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Abstract A weighted likelihood approach for robust fitting a finite mixture of
linear regression models is proposed. An EM type algorithm and its variant based
on the classification likelihood have been developed. The proposed algorithm is
characterized by an M-step that is enhanced by the computation of weights aimed
at downweighting outliers. The weights are based on the Pearson residuals stem-
ming from the assumption of normality for the error distribution. Formal rules for
robust clustering and outlier detection are also defined based on the fitted mixture
model. The behavior of the proposed methodologies has been investigated by some
numerical studies and real data examples in terms of both fitting and classification
accuracy and outlier detection.
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1 Introduction

The problem of clustering around linear structures is particularly appealing and
has received growing interest in the literature. Latent class regression has applica-
tions in many fields, including engineering, genetics, biology, econometrics, mar-
keting, computer vision, pattern recognition, tomography, fault detection, among
others. The reader is pointed to Garćıa-Escudero et al (2009) for a large collec-
tion of references. This paper is motivated by the fact that noisy data frequently
appear in every field of application. When the sample data is contaminated by
the occurrence of outliers, it is well known that maximum likelihood estimation
(MLE) is likely to lead to unreliable results. In a mixture setting, the bias of at
least one of the component parameters estimate can be arbitrarily large and the
true underlying clustering structure can be hidden. Therefore, there is the need
for a suitably robust procedure providing protection against outliers. The reader
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is pointed to the book by Farcomeni and Greco (2015a) for a gentle introduction
to robustness issues.

The problem of robust fitting of a mixture of linear regressions has been al-
ready tackled in the literature. In general, the robust solutions are driven by a
suitable modification of the EM algorithm for mixtures or the classification EM
algorithm (CEM), concerning the M step, which is enhanced by some robust es-
timation approach in place of maximum likelihood. Some existing proposals are
based on the idea of (hard) trimming: estimation is performed over a subset of
the original data obtained after discarding those units with the lowest contribu-
tions to the likelihood function. According to such trimming strategies, potential
outliers are discarded in the estimation process, that is observations are given
crispy weights in {0, 1}. Neykov et al (2007) introduced a mixture fitting ap-
proach based on the trimmed likelihood, Garćıa-Escudero et al (2010) extended
the TCLUST methodology, developed in Garćıa-Escudero et al (2008) for mixtures
of multivariate Gaussian distributions, exploiting the idea of impartial trimming
in TCLUST-REG, a related proposal has been presented in Garćıa-Escudero et al
(2009) and an adaptive hard trimming procedure has been described in Riani et al
(2008) based on the Forward Search methodology. In particular, TCLUST-REG
is characterized by group scatter constraints aimed at making the mixture fitting
a well-posed problem and the addition of a second trimming step to mitigate the
effect of outliers in the space of explanatory variables acting as leverage points. A
very recent adaptive version of TCLUST-REG has been discussed in Torti et al
(2019). An alternative approach meant to automatically take into account leverage
points has been considered by Garćıa-Escudero et al (2017) where trimming and
restrictions have been introduced to get a robust version of the cluster weighted
model, named Trimmed Clustered Weighted Restricted Model (TCWRM). In this
approach restrictions concern both the set of eigenvalues of the covarance matrix
evaluated on the X−space and the variances of the regression error term. The
reader is pointed to Torti et al (2019) for a comparative analysis of TCLUST-
REG and TCWRM under general settings. The benefits of trimming for robust
regression clustering have been also investigated in Dotto et al (2017) where a
fuzzy approach has been developed.

In a different but complementary fashion, Bashir and Carter (2012) and Bai
et al (2012) modified the M step by resorting to soft rather than hard trimming
procedures. Actually, they replaced the single component MLE problems by M-
(and S-) estimation problems for linear regression (see also Campbell (1984) and
Maronna et al (2018)). In particular, in both papers the authors developed an
EM-type algorithm featured by componentwise weights but this approach can
be extend to obtain robust versions of the CEM algorithm based on M- and S-
estimation, as well. According to a soft trimming strategy, observations are at-
tached a weight lying in [0, 1] according to some measure of outlyingness. Potential
outliers are expected to be heavily downweighted, whereas genuine observations
receive a weight close to one.

It is worth to mention that there are different proposals aimed at robust la-
tent class linear regression estimation that are not based on soft or hard trimming
procedures in which the assumed model is embedded in a larger one to account
for outliers. Yao et al (2014) considered a mixtures of linear regression models
with Student t error distributions; Punzo and McNicholas (2017) developed an
approach based on the Contaminated Gaussian Cluster Weighted Model in which



Weighted likelihood latent class linear regression 3

each mixture component has some parameters controlling the proportion of (differ-
ent type of) outliers; Yu et al (2017) proposed a case-specific and scale-dependent
mean-shift mixture model and a penalized likelihood approach to induce sparsity
among the mean-shift parameters.

Here, we propose the use of the weighted likelihood methodology (Markatou
et al, 1998) as a valid alternative to the existing methods. Weighted likelihood is an
appealing robust techniques for estimation and testing (Agostinelli and Markatou,
2001). In particular, reliable statistical tools have been developed for linear regres-
sion (Agostinelli and Markatou, 1998; Agostinelli, 2002), generalized linear models
(Alqallaf and Agostinelli, 2016) and multivariate analysis (Agostinelli and Greco,
2019). Recently, Greco and Agostinelli (2019) also introduced weighted likelihood
estimation of mixtures of multivariate normal distributions. The authors explored
the behavior of both EM and CEM type algorithms and found that weighted
likelihood gives powerful devices for robust estimation, classification and outliers
detection. Then, the same ideas can be extended to the context of mixtures of
linear regressions.

Weighted likelihood belongs to the group of soft trimming techniques and the
weighted likelihood estimator (WLE) can be thought as an M-estimator. The main
differences are in the genesis of the weights and in their asymptotic behavior at the
assumed model. Actually, weighted likelihood estimation can correspond to a min-
imum disparity estimation problem (Basu and Lindsay, 1994). Then, conversely to
M-estimators, the WLE is asymptotically efficient at the model and is expected to
be highly robust under contamination. Some necessary preliminaries on weighted
likelihood estimation are given in Section 2. The weighted EM and penalized CEM
algorithms for robust fitting of mixtures of regressions are introduced in Section
3, while outlier detection rules are outlined in Section 4. Some illustrative exam-
ples based on simulated data are presented in Section 5 and Section 6 gives some
numerical studies. A real data example is discussed in Section 7.

2 Background

Let y = (y1, ∙ ∙ ∙ , yn)
T

be a random sample of size n drawn from a r.v. Y with
distribution function M(y; θ) and probability (density) function m(y; θ), which is
an element of the parametric family of distributions M = {M(y; θ), θ ∈ Θ ⊆
Rd, d ≥ 1, y ∈ Y}. Let F̂ be the empirical distribution function. The WLE θ̂w is
defined as the root of the Weighted Likelihood Estimating Equations (WLEE)

n∑

i=1

w(yi; θ, F̂ )s(yi; θ) = 0 , (1)

where s(y; θ) =
∑n

i=1 s(yi; θ) is the score function. The WLEE in (1) is a modified
version of the (system of) likelihood equations, since a data dependent weight,
wi = w(yi; θ, F̂ ) ∈ [0, 1], is attached to each individual score component. The
weights are meant to be small for those data points that are in disagreement with
the assumed sampling model. The degree of agreement between the data and the
assumed model is measured by the Pearson residual function. Let

f∗(y) =

∫

Y
k(y; t, h)dF̂ (t)
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be a non parametric kernel density estimate and

m∗(y; θ) =

∫

Y
k(y; t, h)m(t; θ) dt

a smoothed version of the model density obtained by using the same kernel func-
tion. Then, the Pearson residual is

δ(y) =
f∗(y) − m∗(y; θ)

m∗(y; θ)
,

with δ(y) ∈ [−1, +∞]. By smoothing the model, the Pearson residuals converge
to zero with probability one for every y under the assumed model; the reader
is pointed to Basu and Lindsay (1994), Markatou et al (1998) and references
therein. When the model is discrete, f∗(y) is the empirical probability function
and m∗(y; θ) simply reduces to m(y; θ). In this paper, we will make use of the
Pearson residuals established in Agostinelli and Greco (2019). Actually, a valid
WLEE can be also obtained by using Pearson residuals that are defined as

δ(y) =
f∗(ỹ) − m∗(ỹ)

m∗(ỹ)
,

where ỹ = g(y; θ) is a pivot at the assumed model whose (smoothed) distribution
does not depend on the parameter value.

