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ABSTRACT. We consider the stochastic Cahn-Hilliard equation with additive noise term
e7gW (7 > 0) that scales with the interfacial width parameter e. We verify strong error
estimates for a gradient flow structure-inheriting time-implicit discretization, where =1
only enters polynomially; the proof is based on higher-moment estimates for iterates, and
a (discrete) spectral estimate for its deterministic counterpart. For « sufficiently large,
convergence in probability of iterates towards the deterministic Hele-Shaw /Mullins-Sekerka
problem in the sharp-interface limit ¢ — 0 is shown. These convergence results are partly
generalized to a fully discrete finite element based discretization.

We complement the theoretical results by computational studies to provide practical evi-
dence concerning the effect of noise (depending on its ’strength’ ) on the geometric evolution
in the sharp-interface limit. For this purpose we compare the simulations with those from a
fully discrete finite element numerical scheme for the (stochastic) Mullins-Sekerka problem.
The computational results indicate that the limit for v > 1 is the deterministic problem,
and for v = 0 we obtain agreement with a (new) stochastic version of the Mullins-Sekerka
problem.

1. INTRODUCTION

We consider the stochastic Cahn-Hilliard equation with additive noise

(1.1a) duzA(—sAu—kéf(u))dt—l—e”’gdW in Dr:=(0,7)xD
(1.1b) O = 0p,Au =10 on (0,7)x 0D ,
(1.1c) u(0, ) = u on D.

We fix T > 0, v > 0, and € > 0 is a (small) interfacial width parameter. For simplicity,
we assume D C R? to be a convex, bounded polygonal domain, with n € S? the outer
unit normal along 9D, and W = {W,;; 0 <t < T} to be an R-valued Wiener process on a
filtered probability space (Q, F, {F;}+,P). The function g € C*°(D) is such that [, gdz =0
to enable conservation of mass in (L.1), and 0,9 = 0 on 0D. Furthermore, we assume
u$ € H', and impose fD ug dz = 0, for simplicity; generalization for arbitrary mean values is
straightforward.

The nonlinear drift part f in is the derivative of the double-well potential F'(u) :=
1(u?—=1)% ie., f(u) = F'(u) = v’ —u. Associated to the system (1.1)) is the Ginzburg-Landau
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free energy
€ 1
E(u) = —|Vul]* + =F(u)) dz.
(u) /1)(2qu; +-F(u)) de

The particular case g = 0 in (1.1)) leads to the deterministic Cahn-Hilliard equation which can
be interpreted as the H™!-gradient flow of the Ginzburg-Landau free energy. It is convenient

to reformulate (1.1)) as

(1.2a) du = Awdt 4+ e7gdW in Dr,
1
(1.2b) w=—cAu+ gf(u) in Dr,
(1.2¢) Opu = Opw =0 on (0,T7)x 9D,
(1.2d) u(0,-) = ug on D,

where w denotes the chemical potential.

The Cahn-Hilliard equation has been derived as a phenomenological model for phase sep-
aration of binary alloys. The stochastic version of the Cahn-Hilliard equation, also known
as the Cahn-Hilliard-Cook equation, has been proposed in [12] 21], 22]: here, the noise term
is used to model effects of external fields, impurities in the alloy, or may describe thermal
fluctuations or external mass supply. We also mention [18]|, where computational studies
for show a better agreement with experimental data in the presence of noise. For a
theoretical analysis of various versions of the stochastic Cahn-Hilliard equation we refer to
[8, @) 3], 14]. Next to its relevancy in materials sciences, is used as an approximation
to the Mullins-Sekerka/Hele-Shaw problem; by the classical result [I], the solution of the
deterministic Cahn-Hilliard equation is known to converge to the solution of the Mullins-
Sekerka/Hele-Shaw problem in the sharp interface limit € | 0. A partial convergence result
for the stochastic Cahn-Hilliard equation has been obtained recently in [3] for a suffi-
ciently large exponent 7. We extend this work to eventually validate uniform convergence of
iterates of the time discretization Scheme to the sharp-interface limit of for vanish-
ing numerical (time-step k), and regularization (width €) parameters: hence, the zero level
set of the solution to the geometric interface of the Mullins-Sekerka problem is accurately
resolved via Scheme [3.1]in the asymptotic limit.

It is well-known that an energy-preserving discretization, along with a proper balancing
of numerical parameters and the interface width parameter ¢, is required for accurate simu-
lation of the deterministic Cahn-Hilliard equation; see e.g. [16]: analytically, this balancing
of scales allows to circumvent a straight-forward application of Gronwall’s lemma in the
error analysis, which would otherwise cause a factor in a corresponding error estimate that
grows exponentially in 1. The present paper pursues a corresponding goal for a structure-
preserving discretization of the stochastic Cahn-Hilliard equation (L.1]); we identify proper
discretization scales which allow a resolution of interface-driven evolutions, and thus avoid a
Gronwall-type argument in the corresponding strong error analysis. This allows for practi-

cally relevant scaling scenarios of involved numerical parameters to accurately approximate
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solutions of (|1.1)) even in the asymptotic regime where ¢ < 1.

