
Abstract 

In this study, we investigate the piezoresistivity of metal nanowire networks 
embedded in a polymer, which has been widely used as a highly-stretchable 
strain sensor, by varying the orientation distribution of nanowires. For 
simplicity, we assume the affine transform of the nanowire network upon 
stretching and compute the effective conductivity of the nanowire network by 
recognizing the percolation network connecting low and high voltage 
boundaries. Orientation-dependence is then studied firstly by varying the range 
of polar angle and secondly by changing the degree of alignment along loading 
direction. Since nanowires are embedded in thin nanowire-polymer film in most 
stretchable sensor applications, instead of having random orientation 
distribution over full solid angle, nanowires have a limited range of polar angle 
distribution around 90° (when the surface normal vector of a thin film is given 
as the zenith direction). We show that the gauge factor (relative resistance 
change over applied mechanical strain) decreases as the polar angle distribution 
gets narrower. We then study the effect of nanowire alignment on the 
piezoresistive response, by assuming partial alignment distribution along the 
tensile direction. We find that a wide range of the gauge factor, from negative to 
positive, appears as the initial partial alignment angle varies, and explained such 
response by analyzing the relative electrical path change between a pair of 
nanowires. Our study deepens the understanding on the percolation-network 
based piezoresistive sensors and provides a guideline for designing a stretchable 
strain sensor with the desired gauge factor. 

 

 

Introduction 

A strain sensor measures mechanical deformation through changes in electrical 
responses. With the advancement of wearable devices that are attached to 
various joints in a human body (such as elbows or knees), a demand on highly 
stretchable strain sensors rises and extensive studies have been performed to 
develop flexible and highly deformable sensors with high sensitivity 
[1,2,3,4,5,6,7,8,9,10]. One of the most promising candidates is a piezoresistive 
strain sensor based on metal nanowire-embedded polymer composites, which 
have been extensively studied experimentally and numerically 
[11,12,13,14,15,16,17,18,19]. For example, one of the most cited studies by Amjadi 
et al. utilized sandwiched silver nanowire-elastomer composites which shows the 
gauge factor of 2–14 with the maximum stretchability of 70%, with relatively 
small hysteresis upon loading–unloading cycle [17]. 

Extensive studies on the effects of volume fraction, aspect ratio, and alignment 
of nanowires have been performed to explore the design space (gauge factor, 
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reproducibility, and nonlinear response) of nanowire-polymer composite 
sensors by analyzing the percolation network of nanowires. As an extension of 
such endeavor, the present study investigates the effect of nanowire orientation 
distribution in further detail. Since nanowires are embedded in thin nanowire-
polymer film in most stretchable sensor applications, instead of having random 
orientation distribution over full solid angle, nanowire has a limited range of 
polar angle around 90° (Here, we choose the surface normal vector of thin film 
as the zenith direction). We find that the gauge factor (relative resistance change 
over applied mechanical strain) decreases if narrow polar angle distribution is 
given. We then study the effect of nanowire alignment on the piezoresistive 
response, by assuming axisymmetric orientation distribution along the tensile 
direction. We show that a wide range of the gauge factor, from negative to 
positive, appears as the initial axisymmetric alignment angle varies, and explain 
such response by analyzing the electrical path change through nanowires. We 
then compare the numerical results based on percolation network analysis with 
the prediction of homogenization theory and show that simple analytical 
prediction based on homogenization theory can be used for the high volume 
fraction in the linear response regime. 

Methods 

We build a Matlab-based numerical analysis tool for recognizing the percolation 
network and calculating the resistance of the percolation network for a nanowire 
network depicted in Fig. 1a. The simulation code is composed of the following 
three parts. 