Large values of the Pearson residual function correspond to regions of the
support of Y where the model fits the data poorly. According to this approach,
outliers can be defined as observations that are highly unlikely to occur under the
assumed model, rather than from a geometric point of view as observation that
are far from the model fitted to the bulk of the data, as in the classical theory of
M-estimators.

The weight function is defined as

w(δ(y)) =
[A(δ(y)) + 1]+

δ(y) + 1
, (2)

where [∙]+ denotes the positive part and A(δ) is the Residual Adjustment Function
(RAF, Basu and Lindsay (1994)). The RAF plays the role to bound the effect of
large Pearson residuals on the fitting procedure. By using a RAF such that |A(δ)| ≤
|δ| both outliers and inliers (whose nature will be described in the following) will be
downweighted. The RAF function is connected to minimum disparity estimation
problems. Actually, it is defined as A(δ) = (δ+1)G′(δ)−G(0), with prime denoting
differentiation, where G(∙) is a strictly convex function over [−1,∞] and thrice
differentiable, which determines a disparity measure, that, in the continuous case,
is defined as

ρ(f∗(y), m∗(y; θ) =

∫

Y
G(y)m∗(y; θ) dy .

In principle, by following the approach developed in Markatou et al (1998), it
is possible to build a WLEE matching a minimum disparity objective function.
One can consider the families of RAF stemming from the Symmetric Chi-Squared
divergence, the family of Power divergence or Generalized Kullback-Leibler diver-
gence measures. The resulting weight function is unimodal and decline smoothly
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Fig. 1 Weighting function corresponding to a Symmetric Chi-Squared divergence

to zero as δ(y) → −1 or δ(y) → ∞. The weighting function corresponding to a

Symmetric Chi-Squared divergence, which is driven by G(δ) = 2δ2

δ+2 , is given in
Figure 1.

Under the assumptions given in Markatou et al (1998) and Agostinelli and
Markatou (2001), that establish some regularity conditions on the model, the ker-
nel and the weight function, at the assumed model, we have that:

1. θ̂w is a consistent and first order efficient estimator of θ, that is

√
n(θ̂w − θ)

d
→ N(0, I−1

1 (θ))

where I1(θ) = E[u(Y ; θ)2] is the expected Fisher information;

2. sup|w(y, θ̂w, F̂ ) − 1|
a.s.
→ 0 (Agostinelli and Greco, 2013);

3. the weighted versions of the likelihood ratio, Wald and score test all share the
usual asymptotic behavior (Agostinelli and Markatou, 2001).

It is worth to claim that the shape of the kernel function has a very limited
effect on weighted likelihood estimation. On the contrary, the smoothing parameter
h allows to control the robustness/efficiency trade-off of the methodology in finite
samples. Actually, large values of h lead to Pearson residuals all close to zero
and weights all close to one and, hence, large efficiency, since the kernel density
estimate is stochastically close to the postulated model. On the other hand, small
values of h make the kernel density estimate more sensitive to the occurrence of
outliers and the Pearson residuals become large for those data points that are in
disagreement with the model.

2.1 Weighted likelihood for linear regression

Let us consider a linear regression model with normally distributed errors, i.e. y =
Xβ+σε, where y is a response variable, X = [x1, . . . , xp] is the n×p design matrix,

β = (β1, . . . , βp)
T

is the vector of regression coefficients, σ is a scale parameter and
ε ∼ N(0, 1). In this setting, Pearson residuals and the weights can be evaluated
over the scaled residuals g(y; β, σ) = e = (y − Xβ)/σ. An appealing strategy
to compute Pearson residuals consists in using a normal kernel with bandwidth
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equal to h. In such a way, the smoothed model density is still normal with variance
(1 + h2), that is

δ(y) =
f∗(e)

1√
1+h2 φ

(
e√

1+h2

) − 1 , (3)

where φ(∙) denotes the standard normal density function. Then, the WLE of (β, σ)
is obtained as the result of a weighted least squares. Clearly, the computation of the
WLE of (β, σ) yields an iterative procedure. At each iteration, based on the current
parameter estimates, scaled residuals are obtained. Then, their non parametric
density estimate is fitted based on the chosen kernel and Pearson residuals and
weights are updated according to (3) and (2).

3 Robust fitting of a latent class linear regression model

Let us assume a latent class regression model featured by K components, where
K is fixed in advance, with density function denoted by

m(y; x, τ) =
K∑

k=1

πkφ(y; μk, σk), (4)

where μk = Xβk, πk is the prior probability of component k, (βk, σk) are the

component specific parameters and τ = (π1, . . . , πK , β1, . . . , βK , σ1, . . . , σK)
T

is
the vector of all parameters.

The mixture loglikelihood function based on a sample of size n is

`(τ) =
n∑

i=1

log

K∑

k=1

πkφ(yi; μk, σk) .

Maximum likelihood estimation is commonly performed by the EM algorithm,
that works with the classification loglikelihood

`c(τ) =
n∑

i=1

K∑

k=1

log(πkφ(yi; μk, σk))uik ,

where uij is an indicator of the ith unit belonging to the jth cluster. The EM
algorithm iterates, over the index s, between the E step, in which posterior mem-
bership probabilities are evaluated as

u
(s)
ik =

π
(s−1)
k φ

(
yi; μ

(s−1)
k , σ

(s−1)
k

)

∑K
k=1 π

(s−1)
k φ

(
yi; μ

(s−1)
k , σ

(s−1)
k

)

and the M step, where parameters’ estimates are updated as

π
(s)
k =

∑n
i=1 u

(s)
ik

n

β
(s)
k = (X

T

U (s)X)−1X
T

U (s)y

σ
2(s)
k =

(
y − μ

(s)
k

)T

U (s)
(
y − μ

(s)
k

)

n
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where U (s) is the n×k matrix whose i-th row is u
(s)
i. =

(
u

(s)
i1 , . . . , u

(s)
iK

)
. At conver-

gence, cluster assignments can be pursued according to a Maximum a Posteriori
(MAP) rule: units are assigned to the most likely component. In the CEM algo-
rithm, after the E step, a classification step is performed (together they form the

CE step). Let ki = argmaxku
(s)
ik , then u

(s)
iki

= 1 and u
(s)
ik = 0 for k 6= ki and U (s)

becomes a dummy matrix. Conversely to the EM algorithm, the CEM directly
provides a classification of the units at convergence. Actually, the classification
approach is aimed at maximizing the classification loglikelihood over both the
mixture parameters and the individual components’ labels.

Weighted versions of the above algorithms can be designed by introducing the
computation of the weights defined in (2) before the M step at the current pa-
rameter value. In particular, the weighted EM (WEM) will require componentwise
sets of weights, wheres in the weighted CEM (WCEM) weights will be computed
conditionally on the current cluster assignments driven by the CE step. More in
details, the WEM algorithm iterates between the classical E step and an M step
in which the single components MLE problems are replaced by one-step WLE
problems. The single iteration is summarized in Algorithm 1.On the contrary, the
WCEM algorithm iterates between the standard CE step and a one-step weighted
likelihood based M-step in which weights are evaluated conditionally to the current
cluster assignment, that is wik = wiki

and not for each component anymore.

3.1 Computational details

One of the first issues to deal with the estimation of a mixture model by the
EM or CEM algorithm and their robust counterparts is the choice of a suitable
starting point. A solution is represented by subsampling (Markatou et al, 1998;
Neykov and Müller, 2003; Neykov et al, 2007; Torti et al, 2019). A subsample
of size n∗ is selected randomly from the data sample, then the model is fitted
to these n∗ observations by the classical EM (or CEM) algorithm to get a trial
estimate. In order to avoid the algorithm to be dependent on initial values, a simple
and common strategy is to run the algorithm from a number of starting values.
This approach shows some limitations since from the one hand n∗ should be as
small as possible in order to increase the chance of drawing at least one outlier
free subsample, but from the other hand a larger trial sample size will avoid the
algorithm to fail in finding a solution.

