estimate the parameters
for recognition from available labeled data. In previous work,
we considered both clustering and decision trees [12] using
features related to the fraction of upload versus download
data. Clustering, however, did not produce sufficiently dis-
tinct classes when applied to real traffic, leading to confusion,
while the decision tree has difficulty with generalization and
suffers from overfitting. In this paper, we therefore use a
different set of features, and focus instead on the length of the
packets of a flow while adopting a more robust classification
algorithm. In particular, we analyze the spectral density of
the packet sizes of sequences of packets exchanged in a
flow, intended as the communication between two particular
parties, identified by their IP address/port pair. By doing this,
we are able to account for both the absolute values of the
packet sizes, as well as the sequence relationships of the
packet exchange [13]. Spectral analysis thus provides infor-
mation on the communication patterns, making the approach
closer to behavioral classification. Besides, collecting packet
lengths is extremely simple, with essentially no overhead,
and does not require looking at the payload. Because the
approach does not inspect the data, the method is applicable
also in the presence of encryption. We train and evaluate
the algorithm with a large dataset obtained from repositories
opened to the public domain by their authors. The chosen
classification algorithm is Random Forest, an algorithm that
belongs to the class of ensemble learning, and which has been
shown to perform well in this kind of problems [14]–[16].
In particular, Random Forest uses a set of simpler deci-
sion trees (100 in our case) to curb the overfitting problem.
In addition, inference in Random Forest can be implemented
very efficiently, using only simple comparison operations,
an important characteristic in the context of high speed
networks. To evaluate the classification algorithm we use
the Weka framework [17], which provides the most popular
machine learning methods. Our results show that given a
sufficiently large dataset, the classifier achieves an accu-
racy of 98.0% with high reliability underscored by the high
value of both Precision and Recall, and of the Matthews

VOLUME 8, 2020 138617

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

correlation coefficient. Our contribution includes the tuning
of the tree depth, a study of the effect of changing the weight
of each individual device in the dataset by replication, and the
evaluation of the confidence level for real-time adaptation.
Finally, we extensively evaluate the real-time performance of
the algorithm, implemented natively in C, isolating the con-
tribution of the individual computation steps, and studying its
scalability when executed on a multi-threaded platform.

The paper is structured as follows. Section II explores
related techniques in the area of statistical classification
algorithms. We then give an overview of our approach in
Section III, discussing the dataset preparation, and the feature
computation. Section IV is dedicated to presenting the results
of the evaluation. Finally, Section V provides a summary and
outlines potential future directions.

II. RELATED WORK
Several methods have been proposed in the literature for
packet classification, and we refer the reader to the existing
literature for a systematic survey [18]. Here, we discuss the
methods that are most closely related to our work.

The first aspect that must be considered when dealing
with behavioral classification is an analysis of the com-
munication pattern of the traffic that we want to classify.
Shafiq et al. [19] have conducted a set of measurements
to compare the machine-to-machine (M2M) traffic to tra-
ditional cellular smartphone traffic. The dataset comprises
flows exchanged over the cellular data network in the USA.
The first finding shows that M2M devices have a much larger
uplink volume that downlink volume, in relative terms, com-
pared to smartphones. This suggests a considerably different
use of the network, and shows that M2M devices act more as
content producers than consumers. The analysis also shows
that M2M traffic follows business hours, and is significantly
reduced in the weekends, as opposed to smartphone traf-
fic which is virtually unchanged. Spectral analysis indicates
strong periodicity in M2M traffic, corresponding to time
intervals such as 1 hour, 30 minutes or 15 minutes, suggesting
the timer-driven nature of M2M devices. Further analysis
also reveals that devices are synchronized and coordinated.
This may create congestion in the infrastructure. This fre-
quency components are essentially absent from smartphone
traffic. Sessions inter-arrival times are, instead, on average
much longer for M2M devices than for smartphone traffic.
An extensive list of discriminators for the purpose of flow
classification is also presented by Moore et al. [20]. The
dataset consists of general traffic captured for 24 hours at the
authors’ research facility. The report lists a total of 249 classes
of discriminators, or features, that could be used by
a classifier.

In our previous work, we have explored the use of several
of these discriminators, including round-trip time and frac-
tions of uplink vs. downlink volume, through a decision tree
classifier [12]. In this paper, we adopt a different classifica-
tion strategy that makes use of an ensemble of decision trees
(a random forest) to reduce the overfitting problem. At the

same time, we considerably reduce the number of features,
and focus on only the spectral analysis of the packet length
of the data flow.

Among the early applications, a few techniques were
developed to discriminate betweenM2M traffic from remain-
ing traffic (e.g., smartphones) specifically for cellular net-
works, using machine learning algorithms [21], [22]. These
methods evaluate several features related to the traffic flow,
including the number of packets, the data rate, the packet size,
the inter packet-arrival time, as well as the IP address and
TCP/UDP port numbers. Several derived features can also be
computed from the flow data (averages, clusters, autocorrela-
tions, etc.). Among the methods that are considered, there are
unsupervised learning algorithms, which directly create clas-
sification, such as k-means, Expectation Maximization (EM)
and Density-Based Spatial Clustering of Applications with
Noise; and supervised methods, which require a learning
phase with ground truth, such as J48, Naive Bayesian (NB)
and Support Vector Machine (SVM). In our previous work,
we have exploited neural networks as a supervised learning
method [23]. Two interesting results can be learned from
these studies. First, a limited number of features is sufficient
to achieve a high level of classification accuracy. Second,
decision trees (such as J48) appear to be the machine learning
algorithms that perform best in the studies.

Sivanathan et al. present a rich deployment consisting of
a smart environment instrumented with 28 IoT devices, such
as cameras, sensors, lights and smart plugs [24], [25]. Traffic
data was collected for six months, and then characterized in
terms of several features, including protocols, data volume,
port numbers and text patterns, activity and sleep cycles, and
server queries. The authors present a two-stage hierarchical
classifier, which uses a Naive Bayes Multinomial classifier to
analyze domain names, port numbers and cypher suites, feed-
ing a RandomForest classifier which integrates the remaining
flow features. The combined approach is trained to recog-
nize the different devices and shows a remarkable accuracy
of 99.88%. A large part of our dataset is taken from this
deployment, whose traffic data is made available in the public
domain by the authors for download. Unlike this work, our
aim is to classify traffic as traditional vs. IoT communication.
More importantly, we focus on much fewer characteristics
that capture the essence of an IoT device, rather than its
specific implementation, and show that traffic patterns can
be used as a distinguishing feature when analyzed in the
frequency domain.

A similar approach is proposed byMeidan et al., who mea-
sure a deployment of nine different IoT devices connected in
a network together with two PC’s and two smartphones [26].
The authors analyze features from the network, transport and
application protocol layers, and classify the devices based
first on a single communication session, and then on multiple
sessions, outlining how the thresholds of the binary classifiers
can be optimized to improve performance.While the reported
classification accuracy is high (in excess of 99%), the authors
do not discuss the way the features were selected, nor the

138618 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

kind of binary classifier and the way it is trained. This makes
a comparison with other approaches problematic. As in the
previous case, in our work we choose to ignore the protocol
parameters to focus on the behavioral characteristics of the
communication pattern, to abstract from the particular device.

An interesting approach is presented by
Lopez-Martin et al., who apply a combination of a recurrent
neural network (RNN) with a convolutional neural network
(CNN) to perform traffic classification on a large dataset
extracted from the Spanish academic backbone network [27].
For every flow, the authors consider the first 20 packets and
collect a number of high-level header-based features, such
as ports, window size, payload size and inter-arrival time.
The main difference with respect to the previous approaches
is that the features are organized in a time series, which is
applied to the convolutional neural network as if it were an
image, to identify local correlations. They then analyze the
importance of each feature, by looking at the classification
performance as they are added to or removed from the set.
Overall, an accuracy up to 96% is reported for this work,
on a dataset with over 100 different classification labels.
In a different study, Yang et al. exploit a Conditional Vari-
ational Autoencoder to address the problem of imbalance in
intrusion detection systems, and use a 6-layer Deep Neural
Network for classification [28]. As explained previously,
our approach differs in the kind of features that we select
from the dataset, as we ignore all the header data. Finally,
Iliyasu and Deng develop a semi-supervised method using
Deep Convolutional Generative Adversarial Networks [29].
In general, they achieve lower accuracies on the classification
problem relative to other works, however they can work
with small labeled datasets. In addition, they require flows
with long duration, which is not usually the case in the
IoT. In general, a trend is developing towards using deep
networks to learn features, especially in the area of intrusion
detection [30]. Wang et al. provide a survey of deep learning
for traffic classification, and also discuss the problem of data
imbalance [31].

A number of solutions make use of ensemble learning to
avoid overfitting and enhance the generalization power of the
model. For instance, Shahid et al. extract features such as
packet size and inter-arrival times of the first packets (10) of a
flow from the network traffic of a smart home equipped with
four devices [15]. The authors evaluate six different classi-
fication algorithms, and show that Random Forest performs
best with an accuracy as high as 99.9%. One limitation of this
study is the low number of devices and the use of data from
the same deployment for both training and test, in the absence
of non-IoT traffic.More recently, Amouri et al. have also used
a Random Forest classification algorithm in the context of
intrusion detection systems [32]. Thangavelu et al. perform
a similar study, focusing on scalability and the ability of the
classifier to dynamically identify new devices [14]. This is
accomplished by clustering the flows first with a standard
k-means algorithm, then using a distributed semi-supervised
clustering method by aggregating features. Clustering uses

features such as DNS queries, number of packets, activ-
ity period in a session, TLS packet length, flow duration,
and number of packets of distinguished protocols such as
DNS. The clusters are used as aggregate features to then
periodically train a supervised learning algorithm for the
final classification, which can therefore learn models for new
devices. The approach is evaluated on an experimental setup
consisting of 16 IoT devices for smart homes, monitored
over a period of one week. The results show that a random
forest classifier performs better than k-NN and Gaussian and
Bernoulli naive Bayes with a 98% accuracy.

