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Abstract 

In this article, the performance of a two degree-of-freedom Dynamic Vibration Absorber 

(DVA) with very large or very small moment of inertia is studied. Although it has been shown 

previously that an optimally tuned DVA with a negligibly small moment of inertia marginally 

outperforms the optimally tuned DVA with a very large moment of inertia, the physical 

reasons for this have not been made clear. Using a simplified model of the stiffness elements 

of the DVA, it is shown that the two sets of parallel combinations of stiffness and damping 

elements of the DVA with negligibly small moment of inertia effectively act in series, rather 

than in parallel as in the other case. Further, it is shown that the stiffness and damping 

elements can be represented as a single stiffness and a single damping element whose 

properties are frequency dependent. This frequency dependency means that there is additional 

freedom in choosing the optimum stiffness and damping of the DVA, which results in better 

performance.   
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1. Introduction 

 

Since the Dynamic Vibration Absorber (DVA) was proposed by Ormondroyd and Den Hartog 

about a century ago [1], there has been much research on this topic. It has often been 

modelled as a translational single-degree-of-freedom (SDOF) mass, spring, damper system. 

However, a single mass DVA can have as many as three DOFs in translation or six DOFs 

including rotation, and recently some studies on such absorbers have been carried out. Zuo 

and Nayfeh [2] optimized the stiffness and damping values for a multi-degree-of-freedom 

(MDOF) DVA attached to a MDOF system and showed that the single mass DVA can 

suppress multiple resonance peaks of the structure to which it is attached. Jang and Choi [3] 

derived the dynamic equations of two bodies in space and extracted the conditions for 

stiffness, mass, and moment of inertia values for the suppression of multiple peaks. Zuo and 

Nayfeh [4] also recently investigated the suppression of the resonance peak of a SDOF 

system using a DVA which had translational and rotational DOFs. The performance of the 

DVA was characterized by the 2H  and H  norms of the displacement of the SDOF system. 

They calculated the optimum values for the two sets of springs and dampers, and moment of 

inertia of the DVA mass, and showed that the 2DOF DVA was more effective than the 

optimised SDOF DVA according to these metrics. In particular, Zuo and Nayfeh showed that, 

even if the DVA has negligible inertia but is allowed to rotate, then it performs marginally 

better than a DVA which has a very large moment of inertia. It was stated in [4] that the 

reason for this improved performance is that the 2DOF DVA can be represented by a third-

order rather than a second-order transfer function. The aim of this article is to provide a 

physical explanation as to why the 2DOF DVA, with negligible moment of inertia, 

outperforms the DVA with a very large moment of inertia, in minimizing the 2H  norm of 

the host SDOF system response.  
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2. Description of the problem 

 

The system of interest is shown in Fig. 1. A 2DOF DVA with a rotational and translational 

degree-of-freedom is attached to a base-excited main structure, represented by an undamped 

translational SDOF system of mass sm  and stiffness sk . The DVA has mass, am  and 

moment of inertia aJ , and is connected through a rigid, mass-less link to two sets of springs 

and dampers 1 1,  k c  and 2 2,  k c  respectively. The distances from the mass centre to the two 

sets of springs and dampers are given by 1d  and 2d  respectively. If the moment of inertia 

tends to infinity then the DVA behaves as a translational SDOF system as the mass is 

prevented from rotating. Alternatively, if the moment of inertia tends to zero, the DVA still 

behaves as a SDOF system as the sets of springs and dampers are connected directly to each 

other, but only through the system geometry rather than the inertia of the DVA mass. This is 

explored further in this section. 

 

To aid interpretation of the behavior of the two DVAs, a simplified model of the system of 

springs and dampers in the DVA is sought. To achieve this, they are considered separately 

from the DVA mass, as shown in Fig. 2a, and harmonic excitation of the form j tFe   and 

j tXe   is assumed. The force F, is applied at the position where the system of springs and 

dampers is connected to the DVA mass. The relationship between the displacement at this 

position and the displacement at the positions where the springs and dampers are connected is 

given by 

 

1 2 2 1

1 2

d X d X
X

d d

+
=

+
     (1) 
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The relationship between the force F, and the forces transmitted to the springs and dampers is 

given by 

 

1 2F F F= +
     

(2) 

 

If it assumed that the moment of inertia of the absorber is negligible, then 

 

1 1 2 2 0F d F d+ =       (3)  

 

Noting that the receptance of the spring and damper system is given by X F , Eqns. (1-3) 

can be combined to give   

 

2 1 1 2

1 1X

F q K q K
 = = +

     (4) 

 

where 1
1 1 1

1

F
K j c k

X
= = +  and 2

2 2 2

2

F
K j c k

X
= = +  are the dynamic stiffnesses of each 

set of parallel combinations of springs and dampers, and 

2

21








 +
=

i

i
d

dd
q  , where ( 2,1=i ).  