The proof of a strong error estimate for a space-time discretization of ((1.1)) which causes

only polynomial dependence on £~

(a)

(b)

Lin involved stability constants uses the following ideas:

We use the time-implicit Scheme whose iterates inherit the basic energy bound
(see Lemma[3.1] 1)) from (L.I). We benefit from a weak monotonicity property of the
drift operator in the proof of Lemma to effectively handle the cubic nonlinearity
in the drift part.

For v > 0 sufficiently large, we view as a stochastic perturbation of the deter-
ministic Cahn-Hilliard equation (i.e., with g = 0), and proceed analogically also
in the discrete setting. We then benefit in the proof of Lemma [3.4| from (the discrete
version of) the spectral estimate from 11}, 2] for the deterministic Cahn-Hilliard
equation (see Lemma [3.1] v)).

For the deterministic setting [I6], an induction argument is used on the discrete
level, which addresses the cubic error term (scaled by e~') in Lemma [3.4 This
argument may not be generalized in a straightforward way to the current stochastic
setting where the discrete solution is a sequence of random variables allowing for
(relatively) large temporal variations. For this reason we consider the propagation
of errors on two complementary subsets of {2: on the large subset {2, we verify the
error estimate (Lemma , while we benefit from the higher-moment estimates for
iterates of Scheme from (a) to derive a corresponding estimate on the small set
Q\ Q (see Corollary 3.7). A combination of both results then establishes our first
main result: a strong error estimate for the numerical approximation of the stochastic
Cahn-Hilliard equation (see Theorem , avoiding Gronwall’s lemma.

Building on the results from (c¢), and using an L>°-bound for the solution of Scheme
3.1 (Lemma [.1]), along with error estimates in stronger norms (Lemma [5.2)), we
show uniform convergence of iterates on large subsets of Q2 (Theorem . This in-
termediate result then implies the second main result of the paper: the convergence
in probability of iterates of Scheme to the sharp interface limit in Theorem
for sufficiently large . In particular, we show that the numerical solution of
uniformly converges in probability to 1, —1 in the interior and exterior of the geo-
metric interface of the deterministic Mullins-Sekerka problem (j5.1]), respectively. As
a consequence we obtain uniform convergence of the zero level set of the numerical
solution to the geometric interface of the Mullins-Sekerka problem in probability;

cf. Corollary

The error analysis below in particular identifies proper balancing strategies of numerical
parameters with the interface width that allow to approximate the limiting sharp interface
model for realistic problem setups, and motivates the use of space-time adaptive meshes for
numerical simulations; see e.g. [25]. In Section @, we present computational studies which
evidence asymptotic properties of the solution for different scalings of the noise term. Our
studies suggest the deterministic Mullins-Sekerka problem as sharp-interface limit already for
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~v > 1; we observe this in simulations for spatially colored, as well as for the space-time white
noise. In contrast, corresponding simulations for v = 0 indicate that the sharp-interface limit
is a stochastic version of the Mullins-Sekerka problem; see Section [6.4]

To sum up, the convergence analysis presented in this paper is a combination of a per-
turbation and discretization error analysis. The latter depends on stability properties of
the proposed numerical scheme: higher-moment energy estimates for the Scheme [3.1], a dis-
crete spectral estimate for the related deterministic variant, and a local error analysis on the
sample set €2 are crucial ingredients of our approach. The techniques developed in this pa-
per constitute a general framework which can be used to treat different and /or more general
phase-field models including the stochastic Allen-Cahn equation, and apply to settings which
involve multiplicative noise, driving trace-class Hilbert-space-valued Wiener processes, and
bounded polyhedral domains D C R3, as well.

The paper is organized as follows. Section [2is dedicated to the analysis of the continuous
problem. The time discretization Scheme is proposed in Section [3| and rates of con-
vergence are shown, while Section [| extends this convergence analysis to its finite-element
discretization. The convergence of the numerical discretization to the sharp-interface limit
is studied in Section 5] Section [6] contains the details of the implementation of the numer-
ical schemes for the stochastic Cahn-Hilliard and the stochastic Mullins-Sekerka problem,
respectively, as well as computational experiments which complement the analytical results.