Material Properties and the Dimension of the Simulation Cell 

The first section defines physical constants, material properties, and geometric 
properties. All nanowires are assumed to have the same dimension, with its 
diameter D=175 nmD=175 nm and length L=15000 nmL=15000 nm (aspect 
ratio (AR) = 85.7) and we choose the resistivity of 
silver 1.59×10−8 Ω⋅m.1.59×10−8 Ω⋅m. Polymer matrix has a dimension of 
[62.5 μm × 60 μm × 8 μm] while its material properties are given as Poisson’s 
ratio 0.5 (i.e. zero compressibility and volume conservation) and zero 
conductivity. Perfect adhesion between the nanowires and the matrix is assumed 
neglecting interfacial debonding by interfacial stress [20]. Since the young’s 
modulus of the silver nanowire is a few orders of magnitude higher than those of 
polymers, the stretch of the nanowire is neglected and affine transformation is 
assumed for orientation and center of mass positions of nanowires [11, 18]. We 
expect that a small fraction of nanowires deforms plastically, but the effect on 
the overall conductivity would be negligible. Since we assume affine 
transformation, we do not need to consider Young’s moduli of nanowire and 
polymer. We take the materials’ parameters and geometrical parameters from 
the experimental values of a previous study [17]. Yet, the qualitative conclusion 
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obtained from the present study (the relative change of piezoresistivity upon 
orientation distribution change) is applicable to a piezoresistive sensor with 
different materials and geometrical properties. In the initial configuration, 
nanowires are distributed according to the orientation distributions considered 
in the following section, while overlaps among different nanowires are allowed 
for the simplicity [21]. 
 
Updating Nanowire Positions Under Uniaxial Loading 

Positions of each nanowire inside the matrix are updated with tensile stretching 
along the x-axis by affine transformation as follow, 

 

 

where RcRc is contact resistance, RtRt is tunneling resistance, dc=Ddc=D is 
contact cutoff distance, and dt=10Ddt=10D is tunneling cutoff distance. hh is 
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the Planck constant, qq is the electron charge, λ is tunneling energy barrier, m is 
the electron mass, dnmdnm is distance excluding contact cutoff, Area is the 
cross-section of the nanowire. The contact condition considered in this study is 
visualized in Fig. 2. 

Recognizing the Percolation Network and Calculating the Resistance of the Network 

The depth-first search (DFS) algorithm is employed to identify the percolation 
network of nanowires connected through either contact resistance or tunneling 
resistance. DFS is a search algorithm that starts at the root and explores the 
linked clusters of nanowire members as shown in Fig. 3. After recognizing the 
clusters touching the left and right ends of the matrix, we calculate the resistance 
by computing the current flowing through the percolation network. The points of 
each nanowire that meet with the minimum distance line with another nanowire 
are considered as the nodes of the network. When ViVi is the electronic potential 
level of i-th node and there are n nodes connected to the i-th node, Kirchhoff’s 
first law is written as below. 

 

We assign nodes touching the left end of the matrix to have 0 V and nodes 
touching the right end of the matrix to have 1 V. When k-th node is those 
touching node, every component of k-th row of matrix A is zero 
except AkkAkk which is one, and k-th component of vector B has a value of 
assigned voltage. Components of vector B other than touching nodes are zero. 
Then we solve the coupled linear equation from Kirchhoff’s law by considering 
the matrix equation AV = B. Since we know all of the information of the 
resistance between nodes which constitute matrix A, the column 
vector V representing the voltage of each node can be obtained by solving the 
equation VV=AA−1BBVV=AA−1BB. With the voltages in all nodal points, we can 
compute the current flowing within each link as well as the total current flowing 
through a percolation network. Finally, the total resistance is calculated from the 
total current and a voltage difference assigned to the matrix, i.e. 1 V. Nanowire 
which has more than two nodes with different voltage levels is defined as current 
flowing nanowires. The above process is repeated after each incremental strain. 
The resistance of nanowire network, the position and orientation of all nanowire, 
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and the classification of nanowires (current flowing or not) are tracked upon 
stretching, which is used to create OVITO [22] input files for visualization as 
depicted in Fig. 4. Here, the red lines represent current flowing nanowires, the 
blue lines represent percolating nanowires without current flowing, and the 
black lines represent disconnected nanowires. 

Result 

The Case with Fully Random Orientation Distribution 

Prior to testing the effect of nontrivial orientation distribution, we consider the 
case with a fully random orientation distribution as a reference. To assign 
uniform distribution over the entire solid angle, distribution 
of θ,ϕ,[xc,yc,zc]θ,ϕ,[xc,yc,zc] is given as below 

 

where u, v, a, b, and c are random variables, and [Lx, Ly, Lz] is the size of the 
matrix. RcRc is assumed to be zero as contact resistance barely affects the 
behavior of relative resistance change upon stretching [11]. We note that the 
percolation threshold volume fraction ϕCϕC for slender nanowires with fully 
random orientation is given as follows [11], 
ϕC=18+AR.ϕC=18+AR. 