Eqn. (4) represents a system of dynamic stiffnesses connected in series such as that shown in 

Fig 2b, where 1 2 1k q k= , 2 1 2k q k= , 1 2 1c q c= , and 2 1 2c q c= . An absorber with this 

combination of stiffness and damping elements has been considered previously by Snowdon 

[6] and Zuo [7]. Note that 1q  and 2q  play the role of amplifying or reducing the size of the 

coefficients. When 2 1 0d d → , →12 qq  and 
2

1 K   and when 2 1d d → , 
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012 →qq  and 
11 K  . When 1 2d d= , 1 2 1 4q q= =  and the two sets of dynamic 

stiffness contribute equally to the receptance; additionally, if both sets of stiffnesses and 

damping are the same, then the total dynamic stiffness is simply twice that of one of the sets 

of elements (Also, if the system is prevented from rotating, as it would if the DVA mass had 

infinite moment of inertia, then the total dynamic stiffness would simply be twice that of the 

individual elements regardless of the ratio 2 1d d ). 

 

Another way of viewing the series combination of Fig. 2b., which is helpful when comparing 

the reasons why the two absorbers behave differently, is to consider it as a parallel 

combination of stiffness and damping where the coefficients ( )k  , and ( )c   are 

frequency dependent, as shown in Fig. 2c. The coefficients are given by 

 

   ( )
( ) ( )

( ) ( )

2 2 2

2 1 1 2 1 2 1 2

22 2

1 2 1 2

Re
c k c k k k k kF

k
X c c k k






+ + + 
= = 

  + + +
        (5a)

 

 

   ( )
( )

( ) ( )

2 2 2

1 2 1 2 1 2 2 1

22 2

1 2 1 2

Im
c c c c c k c kF

c
X c c k k




 

+ + +− 
= = 

  + + +
         (5b) 

(The prime superscript in the nominator should be replaced to ~; I cannot access to this) 

 

To determine the response of the system to base excitation with the DVA attached, the 

dynamic stiffness approach can be used. The transmissibility of motion is given by 

 

 s s

e s DVA

X k

X K K
=

+  
          (6)  
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where 
sX and 

eX are the Fourier transforms of the main structure and base displacements 

respectively. The dynamic stiffnesses of the DVA and the main structure are given 

respectively by 

 

( ) ( )

2

2

1
,          

1 1DVA s s s

a

K K k m

k j c m



   

= = −

−
+

    (7a,b) 

 

The performance measure of the system is the 2H  norm as in [4], which can be calculated 

by 

 

2

2

1

2

s

e

X
H d

X






−
=       (8)  

 

3. Comparison of the performance of the two DVAs 

 

The characteristics and performance of the system in Fig. 1 are now investigated. Of interest 

are the cases when the moment of inertia of the absorber is very large or very small, but for 

simplicity the cases considered here are when aJ =   and 0aJ = . To determine the 

optimum parameters in each case the 2H  norm is calculated numerically using Eq. (8). An 

exhaustive numerical search for the optimum stiffness and damping parameters is undertaken 

to determine the values that give the minimum 2H  norm. These are also checked with 

values in the literature [4,5]. For the simulations, 1d  is set to be equal to 2d  and 1=sm  kg 

and 1=sk  Nm-1 as shown in Tab. 1. This does not affect the generality of the results since a 

variation of the stiffnesses is equivalent to a change in their position. The optimization leads 
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to the values given in Tab.1. The resulting absolute displacement of the mass of the main 

structure sX  for a given displacement of the base eX , i.e. the modulus of the 

transmissibility of the system s eX X  is shown in Fig. 3 as a function of non-dimensional 

frequency, s  , where 
s s sk m=  is the natural frequency of the main structure. It can 

be seen that for the case when the moment of inertia is negligible then the transmissibility is 

marginally less, over the frequency range near the peaks, than for the case when the moment 

of inertia is very large. The corresponding values of the 2H  norm are given in Tab. 1.  

 

The question as to why the two systems give a different performance can be answered by 

studying the equivalent stiffness models for the two systems. For the case when the moment 

of inertia of the DVA is very large, there is effectively one stiffness and one damping value 

that can be adjusted as the two sets of springs and dampers tend to act as one because there is 

no rotation. Moreover the values of the stiffness and damping coefficients are independent of 

frequency. With the case of the DVA with a negligibly small moment of inertia, the system of 

stiffnesses and dampers can be reduced to a single stiffness and damper, but very importantly 

in this case, they are frequency dependent as depicted in Fig. 2c. The frequency dependence 

cannot be chosen arbitrarily but can be adjusted by choosing appropriate values of 

1 1 2 2, , , ,k c k c (may be replaced to 1k , 1c , 
2k , and 

2c .) This gives additional freedom in 

choosing the optimum stiffness and damping for the DVA. The optimum normalised 

frequency dependent stiffness and damping properties corresponding to Fig 2c. are plotted in 

Figs. 4a and 4b as a function of non-dimensional frequency respectively. It can be seen that 

the stiffness is relatively small at low frequencies and rises at high frequencies. In fact, it is 

equivalent to the serial combination of the two springs 1k  and 2k  at low frequencies and to 

2k  at high frequencies. It is interesting that the optimized value of 2 0c = , but there is a 
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finite value of 1c .  This is the same finding as reported in references [4] and [7]. The 

frequency dependent damping values correspond to 

2

2
1

1 2

k
c

k k

 
 

+ 
at low frequencies 

decreasing to zero at high frequencies.  