Pinheiro et al. present an approach based on a reduced set
of features, relying essentially on the length of the packets
(and their statistics, such as mean, mode and standard devia-
tion) seen in a 1-second sampling window of the flow, to per-
form classification and reduce latency [16]. The selected
features are independent of the specific header fields, so that
classification can operate also in the presence of encryption.
Classification is performed in three stages, distinguishing
IoT and non-IoT traffic first, followed by the IoT device
identification, and by the specific device event. Among five
different classifiers, including k-NN, Random Forest, Deci-
sion Tree, SVM and Majority Voting, Random Forest is
shown to perform best with accuracy reaching 96%. The
approach is evaluated on a testbed composed of three IoT
devices, complemented by traffic from the mentioned dataset
of Sivanathan et al. [25]. Our approach is similar in spirit to
this work, in that we rely on fewer attributes that characterize
the behavior of the communication pattern, rather than the
protocol data. Our novel contribution lies in the use of the
frequency domain as an alternative space to perform the
classification.

Finally, in the context of traffic offloading, Han et al.
propose a method of traffic classification based on the Fast
Fourier Transform (FFT) of the values of the first six bytes
of the application payload [33]. This has the advantage that a
single packet is sufficient to proceed with classification. On
the other hand, encryption, compression and data obfuscation
renders this approach not applicable, as the content of the
packets becomes randomized, and therefore no longer char-
acteristic of one class of communication.

III. SYSTEM OVERVIEW
In our approach, we construct a set of identifying features
by computing the FFT spectrum of the series of packet
lengths of a communication flow in the frequency domain.
The basis of this technique was introduced by Liu et al.,
who consider the problem of classifying application traf-
fic in the context of an encrypted network [13]. In our
case, we apply the technique to distinguishing between IoT
and non-IoT traffic, rather than to generic applications, and
refine the method by considering alternatively the client to
server, the server to client or the inter-arrival time as the
source of data. This overcomes problems when the appli-
cation does not transfer data, but only produces keep-alive
messages.

VOLUME 8, 2020 138619

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

Among other approaches based on the frequency domain,
Tegeler et al. use the FFT of a sampling of the traffic in time,
interpreted as a binary signal (1 when active, 0 when not
active), as one of different features used to detect malware
in a network [34]. In the context of IoT networks, given that
packet timings may vary by several orders of magnitude,
finding the right trade-off for the sampling period is par-
ticularly problematic, making this method difficult to apply.
In addition, depending on where the data is captured, packet
timings may well be affected by the congestion of the net-
work, and therefore by the activity of other unrelated devices,
and is subject to potentially intense variability. Zhou and
Lang adopt a similar approach, extending the time series to
considering packet rate, number of distinct IP addresses and
the inter-arrival times [35], with the aim of detecting network
intrusions by looking at regularities. From this study, which
was applied only to synthetic intrusion detection datasets,
we borrow the idea of considering features other than the
payload size.

The following subsections describe our approach in detail.

A. BACKGROUND
Before presenting the system architecture, we briefly review
the technologies that we have used in our implementation.

Flows are collected into .pcap files, for packet capture,
which contain a sequence of packets annotated with a times-
tamp with nanosecond precision that defines their transmis-
sion time, and their length in byte. Packets are stored in binary
format, as a sequence of bytes, including all the protocol
headers. A .pcap can be generated by any of several net-
work monitoring software, such as tcpdump or Wireshark,
which listen to the network and store all packets that are
transferred. Software can be written to read and write this
format using the standard API provided by several library
implementations, such as libpcap or WinPcap. Our scan and
check phase, described below, were developed using this
infrastructure.

The data extracted from the .pcap files are processed
by a Fast Fourier Transform to generate the features used
by the classification algorithm. There exist several imple-
mentations of the FFT algorithm, which differ for flexibility,
optimization and performance. We have used the KISS FFT
library1 during the training and test phase, because of the sim-
plicity of integration into the data preparation flow, and the
FFTW v3.3.8 library2 because of its high performance for the
C implementation used during real-time analysis.

There is a number of frameworks that can be used to build
and train classifiers. In this work we have used Weka [17]
for experimenting and testing. Weka is a graphical tool that
combines classification algorithms and visualization meth-
ods, making it suitable for model development. In addition,
it provides extensive statistical reports on the trained model,
implements k-fold cross validation, and computes accuracy

1KISS FFT, available at https://github.com/mborgerding/kissfft
2http://fftw.org/

metrics that make it easy to estimate the classification per-
formance of the model, and tune its hyper-parameters. For
the actual implementation we have instead used the SciKit-
Learn framework [36], which gives access to its internal data
structures and simplifies the process of generating optimized
code suitable for deployment.

The Random Forest classifier that we use is built as a
collection of decision trees. Each tree node inspects the value
of a feature of the input, and chooses one branch depending on
a threshold determined during training. Branches separate the
input space, clustering together samples with similar features.
A classification is performed when reaching a leaf of the tree.
In a random forest, several decision trees concur equally to
the final classification, obtained by majority voting, in what
is known as ensemble learning. Because the individual trees
of a random forest are simpler than a single monolithic large
decision tree, the random forest can more easily generalize
and suffers less from the overfitting problem, in which the
classifiers overly adjusts to the training examples.

B. DATASET PREPARATION
Our analysis is based on a number of network captures
codified as streams of packets encoded in standard .pcap
files which are subsequently filtered by our software and
analyzed by machine learning tools. Our main source of
data is provided by a large dataset made available3 by the
aforementioned work of Sivanathan et al. [24], [25]. The data
is obtained by capturing the traffic of a deployment of which
we include 21 IoT devices and 7 non-IoT devices, shown in
Table 1. We refer to this dataset as the Australia dataset. The
capture spans several days of operation.

TABLE 1. Australia dataset: Device list from data by
Sivanathan et al. [24], [25].

Additional data is obtained from a study conducted by
Guo and Heidemann, who classify IoT flows based on the
IP addresses contacted by each devices, in the context of the
USC/LANDER project [37]. The procedure requires a careful

3The dataset can be downloaded at the following address:
https://iotanalytics.unsw.edu.au/iottraces

138620 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 1. Data acquisition phases and features computation.

filtering of the addresses and setting appropriate thresholds
on the number of accesses to avoid false classifications. From
this dataset, we extract traffic for 16 IoT devices, shown
in Table 2, which were captured from a College Campus
network.4 Although some of the devices are similar to those
found in the first dataset, we do label them differently to
account for potential different behaviors related to their spe-
cific use. In the following, we refer to this dataset as the
California dataset.

TABLE 2. California dataset: Device list from data by Guo and
Heidemann [37].

To add variety to the dataset, we also include simulated
flows generated by an IoT device software simulator called
Mimic IoT Simulator [38]. The academic license of the soft-
ware (version 17.10) we have used allows one to simulate
up to 250 concurrent sensors, divided in two main brands
and configurations from Intel and Bosch. In our analysis,
the two types of sensors are considered as a single class.
Using different configuration files, one can try to make the
network as diverse as possible, simulating different sensors
and periodicities. Nevertheless, the behaviors will be some-
what homogeneous, as it is difficult to model event-triggered
sensors in this framework. The data is captured by instructing
the simulator to contact an MQTT broker and setting up an
MQTT client, such as mosquitto, that subscribes to the
data and receives the live messages from the broker, closing
the loop.

4Access to the dataset can be requested at the following address:
https://ant.isi.edu/datasets/requests.html

Overall, the total number of flows collected from each
device is shown in Table 3, limited to the IoT devices. As far
as non-IoT flows is concerned, we are using 19,187 flows
from the Australia dataset. To these, we add 2,313 flows from
an experiment from the University of New Brunswick [39],5

and 10,335 flows from a dataset collected by the Network
Monitoring and Measurements research group at the Uni-
versity of Napoli [40], [41].6 Finally, we also include the
‘‘bigFlows’’ traffic dataset from Appneta Tcpreplay with
13,847 flows [42].7 In total, there are 45,682 non-IoT flows.

C. FEATURES COMPUTATION
The procedure we follow to create the set of features is shown
schematically in Fig. 1. The data is processed directly from
the .pcap file using a dedicated software built on top of
libpcap.8 The analysis starts from a scan phase in which
we identify and break up the flows, a check phase in which we
select the packets, and a computation phase in which we
compute the Fourier Transform of the data series. More
specifically, in the first phase, we scan the flows to determine
when to start the computation. The scan operation works
through the .pcap file considering one packet at a time.
The header is used to extract the timestamp and the length
of the packet. The actual protocol headers in the packet data
are used to extract flow information, in order to group packets
into flows according to their source and destination, or client
and server. A flow is constructed from the IP addresses and
port number, and the TCP flags, where the SYN flag denotes
the beginning of the flow, and the FIN flag denotes its end.
Each flow is forwarded to the next phase of computation
whenever we reach a FIN packet (which identifies the end
of the flows), or whenever we scan 256 packets from client
to server, or if we scan 256 from server to client while at the
same time we see at least 128 packets from client to server.

5Available at https://www.unb.ca/cic/datasets/vpn.html
6Available at http://traffic.comics.unina.it/Traces/ttraces.php
7Available at https://tcpreplay.appneta.com/wiki/captures.html
8The code is available at https://github.com/gencir94/Libpcap-spectral-

analysis

VOLUME 8, 2020 138621

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 3. Number of collected flows for each device.

The reason we do this is that we have found experimentally
that the packets going from the client to the server provide a
higher distinguishing power than the reverse direction. This is
because, as noted earlier, for IoT devices the uplink traffic is
much higher than the downlink traffic [12], [19], and further
carriesmore information. In practice, inmany cases the server
simply acknowledges the reception of a packet, without any
additional data, making the recognition hard as this behavior
is invariant across different devices. Note also that flows
longer than 256 packets are broken up into different samples
of length 256. This has the advantage of reducing the latency
to obtain the classification results as well as its computational
complexity. Conversely, flows that do not reach 256 packets
at the FIN are padded with zeros to reach the desired length,
and processed immediately. This is necessary, as the FFT
algorithm requires always the same number of input values.