(12) 

For the aspect ratio of nanowires considered in the present study, the 
percolation threshold ϕCϕC is about 1.06%. Although the gauge factor can be 
maximized around the percolation threshold, the stretchability (i.e. the ability to 
keep positive electric conductance under tension) would be significantly limited. 
Hence, in the present study, we consider the volume fraction much higher 
than ϕCϕC, ranging from 2 to 5%. Figure 5 shows the relative resistance change 
averaged over 10 different initial configurations with different volume fractions. 
As shown before [11], the relative resistance change is linearly proportional to 
strain in the small strain regime and is nonlinearly increasing over a certain 
strain level. This transition from linear behavior to nonlinear behavior occurs 
when the network topology of a percolating cluster changes from homogeneous 
to an inhomogeneous configuration with the emergence of a bottleneck in the 
electrical path [11]. In that context, it is obvious that the transition point is 
delayed with a higher volume fraction. Also, the relative resistance change over 
strain (gauge factor) becomes smaller as the volume fraction increases, while the 
reproducibility (the invariance over different initial configuration with a given 
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volume fraction) increases with volume fraction. Because the main purpose of 
the present study is the investigation of the orientation distribution effect, we 
choose the 4% of the volume fraction for all cases considered in the following 
sections. 
 

The Case with Limited Polar Angle Distribution 

Since nanowires are embedded in thin nanowire-polymer film in most 
stretchable sensor applications, instead of having random orientation 
distribution over full solid angle, nanowire has a limited range of polar angle ϕ 
around 90∘∘, as depicted in Fig. 6a. To apply a limit on 
angle ϕ, γ(=π/2−ϕ)γ(=π/2−ϕ) is defined as an angle between the xy-plane and 
nanowire and the distribution of θθ and γγ is as below 
θ=2πu,γ=sin−1[k(2v−1)],(0≤u≤1,0≤v≤1,0≤k≤1)θ=2πu,γ=sin−1⁡[k(2v−1)],(0
≤u≤1,0≤v≤1,0≤k≤1) 

(13) 

where u and v are random variables and k is a factor limiting the maximum 
magnitude of γγ. Figure 6b plots the average relative resistance change in terms 
of the maximum value γmaxγmax at a given volume fraction of 4%. The case 
with γmax=90∘γmax=90∘ corresponds to the full random distribution, while the 
case with γmax=0∘γmax=0∘ corresponds to the nanowires oriented perfectly 
orthogonal to the surface normal vector. We note that γmax=0∘γmax=0∘ case 
does not correspond to the 2D network because nanowires can have different 
locations along the z-axis. When γmax is 60∘γmax is 60∘, the result is almost 
identical to the γmax=90∘γmax=90∘. With a further decrease in γmaxγmax, the 
gauge factor increases monotonically until γmax=0γmax=0. This result indicates 
that the gauge factor of a piezoresistive sensor based on nanowire-polymer 
composite with a given volume fraction can be increased by making the initial 
nanowire orientation distribution as sharp as possible in terms of polar angle. 
 

The Case with Axisymmetric Alignment Along the Loading Direction 

We have shown that the partial alignment along the loading direction can lead to 
a variety of gauge factor with the same volume fraction, in the previous study 
[11]. Especially, we showed that the negative gauge factor can appear when 
nanowires are aligned having a large angle with the loading direction. Here, to 
deepen the understanding of the negative gauge factor, we investigate the initial 
orientation distribution of nanowires having a fixed angle θxθx with the loading 
direction and a random angle αα (the orientation of projected nanowire on yz-
plane) as depicted in Fig. 7a. For various initial θxθx values over a certain 
threshold, the gauge factor in the small strain regime turns out to be negative but 
increases with the strain because nanowires align further with the strain as 
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shown in Fig. 7b. The response of a realistic partially aligned nanowire network 
will be the averaged response of the idealized cases considered here. 
The observation from simulations can be explained by a simple analytical model. 
We consider a pair of nanowires on a plane as depicted in Fig. 8 and change of 
the electric path upon affine transformation. Upon strain increment, the 
distance between centroid positions of two nanowires always increases in 
proportion to the strain, while the tips of nanowires may bet closer if the initial 
angle θ0θ0 is large enough to overcome the centroid motion (we note that the 
rotation angle of nanowires gets larger for larger θ0θ0 from Eq. (2)). The new 
alignment angle θθ can be obtained in terms of applied strain εε and initial 
angle θ0θ0, as from Eq. (2). Then, the resistance between two centroid points of 
initially touching nanowire pair can be written as follows 

