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Strong coupling Bose polarons in a two-dimensional gas
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We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results
for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of
interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of
the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak
coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states
which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds
to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable
against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the
polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue,
signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.
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I. INTRODUCTION

Impurities embedded in a quantum many-body environ-
ment can lead to the formation of quasiparticles coined po-
larons. The concept was first introduced by Landau and Pekar
in the solid-state context to describe an electron coupled to
an ionic crystal [1]. Polarons are fundamental ingredients in
many different transport phenomena across condensed-matter
physics. Electronic transport in polar crystals or semicon-
ductors [2] as well as charge and spin transport in organic
materials [3,4] can be understood in terms of polarons. Pair-
ing between polarons is relevant in the physics of high-
temperature superconductors [5], and polarons are candidates
for electronic transport in DNA and proteins [6]. Furthermore,
polarons are used as probes of quantum many-body systems.
For example, the low-energy excitations in a strongly corre-
lated superfluid, such as 4He can be probed by 3He impurity
atoms [7].

Unprecedented control and versatility of ultracold gases [8]
made it possible to experimentally observe dressed impurities
named Fermi and Bose polarons depending on whether they
interact, respectively, with a degenerate Fermi gas [9–13]
or a Bose-Einstein condensate (BEC). For Bose polarons,
experiments have been carried out in three-dimensional (3D)
[14–18] and one-dimensional (1D) [19,20] geometries. Ob-
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servation of Bose polarons in ultracold gases has triggered an
intense research activity aiming at describing the crossover
from weak- to strong-coupling regimes. In the former case,
the so-called Bogoliubov-Fröhlich Hamiltonian describes ac-
curately the ground state properties of the polaron [21–30].
However, quantum fluctuations become relevant as interac-
tions are increased, making the description in terms of the
Fröhlich paradigm inadequate. By using the Gross-Pitaevskii
equation, strongly interacting Bose polarons were predicted to
manifest exotic phenomena, such as self-localization [31–35],
but without experimental evidence so far. Recently, properties
of these strongly coupled impurities have also been addressed
by techniques, such as theT matrix, diagrammatic, and
variational approaches which go beyond the single-phonon
excitation scheme of the Fröhlich model [36–42]. These
studies predict exotic out of equilibrium dynamics, nontriv-
ial quasiparticle splitting due to finite-temperature effects
[40,43–48], as well as important few-body effects [49,50].
Furthermore, the regime of strong coupling should also fea-
ture the interchange of Bogoliubov modes between polarons
via polaron-polaron interactions [51,52]. In the context of
theoretical techniques suitable to investigate this latter regime,
the quantum Monte Carlo (QMC) method is based on a micro-
scopic Hamiltonian and provides exact (within controllable
statistical errors) ground-state properties of the polaron for
arbitrary coupling strengths [39,41,53,54].

Physically, the two-dimensional (2D) geometry is ap-
pealing since the role of quantum fluctuations is enhanced
whereas off-diagonal long-range order, responsible for BEC
phenomena, still exists in the ground state. Polarons in 2D
geometries have been extensively investigated in the context
of Fermi polarons [10,55–58] and exciton impurities coupled
to semiconductors [59]. Bose polarons have been investigated
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FIG. 1. Average over many snapshots of the particle positions
around the impurity for three characteristic values of the impurity-
bath coupling constant ln(kF a). The impurity is located in the center,
and distances are in units of the healing length ξ . The local density
n(r) is estimated by summing particles over a square grid of size
L/100, where L is the size of the simulation box, and the color bar
indicates the ratio n(r)/n over the bulk density n. At weak coupling,
impurities form polarons, i.e., almost free quasiparticles slightly
dressed by the medium (right and left upper panels). On the attractive
branch as the coupling ln(kF a) > 0 is decreased, the impurity forms
a many-body bound state involving up to few tens of particles, and
whose size is as large as the healing length (central upper panel).

within the context of the Fröhlich model [60–62], but a
quantitatively precise description of 2D Bose polarons in the
strongly coupled regime is still lacking.