2. THE STOCHASTIC CAHN-HILLIARD EQUATION

2.1. Notation. For 1 < p < oo, we denote by (L?, || -||L») the standard spaces of p-th order
integrable functions on D. By (-,-) we denote the L%-inner product, and let || - || = || - [|2-
For k € N we write (H", || - ||gx) for usual Sobolev spaces on D, and H™' = (H')". We define
L§ :={¢ € L% [,¢dx =0}, and for v € L* we denote its zero mean counterpart as v € L,
le,vi=v— ﬁ [ vdz. We frequently use the isomorphism (—A)~': L§ — H?* NL§, where
w = (—A)717 is the unique solution of

—Aw =7 inD, O,w =0 on dD.

In particular, (V(—=A)"'0,Vy) = (v,p) for all ¢ € H', v € L3. Below, we denote
AY25 ;= V(—~A)"'7 and note that norms ||7]|g-: and ||[A~Y%7|| are equivalent for all
v € L2. Throughout the paper, C' denotes a generic positive constant that may depend on
D, T, but is independent of ¢.

2.2. The Problem. We recall the definition of a strong variational solution of the stochastic
Cahn-Hilliard equation (1.1)); its existence, uniqueness, and regularity properties have been
obtained in |14, Thm. 8.2, [13, Prop. 2.2|.

Definition 2.1. Let u§ € L*(Q, Fo, P; HY)NLY(Q, Fo, P; L*) and denote H? = {¢ € H?, 0, =
0 on 9D}. Then, the process

w e I(Q {F} B O(0,T): HY) 1 L2(0, T; B2)) 1 L4 (9, {7}, B, C((0, T LY)
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15 called a strong solution of if it satisfies P-a.s. and for all 0 <t <T
t

(ut0) = o)+ [ (—etut 1w a0) s+ [(ea)aw(s) e k.

0

The following lemma establishes existence and bounds for the strong solution u of (1.1)
and for the chemical potential w from (L.2b]); cf. [I3, Section 2.3] for a proof of i), while ii)
follows similarly as part i) by the It6 formula and the Burkholder-Davis-Gundy inequality.

Lemma 2.1. Let T > 0. There exists a unique strong solution u of , and there hold

t
i) E[E(u(®))] +E[/ ||Vw(S)H2dS} <C(E(ug)+1)  Vtelo,T],
i) ForanypéeN the[;’e exists C = C(p) > 0 such that

E[ sup E(u(®))’] < C(E(ug)’ +1).
t€[0,T]
2.3. Spectral estimate. We denote by ucy : Dr — R the solution of the deterministic
Cahn-Hilliard equation, i.e., with ¢ = 0. Let g9 < 1; throughout the paper we assume
that for every ¢ € (0, ), there exists an arbitrarily close approximation u, € C?(Dr) of ucy
which satisfies the spectral estimate (cf. [I, relation (2.3)])

(2.1) inf inf el VOII? + 2 (f (), ¥)

0<t<T yeH?!, w=(—A)~"1e ||Vw||2

2_007

where the constant Cy > 0 does not depend on ¢ > 0; cf. [1} 2} 1T].

2.4. Error bound between u of and ucy of (1.1)) with g = 0. In [3] the authors
study the convergence of the solution of the stochastic Cahn-Hilliard equation to the
deterministic sharp-interface limit. In particular, they show the convergence in probability
of the solution u of to the approximation wu, of ucy for sufficiently large v > 0. Apart
from the spectral estimate , a central ingredient of their analysis is the use of a stopping
time argument to control the drift nonlinearity. The stopping time which, in our setting, is
defined as

T. ::inf{te 0,77 : /||u ) — ucu(s)|[fs ds > & }

for some constant oy > 0, enables the derivation of the estimates in Lemma [2.2| below up to
the stopping time 7. on a large sample subset

Ql::{west7 sup‘/ ) — ucu(s), (—A) tgdW (s ‘<5 }
te[0,T
that satisfies P[] — 1 for € | 0, for some constant kg. On specifying the condition (A)
below it can be shown that 7, = T', which yields Lemma In this section we extend the
work [3] by showing a strong error estimate for © — ugy in Lemma [2.3]
In Section |3| we perform an analogous analysis on the discrete level by using a stopping

index J., and a set {2y which are discrete counterparts of 7. and 2, respectively. Both
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approaches require a lower bound for the noise strength v to ensure, in particular, positive
probability of the sets €2y and €2y, respectively.

For the analysis in this section we require the following assumptions to hold.

(A) Let E(uf) < C. Assume that the triplet (o9, ko, 7) € [Rﬂg satisfies

23 Ky

32

Assumption (A) ensures positivity of all exponents in the estimates in the lemmas of this

section. The following lemma relies on the spectral estimate (2.1) and is a consequence of
[3, Theorem 3.10] for p = 3, d = 2, where a slightly different notational setup is used.