The sample size, i.e., the maximum number of packets in
a flow to be considered for classification, 256 in our case,
is a parameter of the classification algorithm. This number
is a compromise between the rate at which we have to run
the classification algorithm, the spectral resolution, and the
amount of information collected in a sample, and depends
also on the statistics of the flows. What we have found is
that flows of IoT devices in our dataset typically have in
the order of 20 packets per flow, while the average size
of the packets is around 365 bytes, including all headers
and the interpacket gap. This seems to indicate that much
fewer packets than 256 would be sufficient in the analysis.
On the other hand, reducing the number of packets, for
instance to only 32, has considerable disadvantages. First,
it does not reduce the latency of the classification of short
flows, as flows are classified immediately upon receiving
the FIN flag, by padding the sequence with 0’s. Second,

it does reduce the spectral resolution, in our example by a
factor of 8. But more importantly, it increases the number of
classifications to be performed by almost a factor of 8. This is
because, while IoT flows are typically short, the statistics for
non-IoT devices are quite different, and flows with hundreds
or even thousands of packets can be quite common and
prevalent in the network. We refer in particular to a study by
Jurkiewicz et al. who analyze the flow length and size dis-
tributions of internet traffic in a campus environment [43].
Their findings show that while the majority of flows have
in fact very few packets (i.e., 95% of the flows have fewer
than 100 packets), the flows with lots and large packets
dominate the traffic: according to their data (see Figure 2 in
ref. [43]) 85% of the traffic is carried by flows with more
than 1,000 packets, and more than 70% by flows with more
than 10,000 packets. The same (in fact even more) is true
in terms of the amount of data. Our choice thus reduces the
number of classifications that must be performed per second,
without sacrificing latency. Nevertheless, this parameter may
be adjusted to the specific requirements and traffic patterns
of the network.

During the second phase, we check the length of the pack-
ets for information content. For length, we denote the size
of the payload, excluding the base protocol headers (IP, TCP
and UDP). If the sequence of packets from client to server
consists of only empty payloads, we check the packets in the
reverse direction. If these are also empty, then we use the
packet inter-arrival times, computed from their timestamps,
of the client to server packets as the data, since the payload
provides no useful information, while the periodicity is used
as a discriminator.

The FFT is computed on the selected data by a dedi-
cated software library and produces a symmetric spectrum

138622 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 2. Withings Baby monitor. (a) Payload time series. (b) Frequency
series.

of 256 elements, of which only the right 128 values are
retained. The computation follows the traditional formulation

Xk =
N−1∑
n=0

xne−i2πkn/N ,

where xn are the selected packet payload lengths in the flow,
N is the number of samples (256 in our case), and Xk are the
spectrum output coefficients. In particular, we use the mag-
nitude ||Xk ||2 of the spectrum, which is proportional to the
power content at each specific frequency. The computation
of the spectrum resembles the application of the first layers
of a convolutional neural network, except that the filter are
fixed and not learned from the data. This, on the other hand,
simplifies both training and inference.

Having characterized each flowwith its FFT, we determine
the ground truth label of the data by matching the Ethernet
MAC address of the packets to those of the devices present
in the network. Notice how we cannot use the MAC address
in the classifier to identify flows, as the MAC address char-
acterizes the sender of the physical segment of the network,
which could be the router on behalf of the device. Instead,
we must use the IP addresses in the classifier as explained
earlier. In fact, we have end-to-end visibility in our traces
for determining the ground truth, something that the classifier
does not generally have. The FFT coefficients and the labels
are then assembled into an .arff file that is given as input
to Weka [17], which in turn partitions the data into training,
validation and test sets and performs the model optimization.
At the end of the process, the tool provides the performance
metrics from cross validation and testing, as discussed in the
next section.

IV. RESULTS
In this section, we summarize the results obtained by training
a Random Forest classifier with the data acquired using the
procedure outlined in the previous section. For training and
evaluation we use the Weka framework [17] which provides
several classification algorithms and an environment suitable
for validation. In particular, we evaluate the classification
accuracy using 10-fold cross validation. With this method,
the dataset is divided into 10 random subsets, which are
alternatively used for training and for determining the clas-
sification accuracy. The results from ten different rounds are
then averaged to give the final metrics. Because our dataset is
somewhat skewed towards the IoT class, an evaluation based

on accuracy alone, i.e., the ratio between the correctly classi-
fied flows and the total number of flows, is unable to provide
a proper picture of the performance of the classifier. For this
reason, in addition to True Positives, False Positives and False
Negatives, we make use of the following metrics [44]:

• Precision: for a given class, it is the ratio of its True Pos-
itives and the sum of True Positives and False Positive
(i.e., a sample of another class that is labeled as one of
this class).

• Recall: for a given class, it is the ratio of the True Posi-
tives and the sum of True Positives and False Negatives
(i.e., a sample of this class is labeled as not of this class).

• Matthews correlation coefficient (MCC): the MCC
returns a value between −1 and +1, where +1 repre-
sents a perfect prediction, 0 is no better than a random
prediction and −1 indicates total disagreement between
prediction and observation.

The Matthews correlation coefficient measure is particu-
larly significant for binary classification (for instance, when
we distinguish between IoT and non-IoT classes) especially
when the classes are of different size as in our case. In addi-
tion to these, one alternative measure is the F-Measure,
a widely used metric in classification, which weighs both
Precision and Recall in a single metric by taking the harmonic
mean: 2 × Recall × Precision / (Recall + Precision). When
running the 10-fold validation procedure, theWeka tool auto-
matically returns these measures averaged over the different
iterations of the process. In the tables in Section IV-B, for lack
of space we do not show the F-Measure explicitly as this can
be easily deduced from Precision and Recall.

A. DATA VISUALIZATION
It is useful to visualize the data features that correspond
to the packet flows of different devices, to appreciate the
distinguishing power of the transformed signal. In this section
we discuss a few examples, where we show and compare the
time series as well as the frequency spectra of selected flows.

Fig. 2 to Fig. 8 show both the series of the payload
(on the left) and its FFT, limited to one side of the symmetric
magnitude of the spectrum (on the right). We see that for
short flows, the ‘‘energy’’ of the packets is spread across the
entire spectrum with a shape that depends on the number of
peaks that are found in the time series. These cases are shown
in Fig. 2 and Fig. 3. The energy in the spectrum, i.e., the
magnitude of each frequency component, depends on the
size of the payloads in the flow, and this constitutes another
difference than can be used by the classifier to distinguish the
flows. This is true in all the examples shown.

Fig. 4 and Fig. 5 show the spectrum of somewhat longer
payload series, with limited regularities. These kind of spectra
are also spread out, but are more concentrated around certain
specific frequencies that distinguish the nature of the traffic.
On the other hand, traffic that is characterized by strong
regularities gives rise to precise peaks in the corresponding
spectrum. This case is shown for instance in Fig. 6, where the

VOLUME 8, 2020 138623

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 3. PIX-STAR Photo Frame. (a) Payload time series. (b) Frequency
series.

FIGURE 4. Amazon Fire SmartTVStick. (a) Payload time series.
(b) Frequency series.

FIGURE 5. RENPHO Humidifier. (a) Payload time series. (b) Frequency
series.

FIGURE 6. Triby Speaker. (a) Payload time series. (b) Frequency series.

spectrum shows peaks at very specific frequencies, on top of
a noisy background that depends on the small variabilities in
the data. The shape of the spectrum is clearly very different
compared to the previous cases.

Finally, longer payload series with recurring and closer
regularities result in denser peaks in the spectrum, as shown
in Fig. 7 and to a lesser extent in Fig. 8. This last example is
more difficult to characterize in terms of a definitive shape,
but at the same time can be easily set apart from the more
distinctive patterns exhibited by the other devices.

B. CLASSIFICATION RESULTS
In this section we present the results of the classification
algorithm evaluated using the 10-fold cross validation tech-
nique. For classification, we have used a Random Forest clas-
sifier. This classifier is an example of an ensemble algorithm:

FIGURE 7. TP-Link Smart Plug. (a) Payload time series. (b) Frequency
series.

FIGURE 8. Amazon Echo. (a) Payload time series. (b) Frequency series.

instead of a giant decision tree, which may easily overfit
the data, the Random Forest is composed of a number of
simpler decision trees, each providing its own classification.
The overall results corresponds to the majority voting of the
individual trees. Because the trees are simpler, they also result
in a simpler hypothesis function, reducing the overfitting
problem. In our case, we have instructed the Weka tool to
construct a Random Forest with 100 trees, each with unlim-
ited depth. The number of trees is another parameter of the
classification algorithm. Our choice is an attempt to balance
the algorithm runtime complexitywith its ability to generalize
and give information on the quality of the classification.
Specifically, we compute the confidence in the classification
as the fraction of trees that compose the majority. The higher
the number of trees, the better the resolution. In Section IV-F
we use a threshold of 0.9 to trigger a retraining, therefore we
opted for a resolution of at least 0.01. There are studies in the
literature that analyze how accuracy changes with the number
of trees. Oshiro et al. conclude that between 64 to 128 trees
provides the best trade-off using datasets from the biomedical
domain [45]. Experiments with our dataset show that 50 trees
decrease accuracy by only a few percentage points. We do not
however present an analysis of this parameter, which could
easily be adjusted depending on the specific situation and
application. On the other hand, Section IV-D explores the
impact of bounding the depth of the trees.

We have divided the evaluation into two main parts, each
composed of three different mixes of the dataset. In the first
part, we evaluate in particular the ability of the classifier to
distinguish among the different IoT devices. Each flow in
the dataset is therefore labeled with the device name, and
the classifier is trained to distinguish the individual labels.
In a second set of experimental evaluation we introduce also
the traditional non-IoT traffic. In this case, we evaluate both
a classifier that is able to distinguish among the different
devices, as well as a classifier that simply distinguishes

138624 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 4. Classification performance for the Australia dataset, IoT only.

between the IoT and the non-IoT class. The following two
sections present the details of the evaluation.