Here, we use exact QMC methods [39,53,54] to study an
impurity immersed in a 2D Bose superfluid and to compute
the polaron energy, the effective mass, and the quasiparticle
residue for arbitrary coupling strength. Quantitatively signif-
icant deviations of the quasiparticle properties from pertur-
bation theory are found already at weak-coupling strengths
between the impurity and the bath. In the strongly interacting
regime, the polaron loses the quasiparticle nature characteris-
tic of weak interactions: The wave-function residue vanishes
indicating that the coherence is lost. In this regime, the impu-
rity is no longer free to move but, instead, is bound to a density
perturbation which involves many particles from the bath (see
Fig. 1).

II. SYSTEM AND PERTUBATION THEORY

We consider an impurity of mass mI embedded in a 2D
Bose gas consisting of N atoms of mass mB at T = 0 in a
square box of size L with overall density n = N

L2 . In the first
quantization formalism, the Hamiltonian of the system reads

H = − h̄2

2mB

N∑
i=1

∇2
i +

∑
i< j

VB(ri j ) − h̄2

2mI
∇2

α +
N∑

i=1

VI (riα ) .

(1)

Here, the first two terms represent the kinetic and the inter-
action energies of the bosonic bath where particles interact

through the two-body potential VB, which depends on the dis-
tance ri j = |ri − r j | between a pair of bosons. Furthermore,

− h̄2∇2
α

2mI
is the kinetic energy of the impurity denoted by the

coordinate vector rα , and VI is the boson-impurity potential
depending on the distance riα = |rα − ri| between the impu-
rity and the ith bath particle. Both interaction potentials VB

and VI are short ranged and are parametrized by the scattering
lengths aB and a, respectively. Within Bogoliubov theory, the
Hamiltonian (1) can be written in second quantization as the
sum of two terms H = H0 + Hint , where

H0 = p2

2mI
+ EB +

∑
k

εkα
†
kαk (2)

is the unperturbed Hamiltonian of a free impurity moving with
momentum p and a static host gas. The bath is described in
terms of noninteracting Bogoliubov excitations with energy
εk =

√
(ε0

k )2 + 2gBnε0
k , where ε0

k = h̄2k2

2mB
is the dispersion of

free particles and gB = 4π h̄2/mB

ln(1/na2
B )

is the 2D density-dependent
coupling constant of the Bose gas. The ground state of the
bath corresponds to the vacuum of excitations and has energy
EB. The interaction Hamiltonian Hint is given by the sum of a
mean-field shift and a term where the impurity is coupled to
the creation and annihilation operators of single excitations in
the Bose gas,

Hint = gn + g
√

n√
L2

∑
q

eiq·rα

√
ε0

q

εq
(αq + α

†
−q). (3)

Here, g = 2π h̄2/mr

ln(1/na2 ) is the 2D effective coupling constant which
contains the reduced mass mr = mI mB

mI +mB
. It describes the scat-

tering processes between the impurity and the bath particles in
terms of the scattering length a of the potential VI . The above
Hamiltonian H0 + Hint embodies the well-known Fröhlich
model which is expected to correctly describe the physics of
Bose polarons in the weakly interacting limit where coupling
to multiple excitations of the bath can be neglected [49].