Here, in a different fashion, a deterministic initialization will be considered:
first units are assigned to the different components by running TCLUST to the
multivariate data (y, X), then cluster specific parameters’ estimates are initialized
by running a robust regression conditionally on clusters’ assignments. In particular,
weighted likelihood regression has been used but M-type regression could be used
as well. The initial clustering depends on a couple of tuning constants that allow
control of TCLUST: the level of trimming α and an eigen-ratio constraint factor
c (Garćıa-Escudero et al, 2008; Fritz et al, 2013). A general advise is to run the
algorithm few times for different values of (α, c). This strategy is well justified
since in Garćıa-Escudero et al (2010) it is stated that TCLUST could serve as
starting point for others approaches.

An alternative deterministic initial solution may be obtained by computing the
trimmed likelihood estimator of Neykov et al (2007); other candidate initial solu-
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Algorithm 1 Computation of weights and the M step of the WEM algorithm
Weights
for c = 1, . . . , k do

e
(s)
ik =

1

σ̂(s)
(yi − μ̂

(s)
k )

δ
(s)
ik =

f∗
(
e
(s)
ik

)

φ(e
(s)
ik ; 0,

√
(1 + h2))

− 1

Obtain

w
(s)
ik =

[
A
(
δ
(s)
ik

)
+ 1
]+

δ
(s)
ik + 1

end for
M-step
for c = 1, . . . , k do

π
(s+1)
k =

n∑

i=1
u
(s)
ik w

(s)
ik

∑n
i=1

∑K
k=1 u

(s)
ik w

(s)
ik

β
(s+1)
k = (X

T
W̃ (s)X)−1X

T
W̃ (s)y

σ
(s+1)
k =

n∑

i=1

(
yi − μ

(s+1)
k

)2
w

(s)
ik u

(s)
ik

∑n
i=1 w

(s)
ik u

(s)
ik

, μk = Xβk

with W̃ (s) =
[
w̃

(s)
ik

]
, with w̃ik = uikwik

end for

tions can be evaluated according to the approach discussed in Coretto and Hennig
(2017) that is based on a combination of nearest neighbor denoising and agglomer-
ative hierarchical clustering. Further starting points can be obtained by randomly
perturbing the deterministic starting solution and/or the final one obtained from
it (Farcomeni and Greco, 2015b).

Bad staring point can lead to spurious solutions, characterized by an excess of
downweighting, or to even non robust solutions. Some guidance for root selection
can be provided by the sum of the weights at convergence. The weights are evalu-
ated conditionally on the final cluster assignments, that is ŵi = ŵiki

. Actually, if∑n
i=1 ŵi ≈ 1, the WLE is close to the MLE, whereas if

∑n
i=1 ŵi is too small, then

the corresponding WLE is a degenerate solution, indicating that it only represents
a small subset of the data. Therefore, the monitoring of a summary of the weights
at convergence as the initialization varies is a suitable strategy to detect eventual
different solutions for a fixed h, that all need to be explored in order to catch the
main features of the data. In particular, it is of interest to monitor the empirical
downweighting level (1 − ˆ̄ω), with ˆ̄ω = n−1∑n

i=1 ŵi, which can be interpreted as
a rough approximation of the level of contamination in the data according to the
fitted model.
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A further adaptive strategy is that of selecting the most frequent root (the
modal root in the terminology adopted by Bai et al (2012)) when several roots are
found by running the algorithm from several starting points.

Formal solutions to the problem of root selection in weighted likelihood estima-
tion have been provided in Markatou et al (1998); Agostinelli (2006); Agostinelli
and Greco (2019). Here, we decided to select the root leading to the minimum
fitted approximate disparity as defined in Agostinelli and Greco (2019), that is

ρ̃(f∗, m∗) =
1

n

n∑

i=1

G(δi) + δi

δi + 1
(5)

where the Pearson residuals δi are evaluated conditionally on the final cluster
assignments, that is δi = δiki

, at convergence.
Another crucial aspect is represented by the selection of the bandwidth pa-

rameter h. The tuning of the smoothing parameter h could be based on several
quantities of interest stemming from the fitted mixture model: a safe selection
can be achieved by monitoring the unit specific weights, residuals or the empirical
downweighting level as h varies (Markatou et al, 1998; Greco, 2017; Agostinelli and
Greco, 2017). An abrupt change in the monitored empirical downweighting level
or in the residuals from the robust fit may indicate the transition from a robust
to a non robust fit and aid in the selection of a value of h that gives an appropri-
ate compromise between efficiency and robustness at finite samples. A monitoring
approach is commonly applied to select the trimming level in TCLUST, TCLUST-
REG and TCWRM, for instance. The performance of monitoring and the strategy
based on the criterion (5) will be illustrated in the following sections. The reader
is pointed to Cerioli et al (2018) for a recent general account on the benefits and
potentials of monitoring.

In addition, it is worth mention that the proposed algorithm can be successfully
augmented by introducing scatter similarity restrictions as described by Garćıa-
Escudero et al (2010). These constraints are posed by fixing a constant c such
that

max σk

min σk
≤ c, k = 1, 2, . . . , K

and are needed to avoid spurious solutions and make the mixture fitting and
classification well defined problems (see also Fritz et al (2013); Garcia-Escudero
et al (2015); Greco and Agostinelli (2019)).

3.2 Properties

The WEM and WCEM are obtained by replacing maximum likelihood by a dif-
ferent set of estimating equations, characterized by the introduction of weights
aimed at bounding the effect of outliers on the fit. In a fashion similar to what
stated in Bai et al (2012), the proposed algorithms represent a special case of the
algorithm first introduced by Elashoff and Ryan (2004), where an EM algorithm
has been established for very general estimating equations. Here, in the M-step, it
is suggested to solve a complete data estimating equation of the form

Ψ(y; X, τ ) = (Ψπ(y; X, τ ), Ψβ(y; X, τ ), Ψσ(y; X, τ ))
T

= 0 (6)



10

with

Ψπ(y; X, τ ) = (Ψπ1(y; X, τ ), . . . , ΨπK (y; X, τ ))
T

,

Ψβ(y; X, τ ) = (Ψβ1(y; X, τ ), . . . , ΨβK
(y; X, τ ))

T

,

Ψσ(y; X, τ ) = (Ψσ1(y; X, τ ), . . . , ΨσK (y; X, τ ))
T

and

Ψπ(y; X, τ ) =
n∑

i=1

ψπj (yi; τ)uij =
n∑

i=1

w(yi; τ, F̂ )sπj (yi; τ)uij ,

Ψβ(y; X, τ ) =
n∑

i=1

ψβj
(yi; τ)uij =

n∑

i=1

w(yi; τ, F̂ )sβj
(yi; τ)uij ,

Ψσ(y; X, τ ) =

n∑

i=1

ψσj (yi; τ)uij =

n∑

i=1

w(yi; τ, F̂ )sσj (yi; τ)uij .

Very general conditions for consistency and asymptotic normality of the solution to
(6) are given in Elashoff and Ryan (2004), whereas Bai et al (2012) gives conditions
in the case of M-estimators. The main requirements are that

1. ψ defines an unbiased estimating function, i.e. Eτ [ψ(Y ; X, τ )] = 0;

2. Eτ [Ψ(Y ; X, τ )Ψ(Y ; X, τ )
T

] exists and is positive definite;
3. Eτ [∂Ψ(Y ; X, τ )/∂τ ] exists and is negative definite, ∀τ .

This conditions are satisfied by the proposed WLEE, that are characterized by
weighted score functions as in (6) (see also the Supplementary material in Agostinelli
and Greco (2019)). Since the WLEE can be considered as M-type estimating equa-
tions and all the above requirements are fulfilled, one can state the following result,
along the lines of Bai et al (2012). Under the regularity conditions of Section 2,
under the further identifiability conditions of the model (4) given in Hennig (2000),
existence, consistency and asymptotic normality of the WLE τ̂w implicitly defined
by equation (6) hold. In particular, the asymptotic covariance matrix of τ̂w can be
obtained in the usual sandwich fashion. Consistency is defined conditionally on the
true labels and concerns the case in which the WLEE admits a unique solution.
Actually, as introduced in the previous subsection, the WLEE may admit multiple
roots. The selection of the consistent root can be effectively pursued according to
the strategies described in Subsection 3.1.