 

Of course, the DVAs consist of a mass as well as the stiffness and damping elements. To 

examine the difference between the dynamic behaviour of the two DVAs discussed above 

their normalized apparent mass is plotted for the modulus and phase in Figs. 5a and 5b 

respectively for the optimised parameters. It can be seen that although the stiffness and 

damping characteristics are quite different, their dynamic behavior is quite similar in the 

frequency region close to 1s  = . 

 

4. Conclusions 

 

This article has investigated the performance of two DVAs - one which has a negligible 

moment of inertia and one which has a very large moment of inertia – attached to a 

translational SDOF main structure. It has been shown that the DVA with negligible moment 

of inertia is dynamically equivalent to a DVA with frequency dependent stiffness and 

damping. When comparing the 2H  norm of the response of the main structure the DVA with 

negligible moment of inertia marginally outperforms the DVA with a large moment of inertia. 

It is suggested that the effective frequency dependency of the DVA stiffness and damping is 

responsible for this. 

 

Acknowledgement 

This work was supported by the Korea Research Foundation Grant funded by the Korean 



10 

 

Government (MOEHRD). (KRF-2007-357-D00009) 



11 

 

 

References 

 

[1] J. Ormondroyd, J.P. den Hartog, Theory of the dynamic absorber, Transactions of the 

ASME 50 (1928) 9-22. 

 

[2] L. Zuo, S.A. Nayfeh, Minimax optimization of multi-degree-of-freedom tuned mass 

dampers, Journal of Sound and Vibration 272 (2004) 893-908. 

 

[3] Seon J. Jang, Yong J. Choi, Geometrical design method of multi-degree-of-freedom 

dynamic vibration absorbers, Journal of Sound and Vibration 303 (2007) 343-356. 

 

[4] L. Zuo, S.A. Nayfeh, The two-degree-of-freedom tuned-mass damper for suppression of 

single-mode vibration under random and harmonic excitation, Transactions of the ASME, 

Journal of Vibration and Acoustics 128 (2006) 56-65. 

 

[5] T. Asami, O. Nishihara, A. M. Baz, Analytical solutions to 
H  and 

2H  optimization of 

dynamic vibration absorbers attached to damped linear systems, Transactions of the ASME, 

Journal of Vibration and Acoustics 124 (2002) 284-295. 

 

[6] J.C. Snowdon, Dynamic vibration vbsorbers that have increased effectiveness, 

Transactions of the ASME, Journal of Engineering for Industry (1974) 940-945. 

 

[7]  L. Zuo, Effective and robust vibration control using series multiple tuned-mass dampers, 

Transactions of the ASME, Journal of Vibration and Acoustics 131 (2009) 031003-1 - 11. 

  

 



12 

 

 

Figures 

 

 

 

 

sm

,  a am J

sk

1k 2k1c 2c

ex

sx

1d 2d

 

 

 

 

Fig. 1. Base-excited SDOF system with 2DOF DVA attached. 
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Fig. 2.  Models for springs and dampers (a) original model, (b) equivalent series model, (c) 

equivalent parallel model using frequency dependent spring and damper  
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Fig. 3. Transmissibility of the system between the base and main structure; DVA with 0aJ = . (solid 

line), DVA with aJ =   (dotted line). 
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Fig. 4. Non-dimensional equivalent optimum absorber stiffness and damping as a function of non-

dimensional frequency for a mass ratio of 5%. (a) stiffness, (b) damping.  
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Fig. 5. Normalised apparent mass of the absorber (a) Magnitude and (b) phase. DVA with 0aJ =  

(solid line), DVA with aJ =  (dotted line). 
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Tables 

 

 Main structure 

sm  1 kg 

sk  1 Nm
-1 

 

 DVA (Optimal Values) 

 Very Large Moment of Inertia Negligible Moment of Inertia 

1 2d d=  

am  0.05 kg 0.05 kg 

 aJ    kgm
2
 0 kgm

2
 

1 2k k+  0.0465 Nm
-1

  

1 2c c+  0.0106 Nsm
-1

  

1k   0.0274 Nm
-1

 

1c   0.0330 Nsm
-1

 

2k   0.0152 Nm
-1

 

2c   0 Nsm
-1

 

2
H  2.1087 2.0660 

Tab. 1. Physical parameters used in the simulations 

 

 