If E (p) is the energy of the impurity-bath system where the
impurity has momentum p, the low-momentum expansion of
the energy difference,

E (p) − EB = μ + p2

2m∗
I

+ · · · (4)

defines the binding energy μ of the impurity and its effective
mass m∗

I . By using perturbation theory one finds the follow-
ing results holding for mI = mB = m to lowest order in the
coupling strength g of the interaction Hamiltonian Hint (see
Appendix A),

μ

μ0
= 4

ln(4π ) − 2 ln(kF a)
, (5)

and

m

m∗ = 1 − 1

2

[ln(4π ) − 2 ln(kF aB)]

[ln(4π ) − 2 ln(kF a)]2
. (6)

Here, we use μ0 = h̄2k2
F

2m , involving the Fermi wave-vector
kF = √

4πn of a system having the same density n of the gas.
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FIG. 2. Polaron energy as a function of the coupling strength
ln(kF a) for the attractive and repulsive branches (circles). The dashed
line shows the dimer binding energy εb, and the solid line shows the
perturbation result from Eq. (5). The coupling constant of the gas is
g̃B = 0.136.

Moreover, the coupling strength of the impurity-bath interac-
tion is expressed in terms of ln(kF a). These results were first
derived in Ref. [62]. The same perturbation approach allows
one to calculate the overlap

√
Zp between the interacting and

the noninteracting ground state of the impurity-bath system
with the impurity moving with momentum p. For the impurity
at rest (p = 0), one finds [62] (see Appendix A)

Z0 = 1 − [ln(4π ) − 2 ln(kF aB)]

[ln(4π ) − 2 ln(kF a)]2
. (7)

Note that the above results hold in the weak-coupling regime
| ln(kF a)| � 1 of the impurity-bath interaction.

III. QMC RESULTS

In order to calculate the properties of the polaron for all
coupling strengths, we resort to QMC techniques. Details on
the general method can be found in Refs. [39,53,63], whereas
an exhaustive discussion of the interatomic potentials used
in the simulations and on the trial wave function used for
importance sampling are found in Appendix B. Simulations
are performed for a gas of N identical particles and a single
impurity in a square box of size L with periodic boundary
conditions. We choose the value g̃B = mBgB

h̄2 = 0.136 for the
dimensionless coupling constant in the bath. This value corre-
sponds to | ln(kF aB)| � 45 and is typical for the experimental
conditions of 2D Bose gases [64]. Furthermore, as in the per-
turbation theory study, we consider the case where impurity
and particles in the bath have the same mass: mB = mI = m.

We calculate the polaron energy μ from the direct calcula-
tion of the ground-state energy of the bath with and without
the impurity μ = E (N, 1) − E (N ), where N is the number of
particles in the bath. Results are shown in Fig. 2. In analogy
with the 2D Fermi polaron [10,58], we find two branches: One
corresponds to the ground state of the attractive polaron with
μ < 0, and the second one corresponds to an excited state of

the quasiparticle with μ > 0. It is important to note that a
two-body bound state with energy εb exists for any value of
the coupling constant ln (kF a). This is in contrast with the 3D
polaron where the dimer state only appears as the s-wave scat-
tering length turns positive on one side of the scattering res-
onance [17]. In the weakly interacting regime | ln(kF a)| � 1,
the QMC results are in good agreement with the prediction
(5) of perturbation theory. Following the attractive branch, we
note that the polaron energy is always much larger in absolute
value than the dimer binding energy εb. This is due to many-
body effects which favor the formation of cluster states around
the impurity involving many particles of the bath (see Fig. 1,
central panel). In particular, in the vicinity of ln(kF a) ≈ 0,
large fluctuations occur in our QMC simulations due to the
formation of very deep many-body bound states which makes
both the attractive and the repulsive branch of the polaron hard
to follow further. The repulsive branch describes an excited
state where the impurity repels the particles of the bath at
long distances but is unstable against cluster formation at short
distances. The state is well defined provided the typical size a
of bound states is small compared to the average interparticle
distance k−1

F but gets increasingly ill defined as the two length
scales become comparable. This is exactly what we observe
in our simulations where the excited state of the polaron is
described using an appropriate choice of the wave function
used for importance sampling (see Appendix B for more
details).