4 Outlier detection

The WEM and WCEM algorithms lead to classify all the sample units, both
genuine and contaminated observations, meaning that also outliers are assigned
to a cluster. Actually, we are not interested in classifying outliers and for purely
clustering purposes outliers have to be discarded. Outlier detection should be
based on the robust fitted model and performed separately by using formal rules.
The key ingredients in outlier detection are the (scaled) residuals. For a fixed
significance level α, an observation is flagged as an outlier when the corresponding
residual in absolute value exceeds a fixed threshold, corresponding to the (1 −
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α/2)−level quantile of the reference standard normal distribution. In the case of
finite mixtures, the main idea is that the outlyingness of each data point should
be measured conditionally on the final assignment (Greco and Agostinelli, 2019),
i.e. an observation is flagged as outlying when

|yi − Xiβ̂ki
|

σ̂ki

> z1−α
2

(7)

Popular choices are α = 0.05 and α = 0.01. The process of outlier detection may
result in type-I and type-II errors. In the former case, a genuine observation is
wrongly flagged as outlier (swamping), in the latter case, a true outlier is not
identified (masking). Swamped genuine observations are false positives, whereas
masked outliers are false negatives. A measure of the level of the test is provided
by the rate of false positives, whereas the power of the testing procedure is given
by the rate of true positives. The outliers detection process could also be designed
to take into account multiplicity arguments in the simultaneous testing of all the
n data points. For instance, one could base the outlier detection rule on the False
Discovery Rate (FDR, Cerioli and Farcomeni (2011)).

5 Illustrative examples with synthetic data

The overall behavior of WEM and WCEM is illustrated in the following examples
based on simulated data. The proposed methodology has been tested on some
data configurations that have been already used in the literature concerning ro-
bust fitting of mixtures of regression lines. The interest lies on both fitting and
classification accuracy and in the outlier detection testing rule. The WLEE are
based on a symmetric Chi-squared RAF. For each example, we display the data
with their original clustering and the true regression lines superimposed and, in
separated panels, the results stemming from WEM and WCEM. The outlier de-
tection rule relies on the FDR at a 5% level. We use different symbols and colors
for the clusters with a black + standing for the detected outliers (and the true
outliers in the panel with the true assignments). In every situation the classical
EM and CEM algorithms give unreliable results because of contamination in the
sample at hand.

Example 1.

Let us consider a mixture of three simple normal linear regressions. The re-
gression lines were generated according to the models






y1 = 3 + 1.4x + 0.1ε
y2 = 3 − 1.1x + 0.1ε
y3 = 0.2x + 0.1ε

with ε ∼ N(0, 1) (Neykov et al, 2007). The clusters’ sizes are 70, 70, 60, respec-
tively. Then 50 outliers were added that are uniformly distributed in the rectangle
that contains the genuine data points. Outliers are such that their distance from
the true regression lines, as measured by the scaled residual in absolute value, is
above the 0.95-level quantile of the standard normal distribution. The data, the
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Fig. 2 Example 1. True assignments (left), WEM (middle), WCEM (right).
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Fig. 3 Example 1. Monitoring of 1 − w̄ by varying (α, c) of the intial TCLUST (left), WEM
root 2 (middle) and WEM root 3 (right).

fitted models and the final classification are displayed in Figure 2: the left panel
gives the true assignments and the true lines, the middle panel and the right panel
display the results stemming from WEM and WCEM, respectively. The weighted
likelihood methodology provides quite satisfactory outcomes both in terms of fit-
ting and classification accuracy.

To illustrate the problem concerning the initialization of the WEM and WCEM
algorithms and the selection of the best root, we consider different starting points
obtained by varying the tuning parameters of TCLUST (α, c), for a fixed h. The
left panel of Figure 3 displays the empirical downweighting level at convergence
stemming from WEM. Three different solutions are apparent: in the central part
we find the majority of solutions leading to a correct downweighting level (root 1),
as displayed in the middle panel of Figure 2, in the bottom left corner there are
some solutions characterized by insufficient downweighting (root 2), whereas in
the top right corner there are those solutions characterized by an excess of down-
weighting (root 3). Root 2 and root 3 are given in the middle and right panel,
respectively, of Figure 3. The root selection strategy based on (5) correctly leads
to choose root 1.

Example 2.
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Fig. 4 Example 2. True assignments (left), WEM (middle), WCEM (right).
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Fig. 5 Example 3. True assignments (left), WEM (middle), WCEM (right).

Let us consider a mixture of two regression lines. Genuine data are drawn
according to the model {

y1 = 1 + x + ε
y2 = 3 + 5x + ε

with ε ∼ N(0, 1) (Bai et al, 2012). Each group is composed by 100 points. By
looking at the plots in Figure 4, we notice that the two clusters are overlapped
and the regression lines share the same sign of the slope. Then, 20 clustered bad
leverage points are added in the top left corner that violate the patterns exhibited
by the genuine points. In this scenario, both the classical EM and CEM lead to
a fitted mixture in which one fitted component is wrongly rotated and attracted
by the outliers, whereas the other is not able to fit neither of the two true linear
structures. On the contrary, the behavior of the robust techniques is satisfactory.

Example 3.

Let us consider a data constellation inspired by Garćıa-Escudero et al (2009).
We have a mixture of three linear models disposed according to a slanted π config-
uration. The sample size is 300, data are simulated according to equal membership
probabilities. There are 50 outliers that are of two types: 25 are scattered in the
rectangle that contains the genuine observations, 25 are inliers, since they lie be-
tween the linear patterns. Figure 5 displays the data and the results. The weighted
likelihood methodology still provides accurate and satisfactory results.
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Fig. 6 Example 4. True assignments (left), WEM (middle), WCEM (right).

Example 4.

This example has been taken from Garćıa-Escudero et al (2010). In that paper,
tha authors proposed TCLUST-REG allowing for a second trimming step to handle
those data points acting as bad leverage points for the linear regressions. On
the contrary, weighted likelihood regression is able to deal with outliers in the
x-space and, according to our experience, there is not the need to introduce a
second trimming. The data includes two linear regression clusters made up of 225
observations each from the model

{
y1 = 1 + x + 0.5ε
y2 = 10 − 0.5x + 0.5ε

with ε ∼ N(0, 1). Then, 30 points are generated as a background noise and, fi-
nally, 20 more data points are concentrated around the point (10 , 8.5), acting as
bad leverage points in the estimation of one linear structure. This data configu-
ration will be also considered in the numerical studies in Section 6 as a part of
larger numerical studies following the lines of Garćıa-Escudero et al (2010). Figure
6 displays the true assignments with the true lines and the fitted models by WEM
and WCEM. In the middle and right panel, we superimposed both the true lines
and the regression lines fitted by the trimmed likelihood, to better appreciate the
nice behavior of WEM and WCEM in this scenario, since the trimmed likelihood
approach of Neykov et al (2007) is not able to take into account bad leverages.
Actually, trimmed likelihood estimation suffers from the presence of the group
of bad leverages, since one regression line is rotated towards their direction. On
the contrary, the weighted likelihood technique still gives robust estimates, in a
fashion similar to TCLUST-REG, but without any second trimming. It is worth
noting that both WEM and WCEM wrongly classify some data points, even if
characterized by large uncertainties. Actually, the misclassified points by WEM
and WCEM are about those trimmed in the second step of TCLUST-REG.

Example 5.

Here, we consider a data constellation similar to that analyzed in Garćıa-
Escudero et al (2017) (see their Figure 6). As well as for TCWRM, the selection
of appropriate restrictions on the variance regression error terms are needed in
order to avoid undesired spurious solutions. The solution displayed in the middle
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Fig. 7 Example 4. True assignments (left), WEM with c = 5 (middle), WEM with c = 500
(right).

panel of Figure 7 has been obtained for c = 5, whereas the one in the right panel
corresponds to c = 500. Nevertheless, TCWRM needs the specification of a further
constraint on the eigenvalues in the covariates’ space. It is worth to notice that
the root selection criterion based on the minimum fitted approximate disparity (5)
leads to choose the right solution: we have ρ̃(f∗, m∗) = 0.594 for the good solution
and ρ̃(f∗, m∗) = 1.532 for the spurious one.