2
o9 > 12, ag>/<co>§oo+4, ’y>max{

Lemma 2.2. Suppose (A). There exists g = €o(00, ko) > 0 such that for any e < eq and
sufficiently large [ >0

op+1

1) ]P)[Hu - uAH%OO(07T;H71) S CEKO} 2 1 — CE(’Y+ 3 *Iio)[,

200 og+1

i)  Ple||Vu— UA]H%Q(O,T;L?) <Ces|>1- Cert=5——ro)t

where [ and C = C(I) > 0 are independent of v, 0¢, ko and .

A closer inspection of the proofs in [3] (cf. [3] Lemma 4.3] in particular) reveals that the
parameter [ can be chosen arbitrarily large in the above theorem.
We now use Lemma [2.2] to show bounds for the difference u — ucy in different norms.

Lemma 2.3. Suppose (A), and ¢ < &g, for eg = eo(00, ko) > 0 sufficiently small. There
exists C' > 0 such that

200
Elflu— UCHH%OO(O,T;H—I) + || V[u - uCH”|2L2(O,T;L2) <Ce .

Proof. ~ By [l Theorem 2.1] (see also [I, Theorem 4.11 and Remark 4.6]) there exists
uy € C*(Dp)NL2 which satisfies (2.1)) and

(2.2) [ua — uCH”%w(O,T;H*U + [Jua — UCHH2L2(0,T;H1) < Ce?,
and, cf. [I, Theorem 2.3],
(2.3) s — ucn|lcr(pyy < Ce.
By using the energy band for ucy and we get [[upl| Lo o,y < C.
Consider the subset ; C Q (cf. [3, Lemma 4.5, Lemma 4.6]),
Ql = {W € flu— UAH%OO(O,T,H—l) +el|V[u - “A]||2L2(0,T;1L2) < 052%} .

op+1

By Lemma , ii), we have P[] < CS(W o) < 1, for sufficiently large [ > 0. Then
using Lemma ii) and (2.3), we estimate the error

Erry := |lu — UA”%OO(O,T;H*) +&l|V[u - UA]H%%O,T;M) )
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as

ErrA /]l ErrAdw—F/ILQ%ErrAdw
Q
< (e

0 . 1/2
o ) (B[ sup e (ut)] + lunl~ o)

< 05 00

It is due to (A) that v + 2= — k5 > 0. We now choose [ sufficiently large such that

(7 + "OTH — lﬁo)% > %(70 and the statement follows from the estimate for Err, and 1) by

the triangle inequality.

UJ
3. A TIME DISCRETIZATION SCHEME FOR (|L.1]
For fixed J E Nylet 0=ty <t; <--- <ty =T be an equidistant partition of [0, 7] with

step size k = =, and A;W = W (t ) W(tj_l), j=1,...,J. We approximate (L.1)) by the
following scheme

Scheme 3.1. For every 1 < j < J, find a [H'|*-valued r.v. (X7, w’) such that P-a.s.
(Xj—Xj_l,go)+k(ij,Vc,0)zew(g,go)AjW VoeH!,

1 )
e(VX7, Vi) + (f(X]) ¥) = (w',4) Vi e HY,
X0 =uf e H'.
The solvability and uniqueness of {(X7,w’)};>1, as well as the P-a.s. conservation of mass
of {X7},>; are immediate.
For the error analysis of Scheme , we use the iterates {(XCH, wCH)}J] [Hl] which
solve Scheme for ¢ = 0. The following lemma collects the properties of these iterates

from [16, 17]. We remark that, compared to [I6] [I7], the results are stated in a simplified
(but equivalent) form, which is more suitable for the subsequent analysis.

Lemma 3.1. Suppose £(uf) < C Let {( (X2, MCH)} [Hl] be the solution of Scheme

for g =0. For every 0 < f3 < 2. e€(0,g), k<&’ and per > 0, there exist mey, ney, C > 0,
and ey > 3 such that

i) max &( CH) < E(up) -

1<5<J

Assume moreover ||uf||lmz < Ce P, then

. <

ii) 1I£1a<>f] | Xl < Cemme,

iii) max || XZ|le < C  for k< Ce'™,
1<j<J



Assume in addition ||u§||gs < Ce . Then for k < Ce', and Cy > 0 from it holds

: J 2 - 148 12 k>0
iv) max ug(t;) — Xlli+ + D 1:7? [V [wen(t;) = Xea] || < O
]:
. . el V|2 + == (f/ (X)) ;
f £ 5 > (1 — 1).
V) OE?STwEHl,wIE(fA)—lw ||vw||2 - ( € )(CO + )