Furthermore, we study the mobility of the impurity by
calculating its effective-mass m∗ as a function of the cou-
pling strength ln kF a. The effective mass is determined by
computing the mean-square displacement of the impurity in
imaginary time [39],

m

m∗ = lim
τ→∞

〈|�rα (τ )|2〉
4Dτ

, (8)

where D = h̄2/(2m) is the diffusion constant of a free parti-
cle and 〈|�rα (τ )|2〉 = 〈|rα (τ ) − rα (0)|2〉, being τ = it/h̄ the
imaginary time of the QMC simulation. The effective mass
is found by fitting the slope of the mean-square displacement
for large values of τ . The residue Z0 of the polaron is obtained
from the one-body density matrix associated with the impu-
rity,

ρ(r) =
〈
ψT (rα + r, r1, . . . , rN )

ψT (rα, r1, . . . , rN )

〉
, (9)

where ψT is the many-body guiding wave function of the
QMC simulation. The above quantity is normalized to unity
for r → 0, whereas its long-range limit gives the residue,

lim
r→∞ ρ(r) → Z0. (10)

In Figs. 3 and 4, we show the results for the effective
mass and the quasiparticle residue, respectively. The calcu-
lation of the residue Z0 is particularly sensitive to finite-
size effects which make the extrapolation to the thermody-
namic limit delicate. We have chosen different long-range
asymptotic behaviors for the Jastrow terms entering the trial
wave function (see Appendix B). In the bath, the long-range
decay of boson-boson correlations is governed by phonons
as shown in Ref. [66]. For the impurity-boson correlations,
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FIG. 3. Effective mass m∗ of the polaron as a function of the
coupling strength ln(kF a). The coupling constant of the Bose gas is
g̃B = 0.136.

instead, we use the same functional form as from the Gross-
Pitaevskii equation in the case of a static impurity. This
choice of the trial wave function exhibits a fast convergence
of Z0 with increasing system sizes and allows us to keep
finite-size effects under control. From Figs. 3 and 4 we
note that, even for the smallest reported values of the cou-
pling (| ln(kF a)| � 10), perturbation theory does not repro-
duce the QMC results of m/m∗ and Z0. This is in contrast
with the results of the polaron energy reported in Fig. 2
and shows that higher-order terms, not accounted for by the
Fröhlich model, play an important role for these quantities
already at such large values of | ln(kF a)| [67]. In the regime
of strong interactions, both the inverse effective mass and
the quasiparticle residue become significantly smaller than
the corresponding noninteracting values. Indeed, we find that
the polaron loses its quasiparticle nature as it gets more

FIG. 4. Residue Z0 of the polaron as a function of the coupling
strength ln(kF a) [65]. The coupling constant of the gas is g̃B =
0.136.

dressed by the particles from the bath. The perturbation
caused by the impurity in the surrounding medium involves
up to few tens of particles over a distance on the order of the
healing length. We find a vanishing quasiparticle residue and
a large effective mass which signal the transition to a many-
body bound state (cluster state) without breaking of transla-
tional symmetry (localization). A similar situation occurs for
Fermi polarons [10,58] where Pauli exclusion principle only
allows for the formation of a molecular state involving just
one particle from the bath. A question which remains open
also in the Fermi polaron case is whether the quasiparticle to
bound-state transition is discontinuous or continuous.

Our findings are also in contrast with Bose polarons in
3D and 1D. In fact, polarons in 3D remain well-defined
quasiparticles up to the limit of resonant interactions [14,15],
whereas, in 1D, they are never well-defined quasiparticles
as the one-body density-matrix (9) decays to zero at long
distances with algebraic law for any value of the coupling
constant between the impurity and the bath. In this respect,
2D geometry is peculiar because the quasiparticle nature of
polarons is rapidly suppressed by increasing the interaction
strength.