6 Numerical studies

In this section the finite sample behavior of the proposed WEM and WCEM
methodologies has been investigated by some numerical studies. The data gen-
eration scheme is similar to that proposed in Garćıa-Escudero et al (2010). We
consider a mixture of two regression lines, i.e. with p = 2, according to the model
described in Example 4. It is assumed that x ∼ U(D, D + 7), where the tuning
parameter D controls the degree of overlapping by setting D = 3, 6, 12. Moreover,
two different degrees of complexity have been taken into account: in the first we set
equal clusters’ proportions π1 = π2 and scales σ1 = σ2 = 0.5, whereas in the sec-
ond we assumed unequal proportions and variances, with π1 = 0.6, π2 = 0.4, and
σ1 = 0.4, σ2 = 0.6. The behavior of WEM and WCEM has been investigated both
when any contamination does not occur (ε = 0) and when outliers are present. For
what concerns the contamination rates, we set ε = 10%, 25%. Two types of outliers
configurations have been considered. In the first scenario, outliers are generated
as background noise (Cont.1), whereas in the second scenario we have both back-
ground noisy points and bad leverage points concentrated around a point mass
(Cont.2). Then the numerical studies are composed by 2 × 2 × 3 × (1 + 2 × 2)
separate simulations. The considered sample size is n = 500. Table 1 summarizes
the structure of the data for each combination of complexity, scenario and out-
liers’ rate. The numerical studies have been also carried out when the number
of covariates is p = 4 by adding uninformative explanatory variables, that is the
corresponding coefficients are set to zero.

The numerical studies are based on 500 Monte Carlo trials. The weighted
likelihood algorithms are based on a symmetric Chi-square RAF. The smooth-
ing parameter h has been selected in such a way that the empirical downweighting
level lies in the range (0.15, 0.20) for ε = 0.10 and (0.35, 0.45) for ε = 0.25, whereas
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it is about 0.10 when no outliers occur. The algorithm is assumed to reach con-
vergence when max |β̂(s+1) − β̂(s)| < tol, with a tolerance tol set to 10−4, where
β̂(s) is the matrix of centroids estimates at the sth iteration and the differences
are elementwise. The algorithms run on non-optimized R code.

Fitting accuracy has been evaluated according to the Mean Squared Error
(MSE) for the mixture parameters, whereas classification accuracy has been mea-
sured by the Adjusted Rand index (ARI) evaluated over true negatives, i.e. genuine
observations that are not wrongly declared outliers. In order to detect outliers, we
considered a testing rule with α = 0.01, according to (7). In addition, we also
adopted a strategy based on the FDR for the same overall level, in order to take
into account multiplicity effects. Then, we reported the empirical level and power
of the test, measured as the swamping rate and the rate of true positives as ex-
plained in Section 4. When many outliers are detected, than the power is expected
to be high but genuine observations are likely to be misclassified, that is swamping
also increases. On the other side, with a low rate of correctly flagged true outliers,
the power and the level are expected to both decrease. Of course, when ε = 0,
swamping only is taken into account. The performance of the proposed WEM and
WCEM has been compared with their M-type counterparts, MEM and MCEM,
respectively, in which clusterwise M-estimation is performed at the M-step. Here,
we considered M-estimation based on the Tukey biweight function for an 85%
efficiency level.

As an overall result, we do appreciate the satisfactory behavior of all the four
methods under investigation. The numerical studies did not unveil any remarkable
difference between them both in terms of fitting and classification accuracy and for
what concerns the task of outliers detection. The Tables that follow give detailed
results. The entries in Table 2 give the ARI evaluated over true negatives after that
outliers have been discarded according to a testing rule based on a fixed 1% level or
by controlling the overall level of the multiple testing procedure by using the FDR.
The results are quite satisfactory. The classification accuracy clearly improves for
increasing values of the tuning parameter D and there are no relevant differences
when using a fixed level or multiplicity issues are taken into account. Table 3 gives
the MSE corresponding to the fitted mixture parameters (β, σ, π) stemming from
all the considered techniques. The overall behavior of all the methods is quite
accurate with weighted likelihood based methods leading often to smaller MSEs
for all the parameters. Swamping and power of the outlier tests are given in Table
4 and Table 5, respectively. It is worth to stress that the behavior of the tests
depends on the actual robustness-efficiency trade-off of the procedure, hence on
the value of the selected bandwidth parameter h for weighted likelihood estimation.
Here, we controlled the degree of robustness by selecting a different h for the two
considered levels of contamination. Then, when ε = 10% the weighted likelihood
techniques are characterized by a lower rate of swamping and reasonable power
with respect to their M-estimation based counterpart but the situation is reversed
for ε = 25%. In the latter scenario, the power of the testing procedures stemming
from WEM and WCEM is particularly appreciable. The entries in Tables from 6
to 9 give the results for the case p = 4. The finite sample behavior of the proposed
methodologies is still accurate and satisfactory.
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7 Pinus nigra data set

The following example has been taken from Garćıa-Escudero et al (2010). The
data gives the height (in meters) and diameter (in millimeters) of n = 362 Pinus
nigra trees located in the north of Palencia (Spain). The Diameter is considered as
an explicative variables wheres Height is the response. The data are displayed in
the left panel of Figure 8. They exhibit the presence of three linear groups apart
from a small group of trees forming its own cluster on the top right corner and one
isolated point on the bottom right corner. Therefore, we assume k = 3 and fit the
model by WEM and WCEM, respectively, by setting h = 0.01 and employing a
symmetric chi square RAF. The outlier detection rule is based on the FDR at 1%
level. The fitted models and detected outliers are shown in Figure 8. The results
are in strong agreement with those stemming from TCLUST-REG.

In order to explore more in details the procedure, let us look for possible mul-
tiple roots. Figure 9 gives the monitoring of the empirical downweighting level
as h varies on a fixed grid of values for a couple of starting TCLUST solutions.
We notice that two different solutions occur for h < 0.014, whereas for h ≥ 0.14
both initializations lead to the same fitted model. The solutions denoted root2 are
characterized by an excess of downweighting w.r.t the other solutions, named root1
for each h < 0.014. The abrupt shift in the root2 trajectory suggests a relevant
structural change in the fitted model: for h < 0.014 the procedure gives place to
many small weights and many outliers. On the contrary, the root1 trajectory does
not suggest any substantial change in the fitted model. In order to examine more
in depth the differences among the two solutions, let us take a look at the mon-
itoring plots given in Figure 9 in the middle and right panels. Here, we monitor
the change in individual residuals (in absolute value) as h varies for both consid-
ered initializations. The horizontal line in both panels gives the threshold for the
outliers detection test at a fixed 0.01-level. The middle panel corresponds to the
trajectory denoted root1 in the left panel, whereas the right panel to the other one
named root2. The monitoring plot in the middle panel tells that the clustered out-
liers and the isolated outlier are clearly spotted during all the monitoring process
and that the other data points have residuals below the threshold line for most of
the monitoring. This means that the fitted model does not change remarkably as
h varies and the genuine observations are assigned to a linear structure properly.
The monitoring plot in the right panel tells a different story. Many trajectories are
well above the chosen cut-off in its left hand section, that is many observations are
downweighted and flagged as outliers. It is evident that, for values of the band-
width parameter below a certain bound, there are at least two groups of outliers.
In particular, the second (from top) group of outlying trajectories corresponds to
a cluster of false positives rather than true outliers. Figure 10 displays the spuri-
ous solution obtained when h = 0.01: one genuine cluster is misclassified and its
points are wrongly detected as outlying and the fitted mixture model is wrong. In
particular, we notice that two components are wrongly fitted since the group in
the middle has been erroneously split.
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Fig. 8 Pinus nigra. Original data (left). Fitted mixtures by WEM (middle) and WCEM
(right). Outliers are denoted by +.
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Table 1 Data configurations used in the numerical studies with n = 500.

Complexity Scenario ε background outliers bad leverages
No contamination 0 0 0

π1 = π2 Cont.1 0.10 50 0
σ1 = σ2 0.25 125 0

Cont.2 0.10 30 20
0.25 75 50

No contamination 0 0 0
π1 6= π2 Cont.1 0.10 50 0
σ1 6= σ2 0.25 125 0

Cont.2 0.10 30 20
0.25 75 50

Table 2 Adjusted Rand Index evaluated over true negatives for WEM, WCEM, MEM and
MCEM, p = 2, for different type of contamination, rate of contamination and degree of over-
lapping among linear clusters. The outlier detection rule is based on a 0.01 level by using a
fixed level and the False Discovery Rate.