Proof.  The proof of i), ii), iv), v) is a direct consequence of [16, Lemma 3, Corollary 1,
Proposition 2|.
To show iii), we use the Gagliardo-Nirenberg inequality and [16], inequality (76)], ii), iv)
to get the following L>-error estimate for k& < Ce'*, and some gz > 0,
j 2
a1 — (1) e < <%
Hence, || X~ < C since ||ucy|lLe < C; cf. [IL proof of Theorem. 2.3| and [I7, Lemma 2.2].
O
The numerical solution of Scheme [3.1] satisfies the discrete counterpart of the energy
estimate in Lemma i). The time-step constraint in the lemma below is a consequence of

the implicit treatment of the nonlinearity; see the last term in (3.2), its estimate (3.3)), and
(3.4); the lower bound for admissible v has the same origin.

Lemma 3.2. Let v > %, e € (0,e0) and k < &®. Then the solution of Scheme conserves
mass along every path w € Q, and there exists C' > 0 such that

1<j<J

R .

i) max E[E(XT)] + 5 Y E[| V'] < C(£(u5) +1)

‘ i=1
ii) E[fg}g}g(Xj)} <C(E(ug) +1).

For every p =2", r € N, there exists C = C(p,T) > 0 such that
i) max B[IE(X7)F] < C(IEW)I" +1),

iv)  E[ max [E(X7)|P] < C(|1€(ug)|P +1).

1<j<J

Proof. 1) For w € Q fixed, we choose ¢ = w/(w) and ¢ = [X? — X77!(w) in Scheme
Adding both equations then leads to P-a.s.

IV = SV 4 S VXY = 202+ kT

(3.1) 1 - . .

—|—g(f(X7),XJ — XN =g, w) AW .
8



Note that the third term on the left-hand side reflects the numerical dissipativity in the
scheme. We can estimate the nonlinear term as (cf. [15, Section 3.1]),

(FO0), X7 = X970 2 SOOI = ZlCC) P

(32 ) — O = Z1x - X,

where we employ the notation f(u) := |u|* — 1, i.e., f(X?) = §f(X?)X7. The third term on
the right-hand side again reflects numerical dissipativity.
By w € Q fixed, and ¢ = (—A)[X’ — X/~ (w) in Scheme [3.1] we eventually have P-a.s.,

AL - X < (kW] + A2 |AW) | A2 - X,
which together with |[A~Y2¢g|| < C yields the estimate
”A—I/Q[X] - Xj—l]”? S 2k2||Vw]||2 —+ 0527|AjW|2 .

Hence, using this estimate, and exploiting again the inherent numerical dissipation of the
scheme we can estimate

1 . . 1 _ . . ) .
X = X = (-2 X, V- X))
1 B . . € . -
(3.3) < =lA VRXT — XTI + IV = X7

k? , . :
< o IV 4+ O A W 4 <[V [XT - X7,
We substitute (3.2) along with the last inequality into (3.1 and get
e . . e . .
S(I9X2 = VX P) + SV = X

B (AR = AP + IFCE) = J) + (= 55) 19w

2e3
< e7(g, wj)AjW + 0527’3|AjW]2 ,

which motivates time-steps k < 2e3. Next, by using the second equation in Scheme , we
can rewrite the first term on the right-hand side as

(g, w) AW = 7! [(V[Xj — X771 Vg) + (VX7 Vg)]AjW

(3.5) T+ (FX) = F(XTY), ) + (F(XFY), 9)| AW
= A1+A2+A3—|—A4.
Note that E[Ay] = E[A4] = 0. Next, we obtain
Ay = £ (VIXT = XT7], Vg) AW < C|[VIXT = X714 G Vg YA, WP
(3.6) .
< SIVEX? = X3P 4+ O A, WP
9



On recalling f(X7) = f(X7)X7, we rewrite the remaining term as
Ay = (f(X7) = f(X771), g) AW
B = ([fX) = XX g) AW 2 (X [XT - X7 g) AW
=: Agq + Az
Thanks to the embeddings L* <— L™ (r < s), and the Cauchy-Schwarz and Young’s inequal-
ities,
1 | ~ o
Ayy < T [HO0) — SO+ O 2 gl A, W
1 . - - . ._ ._
< L 0) = SO+ € () — FO ) o + X1 A, W
1 - i _ _ i
< ) = FOOT|2 4+ Ce AW 4 C2 7 (02 4 1) |4, W2.

The leading term may now be controlled by the numerical dissipation term in (3.2)). Finally,
by the Poincaré’s inequality, we estimate

Az < XTI glIE o AW 4+ 2721 X7 — X771
< CIF(XTHIPIAW]? + Cpe® 7| VX7 — X717,
By combining the above estimates for Asq, Aso we obtain an estimate for (3.7)).