IV. EXPERIMENTAL IMPLEMENTATION

In Ref. [64], a gas of 87Rb atoms in the hyperfine state
|F = 1, m = 0〉 is confined in a 2D rectangular box with
dimensions Lx ≈ Ly ≈ 30 μm, at temperatures much below
the Berezinskii-Kosterlitz-Thouless critical temperature. In
the transverse direction, a strong harmonic confinement is ap-
plied with frequency ωz/(2π ) � 4.6 kHz and by changing the
number of trapped atoms the 2D density can be varied in the
range of n ≈ 10–80 μm−2. The 2D scattering length is given
by aB = 1.863�z exp (−√

π
2 �z/a(3D)

B ) (see Ref. [8]) in terms of

the 3D s-wave scattering length a(3D)
B and the transverse length

�z = √
h̄/mBωz. With the typical ratio of lengths �z/a(3D)

B �
30–50 reached in experiments the interaction strength is in
the range of g̃B � 0.10–0.16, where g̃B is the dimensionless
parameter g̃B = mBgB

h̄2 = √
8πa(3D)

B /�z. Due to the exponential

dependence of aB on the ratio �z/a(3D)
B , the 2D gas parameter

takes on very small values: na2
B � 10−30–10−50. In our purely

2D simulations, we use the value na2
B = 10−40 for the gas

parameter of the bath, which corresponds to the effective 2D
coupling strength g̃B = 4π

ln(1/na2
B )

= 0.136 close to the experi-
mental conditions of Ref. [64].

V. CONCLUSIONS

We investigated the properties of Bose polarons in two
dimensions. The polaron energy, effective mass, and quasi-
particle residue have been calculated using QMC techniques
for arbitrary coupling strength. We study the properties of
the attractive and repulsive branch which correspond to the
ground state and to a metastable state of the impurity. In the
ground state, the polaron energy is much lower than the one
of the two-body bound state, which, in 2D, is present for any
value of the interaction strength. At stronger couplings, the
impurity forms a bound state involving many particles from
the bath, which features a large effective mass and a vanishing
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wave-function residue. A vanishing quasiparticle residue and
a large effective-mass signal the transition from a polaron to
a many-body bound state without breaking of translational
symmetry. A similar behavior is found along the repulsive
branch where a low-density bubble is formed around the
impurity. However, this state rapidly becomes unstable against
cluster formation as the interaction strength is increased. Our
paper is important for the investigation of transport properties
in layered structures of ultracold atoms [68,69] as well as
layered solid-state materials [59].
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APPENDIX A: GROUND-STATE
PROPERTIES-PERTURBATION THEORY

The Fröhlich Hamiltonian in Eq. (3) of the main text reads

H = H0 + gn + g
√

n√
L2

∑
k

exp(ik · rα )

√
ε0

k

εk
(αk + α

†
−k ),

(A1)
where H0 is the unperturbed Hamiltonian in Eq. (2), con-
sisting of an impurity with momentum p and independent
Bogoliubov excitations with energy εk. Hence, the unper-
turbed ground state is represented by |0〉 = |p, 0k〉 and cor-
responds to the free impurity and the vacuum of Bogoliubov
excitations. Relevant processes consist of states in which the
impurity is scattered by a single excitation. These states are
represented by |k〉 = |p − h̄k, 1k〉 and correspond to unper-
turbed energies E (0)

k = (p−h̄k)2

2mI
+ EB + εk.

Polaron energy. The Hamiltonian is split into H = H0 +
Hint . The energy expansion within perturbation theory is writ-
ten as E0 = E (0)

0 + E (1)
0 + E (2)

0 + · · · , where E (0)
0 = p2

2mI
+ EB

is the ground-state energy of the unperturbed system. The
first- and second-order contributions to the energy are given
by

E (1)
0 = 〈0|Hint|0〉,

E (2)
0 =

∑
k �=0

|〈k|Hint|0〉|2
E (0)

0 − E (0)
k

. (A2)

By computing the matrix element E (1)
0 , one straightforwardly

obtains

E (1)
0 = gn = 4π h̄2n

m

1

ln(1/na2)
, (A3)

where we assumed equal masses for impurity and particles in
the bath (mB = mI = m). The polaron energy μ is estimated
using the lowest-order result (A3) which, in units of the

energy μ0 and in terms of the wave-vector kF , is written as
in Eq. (5) of the main text.