WEM WCEM MEM MCEM
Fixed FDR Fixed FDR Fixed FDR Fixed FDR

π1 = π2 and σ1 = σ2

No Cont D=3 0.801 0.803 0.797 0.799 0.807 0.812 0.815 0.815
D=6 0.876 0.877 0.889 0.890 0.883 0.886 0.897 0.897
D=12 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999

Cont.1 10% D=3 0.809 0.811 0.808 0.811 0.812 0.817 0.816 0.821
D=6 0.874 0.876 0.892 0.893 0.878 0.879 0.894 0.895
D=12 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Cont.1 25% D=3 0.792 0.794 0.782 0.783 0.792 0.795 0.799 0.802
D=6 0.863 0.865 0.873 0.875 0.855 0.857 0.875 0.877
D=12 0.997 0.998 0.996 0.997 0.996 0.997 0.997 0.998

Cont.2 10% D=3 0.810 0.812 0.801 0.803 0.809 0.813 0.810 0.814
D=6 0.871 0.873 0.882 0.884 0.881 0.884 0.894 0.896
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 25% D=3 0.796 0.799 0.777 0.799 0.810 0.813 0.811 0.815
D=6 0.849 0.862 0.871 0.873 0.869 0.872 0.896 0.897
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

π1 6= π2 and σ1 6= σ2

No cont D=3 0.806 0.809 0.808 0.811 0.813 0.818 0.823 0.823
D=6 0.889 0.890 0.900 0.901 0.895 0.898 0.906 0.906
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1 10% D=3 0.807 0.810 0.821 0.824 0.814 0.818 0.821 0.825
D=6 0.883 0.884 0.905 0.907 0.890 0.892 0.898 0.900
D=12 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Cont.1 25% D=3 0.802 0.812 0.842 0.845 0.804 0.806 0.814 0.817
D=6 0.883 0.890 0.918 0.920 0.883 0.884 0.899 0.900
D=12 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Cont.2 10% D=3 0.814 0.816 0.824 0.826 0.817 0.820 0.824 0.827
D=6 0.887 0.888 0.903 0.904 0.894 0.895 0.901 0.902
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 25% D=3 0.819 0.823 0.851 0.854 0.817 0.820 0.825 0.828
D=6 0.887 0.889 0.915 0.917 0.885 0.886 0.900 0.902
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3 Mean Squared Error for WEM, WCEM, MEM and MCEM, p = 2, for different type
of contamination, rate of contamination and degree of overlapping among linear clusters.

WEM WCEM MEM MCEM
β σ π β σ π β σ π β σ π

π1 = π2 and σ1 = σ2

No cont
D=3 0.024 0.010 0.006 0.025 0.010 0.007 0.032 0.048 0.006 0.036 0.054 0.006
D=6 0.088 0.008 0.002 0.116 0.008 0.002 0.096 0.044 0.002 0.116 0.048 0.002
D=12 0.080 0.010 0.001 0.080 0.006 0.001 0.104 0.042 0.001 0.105 0.041 0.001

Cont.1 - 10 %
D=3 0.039 0.015 0.006 0.041 0.026 0.010 0.043 0.047 0.007 0.042 0.052 0.007
D=6 0.107 0.015 0.003 0.126 0.024 0.004 0.099 0.046 0.003 0.118 0.049 0.003
D=12 0.112 0.014 0.001 0.109 0.020 0.002 0.112 0.044 0.002 0.112 0.044 0.002

Cont.1 - 25 %
D=3 0.092 0.058 0.009 0.092 0.071 0.019 0.100 0.048 0.008 0.083 0.095 0.008
D=6 0.312 0.055 0.004 0.345 0.063 0.011 0.376 0.044 0.005 0.389 0.048 0.004
D=12 0.592 0.051 0.002 0.639 0.055 0.003 0.736 0.042 0.001 0.679 0.042 0.001

Cont.2 - 10 %
D=3 0.038 0.019 0.007 0.036 0.032 0.015 0.039 0.051 0.008 0.040 0.057 0.008
D=6 0.115 0.018 0.004 0.129 0.024 0.007 0.121 0.053 0.006 0.131 0.053 0.004
D=12 0.088 0.015 0.001 0.092 0.019 0.002 0.121 0.048 0.002 0.121 0.048 0.002

Cont.2 - 25 %
D=3 0.101 0.036 0.008 0.097 0.062 0.015 0.101 0.065 0.012 0.083 0.065 0.010
D=6 0.230 0.040 0.009 0.243 0.050 0.014 0.234 0.066 0.012 0.211 0.056 0.007
D=12 0.231 0.052 0.002 0.253 0.055 0.005 0.259 0.047 0.004 0.259 0.047 0.004

π1 6= π2 and σ1 6= σ2

No cont
D=3 0.027 0.013 0.006 0.028 0.010 0.004 0.035 0.049 0.006 0.039 0.053 0.004
D=6 0.087 0.012 0.002 0.103 0.020 0.002 0.101 0.046 0.002 0.115 0.050 0.003
D=12 0.092 0.010 0.001 0.089 0.006 0.000 0.124 0.044 0.001 0.124 0.044 0.001

Cont.1 - 10%
D=3 0.041 0.017 0.007 0.039 0.022 0.004 0.046 0.050 0.006 0.044 0.055 0.006
D=6 0.151 0.016 0.003 0.165 0.020 0.002 0.128 0.047 0.003 0.155 0.050 0.003
D=12 0.123 0.014 0.001 0.134 0.016 0.003 0.111 0.043 0.001 0.111 0.043 0.001

Cont.1 - 25 %
D=3 0.071 0.061 0.007 0.067 0.060 0.011 0.018 0.051 0.007 0.070 0.056 0.007
D=6 0.256 0.058 0.004 0.270 0.063 0.014 0.343 0.047 0.004 0.324 0.051 0.003
D=12 0.521 0.054 0.019 0.885 0.044 0.047 0.845 0.045 0.038 0.707 0.045 0.039

Cont.2 - 10%
D=3 0.030 0.020 0.007 0.031 0.026 0.006 0.037 0.052 0.006 0.037 0.057 0.006
D=6 0.106 0.019 0.004 0.123 0.023 0.003 0.119 0.051 0.004 0.133 0.053 0.003
D=12 0.098 0.017 0.001 0.097 0.019 0.003 0.127 0.047 0.001 0.127 0.047 0.001

Cont.2 - 25 %
D=3 0.071 0.064 0.008 0.060 0.069 0.013 0.059 0.053 0.008 0.059 0.056 0.006
D=6 0.192 0.059 0.004 0.176 0.065 0.013 0.118 0.049 0.003 0.200 0.052 0.003
D=12 0.275 0.055 0.002 0.301 0.060 0.020 0.331 0.046 0.002 0.331 0.046 0.002
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Table 4 Swamping rate for WEM, WCEM, MEM and MCEM, p = 2, for different type of
contamination, rate of contamination and degree of overlapping among linear clusters. The
outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery
Rate.

WEM WCEM MEM MCEM
Fixed FDR Fixed FDR Fixed FDR1 Fixed FDR

π1 = π2 and σ1 = σ2

No Cont D=3 0.022 0.000 0.022 0.000 0.066 0.008 0.000 0.000
D=6 0.022 0.000 0.021 0.000 0.068 0.008 0.000 0.000
D=12 0.026 0.000 0.021 0.000 0.067 0.008 0.000 0.000

Cont.1 - 10% D=3 0.030 0.008 0.043 0.014 0.068 0.027 0.076 0.031
D=6 0.032 0.007 0.041 0.011 0.068 0.026 0.073 0.029
D=12 0.033 0.008 0.040 0.011 0.072 0.027 0.072 0.027

Cont.1 - 25% D=3 0.052 0.050 0.075 0.063 0.067 0.038 0.076 0.044
D=6 0.071 0.049 0.072 0.057 0.066 0.037 0.071 0.041
D=12 0.078 0.047 0.069 0.052 0.066 0.037 0.066 0.037

Cont.2 - 10% D=3 0.034 0.009 0.047 0.015 0.073 0.030 0.081 0.035
D=6 0.036 0.009 0.041 0.011 0.082 0.039 0.079 0.035
D=12 0.034 0.008 0.038 0.010 0.076 0.033 0.076 0.033

Cont.2 - 25% D=3 0.058 0.031 0.087 0.056 0.101 0.071 0.095 0.063
D=6 0.079 0.045 0.077 0.045 0.109 0.075 0.087 0.057
D=12 0.081 0.047 0.085 0.051 0.075 0.044 0.087 0.057

π1 6= π2 and σ1 6= σ2

No cont D=3 0.025 0.000 0.023 0.000 0.068 0.008 0.000 0.000
D=6 0.025 0.000 0.022 0.000 0.066 0.008 0.000 0.000
D=12 0.026 0.001 0.021 0.000 0.067 0.007 0.000 0.000