Next, we insert the estimates ., and (3.7)) into (3.4)), account for 2y —2 > 1, sum
the resultlng inequality over j and take expectatlons

E[SIVAIIR + IR + o SB[ — )]

n (%_OD62~,—2>iE[HV[Xi_XiA]H k__)ZE [Vw'||?]

(3.8) py
1
E[SIVXOE + (X0 + CT (e + 27 4 65771 4 6979)

+ L+ B[

On noting that |[F(u)||.1 = $[|[f(u)|?, assertion i) now follows with the help of the discrete
Gronwall lemma.

ii) The second estimate can be shown along the lines of the first part of the proof by

applying max; before taking the expectation in (3.8)). The additional term that arises from
10



the terms Ay, Ay in (3.5) can be rewritten by using the second equation in Scheme ,

E[g% Z {57*1(]”()("*1), g) + (VX V) }AZWH
/=1
(3.9) [1H<1?<>§ Zav g)AgWH = [1H<1@a<>§ 257 _Z L AgWH
< E[lrgag Zs”(wf Lg) AW 2]1/2,
== /=1

where the equality in the second line follows from the zero mean property of the noise.
The last sum in (3.9)) is a discrete square-integrable martingale, and by the independence
properties of the summands, the Poincaré inequality and the energy estimate i) we have

E[(;gV(@gl,g)Agﬂ/)Z} = 527]E[kezi:(wel,g)2}

< o E[b Y[Vl PllglEe] < ce
/=1

Therefore, (3.9) can be estimated using the discrete BDG-inequality (see Lemma and
part i) by

J 1/2 J 1/2
< 057||g||]LooE[k ZW‘IHQ] < cng[Zkvaf—lu?} < e

/=1 /=1

iii) We show assertion iii) for p = 2'. By collecting the estimates of the terms in (3.5)) in

part 1) (cf. (3.6),[.7)) we deduce from that
. - . - k ,
E(X7) = E(XT7h) + HV[ — XTI + 8Hf(X]) —f(XTTHIP + §HVw]H2
(3.10) < c(mxfl) n 1) AW+ CeP AW + C (e 4 e28)| A, W2

+e T T(VXTT L V) AW + 77 (XY, 9) AW

Multiply this inequality with £(X7) and use the identity (a — b)a = 1[a® — b* + (a — b)?],
the estimate e2711 < £33, Young’s inequality, and the generalized Holder’s inequality to
11



conclude
5 [ECONP — 10 P +1600%) — £ HP]+ S IVIX? - X3 )PE(X7)
< Ol (XN + £(X)) AW + O (X7 AW

(3.11) +C(52|5(Xj_1)|2 +1+etEXT + 52(27_3)> AW+ C2 DA

+i|5(xj) —&(xIh)?

[V V) AW 4 e (X, g) AW | £(X)

+Omax{ Vg, gl } [0 [V X 4 20000 7] 1A .
We note that to get the above estimate we employed the reformulation £(X7) = £(X771) +

(E(X7) — E(X77Y)) on the right-hand side.
By Poincaré’s inequality, the last term in (3.11) may be bounded as

2070 [V PO I ]| W < €207 [ (07 +e 1AW

After summing-up in (3.11)) and taking expectations we get for any j < J that

SE[ECE?] + 1 Y E[lex) — e[

j—1
(3.12) < %E [E(X0)2] + Oty + O 41+ e Y B[E(X)]
i1 =0
+C(E207V + e+ 2k)k ) E[E(X7)],
1=0

where the third term is bounded via in part ii), and the statement then follows from
the discrete Gronwall inequality.

For p = 2", r = 2, we may now argue correspondingly: we start with , which we now
multiply with |£(X7)|?. Assertion iii) now follows via induction with respect to r.

iv) The last estimate follows analogously to ii) from the BDG-inequality and iii). O

The error analysis of the implicit Scheme in the subsequent Section involves the
use of a stopping index J., and an associated random variable 1< ;. that is measurable
w.r.t. the o-algebra .7-"tj, but not w.r.t. .thfl. This issue prohibits the use of the standard
BDG-inequality since 1y;<;.} is not independent of the Wiener increment A;W. The fol-
lowing lemma contains a discrete BDG-inequality which will be used in Section We
take {7}/, to be a discrete filtration associated with the time mesh {t;}7_, C [0,7] on
(Q, F,P).

12



Lemma 3.3. For every j = 1,...,J, let F; be an Fy;-measurable random variable, and
AW be independent of Fj_. Assume that the {F,};-martingale G, = Z?Zl Fi AW
(1 << J), with Gy = 0 be square-integrable. Then for any stopping index T : Q — Ny
such that 1 ;<7 is Fy,-measurable, it holds that

(T+1)AJ

E|, mai(AJ]ZF LA, < 4B Z K2, |,

.....

where T A J = min{r, J}.