 

where r0r0 is resistance per unit length of the nanowire. The negative gauge 
factor threshold can be obtained from the point where a relative change of 
resistance over the current alignment angle θθ becomes zero, i.e. dRdθ=0dRdθ=0. 
We found that dRdθ=0dRdθ=0 condition is met 
when θ=cos−1(13)=54.74∘θ=cos−1⁡(13)=54.74∘. From Eq. (2), we can obtain 
the initial alignment angle θ0θ0 to have zero piezoresistive response at strain εε. 
For example, to have zero gauge factor at initial 
stretching, θ0=54.74∘θ0=54.74∘ is needed, and the relative resistance change 
increases with strain. On the other hand, to target zero gauge factor 
at ε=0.2ε=0.2, the initial angle θ0=61.72∘θ0=61.72∘ is needed. Such nanowire 
network will have significantly large negative gauge factor at very small strain 
regime but its tangential gauge factor (or instantaneous gauge factor), defined 
as dR/RdεdR/Rdε, becomes zero near ε=0.2ε=0.2. We summarize the prediction 
from the simple calculations in Table 1, and despite of very simple assumption, 
our prediction matches qualitatively with the results from Fig. 7b. 

Comparison with the Prediction of Homogenization Theory 

Effective resistance for nanowire embedded rubber can be predicted by mean-
field homogenization theory for computing the effective conductivity of 
composites. Technically, homogenization theory is applicable to obtain the 
conductivity of composite involving sparsely dispersed nanowires that do not 
form percolation network and also does not account for the topology change of a 
percolation network. Yet, it may give a first-order approximation on the gauge 
factor in the limit of large volume fraction and small strain where the topology of 
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the percolation network does not change significantly. According to the Mori–
Tanaka mean-field approximation, the conductivity of nanowire-polymer 
network is given as follows [23,24,25,26,27], 

 

where LL0LL0, LL1LL1, LLeffLLeff are 3×33×3 conductivity matrix of the matrix, 
nanowire, and the composite, respectively. c0c0 and c1c1 are volume fraction of 
the matrix and nanowires, respectively. SSSS is Eshelby tensor, IIII is an identity 
matrix, and λ(ϕ)λ(ϕ) is orientation distribution function. We note that the non-
zero conductivity can be obtained only if we assume a non-zero conductivity of 
the matrix. Thus, we assign very small conductivity to the matrix and obtain the 
resistance change over strain by accounting the change of nanowire orientation 
distribution in the orientation (see supplementary note for detail of orientation 
distribution change). We found that the analytical prediction from 
micromechanics does not match with the numerical results in the entire range of 
strain if the initial volume fraction is 2–3%. In this case, the percolation network 
topology (the number of nodes and connected links) changes significantly upon 
the small stretch. However, for the higher volume fraction of 4–5%, the 
micromechanics prediction turns out to match reasonably well with the 
numerical results at least in the small strain regime because of stable percolation 
network topology as shown in Fig. 9. Also, macroscopic stress upon the strain 
can be obtained using a homogenization method [28]. Overall, we find that 
micromechanics can be used in the linear response regime of the composites 
with high volume fractions. 

Conclusion 

In the present study, we investigate the effect of orientation distribution on the 
piezoresistivity of nanowire-polymer composite, based on a numerical 
simulation tool for modeling the percolation network. We find that, given a 
volume fraction, the piezoresistive sensitivity of the composite can be maximized 
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if nanowires are perfectly oriented orthogonal to surface normal vector of the 
thin film. We also investigate the negative piezoresistive response for nanowires 
aligned almost orthogonal to the loading direction in detail, and explained the 
mechanism behind the negative and zero piezoresistive responses. Finally, we 
compare the results from the numerical simulation with the analytical prediction 
from homogenization theory and find that homogenization theory can be used to 
estimate the piezoresistive response of a composite with high volume fraction 
(4–5%) in a small strain regime. 
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