1) CLASSIFICATION OF INDIVIDUAL DEVICES
We train three different classifiers to evaluate the classifica-
tion performance on different datasets. In the first two cases
we look at the classifier using the Australia and the California
datasets individually. The third classifier is instead trained on
the combined dataset, including the simulated flows from the
Mimic simulator. The results for these experiments in terms
of Precision, Recall and MCC are shown in Tables 4, 6 and 8,
while Tables 5, 7 and 9 show the corresponding accuracy.
The results are especially positive for the Australia dataset,

which comprises the majority of the flows. In particular,
the False Positive rate is very low, and the MCC is close
to 1, indicating a high degree of reliability (see Table 4).
The overall accuracy for this dataset come in excess of 99%
(Table 5).
The California dataset, which is much smaller in size, gives

a mixed outcome when considered alone. The break-up of the
classification results in Table 6 shows that a few of the devices
are difficult to recognize, especially when the corresponding
number of flows in the training set is particularly low. In this
case, the 10-fold cross validation may at times fail to include
the flows in the actual training set. This indicates that the
classifier needs a sufficient number of examples to correctly
identify devices which have a low utilization of the network.
The overall accuracy, in this case ismuch lower at 86.52% and
theMCC only achieves a value of 84.2%.Wewill address this
shortcoming in Section IV-E by replicating the flows.

When combined (Table 8 and 9) the overall classification
performance is acceptable, although the data is obviously

dominated by the much larger Australia dataset. In this case,
we observe a slight increase in False Positive rate, although
the weighted average fails to show this because the weight of
each device, especially those for which recognition is harder,
is much lower with the large size of the dataset. The tables
also show that the algorithm performs extremely well on the
Mimic simulated flows. These flows are clearly more homo-
geneous, indicating that traffic captured from real devices is
essential in the context of classification.

2) TRADITIONAL VS. IoT TRAFFIC CLASSIFICATION
In this set of experiments we have trained the classifier to
recognize the IoT devices together with the non-IoT traffic
lumped into a single class. The addition of the non-IoT traffic
slightly degrades the classification accuracy. Table 10 shows
the results, which indicate that the non-IoT flows can be well
separated from the individual devices. The overall accuracy
is 137133/(137133+ 2027) = 98.54%.
The experiment is repeated by giving the IoT devices a

single label, to discriminate between traditional and IoT traf-
fic using binary classification. The results for the Australia
dataset are shown in Table 11. The classification achieves an
accuracy of 99.0%, proving the high performance that can be
obtained by applying this method.

The same experiments are conducted on the California
dataset, with the results shown in Table 12 and 13. Similarly
to the previous experiments, the accuracy is lower in this
case. Nevertheless, the classifier is still able to distinguish
the non-IoT flows well, giving an overall accuracy of 96.15%
when the classifier distinguishes also the individual devices.
The improvement however is only apparent. In fact, clearly
the accuracy has improved because of the non-IoT flows,

VOLUME 8, 2020 138625

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 5. Australia dataset IoT only: overall accuracy.

TABLE 6. Classification performance for the California dataset, IoT only.

TABLE 7. California dataset IoT only: overall accuracy.

while the recognition of the devices has obviously worsen.
In particular, several IoT flows are classified as non-IoT,
producing a large increase of the False Positive rate of the
non-IoT class.9 This is highlighted by the value of the MCC,
whose weighted average (excluding the devices for which
the computation does not provide a result) at 68.9% is much
lower than in the case of the Australia dataset.

The binary classification results for the California dataset
are shown in Table 13. Again, while accuracy is high,
the MCC is much lower at 70.6% due to the high False
Positive rate.

Our final results considering the entire dataset, including
the simulated flows, are shown in Table 14 and 15. The
accuracy for the recognition of the individual flows reaches
97.37% with an MCC of 96.5%. This can be considered a
good result, considering the large number of flows in the
dataset.

The results of binary classification with the entire dataset
is finally shown in Table 15, with an accuracy of 98.0% and
an overall MCC of 95.3%, highlighting again the reliability
of the classification algorithm.

9These values can be extracted from the confusion matrix produced by
Weka. We do not show this data explicitly, as the matrix would be too large
to display, and we instead quote the summary value.

C. TEST-SET EVALUATION
The above results were obtained through 10-fold cross
validation. Because we leave the parameters of the mod-
els unchanged, this effectively partitions the dataset into
a training and a test set, averaging the results across the
different folds. In the following section, we will use the
cross-validation technique to tune the depth of the trees.
In this case, we must set aside part of the dataset as a
proper test set, which is not used during the tuning operation,
to avoid overestimating the classifier performance. We opt
for a 70%-30% split between training (used also in cross-
validation) and test set, chosen randomly before applying the
entire procedure. For sanity check, we have run the train-
ing procedure and test evaluation separately, without 10-fold
cross validation, to verify that we obtain results that are
consistent with those reported in the previous section. Indeed
this is the case. For brevity, we report only the results for
the combined dataset including the non-IoT flows, for binary
classification, shown in Table 16. The absolute values of the
flows are obviously much smaller, as they correspond to only
30% of the dataset, as it can be readily verified. However,
the performance is in line with that shown previously in
Table 15, with differences in the order of one tenth of a
percent. The results for the individual datasets, although not
shown, are likewise similar to those of the 10-fold cross
validation.

138626 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 8. Classification performance of the combined dataset, IoT only.

TABLE 9. Combined dataset IoT only: overall accuracy.

D. HYPER-PARAMETER TUNING
The previous results were obtained using the default settings
for training the Random Forest classifier. In this section we
explore the impact of changing the maximum allowed depth
of the trees. This could be useful for two reasons. First,
a larger depth leads to models with higher variance, making
the classifier more prone to overfitting. Second, performance
may tend to level off with tree depth. In that case, choosing
the smallest depth that provides acceptable performance can
greatly simplify the evaluation of the model, with lower
computational complexity and lower latency.

As in the previous section, the analysis is conducted by
splitting the dataset between 70% for training and 30% for
test. We analyze the performance of the classifier by per-
forming 5-fold cross validation on the training set (which
is, therefore, automatically split between a proper training
and a validation set), with tree depth limited to 1, 2, 5, 10,
20, 40 and 80 levels. While we record all the performance
metrics, we report here only the MCC, as the other measures
follow a similar pattern, and use it to select the optimal depth.
The test set is then used to quantify the actual performance of
the classifier for the selected depth.

VOLUME 8, 2020 138627

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 10. Australia IoT with non-IoT traffic.

TABLE 11. IoT Australia flows vs. NON_IoT flows, binary classification.

TABLE 12. California IoT with non-IoT traffic.

Fig. 9 shows the results for the IoT devices only, for the
Australia, the California and the combined datasets, for tree
depth up to 40 levels (the values for higher depths do not
change relative to 40 levels, and are therefore not shown).
The plot includes the results of cross-validation, as well as

the results on the test set for all tree depths, where the test set
results are significant only after the choice of depth (i.e., they
are not used for tuning). In all cases, the performance levels
off at a depth of 10 levels, and does not exhibit overfitting.
The California dataset, as observed in previous sections, has

138628 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 13. IoT California flows vs. NON_IoT flows, binary classification.

TABLE 14. Combined IoT flows with NON_IoT traffic.

TABLE 15. Combined flows vs. NON_IoT flows, binary classification.

the worst performance, and is considerably lower than the
other cases at small tree depths. The performance of the
classifier on the test set, here as in the subsequent exper-
iments, does not change significantly relative to the cross
validation.

Fig. 10 shows the same data with the inclusion of the non-
IoT flows, while Fig. 11 illustrates the performance of the
binary IoT/non-IoT classification. The non-IoT flows bring
more variety and negatively affect the performance: slightly
for the Australia dataset, more significantly for the California

VOLUME 8, 2020 138629

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 16. Combined flows vs. NON_IoT flows, binary classification, 30% test set.

FIGURE 9. MCC of training and test set as the tree depth varies from 1 to 40 for IoT only.

FIGURE 10. MCC of training and test set as the tree depth varies from 1 to 40 for IoT with non-IoT.

FIGURE 11. MCC of training and test set as the tree depth varies from 1 to 40 for IoT and non-IoT, binary classification.

dataset. In this last case, tree depths less than 5 result in
essentially a random classifier. The combined dataset has
better performance, largely because of the contribution of the
Australia dataset as discussed previously.

It is interesting to validate a classifier derived from one
dataset on another dataset. The application is problematic
since the devices are not generally the same, but for a few
exceptions. We have therefore trained the classifier on the

Australia dataset, and validated the model on the California
dataset limited to the common devices, i.e., the Belkin Wemo
switch, the Amazon Echo and the TP-Link Smart plug, which
were given the same labels in the two datasets. The perfor-
mance in terms of the MCC is shown in Fig. 12.

The results lead to two observations. First, the classifier is
sensitive to the specific deployment, and does not perform
as well on a different deployment, despite the use of the

138630 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 12. Classifier trained on the Australia dataset, validated on the
California dataset.

same devices. This may be due to different configurations of
the devices, which potentially interact with different servers,
altering the dynamics of the communication. More inter-
estingly, we see that the classifier achieves the best gen-
eralization at a depth in the range of 5 to 10 levels, with
the performance on the validation set decreasing for larger
depths. This underscores some amount of variance when the
model becomes too complex.

E. DATA AUGMENTATION
We have seen in Section IV-B1 that the recognition rate
of devices that have low bandwidth is correspondingly low,
to the point that in some cases none of the flows are correctly
recognized. This problem can be addressed by using data
augmentation techniques [46]. Data augmentation consists in
enriching the dataset with alternative versions of the data, and
is particularly effective in audio and image recognition tasks,
where various transforms, such as mirroring or morphing,
can be applied to generate additional samples from those
already existing in the dataset. Our case is more compli-
cated, as an arbitrarily altered flow most likely no longer
belongs to the original class nor to the original protocol, and
could in fact reduce the quality of the dataset. Knowledge
of the protocol format and of the application can lead to
crafted flows that are valid, for instance through the use of
simulation tools [31], such as the Mimic simulator we have
used in our dataset. Unlike image classification, where data
augmentation is used to add variety for better generalization,
the problem we face in our case is that certain classes are
significantly under-represented in the dataset. The learning
process, therefore, struggles to adjust the weights of the infer-
ence algorithm to properly account for them. We therefore
evaluate a simpler approach to data augmentation, where
flows present in low numbers and with low classification
performance are simply replicated multiple times to gain
additional weight in the dataset. While this does not provide
new information to the model, it does help to achieve better
balance during the optimization.