Proof. We start by noting that

(t+1)ne

Z Fy_ AW = Zn{] e Fja ;W (1<e< ).
With this identity, we obtain

(3.13) E[ _maXAJ ‘ ZFj*lAJ’WP] < Eh:l max /\J‘jZ_;FjIAjWP]

......

The random variable 1, 1<7) is F3,_ -measurable, therefore, Gy := ZJ Vo< B AW
is also a discrete square-integrable martingale. Hence, by the L?-maximum martmgale in-
equality, using the independence of 1(;<-F; and AW for j < £ it follows that

.....

j=1

J J
<4E[Z(ﬂ{j 1< Fio1)?|A W) ] Z (L1 B lyo1<n i AW E[A; W]
=1

7j=1
7 (T+1)AJ
(3.14) =43 E[(Lgorcn Fy1)*|E[1a,W ] = 4E| F2H].
Jj=1 j=1
The assertion of the lemma then follows from (3.13)) and (3.14). O

13



3.1. Error analysis. Denote Z/ := X7 — X7 use Scheme for a fixed w € Q, and choose
o= (—A)"'ZV(w), ¥ = Z/(w). We obtain P-a.s.
(la=7220|2 — A2 Z2 4 |AT 2 (27 — 202 + ke |V 272

FE(IO0) — F(X), 27) = (A2, ATV ZI AW

1
(3.15) 2

We use Lemma v) to obtain a first error bound.

Lemma 3.4. Assume v > 2, [[uf|lws < Ce™P for e € (0,e0), and let k < Ce'™ with Iy > 3
from Lemma be sufficiently small. There exists C > 0, such that P-a.s. and for all
1< <J,

¢
—1/2 7512 4 712
e AT+t DIV 2
=

‘ j ¢

Ck : .

- 7|3 Y _A)L i—1\ A 2 ) 2
(3.16) < . E | Z7|l{s + Ce 1r1§1j2246| E_l(( A) g, Z7 AW+ Ce E AV

J=1 J=1

Proof. 1. Consider the last term on the left-hand side of (3.15). On recalling Z7 = X7 — XJ,,
by a property of f, see [I7, eq. (2.6)], and Lemma iii), we get for some C' > 0
(f(X7) = f(Xaw), 27) = (f(Xaw) — f(X7), X& — X7)
(3.17) > (' (Xew) [ X — X7, Xy — X7) = 3( Xl Xo — X7, Xy — X)
> (1= (f(X&) 7, Z7) = C\Z s + £ (f (X 2, Z7) .
2. In order to later keep a portion of ||VZ7||? on the left-hand side of (3.15) we use the
identity

e3)

: 1-— : o
vz + B )z, 2)

(318) ~ -2 (apvzp+ 122

e3)

(f'(Xaw) 2, Zﬂ'))

(/' (X&) 27, Zj)) :

We apply Lemma v) to get a lower bound for the first term on the right-hand side,
> —(Co+ 1)||AY2Z9)2, .

) 1—
+&° (stVZJH2 - ( .

On noting € < 1, we estimate the remaining nonlinearities in (3.18]) using Lemma iii),

e (f'(Xg) 2!, 27) < C2||VZ||[|A72 27 < %HVZ]HQ +ClIAT2ZI 2.
14



3. We insert the estimates from the steps 1. and 2. into , and use the bound
(319)  (~A) g, 20— ZNAW < LA (2T - 20| 4 < AW P A
to validate

L(1ame | — ATz e + LAt - 2o+ Sz )
< ORIAT P2+ 2+ 2(A729, A7 Z)AW + O A WP

4. We sum the last inequality from j = 1 up to j = ¢, and consider max,<,. On noting
7" = 0, we obtain P-a.s.

y4
A <CR+CEY A (1<L< ),
=1

where

¢ ¢
1 —1/2 75112 1 —1/2(r7j i—17(12 4 i||2
A= 5 max [|AT/7Z7| +§;||A (27 = Z7NIP 4+ ) IIVZP,

2 1<j<e :
=1

(3.20) .

¢ J
k . _ i
Re= 2 2121+ x| 3 ()"0, Z7DAW |+ 3 IAWE
Jj= =

=1

Hence, the implicit version of the discrete Gronwall lemma implies for sufficiently small
k < ko(D) that P-a.s.