Effective mass. We assume that the energy of the bath
with the impurity is written as E (p) = EB + μ + p2

2m∗ + · · · ,
holding at low-momenta p of the impurity. Thus, in terms
of the second-order energy correction, the polaron mass is
renormalized as

1

m∗ = 1

m
+ lim

p→0

2
(
E (2)

0 − μ + gn
)

p2
. (A4)

The term E (2)
0 is given by

E (2)
0 = −g2 n

L2

∑
k

[
(kξ )2

(kξ )2 + 2

]1/2 1

�(k)
,

where we use ε0
k

εk
= [ (kξ )2

(kξ )2+2 ]
1/2

with ξ = h̄/
√

2mgBn as the
healing length in the bath. In addition, we introduce the
quantity �(k) = (p−h̄k)2

2m + εk − p2

2m . At low-momenta p → 0,
one can expand 1/�(k) as

1

�(k)
� 1

h̄2k2

2m + εk

+ h̄k · p/m
h̄2k2

2m + εk

+ h̄2k2 p2/m2(
h̄2k2

2m + εk
)3 cos2 θ + · · · , (A5)

where θ is the angle between p and h̄k. After taking the sum
over k, we identify the first term in Eq. (A5) as the second-
order correction to the polaron energy μ whereas the second
term vanishes due to symmetry. Thus, one ends up with

E (2)
0 − μ + gn

= −g2n

L2

∑
k

[
(kξ )2

(kξ )2 + 2

]1/2
h̄2k2 cos2 θ p2/m2(

h̄2θk2

2m + εk
)3 ,

and by performing the integration over momenta, one finds

E (2)
0 − μ + gn = −1

2

ln
(
1
/

na2
B

)
ln2(1/na2)

p2

2m
.

The result (A4) is then given by

m

m∗ = 1 − 1

2

ln
(
1
/

na2
B

)
ln2(1/na2)

. (A6)

Finally, in terms of the wave-vector kF , the ratio m/m∗ is
written as in Eq. (6) of the main text.

Quasiparticle residue. Within perturbation theory, one
computes the correction to the ground state as

|p, 0〉pert = |0〉 +
∑
k �=0

〈k|Hint|0〉
E (0)

0 − E (0)
k

|k〉 + · · · , (A7)

where we neglect terms of second order in Hint orthogonal
to |0〉 as well as higher-order contributions. The quasiparticle
residue is defined as the square modulus of the overlap be-
tween the unperturbed state |0〉 and the normalized perturbed
state

√
Zp|p, 0〉pert. Up to second-order contributions in Hint ,

one finds

Zp = 1

pert〈p, 0|p, 0〉pert
= 1 −

∑
k �=0

|〈k|Hint|0〉|2(
E (0)

0 − E (0)
k

)2 .
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By carrying out the integral over momenta and by taking the
limit p → 0 similar to the case of the effective mass, one finds

Z0 = 1 − ln
(
1
/

na2
B

)
ln2(1/na2)

. (A8)

The above result, if written in terms of the wave-vector kF ,
reduces to Eq. (7) of the main text.

APPENDIX B: TRIAL WAVE FUNCTIONS AND
INTERATOMIC POTENTIALS

We describe the trial wave function which is used in QMC
simulations as a guiding function for importance sampling and
to impose proper boundary conditions on the many-body state.
In general, the trial wave function is written as a pair product
of Jastrow functions,

ψT (R) =
∏
i< j

fB(ri j )
N∏

i=1

fI (riα ), (B1)

where R = (rα, r1, . . . , rN ) is the multidimensional vector
containing the spatial coordinates of the impurity and of the
bath particles and fB and fI are two-body terms accounting,
respectively, for boson-boson and impurity-boson correla-
tions.