For simplicity, we illustrate the procedure on the California
dataset only, which has a lower classification performance
than the Australia dataset according to the results shown in
Section IV-B1 and IV-B2. In the following, for all cases,
we split the data into a 70% training set and a 30% test set,
as explained in Section IV-C, used for validation. To reduce
the size of the labels in the graphs, we denote the individual
devices as shown in Table 17.

TABLE 17. Device abbreviations for the California dataset in the graphs.

We then proceed as follows. We consider the device with
the lowest or undefined value of theMCC as the candidate for
augmentation, and replicate its flows in the dataset multiple
times. Then we shuffle, split, retrain and validate. We start
with the Tenvis IPcam (label TIP), which has only one flow
in the dataset. This is indeed an extreme case, but never-
theless a potential outcome of data collection in practice.
Fig. 13 shows the results of replicating the Tenvis IPcam once
(i.e., no replication), 10, 20, 40 and 80 times.

FIGURE 13. Variation of MCC with increasing replication of TIP flows.

As we replicate the instances, the MCC of the chosen
device rapidly increases to 100%, already with 10 flows.
In the study, we have further replicated to observe the impact
on the classification of the other flows. We see that while
some devices remain roughly unchanged, other have signif-
icant swings. We therefore proceed to replicate additional
devices. Fig. 14 shows the change in MCC as we replicate the
Renpho Humidifier (label RH) by the same amounts, keeping
TIP replicated 80 times. Again we observe a rapid increase in
performance for RH.

VOLUME 8, 2020 138631

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 14. Variation of MCC with increasing replication of RH flows.

We continue with the same methodology, and replicate HP
Printer (HP) first and the TP-Link SmartLightBulb (TSB)
next by the same amounts, keeping the previous replications.
Fig. 15 and Fig. 16 show the corresponding variations.

FIGURE 15. Variation of MCC with increasing replication of HP flows.

FIGURE 16. Variation of MCC with increasing replication of TSB flows.

FIGURE 17. Variation of MCC with increasing replication of flows from
ATV, WIP, BW, AIP, and FIP.

The results show that we have now reached satisfac-
tory results in the under-represented categories. To further
improve classification performance, we replicate in sequence
the flows of the least performing devices, this time only by
10 times to avoid breaking the balance that we have achieved
so far. Fig. 16 shows the MCC as we replicate the flows for
ATV, WIP, BW, AIP, and FIP.

Finally, we put back the non-IoT flows in the picture,
which tend to decrease the classification performance on
the devices. We therefore further duplicate DIP, ABB, TPP,
PH and AE in sequence to regain accuracy. These final values
are shown in Fig. 18.

FIGURE 18. Variation of MCC with replication of DIP, ABB, TPP, PH and
AE, including non-IoT flows.

The results that we have achieved show that this simple
technique could be useful in balancing the distribution of the
dataset, therefore letting the learning algorithm better con-
verge to an optimal point. The final weighted average of the
MCC on all categories including the non-IoT flow (the blue
bars in Fig. 18) reaches 90.7%, a significant improvement
over the 68.9% obtained with the original data (see Table 12).

138632 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

F. DYNAMIC TRAINING
We have seen that classification is generally poor when a
device that was not present in the training set, or that has a
materially different configuration, is added to the mix of the
test set. When the classifier is used to process packet flows
in real time, we would like the system to automatically detect
this situation, and raise a flag so that the operator can take
appropriate recovery actions, in a spirit similar to the dynamic
learning approach proposed by Grimaudo et al. [47] in the
context of unsupervised learning. These actions include, for
instance, an inspection of the logs and a potential retraining
of the classifier with new data. In this section we explore how
to implement this process.

To properly run the random forest implementation we
move from Weka, which is convenient to quickly visual-
ize and train multiple models, to the Scikit-Learn frame-
work [36], which provides an easier environment for runtime
experimentation in Python. The datasets remain unchanged.
The essential feature that we take advantage of is the addi-
tional information on the quality of the prediction that we
obtain from the outputs of the individual classification trees in
the forest. In particular, each tree provides its estimated prob-
abilities of classification for all available classes. An average
is then taken over all the trees, and the classification result
corresponds to the class with the largest probability value.
By inspecting this value we can determine if the classification
had a high or low confidence.

The individual values of the probabilities actually fluctuate
even for the flows that are present in the training set, and
which have generally high classification confidence. For this
reason, it is impractical to flag every individual flow for
which confidence is low. Instead, we proceed by calculat-
ing an exponentially weighted average of the classification
probability over the past flows. To do so, we compute the
current confidence level as the combination of the confidence
level computed for the previous flow, and the classification
probability of the current flow, according to:

c = βc+ (1− β)p, (1)

where c is the confidence level, while p the probability of
the latest classification. By changing the value of β, we can
modulate the effective number of previous flows which are
taken into consideration, as their weight decreases exponen-
tially. For instance, a value β = 0.9 accounts for roughly the
previous 10 flows, while β = 0.99 for the previous 100 flows.
To maintain a sufficiently smooth variation, we experiment
with 100, 1,000 and 10,000 previous flows.

The strategy that we adopt works as follows. We train
the classifier with an initial set of devices, and then test its
performance by evaluating one flow at a time of the cor-
responding test set, while keeping track of the confidence
level c. At some point during the test, we mix new devices on
which the classifier was not trained in the test, and observe the
confidence decrease. If the confidence crosses a threshold,
then we stop the evaluation, create a new training and test set
with both the old and the new devices, retrain the classifier,

and resume the test. The confidence level will then increase
and reach a new steady state level. We repeat the process with
yet new devices to continue the evaluation.

More specifically, we illustrate the approach with a large
set that comprises devices from both the Australia and the
California dataset, and divide it into 7 subsets Si containing
devices with decreasing classification accuracy. Each subset
is further divided into a 70% training set S ti , and a 30% test
set Svi , as in the previous sections. We then train the classifier
with S t1 and start feeding it the flows in the test set Sv1 , while
keeping track of the confidence level. Once we are through
two thirds (2/3) of the test set, we mix in random flows from
the second test set Sv2 , which contains currently unknown
devices, to get around half old and half new flows. If the
confidence decreases below a 0.9 threshold, we take the union
of S t1 and S

t
2, and retrain the classifier. We then continue the

test, and repeat the procedure with S3 once we are through
two thirds of the test set. The whole process continues with
the remaining subsets.

The results for β = 0.999 (which accounts for approxi-
mately the previous 1,000 flows) are shown in Fig. 19, where
the confidence level is plotted against the number of flows.
The vertical red lines denote the points where new devices
are introduced to the test. Initially confidence is high. Then,
at flow 14,519 we introduce the new devices and confidence
decreases down to the threshold. We then retrain, and start
testing again, and see the confidence approach the initial
level again, as expected. We repeat the procedure with the
third test Sv3 set at flow 32,323. This set comprises fewer
flows, and while confidence decreases it does not reach the
threshold. We therefore mix in the test flows from the fourth
dataset Sv4 , reach the threshold and retrain with the union
of the training subsets. For the fifth dataset, at flow 50,987,
we start testing with the new flows in proportion of 50%, then
decrease their presence in the mix to a low level. Confidence
initially decreases, then increases as classification becomes
generally more accurate, however it is slightly more noisy.
At flow 70,672 we mix in Sv6 and subsequently Sv7 , reach
the threshold and retrain. Overall, confidence has a decreas-
ing trend, because of our choice of progressively including
devices with lower classification accuracy.

FIGURE 19. Confidence level as a function of time as flows of new
devices are introduced to the mix, β = 0.999.

VOLUME 8, 2020 138633

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

The value of β can be chosen to adjust the inertia of
the system. For illustration, Fig. 20 shows the same exper-
iment with β = 0.99, i.e., by mostly considering only
the previous 100 flows. The system responds much more
quickly to changes in the test set, however the curve is con-
siderably more noisy, and could, in certain circumstances,
raise too many flags. Experiments with β = 0.9999 (for
approximately 10,000 previous flows) indicate that the sys-
tem responds too slowly for our set up.

FIGURE 20. Confidence level as a function of time as flows of new
devices are introduced to the mix, β = 0.99.

G. IMPLEMENTATION AND PERFORMANCE
In this section we explore the actual real-time performance
of our approach. The Python SciKit-Learn implementation
of the prediction function is optimized using vector opera-
tions to handle large numbers of test examples in a single
function call. This is not suitable for a deployment where
flows must be processed for prediction one at a time as they
are received. Indeed, experiments show that the overhead
due to the interpreted nature of Python makes this solution
impractical, as the prediction may take milliseconds to be
performed. For this reason, we have turned to a native C
implementation to assess the runtime performance. We con-
sider two different approaches. In the first, the trees are
translated into a nested structure of if-then-else statements,
where leaves return the classification results, while internal
nodes switch branches according to the selected features and
their values. We refer to this solution as the if-then algorithm.
The second implementation encodes the trees into an array,
where each element is a structure that represents either a leaf
with the classification, or an internal node with its branching
information. A simple algorithm is used to traverse the array
and reach a classification. This solution is denoted as the
struct algorithm. In both cases, the C code is automatically
generated from the trained model by recursively analyzing
the internal SciKit-Learn structure. We consider and compare
two versions for each algorithm: one trained with uncon-
strained tree depth, and one where the tree depth is limited to
at most 10 levels, according to the accuracy results reported in
Section IV-D. In the unconstrained case, the generated trees
have a depth that ranges between 19 and 28 levels, with an
average of 23.08. The number of trees is fixed to 100 in all

cases. In addition, we will consider both a single-threaded
sequential implementation and amulti-threaded parallel exe-
cution.

The code for the trees is complemented by i) the FFT
algorithm, ii) a routine to compute the magnitude of the
FFT, and iii) a decision algorithm that computes the final
classification and the confidence level on the basis of the
result of the individual trees. For the FFT we have resorted
to the optimized FFTW v3.3.8 library, compiled with support
for the processor SIMD extensions such as AVX2, and con-
figured to use single floating point precision. The magnitude
of the FFT is instead computed using the hand-written routine
of theVector-Optimized Library of Kernels (VOLK),10 which
also takes advantage of the SIMD extensions. The decision
algorithm, on the other hand, simply inspects the results of
the individual trees to take the majority voting and updates
the confidence level according to Eq. 1.