Cont.1 - 10% D=3 0.031 0.007 0.038 0.011 0.069 0.027 0.076 0.032
D=6 0.032 0.007 0.038 0.010 0.068 0.027 0.072 0.029
D=12 0.030 0.007 0.034 0.009 0.067 0.024 0.068 0.024

Cont.1 - 25% D=3 0.083 0.049 0.104 0.070 0.068 0.038 0.076 0.044
D=6 0.085 0.051 0.103 0.070 0.070 0.040 0.074 0.042
D=12 0.083 0.049 0.078 0.047 0.069 0.038 0.069 0.039

Cont.2 - 10% D=3 0.033 0.009 0.041 0.013 0.070 0.027 0.077 0.032
D=6 0.034 0.009 0.040 0.012 0.072 0.030 0.075 0.030
D=12 0.034 0.009 0.039 0.011 0.071 0.028 0.072 0.028

Cont.2 - 25% D=3 0.090 0.056 0.104 0.070 0.074 0.044 0.077 0.045
D=6 0.084 0.050 0.102 0.067 0.068 0.038 0.072 0.041
D=12 0.084 0.049 0.104 0.070 0.070 0.040 0.071 0.040
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Table 5 Power of the outlier test for WEM, WCEM, MEM and MCEM, p = 2, for different
type of contamination, rate of contamination and degree of overlapping among linear clusters.
The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery
Rate.

WEM WCEM MEM MCEM
Fixed FDR Fixed FDR Fixed FDR Fixed FDR

π1 = π2 and σ1 = σ2

Cont.1 - 10% D=3 0.981 0.912 0.988 0.938 0.993 0.975 0.995 0.980
D=6 0.976 0.919 0.988 0.941 0.990 0.970 0.994 0.976
D=12 0.988 0.928 0.991 0.944 0.998 0.981 0.998 0.981

Cont.1 - 25% D=3 0.968 0.956 0.966 0.953 0.971 0.958 0.982 0.971
D=6 0.978 0.969 0.982 0.973 0.972 0.959 0.978 0.968
D=12 0.986 0.982 0.985 0.979 0.983 0.974 0.985 0.975

Cont.2 - 10% D=3 0.962 0.962 0.989 0.989 0.984 0.984 0.984 0.984
D=6 0.918 0.918 0.962 0.962 0.957 0.957 0.978 0.978
D=12 0.989 0.989 0.995 0.995 0.979 0.979 0.979 0.979

Cont.2 - 25% D=3 0.927 0.913 0.950 0.943 0.944 0.939 0.963 0.959
D=6 0.926 0.923 0.947 0.940 0.924 0.915 0.969 0.963
D=12 0.997 0.993 0.996 0.993 0.980 0.980 0.986 0.980

π1 6= π2 and σ1 6= σ2

Cont.1 - 10% D=3 0.978 0.915 0.985 0.930 0.992 0.972 0.995 0.978
D=6 0.972 0.913 0.980 0.925 0.990 0.966 0.993 0.972
D=12 0.988 0.923 0.987 0.923 0.998 0.979 0.998 0.979

Cont.1 - 25% D=3 0.987 0.980 0.991 0.985 0.980 0.972 0.987 0.980
D=6 0.987 0.979 0.987 0.979 0.977 0.967 0.983 0.976
D=12 0.990 0.984 0.977 0.963 0.983 0.975 0.984 0.976

Cont.2 - 10% D=3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
D=6 0.984 0.984 0.995 0.995 0.995 0.995 1.000 1.000
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 - 25% D=3 0.986 0.982 0.993 0.988 0.982 0.977 0.992 0.987
D=6 0.992 0.987 0.994 0.989 0.992 0.985 0.994 0.989
D=12 0.997 0.993 0.995 0.990 0.991 0.987 0.991 0.987
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Table 6 Adjusted Rand Index evaluated over true negatives for WEM, WCEM, MEM and
MCEM, p = 4, for different type of contamination, rate of contamination and degree of over-
lapping among linear clusters. The outlier detection rule is based on a 0.01 level by using a
fixed level and the False Discovery Rate.

WEM WCEM MEM MCEM
Fix01 Fdr01 Fix01 Fdr01 Fix01 Fdr01 Fix01 Fdr01

n1 = n2 and σ1 = σ2

No Cont D=3 0.809 0.811 0.805 0.807 0.813 0.817 0.815 0.819
D=6 0.874 0.876 0.887 0.888 0.880 0.884 0.893 0.896
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1 10% D=3 0.807 0.809 0.809 0.812 0.812 0.815 0.816 0.819
D=6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1 25% D=3 0.789 0.791 0.778 0.779 0.793 0.794 0.801 0.804
D=6 0.857 0.859 0.871 0.872 0.855 0.857 0.877 0.880
D=12 0.997 0.997 0.997 0.996 0.994 0.994 0.998 0.998

Cont.2 10% D=3 0.807 0.809 0.802 0.805 0.815 0.819 0.817 0.821
D=6 0.860 0.862 0.878 0.880 0.883 0.886 0.895 0.897
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 25% D=3 0.804 0.807 0.770 0.771 0.803 0.806 0.809 0.814
D=6 0.870 0.873 0.863 0.865 0.883 0.885 0.899 0.900
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n1 6= n2 and σ1 6= σ2

No cont D=3 0.808 0.811 0.815 0.818 0.817 0.823 0.821 0.828
D=6 0.884 0.885 0.893 0.895 0.887 0.890 0.895 0.897
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1 10% D=3 0.803 0.806 0.824 0.826 0.812 0.817 0.818 0.823
D=6 0.887 0.887 0.906 0.907 0.892 0.895 0.904 0.906
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1 25% D=3 0.803 0.806 0.838 0.841 0.804 0.808 0.814 0.818
D=6 0.877 0.879 0.914 0.915 0.880 0.882 0.897 0.899
D=12 0.993 0.993 0.988 0.988 0.993 0.993 0.993 0.993

Cont.2 10% D=3 0.815 0.817 0.828 0.829 0.820 0.822 0.827 0.830
D=6 0.886 0.887 0.907 0.908 0.896 0.898 0.903 0.905
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 25% D=3 0.816 0.819 0.833 0.837 0.819 0.822 0.823 0.827
D=6 0.890 0.892 0.907 0.909 0.892 0.894 0.898 0.900
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 7 Mean Squared Error for WEM, WCEM, MEM and MCEM, p = 4, for different type
of contamination, rate of contamination and degree of overlapping among linear clusters.

WEM WCEM MEM MCEM
β σ π β σ π β σ π β σ π

π1 = π2 and σ1 = σ2

No cont
D=3 0.053 0.012 0.004 0.048 0.010 0.003 0.086 0.052 0.006 0.076 0.058 0.006
D=6 0.087 0.012 0.003 0.097 0.009 0.001 0.102 0.050 0.002 0.112 0.047 0.002
D=12 0.081 0.011 0.001 0.077 0.006 0.001 0.101 0.045 0.001 0.103 0.046 0.001

Cont.1 - 10%
D=3 0.094 0.013 0.007 0.096 0.021 0.009 0.119 0.053 0.008 0.119 0.059 0.007
D=6 0.245 0.011 0.001 0.231 0.015 0.002 0.190 0.048 0.001 0.190 0.048 0.001
D=12 0.174 0.011 0.001 0.171 0.016 0.002 0.166 0.049 0.002 0.166 0.049 0.002

Cont.1 - 25%
D=3 0.203 0.045 0.009 0.202 0.061 0.027 0.200 0.053 0.010 0.185 0.061 0.009
D=6 0.485 0.043 0.005 0.514 0.052 0.008 0.477 0.051 0.005 0.472 0.056 0.004
D=12 0.775 0.035 0.002 0.825 0.044 0.006 0.959 0.047 0.002 0.773 0.047 0.002

Cont.2 - 10%
D=3 0.089 0.016 0.007 0.083 0.027 0.014 0.104 0.057 0.008 0.106 0.063 0.008
D=6 0.188 0.015 0.006 0.190 0.023 0.008 0.181 0.061 0.007 0.200 0.063 0.006
D=12 0.139 0.013 0.001 0.145 0.018 0.002 0.190 0.055 0.004 0.190 0.055 0.004