As a general strategy, the short-range part of both the
boson-boson and boson-impurity Jastrow functions is taken
from the lowest-energy solution of the two-body scattering
problem − h̄2

2mr
∇2ψ (r) + V (r)ψ (r) = 0, where V (r) is the

corresponding interaction potential and mr is the reduced
mass. Note that the impurity is considered to have the same
mass as the bath particles yielding in both cases 2mr = m. The
two-body short-range behavior is matched with an appropriate
tail at long distances specific for boson-boson and boson-
impurity correlations.

1. Boson-boson Jastrow terms

Boson-boson interactions are modeled via a repulsive soft-
disk potential VB(r) = V0�(R0 − r) of diameter R0, where
�(x) is the Heaviside function. The scattering length aB is
related to the range R0 and the height V0 > 0 of the po-
tential according to: aB = R0 exp [− 1

k0R0

I0(k0R0 )
I1(k0R0 ) ]. Here, k0 =√

V0m/h̄2 is the characteristic momentum associated with the
potential, and Il is the modified Bessel function of zeroth-
(l = 0) and first-order (l = 1). In our calculations, we use
nR2

0 = 0.01, thus, ensuring that R0 is small compared to the
mean interparticle distance. The value of the 2D scattering
length aB is exponentially suppressed and allows us to de-
scribe typical experimental conditions where the 3D s-wave
scattering length is much smaller than the transverse length
of the 2D confinement [8]. In particular, we choose the height
V0 of the repulsive potential such that the 2D gas parameter
is equal to na2

B = 10−40. This corresponds to a dimensionless
coupling constant of the bath g̃B = mgB

h̄2 � 0.136, quite close
to the experimental conditions of Ref. [64].

The Jastrow term for boson-boson correlations is chosen of
the following form:

fB(r) =

⎧⎪⎨
⎪⎩

I0(k0r), r < R0,

A ln
(

r
aB

)
, R0 � r < R,

B exp
(−C

r + D
r2

)
, R � r < L/2.

(B2)

Here, A = I0(k0R0)/ ln(R0/aB) to ensure continuity of fB(r)
at r = R0. Furthermore, the coefficients B–D are chosen such
that fB and its first derivative f ′

B are continuous functions
at the matching point R and f ′

B(r = L/2) = 0, complying
with the periodic boundary conditions. The position R of
the matching point is a parameter optimized by minimizing
the energy in a variational calculation. As stated, the short-
range part corresponds to the two-body scattering solution at
zero energy, and the leading long-range part reproduces the
phononic tail as predicted from hydrodynamic theory [66].

2. Impurity-boson Jastrow terms:
Attractive and repulsive branches

The impurity-boson interaction is modeled by a contact
pseudopotential. In this case, the interaction potential is re-
placed by Bethe-Peierls boundary conditions on the many-
body wave function when a particle of the bath approaches
the impurity. These contact conditions are imposed by the
term

∏N
i=1 fI (riα ) in the trial function (B1). Note that the

pseudopotential supports a two-body bound state for any value
of the scattering length a. The energy of this bound state is
given by εb = − 4e−2γ h̄2

ma2 , where γ = 0.577 is Euler’s constant.
For the attractive branch, the correlation term fI (r) is

constructed in the following way:

fI (r) =
{

AK0(2e−γ r/a), r � R1,

B + e−Cr + e−C(L−r), R1 � r < L/2.
(B3)

Here, K0 is the modified Bessel function of the second kind.
The parameters A and B are chosen such that fI (r) and its first
derivative are continuous at r = R1. The parameter C and the
matching point R1 are, instead, additional parameters used to
minimize the variational energy. Note that, by construction,
f ′
I (r = L/2) = 0 in compliance with periodic boundary con-

ditions.
The Jastrow term describing the repulsive branch is, in-

stead, chosen as

fI (r) =
{

A ln
(

r
a

)
, r � R1,

B + e−Cr + e−C(L−r), R1 � r < L/2.
(B4)

The parameters A–C and R1 entering Eq. (B4) are chosen
similarly to Eq. (B3).