The code is compiled with gcc version 5.4.0, with all
optimizations enabled (-O8). All experiments are conducted
on a desktop PC running Linux Ubuntu 16.04, equipped with
a 4-core, 8-thread Intel Core i7-6700 CPU clocked at
3.40 GHz, with 8 GByte of RAM. Performance is measured
by instrumenting the code with statements that read the clock
value at intermediate points with nanosecond accuracy, to iso-
late the contribution of the FFT, the magnitude computation,
the tree traversal, and the decision process, as well as to pro-
vide an overall per flow measurement. We process the entire
set of flows used in the previous section on dynamic training,
totaling 95,837 flows, one at a time, in the form of arrays of
packet lengths, repeating the whole procedure from first to
last flow 100 times, for a total of nearly 10 million flows.
The sequence of flows is randomized. Indeed, if flows of the
same kind are grouped together and processed sequentially,
performance increases artificially (by almost a factor of 2
in our experiments) because the cache and especially branch
predictionwork under ideal conditions. The performance data
is stored in arrays as flows are inspected, and later processed
to compute the average, the standard deviation, and to gener-
ate the runtime and the cumulative distributions that we show
next. The distributions are computed by counting the number
of executions for every nanosecond, and then taking a 10 ns
moving average to smoothen out random variations.

1) SEQUENTIAL IMPLEMENTATION, if-then ALGORITHM
In our first set of experiments, flows are classified sequen-
tially by the if-then algorithm. Table 18.a summarizes the
results for the unconstrained depth version, while Fig. 21
shows, on a linear scale, the corresponding runtime distri-
butions, for the individual steps of the computation, and
for the overall classification procedure. We observe that the
magnitude computation, the decision algorithm and to a lesser
extent the FFT, are quite deterministic, as witnessed by the
well defined peak in their runtime distribution, and the low
standard deviation. We remark that to compute the standard

10http://libvolk.org/

138634 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

TABLE 18. Overall running times of flow classification, if-then algorithm.

FIGURE 21. Runtime distributions of FFT, magnitude computation, tree
traversal, decision algorithm, and overall classification. Unconstrained
depth. Linear scale.

deviation we have left out a few outliers (with running times
of more than 2 µs), which total less than 0.01% of the flows,
due to non-deterministic scheduling effects. These outliers
essentially do not affect the average, but have a material
impact on the standard deviation. Conversely, the tree traver-
sal, besides having a larger average runtime, also has a con-
siderable standard deviation. This is not due to scheduling,
but is the effect of traversing different portions of the trees on
account of the different packet size distributions of each flow.
As a consequence, its distribution has a much lower peak and
a long tail. The same is true for the overall classification,
which is essentially a translated version of the tree traversal
that includes the contribution from the computation of the
other steps.

Fig. 22 and Fig. 23 show the same information on a loga-
rithmic scale, and on different ranges of the execution times,
to highlight the details of the runtime distributions. In particu-
lar, Fig. 23 shows the tree traversal long tail, which dies out at
around 16 µs. One must take this behavior into account if the
interest lies in the latency of the classification, rather than the
throughput. To complement the runtime distributions, Fig. 24
and Fig. 25 show the cumulative distribution functions for the
FFT, themagnitude computation and decision, and for the tree

FIGURE 22. Runtime distributions of FFT, magnitude computation and
decision algorithm. Unconstrained depth. Logarithmic scale.

FIGURE 23. Runtime distributions of tree traversal and overall
classification. Unconstrained depth. Logarithmic scale.

FIGURE 24. Cumulative distribution function of the runtimes of the FFT,
magnitude computation and decision algorithm. Unconstrained depth.

traversal and overall classification, respectively. In particular,
from Fig. 25 we observe that 80% of the flows are classified
within 3.8 µs, 90% within 6.8 µs, 95% within 8.9 µs, and
99% within 11.8 µs. On average, the algorithm executes
381 thousand classifications per second.

When the model is limited to a tree depth of just 10 levels,
the performance of the tree traversal is much more determin-
istic, as well as considerably faster. Table 18.b shows the
results. Whereas the FFT, the magnitude computation and
the decision are essentially unchanged, the tree traversal is
on average 1.6 times faster, with less than half the standard

VOLUME 8, 2020 138635

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 25. Cumulative distribution function of the runtimes of tree
traversal and overall classification. Unconstrained depth.

FIGURE 26. Comparison of runtime distributions for tree traversal,
unconstrained depth vs. depth limited to 10 levels.

deviation. This, of course, is also reflected on the overall
performance of the classification. Fig. 26 compares the run-
time distributions of the two versions for the tree traversal
only, highlighting the much shorter tail when the depth of
the tree is limited to 10 levels only. Likewise, the cumula-
tive distribution function for the overall classification, shown
in Fig. 27, underlies that the majority of the flows are clas-
sified within 6 µs. Notice how the constrained depth means
that more flows require a deeper traversal of the tree, shifting
the cumulative distribution slightly to the right relative to
the unconstrained case. On average, the algorithm executes
553 thousand classifications per second.

2) SEQUENTIAL IMPLEMENTATION, struct ALGORITHM
The if-then algorithm is a straightforward implementa-
tion that reduces overhead, but may be inconvenient when
re-training the model, as the executable must be replaced
with a new one. Encoding the tree into a data structure and
traversing it, as done in the struct algorithm, results in simpler
management, as processes need not be terminated and only
data must be updated. Another advantage is that one can
switch among different models by simply changing the value
of a pointer to link to different tree structures. This flexibility
is balanced by a slight decrease in performance, as shown in
Table 19. We observe that the struct algorithm is 1.38 times

FIGURE 27. Cumulative distribution functions, overall classification,
comparison between unconstrained depth vs. depth limited to 10 levels.

TABLE 19. Overall running times of flow classification, struct algorithm.

slower than the if-then implementation in the unconstrained
depth case, and 1.57 times slower when depth is limited to
10 levels. Notice that a portion of the decision (incrementing
of the class counts) was shifted directly into the tree traversal,
resulting in lower execution time for the decision portion.

Fig. 28 and Fig. 29 compare the distribution of the runtime
of the tree traversal for the if-then and the struct algorithm
in the two cases of unconstrained depth, and depth limited
to 10 levels, respectively. The diagrams show both a longer
tail for the struct algorithm, as well as a higher minimum
traversal time for the fastest flows.

3) MULTI-TASKING EFFECTS
If we look closely at Fig. 29, we see a number of executions
with runtimes between 14 µs and 20 µs. These are outliers
which are in fact common to all phases of the classification
algorithm (including the FFT, magnitude and decision) and
are attributable to random effects of the operating system
multi-tasking scheduling algorithm. This can be confirmed
by inspecting the runtime for the same flow across the
100 executions of the experiment. In general the runtimes for
the same flow have low standard deviation, with occasional
long executions, which change position if the experiment

138636 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 28. Comparison of runtime distributions for tree traversal, if-then
vs. struct algorithm, unconstrained depth.

FIGURE 29. Comparison of runtime distributions for tree traversal, if-then
vs. struct algorithm, depth limited to 10 levels.

is repeated different times. Consider the if-then algorithm
with unconstrained depth. Fig. 30 shows for each flow the
standard deviation of the tree traversal runtime across the
100 executions, while Fig. 31 shows their distribution and
cumulative distribution. The vast majority of the flows have
very low standard deviation, with an average of 132 ns (much
lower than the standard deviation across all flows and all
executions), indicating that the classification of each kind of
flow is generally rather deterministic. The horizontal bands
in Fig. 30, on the other hand, suggest that the scheduling
mechanisms of the operating system affect the execution
times, according to defined periodicities. Dedicated servers
should therefore expose controls over these mechanisms,
in order to reduce their impact and increase determinism.

4) PARALLEL IMPLEMENTATION
The classification of each flow is independent of the
classification of any other flow. Consequently, the clas-
sification algorithm can be run in parallel for different
flows in a multi-threaded implementation, as suggested by
Van Essen et al. [48] (see Section IV-H for a comparison).
This way, a new classification can start as new flows are
received, even if the previous classification has not yet ter-
minated. Conceivably, one could even run different trees in
parallel for the same flow. However, because individual trees
execute quickly, the overhead due to thread synchronization

FIGURE 30. Standard deviation for each flow during tree traversal, if-then
algorithm, unconstrained depth.

FIGURE 31. Distribution and cumulative distribution of the standard
deviation for each flow during tree traversal, if-then algorithm,
unconstrained depth.

tends to cancel the advantage of the parallel execution.
We therefore limit ourselves to parallelizing the flows.

Our implementation is based on the pthread library [49].
A configurable number of threads are initially created to
handle equal portions of the flows, they are started, and inde-
pendently run to sequentially classify their assigned flows.
The main thread then waits until all threads have completed
their executions. In these experiments we are unable to keep
track of the execution times of the inner parts of the algorithm,
as executions overlap and would not give a proper measure.
Instead, wemeasure the total execution time, and compute the
average per-flow running time. For illustration, we consider
the if-then algorithm, in the two variants of unconstrained
depth and depth limited to 10 levels, as the number of threads
is increased. Since the processor supports up to 8 independent
threads, we expect the speed-up to level off after this value.

The results are shown in Fig. 32 for both the unconstrained
depth and the 10-level limit case, as the number of threads
varies from 1 to 16. As expected, the execution time decreases
quickly up to 4 threads, corresponding to the number of
cores of the platform we are using. Performance further
improves up to the 8 threads supported by the processor,
however threads must compete for resources, and gains are
therefore more limited. No further gains can be achieved with
more threads, in fact there is a slight amount of overhead
that decreases performance. Table 20 summarizes the per-
formance for the 2-, 4- and 8-thread case. Compared to the

VOLUME 8, 2020 138637

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

FIGURE 32. Average flow classification time as the number of parallel
threads is increased from 1 to 16, if-then algorithm.

TABLE 20. Per-flow execution time, if-then algorithm, by number of
threads.

sequential implementation, the parallel execution achieves
a maximum speed-up of 4.34 times in the unconstrained
depth case, and of 3.88 times when the depth is constrained
to 10 levels, with the bulk of the gains reached already at
4 threads. Overall, the parallel versions are able to execute
1.66 million classifications per second and 2.15 million clas-
sifications per second, respectively. The results show that the
algorithm can effectively be parallelized, even though gains
are eventually bounded by the competition of the threads on
the processor resources.