Cont.2 - 25%
D=3 0.230 0.065 0.013 0.242 0.066 0.029 0.223 0.072 0.013 0.203 0.067 0.009
D=6 0.343 0.070 0.012 0.339 0.063 0.027 0.325 0.087 0.020 0.306 0.069 0.009
D=12 0.346 0.042 0.002 0.345 0.047 0.005 0.377 0.057 0.007 0.377 0.057 0.007

π1 6= π2 and σ1 6= σ2

No cont
D=3 0.056 0.014 0.006 0.056 0.010 0.004 0.076 0.052 0.004 0.080 0.058 0.004
D=6 0.087 0.013 0.002 0.085 0.010 0.002 0.102 0.052 0.002 0.112 0.055 0.002
D=12 0.084 0.010 0.001 0.080 0.006 0.001 0.101 0.046 0.001 0.108 0.046 0.001

Cont.1 - 10%
D=3 0.098 0.013 0.007 0.099 0.020 0.005 0.117 0.054 0.007 0.115 0.059 0.007
D=6 0.211 0.012 0.003 0.235 0.018 0.002 0.208 0.051 0.003 0.229 0.054 0.002
D=12 0.190 0.012 0.001 0.197 0.016 0.003 0.206 0.050 0.002 0.206 0.050 0.002

Cont.1 - 25%
D=3 0.172 0.049 0.007 0.177 0.058 0.008 0.177 0.058 0.007 0.171 0.064 0.006
D=6 0.453 0.045 0.004 0.478 0.053 0.010 0.437 0.053 0.004 0.427 0.057 0.004

D=12 0.657 0.043 0.002 0.975 0.052 0.022 0.675 0.002 0.671 0.051 0.002
Cont.2 - 10%

D=3 0.085 0.017 0.007 0.089 0.027 0.006 0.112 0.060 0.007 0.114 0.066 0.007
D=6 0.168 0.015 0.004 0.176 0.023 0.003 0.200 0.059 0.005 0.210 0.060 0.004
D=12 0.145 0.014 0.001 0.150 0.019 0.003 0.197 0.053 0.002 0.197 0.053 0.002

Cont.2 - 25%
D=3 0.111 0.050 0.007 0.120 0.058 0.007 0.109 0.056 0.007 0.112 0.061 0.006
D=6 0.189 0.049 0.004 0.201 0.055 0.007 0.187 0.054 0.004 0.205 0.057 0.003
D=12 0.225 0.045 0.001 0.217 0.048 0.008 0.229 0.053 0.002 0.225 0.052 0.002
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Table 8 Swamping rate for WEM, WCEM, MEM and MCEM, p = 4, for different type of
contamination, rate of contamination and degree of overlapping among linear clusters. The
outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery
Rate.

WEM WCEM MEM MCEM
Fixed FDR Fixed FDR Fixed FDR Fixed FDR

π1 = π2 and σ1 = σ2

No Cont D=3 0.026 0.000 0.023 0.000 0.072 0.012 0.081 0.017
D=6 0.026 0.000 0.022 0.000 0.073 0.011 0.079 0.013
D=12 0.026 0.000 0.021 0.000 0.073 0.010 0.073 0.010

Cont.1 10% D=3 0.027 0.007 0.037 0.011 0.076 0.033 0.084 0.038
D=6 0.029 0.007 0.034 0.009 0.076 0.032 0.076 0.032
D=12 0.037 0.010 0.031 0.007 0.075 0.031 0.076 0.030

Cont.1 25% D=3 0.066 0.038 0.084 0.054 0.075 0.045 0.087 0.054
D=6 0.069 0.039 0.079 0.048 0.078 0.046 0.083 0.052
D=12 0.066 0.036 0.073 0.042 0.076 0.044 0.076 0.044

Cont.2 - 10% D=3 0.031 0.008 0.043 0.013 0.081 0.036 0.091 0.042
D=6 0.035 0.008 0.042 0.012 0.096 0.050 0.097 0.051
D=12 0.032 0.007 0.038 0.011 0.090 0.045 0.090 0.045

Cont.2 - 25% D=3 0.107 0.077 0.098 0.062 0.116 0.083 0.102 0.067
D=6 0.122 0.091 0.098 0.065 0.147 0.118 0.110 0.079
D=12 0.070 0.039 0.077 0.045 0.094 0.063 0.094 0.063

π1 6= π2 and σ1 6= σ2

No cont D=3 0.033 0.007 0.026 0.005 0.076 0.031 0.085 0.039
D=6 0.038 0.009 0.026 0.005 0.075 0.030 0.080 0.033
D=12 0.028 0.006 0.024 0.005 0.071 0.027 0.071 0.027

Cont.1 - 10% D=3 0.027 0.006 0.037 0.010 0.076 0.033 0.085 0.039
D=6 0.027 0.006 0.036 0.010 0.073 0.032 0.076 0.034
D=12 0.028 0.007 0.036 0.010 0.077 0.032 0.077 0.032

Cont.1 - 25% D=3 0.069 0.039 0.092 0.062 0.078 0.048 0.088 0.056
D=6 0.070 0.039 0.090 0.059 0.079 0.047 0.084 0.050
D=12 0.069 0.039 0.096 0.065 0.079 0.047 0.079 0.047

Cont.2 - 10% D=3 0.030 0.008 0.044 0.015 0.084 0.039 0.091 0.045
D=6 0.029 0.006 0.026 0.005 0.071 0.028 0.078 0.032
D=12 0.027 0.006 0.025 0.005 0.072 0.027 0.073 0.027

Cont.2 - 25% D=3 0.070 0.028 0.086 0.041 0.077 0.033 0.083 0.038
D=6 0.075 0.033 0.085 0.040 0.085 0.035 0.078 0.035
D=12 0.071 0.028 0.082 0.037 0.083 0.037 0.080 0.034
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Table 9 Power of the outlier test for WEM, WCEM, MEM and MCEM, p = 4, for different
type of contamination, rate of contamination and degree of overlapping among linear clusters.
The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery
Rate.

WEM WCEM MEM MCEM
Fix01 Fdr01 Fix01 Fdr01 Fix01 Fdr01 Fix01 Fdr01

π1 = π2 and σ1 = σ2

Cont.1 - 10% D=3 0.973 0.900 0.980 0.927 0.993 0.975 0.995 0.980
D=6 0.978 0.916 0.982 0.929 0.997 0.982 0.997 0.982
D=12 0.988 0.927 0.981 0.909 0.997 0.978 0.997 0.999

Cont.1 - 25% D=3 0.971 0.957 0.974 0.963 0.973 0.964 0.982 0.975
D=6 0.966 0.952 0.970 0.959 0.969 0.959 0.977 0.967
D=12 0.982 0.971 0.981 0.968 0.981 0.974 0.983 0.976

Cont.2 - 10% D=3 0.956 0.956 1.000 1.000 1.000 1.000 1.000 1.000
D=6 0.824 0.824 0.941 0.941 0.954 0.954 0.965 0.965
D=12 0.968 0.968 0.979 0.979 0.980 0.980 0.980 0.980

Cont.2 - 25% D=3 0.914 0.897 0.921 0.914 0.916 0.910 0.958 0.953
D=6 0.968 0.954 0.974 0.962 0.970 0.960 0.978 0.968
D=12 0.991 0.985 0.992 0.986 0.979 0.975 0.979 0.975

π1 6= π2 and σ1 6= σ2

Cont.1 - 10% D=3 0.973 0.900 0.981 0.923 0.991 0.971 0.994 0.978
D=6 0.968 0.894 0.976 0.916 0.988 0.968 0.992 0.971
D=12 0.982 0.921 0.983 0.929 0.999 0.983 0.999 0.983

Cont.1 - 25% D=3 0.975 0.972 0.979 0.978 0.977 0.974 0.982 0.982
D=6 0.975 0.963 0.979 0.966 0.977 0.968 0.982 0.975
D=12 0.981 0.970 0.973 0.960 0.981 0.974 0.981 0.974

Cont.2 - 10% D=3 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989
D=6 0.946 0.894 0.954 0.901 0.988 0.963 0.988 0.965
D=12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.2 - 25% D=3 0.996 0.996 1.000 1.000 0.996 0.996 1.000 1.000
D=6 0.986 0.985 0.996 0.996 0.995 0.995 1.000 1.000
D=12 1.000 1.000 1.000 1.000 0.991 0.990 1.000 1.000