We point out that, for both branches, the pair wave
function satisfies the 2D Bethe-Peierls contact condition
of a pseudopotential with scattering length a which reads:

[r f ′
I ]r=0

[ fI −ln(qr)r f ′
I ]r=0

= − 1
ln(qa) , where q is an arbitrary wave vector.

The important difference between attractive and repulsive
branches is that, in the former case, the function fI is nodeless
and properly describes the ground state of the polaron. In
the latter case, instead, fI has a node at r = a and its short-
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distance behavior corresponds to an excited state of the two-
body problem orthogonal to the bound state with energy εb.

We also note that the long-range behavior of the Jastrow
term fI (r) is consistent with perturbation theory applied to
the Gross-Pitaevskii equation of a Bose condensate in the
presence of a quenched impurity with infinite mass. In fact,
it can be shown [70,71] that such impurity induces the fol-
lowing perturbation δψk to the wave function of the bath in
momentum space,

δψk = − gφ0

h̄2k2

2m + 2mc2
, (B5)

where c = √
gBn/m is the speed of sound in the bath and

φ0 is the wave function of the unperturbed condensate. In
coordinate space, the perturbation decays exponentially in
3D and 1D with the healing length given by ξ = h̄/(

√
2mc),

whereas, in 2D, it involves the modified Bessel function of the
second kind,

δψ (r) ∝ mgφ0

h̄2 K0

(√
2r

ξ

)
. (B6)

The above expression can be expanded with logarithmic ac-
curacy at long distances as

δψ (r) ∝ mgφ0

h̄2 exp

[
−

√
2r

ξ
+ O

(
ln

ξ

r

)]
, (B7)

exhibiting the same functional form as the long-range behav-
ior in Eqs. (B3) and (B4).

In addition, we have also used a square-well potential
with a fixed (short) radius to model the boson-impurity in-
teraction. We find that the obtained results depend only on
the interaction strength ln(kF a) and not on the details of the
potential.

APPENDIX C: REPULSIVE POLARON BRANCH

An additional physical insight can be obtained from vari-
ational calculations for the excited branch using the Jastrow
term in Eq. (B4). Note that this Jastrow term has a node when
r = a and, if a � R1, it is orthogonal to the bound state. This
choice of trial many-body wave function describes an excited

FIG. 5. Variational Monte Carlo results for the polaron energy
interpolating between the attractive and the repulsive branches.
Circles show the diffusion Monte Carlo results reported in Fig. 2
in the main text. Solid lines correspond to the perturbation theory
results in Eq. (5) of the main text.

state of the polaron which is expected to be metastable when
the mean interparticle distance is much longer than a, i.e.,
for | ln(kF a)| � 1. In the opposite limit, when the relevant
distances are much shorter than a, the attractive (B3) and
repulsive (B4) Jastrow terms give the same function, in fact,
K0(2e−γ r/a) ≈ ln(r/a) if r � a. This means that, at the vari-
ational level, the upper repulsive branch constructed from the
Jastrow term (B4) connects with the lower attractive branch
(B3) for | ln(kF a)| � 1, see Fig. 5. Note, however, that these
variational estimates are upper bounds to the true ground-state
energy, which is large and negative and corresponds to a deep
bound state of the impurity and many particles from the bath.

In other words, the pair-product construction in Eq. (B4)
for the upper branch becomes unstable due to a significant
overlap with the bound state. Although the exact position of
the crossing from the upper to the lower branch is not expected
to be quantitatively correct, its presence hints to a possible
instability of the upper branch also in experimentally relevant
configurations with ultracold atoms.
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