H. DISCUSSION
The classification results shown in the previous sections high-
light that the analysis of the series of the payload lengths
in the frequency domain provides high selectivity, with high
overall accuracy and MCC. On the other hand, the analysis
also shows that smaller datasets may be unable to provide
sufficient training examples to reduce the classification error.
In this case, the model may tend to overfit part of the data,
and the validation suffers. Data augmentation can help reduce
this effect. Our analysis shows that balancing the number
of flows in the dataset, by duplicating the lower bandwidth
devices, provides better performance and helps the learning
algorithm reach higher classification accuracy. Another pos-
sible remedy in these cases is to further reduce the number of
features. In a preliminary experiment, we have considered a
reduced subset of the Australia dataset corresponding to only
three days of data capture with approximately 17,000 flows.

We have then isolated only a reduced number of peaks in the
spectrum. The experiments show that using only 32, 16 or
even 4 peaks reduces accuracy by only 0.2% points, showing
that the highest values of the spectrum carry the majority of
the information. A more detailed evaluation of this approach
is part of our current and future work.

The classification accuracy and performance in terms of
precision, recall and the other metrics that we obtain is in line
with the results obtained in our previous work [12], however
we here use a very different set of features. More specifically,
we focus on simplified features based on the length of the
packets (in some cases complemented by the inter-arrival
times) and further evaluate the performance on a much larger
dataset. This is convenient for both computational complex-
ity, if the recognition must be run in real time, and to handle
flows that are obfuscated by encryption. A combined classi-
fier could also be used to increase the reliability. In addition,
we have extended the classifier to distinguish between the
different classes of devices, a valuable information to adjust
the network quality of service, to detect anomalous behavior
and therefore isolate compromised devices.

Other methods, discussed in Section II, have also been pre-
sented in the literature that reach high classification accuracy,
selectivity and specificity [15], [16], [25], [26]. Our intention
was not so much improving the performance metrics, which
arguably reach almost perfect classification in some of the
reported work, but rather achieve similar performance using
a considerably reduced set of features that does not need
header or payload inspection. By doing so, the classifier could
be deployed also in the presence of encryption. In addition,
we study the performance of classification in the frequency
domain.

In our study we also explore the impact of tree depth in
terms of classification performance. The results show that
relatively shallow trees already provide the bulk of the dis-
tinguishing power of the method, while resulting in a much
simpler implementation, essential when dealing with traffic
in real time. We have also considered applying the classifier
obtainedwith one dataset to an entirely different dataset. This,
as far as we know, has never been attempted in the literature.
The analysis, limited to the common devices, shows that i)
performance suffers, and ii) deep trees may overfit relative
to another dataset. The tree depth analysis identifies the opti-
mal value for the hyper-parameter in this case. Nevertheless,
the models show some difficulty in generalizing, presumably
because of the wide differences in configurations and envi-
ronment of operation. This aspect is largely unexplored in
the state of the art, and is hampered by the lack of appropriate
labeled datasets. One mention is given by Pinheiro et al. [16],
who observe similar behavior with firmware updates or com-
promised devices, and suggest, without going further, that
unsupervised learning techniques could be used to address
the problem.

Real-time classifiers, exposed to a potentially changing
mix of different devices in the network, must be able to
detect when confidence in classification is poor. We have

138638 VOLUME 8, 2020

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

implemented this feature by taking an exponentially weighted
average of the classification probability output by the trees
over the past flows. A guided retraining phase can be ini-
tiated whenever the confidence level decreases below a set
threshold.

We have extensively characterized the real-time perfor-
mance of our classifiers, analyzing the contribution of the
different phases of the algorithm, and considering different
implementations. Table 21 summarizes the results in terms of
kilo-classifications per second (kcps). To put these numbers
in context, a 10 Gbps Ethernet network, with a minimum
packet size of 84 bytes, can carry at most 14.9 Mpps (million
packets per second). Our best algorithm could therefore run
on a network of this kind, in the conservative assumptions that
flows have at least 7 packets on average. In general, packets
are larger than minimum size and flows are longer (how-
ever this depends on the specific application), making our
approach suitable for high speed networks. Asmentioned ear-
lier, in our dataset IoT devices have an average of 20 packets
per flow, and 365 bytes per packet. Thus, on average, we need
to run a classification every 7,300 bytes. For a 100 Gbps
network, this translates into 1,712 kcps, well within the per-
formance of the multi-threaded depth-limited implementa-
tion, and within reach of the multi-threaded unconstrained
implementation. Introducing non-IoT flows in the mix, which
are longer and larger (146 packets per flow, 560 bytes per
packet in our dataset), can only improve the performance.

TABLE 21. Real-time performance, classifications per second.

Several further optimizations have been reported in the
literature, essentially using parallelism in various forms.
Van Essen et al. study the scalability of random forest on
multi-threaded CPUs, on general purpose GPUs and on
FPGAs [48]. The CPU implementation is similar to our
struct algorithm, and is parallelized using openMP on a
2-socket Intel X5660Westmere systemwith 12 cores running
at 2.8 GHz with 96 GByte of DRAM. With 32 trees and a
depth of 6 levels, they achieve 9,291 kcps with 12 threads,
and 884 kcps with 1 thread (considering the tree execution
time only). With 234 trees and again a depth of 6 levels,
the performance is 1,044 kcps with 12 threads and 93 kcps
with 1 thread. Our results are generally in line, or somewhat
better when scaled for the number of trees and depth, although
a lot depends on the complexity of the classification. The
authors do not report the standard deviation of their execu-
tions. What we can extrapolate is instead the performance
improvement due to the use of GPUs (a Tesla M2050) and

FPGAs (a Xilinx XC6VLX240T-1), which run 2 to 5 times
faster than the multi-threaded CPU, with a much more favor-
able performance/power trade off.

In addition toGPUs and FPGAs, our algorithm could easily
be implemented on network processors that offer increasing
levels of multi-threaded performance. For instance, the Mel-
lanox Indigo NPS-400 network processor [50] supports up
to 4,000 threads on 256 cores, with a modified version
of the Linux operating system that eliminates the schedul-
ing overhead, mitigating the effects we have described in
Section IV-G3 and simplifying synchronization. With dedi-
cated hardware for flow management, performance on this
platform could easily reach network speeds well in excess
of 100 Gbps.

V. CONCLUSION
In this paper, we have studied a statistical classification
method to discriminate between IoT and non-IoT traffic,
and to determine the device that originates the communi-
cation flow. We have first presented and characterized our
dataset, collected from repositories made available in the
public domain, discussed the tools we have used to capture
the data, generate the flows and their statistics, and construct
the classification algorithms. We have shown the features of
different classes of devices, and discussed the classification
performance of the Random Forest algorithm using 10-fold
cross validation. We have then analyzed the impact of tree
depth to the performance metrics and selected the optimal
value to trade off accuracy and computational complexity.
When devices have low bandwidth, the relative weight of
their flows in the dataset is correspondingly low. We show
that replication can be used to balance the dataset, and direct
the learning algorithm to a better overall optimal point.
We have used a confidence metric to estimate the accuracy
of the classifier, and detect when a new training phase is nec-
essary due to the introduction of previously unknown devices.
We have illustrated this technique by implementing the clas-
sifier in Python using SciKit-Learn. Finally, we thoroughly
analyze the runtime performance of the classifier, and show
that a native multi-threaded C implementation automatically
generated from the trees is able to handle very high speed
networks.

In our future work, we plan explore the timing relation
among different flows attributed to the same device. The diffi-
culty with this kind of analysis is that regularity is seen across
the flows which are opened and closed by a particular device.
A different criterion must therefore be devised. In the context
of cellular networks, one can use a specific identifiers, like
the IMSI, to associate traffic to a device. At the same time,
the same device, such as a smartphone, might behave as both
a ‘‘thing’’ (by using its sensors) and a traditional terminal,
creating confusion or noise in the classification. Regarding
the dynamic learning technique, additional information, such
as the port number (as used in [47]), could also be inspected
to estimate accuracy, when the information is available.

VOLUME 8, 2020 138639

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

REFERENCES
[1] S. B. Baker, W. Xiang, and I. Atkinson, ‘‘Internet of Things for smart

healthcare: Technologies, challenges, and opportunities,’’ IEEE Access,
vol. 5, pp. 26521–26544, 2017.

[2] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. M. Aggoune,
‘‘Internet-of-Things (IoT)-based smart agriculture: Toward making the
fields talk,’’ IEEE Access, vol. 7, pp. 129551–129583, 2019.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[4] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet
traffic classification using machine learning,’’ IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[5] R. Passerone, D. Cancila, M. Albano, S. Mouelhi, S. Plosz, E. Jantunen,
A. Ryabokon, E. Laarouchi, C. Hegedus, and P. Varga, ‘‘Amethodology for
the design of safety-compliant and secure communication of autonomous
vehicles,’’ IEEE Access, vol. 7, pp. 125022–125037, 2019.

[6] M. E. Raynor and P. Wilson, Beyond the Dumb Pipe: The IoT and the New
Role for Network Service Providers–The Internet of Things in Telecom.
New York, NY, USA: Deloitte Univ. Press, Sep. 2015. [Online]. Available:
https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-in-
telecom-industry.html

[7] P. Gupta and N. McKeown, ‘‘Algorithms for packet classification,’’ IEEE
Netw., vol. 15, no. 2, pp. 24–32, Mar. 2001.

[8] C. Xu, S. Chen, J. Su, S. M. Yiu, and L. C. K. Hui, ‘‘A survey on regular
expression matching for deep packet inspection: Applications, algorithms,
and hardware platforms,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2991–3029, 4th Quart., 2016.

[9] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and
M. Mellia, ‘‘Reviewing traffic classification,’’ in Data Traffic Moni-
toring and Analysis, E. Biersack, C. Callegari, M. Matijasevic, Eds.
Berlin, Germany: Springer-Verlag, 2013, pp. 123–147. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2555672.2555680

[10] A. Finamore, M. Mellia, M. Meo, and D. Rossi, ‘‘KISS: Stochastic packet
inspection classifier for UDP traffic,’’ IEEE/ACM Trans. Netw., vol. 18,
no. 5, pp. 1505–1515, Oct. 2010.

[11] P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti, ‘‘Abacus:
Accurate behavioral classification of P2P-TV traffic,’’ Comput. Netw.,
vol. 55, no. 6, pp. 1394–1411, Apr. 2011.

[12] G. Cirillo, R. Passerone, A. Posenato, and L. Rizzon, ‘‘Statistical flow clas-
sification for the IoT,’’ in Applications in Electronics Pervading Industry,
Environment and Society—ApplePies (Lecture Notes in Electrical Engi-
neering), vol. 627, S. Saponara and A. De Gloria, Eds. Cham, Switzerland:
Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-
37277-4_9

[13] C. Liu, Z. Cao, Z. Li, and G. Xiong, ‘‘LaFFT: Length-aware FFT based
fingerprinting for encrypted network traffic classification,’’ in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jun. 2018, pp. 1–6.

[14] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and
M. Gurusamy, ‘‘DEFT: A distributed IoT fingerprinting technique,’’ IEEE
Internet Things J., vol. 6, no. 1, pp. 940–952, Feb. 2019.

[15] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, ‘‘IoT devices recognition
through network traffic analysis,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2018, pp. 5187–5192.

[16] A. J. Pinheiro, J. de M. Bezerra, C. A. P. Burgardt, and D. R. Campelo,
‘‘Identifying IoT devices and events based on packet length from encrypted
traffic,’’ Comput. Commun., vol. 144, pp. 8–17, Aug. 2019.

[17] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. San Mateo, CA, USA:
Morgan Kaufmann, 2016.

[18] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, ‘‘Towards
the deployment of machine learning solutions in network traffic classifica-
tion: A systematic survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1988–2014, 2nd Quart., 2019.

[19] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, ‘‘A first look at cellular
machine-to-machine traffic: Large scale measurement and characteriza-
tion,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 65–76,
Jun. 2012, doi: 10.1145/2318857.2254767.

[20] A. Moore, D. Zuev, and M. Crogan, ‘‘Discriminators for use in flow-based
classification,’’ Dept. Comput. Sci., Queen Mary Univ. London, London,
U.K., Tech. Rep. RR-05-13, 2005.

[21] A. Bar, P. Svoboda, and P. Casas, ‘‘MTRAC–discovering M2M devices in
cellular networks from coarse-grained measurements,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), London, U.K., Jun. 2015, pp. 667–672.

[22] M. Laner, P. Svoboda, and M. Rupp, ‘‘Detecting M2M traffic in mobile
cellular networks,’’ in Proc. IWSSIP, May 2014, pp. 159–162.

[23] V. Pant, R. Passerone, M. Welponer, L. Rizzon, and R. Lavagnolo, ‘‘Effi-
cient neural computation on network processors for IoT protocol classi-
fication,’’ in Proc. New Gener. CAS (NGCAS), Genova, Italy, Sep. 2017,
pp. 9–12.

[24] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, ‘‘Characterizing and classifying IoT
traffic in smart cities and campuses,’’ in Proc. IEEE Conf. Comput. Com-
mun. Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, May 2017,
pp. 559–564.

[25] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, ‘‘Classifying IoT devices in smart
environments using network traffic characteristics,’’ IEEE Trans. Mobile
Comput., vol. 18, no. 8, pp. 1745–1759, Aug. 2019.

[26] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici, ‘‘ProfilIoT: A machine learning
approach for IoT device identification based on network traffic analysis,’’
in Proc. Symp. Appl. Comput. (SAC), New York, NY, USA: Association
Computing Machinery, 2017, pp. 506–509.

[27] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Net-
work traffic classifier with convolutional and recurrent neural networks for
Internet of Things,’’ IEEE Access, vol. 5, pp. 18042–18050, 2017.

[28] Y. Yang, K. Zheng, C. Wu, and Y. Yang, ‘‘Improving the classification
effectiveness of intrusion detection by using improved conditional varia-
tional AutoEncoder and deep neural network,’’ Sensors, vol. 19, no. 11,
p. 2528, Jun. 2019.

[29] A. S. Iliyasu and H. Deng, ‘‘Semi-supervised encrypted traffic classifi-
cation with deep convolutional generative adversarial networks,’’ IEEE
Access, vol. 8, pp. 118–126, 2020.

[30] Y. Zeng, H. Gu, W. Wei, and Y. Guo, ‘‘Deep-full-range: A deep learn-
ing based network encrypted traffic classification and intrusion detection
framework,’’ IEEE Access, vol. 7, pp. 45182–45190, 2019.

[31] P. Wang, X. Chen, F. Ye, and Z. Sun, ‘‘A survey of techniques for mobile
service encrypted traffic classification using deep learning,’’ IEEE Access,
vol. 7, pp. 54024–54033, 2019.

[32] A. Amouri, V. T. Alaparthy, and S. D.Morgera, ‘‘Amachine learning based
intrusion detection system for mobile Internet of Things,’’ Sensors, vol. 20,
no. 2, p. 461, Jan. 2020.

[33] X. Han, L. Han, Y. Zhou, L. Huang, M. Qian, J. Hu, and J. Shi, ‘‘FFT
traffic classification-based dynamic selected IP traffic offload mechanism
for LTEHeNB networks,’’Mobile Netw. Appl., vol. 18, no. 4, pp. 477–487,
Aug. 2013.

[34] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, ‘‘BotFinder: Finding bots in
network traffic without deep packet inspection,’’ in Proc. 8th Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), Nice, France, 2012, pp. 349–360.

[35] M. Zhou and S.-D. Lang, ‘‘Mining frequency content of network traffic
for intrusion detection,’’ in Proc. Int. Conf. Commun., Netw., Inf. Secur.,
New York, NY, USA, Dec. 2003, pp. 101–107.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[37] H. Guo and J. Heidemann, ‘‘IP-based IoT device detection,’’ inProc.Work-
shop IoT Secur. Privacy (IoT S&P). Budapest, Hungary: ACM, Aug. 2018,
pp. 36–42.

[38] Mimic MQTT Simulator. Accessed: Jul. 28, 2020. [Online]. Available:
https://www.gambitcomm.com/site/

[39] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
‘‘Characterization of encrypted and VPN traffic using time-related fea-
tures,’’ in Proc. 2nd Int. Conf. Inf. Syst. Secur. Privacy, Rome, Italy, 2016,
pp. 407–414.

[40] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre, ‘‘Internet
traffic modeling by means of hidden Markov models,’’ Comput. Netw.,
vol. 52, no. 14, pp. 2645–2662, Oct. 2008.

[41] A. Dainotti, A. Pescapé, and G. Ventre, ‘‘A cascade architecture for DoS
attacks detection based on the wavelet transform,’’ J. Comput. Secur.,
vol. 17, no. 6, pp. 945–968, Nov. 2009.

[42] AppNeta. (2015). Tcpreplay: Pcap Editing and Replaying Utilities.
[Online]. Available: http://tcpreplay.appneta.com/

138640 VOLUME 8, 2020

http://dx.doi.org/10.1145/2318857.2254767

G. Cirillo, R. Passerone: Packet Length Spectral Analysis for IoT Flow Classification Using Ensemble Learning

[43] P. Jurkiewicz, G. Rzym, and P. Boryło, ‘‘Flow length and size distributions
in campus Internet traffic,’’ 2018, arXiv:1809.03486. [Online]. Available:
http://arxiv.org/abs/1809.03486

[44] L. Grimaudo, M. Mellia, and E. Baralis, ‘‘Hierarchical learning for fine
grained Internet traffic classification,’’ in Proc. 8th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Aug. 2012, pp. 463–468.

[45] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, ‘‘How many trees in
a random forest?’’ in Machine Learning and Data Mining in Pattern
Recognition, P. Perner, Ed. Berlin, Germany: Springer, 2012, pp. 154–168.

[46] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen, ‘‘Population based
augmentation: Efficient learning of augmentation policy schedules,’’ in
Proc. 36th Int. Conf. Mach. Learn., Long Beach, CA, USA, Jun. 2019,
pp. 2731–2741.

[47] L. Grimaudo, M. Mellia, E. Baralis, and R. Keralapura, ‘‘SeLeCT: Self-
learning classifier for Internet traffic,’’ IEEE Trans. Netw. Service Manag.,
vol. 11, no. 2, pp. 144–157, Jun. 2014.

[48] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, ‘‘Accelerating
a random forest classifier: Multi-core, GP-GPU, or FPGA?’’ in Proc.
IEEE 20th Int. Symp. Field-Program. Custom Comput. Mach., Apr. 2012,
pp. 232–239.

[49] D. R. Butenhof, Programming With POSIX Threads. Reading, MA, USA:
Addison-Wesley, 1997.

[50] Mellanox. (2017). Mellanox Indigo NPS-400 Network Processor.
[Online]. Available: https://www.mellanox.com/related-docs/prod_npu/
PB_Indigo_NPS-400.pdf

GENNARO CIRILLO received the B.S. and M.S.
degrees in computer science from the University of
Trento, Italy, in 2017 and 2020, respectively. His
research interests include formal methods, logic
and optimization, automata theory, machine learn-
ing, and the IoT technologies.

ROBERTO PASSERONE (Member, IEEE)
received the M.S. and Ph.D. degrees in electri-
cal engineering and computer sciences from the
University of California at Berkeley, in 1997 and
2004, respectively. He was a Research Scientist
with Cadence Design Systems. He is currently an
Associate Professor of electronics with the Depart-
ment of Information Engineering and Computer
Science, University of Trento, Italy. He has pub-
lished numerous research articles in international

conferences and journals in the area of design methods for systems and
integrated circuits, formal models, and design methodologies for embedded
systems, with particular attention to image processing and wireless sensor
networks. He has participated in several European projects on design
methodologies, including SPEEDS, SPRINT, and DANSE. He was the Local
Coordinator for ArtistDesign, COMBEST, and CyPhERS. He has served
as the Track Chair of the real-time and networked embedded systems with
ETFA, from 2008 to 2010, and the General Chair and the Program Chair for
various editions of SIES.

VOLUME 8, 2020 138641