(3.21) Ay < CRy Vi< J,
which concludes the proof. 0

In the deterministic setting (¢ = 0), an induction argument, along with an interpolation
estimate for the L3-norm is used to estimate the cubic error term on the right-hand side of
; cf. [16]. In the stochastic setting, this induction argument is not applicable any more,
which is why we separately bound errors in (3.16) on two subsets s and '\ Q5. In the
first step, we study accumulated errors on €2y locally in time, and therefore mimic a related
(time-continuous) argument in [3]. We introduce the stopping index 1 < J. < J

ks
Jo=inf{l1 <j<J: EZHZZHISL?,>EUO ,
=1

where the constant oy > 0 will be specified later. The purpose of the stopping index is
to identify those w € (2 where the cubic error term is small enough. In the sequel, we

estimate the terms on the right-hand side of (3.16)), putting ¢ = J.. Clearly, the part
15



k ZJE_I HZZHLS of R;. in 1} is bounded by £7°; the remaining part will be denoted by
R Je - RJE ZJE_l HZZHL37 le

J
_ - - k
o= s [ 028 2 S+ K

For 0 < ko < 0p, we gather those w € 2 in the subset
Qy = {w e ﬁJE(W) < gho

where the error terms in Lemma which cannot be controlled by the stopping index J.
do not exceed the larger error threshold £"°. The following lemma quantifies the possible
error accumulation in time on {2, up to the stopping index J. in terms of og, kg > 0, and
illustrates the role of k in this matter; it further provides a lower bound for the measure of
Q)9 correspondingly.

Lemma 3.5. Assumey > 3, 0 < ko < 00, |[uf|lms < Ce™ fore € (0,g), and let k < Ce'
with leg > 3 from Lemma[3.1] be sufficiently small. Then, there exists C' > 0 such that

Je
) max [ATVPZUP+ k) |VZP<Ce on Qy,

1<i<Je
=1

o'0+1

4 Je k2
ii) E[ILQQ <1r<nzzi>§ A2 7% + %k‘ E HVZZHQ)} < C’max{— CIARE RN
=T i=1

2 op+1
Moreover, P[Qy] > 1 — E%max{%,g”T ,6‘70,527}.

The proof uses the discrete BDG-inequality (Lemma, which is suitable for the implicit
Scheme 3.1} we use the higher-moment estimates from Lemmal[3.2] iii) to bound the last term
in R J.-

Proof. 1. Estimate i) follows directly from Lemma using the definitions of J. and €2,.

2. Let Qf := Q\ Q2. We use Markov’s inequality to estimate P[Q5] < E%E[ﬁk] We first
estimate the last term in R : interpolation of L3 between L% and H!, then of L2 between
H~! and H' (D C R?) and the Young’s inequality yield

k Ck 1, . _ Ck?
(322) 12 < SNZH e V2R < S A2+ SV
The leading term on the right-hand side is absorbed on the left-hand side of the inequality
in Lemma , which is considered on the whole of §2; the expectation of the last term (on
the whole of ) is bounded via Lemma 3.2 iv) by < Ck2 (|€(ug)* +1).

For the first term in RJ we use the dlscrete BDG inequality (Lemma |3.3) to bound its

expectation by
Je+1

C=E| Do K(=8) z )

16
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In order to benefit from the definition of J. for its estimate, we split the leading summand,
Js 1 1
= CTE[ S K((-8)"g, 27| + OVRTE[|(-2) g, 27 )
i=1
Je—1

CE[( 121E:) ()] + OISRV -2y V(=) 2’

1<J

IN

0'0+1

Ce* 5 4 CVRIR[|| A2 2]

IA

o ]_
< 0 4 Cke? + SE[ a7z

Putting things together leads to E[$A;] < C'(e” + eI p e o ’;—z) Revisiting ([3.22
again then yields from Lemma [3.4

op+1

_ L2
(3.23) E[R;] < Cmax{8—4,€7+ 5,67, e}

3. Consider the inequality in Lemma [3.4) on ;. The estimate ii) then follows after taking
expectation, using (3.23)) and recalling the definition of J..

O

The previous lemma establishes local error bounds for iterates of Scheme [3.1]— by using the

stopping index J., and the subset 2y C ; the following lemma identifies values (v, 0, ko)
such that Lemma [3.5] remains valid globally in time on .

Lemma 3.6. Let the assumptions in Lemma be valid. Assume
2
oy > 10, O'0>/£0>§(0'0+5).

There exists g = €q(00, ko), such that for every e € (0,&0)
Jo(w)=J Vwe Q.

Moreover, lim, o P[] = 1 if

19 Ko

32 b

where B > 0 may be arbitrarily small.

2 4
v > max{ k< Cettroth

Compared to assumption (A), the less restrictive lower bound for v is due to the use of
the discrete spectral estimate (see Lemma v)), which introduces a factor e~ that is

absorbed into £2 in the proof below. Consequently we only need to require v > % in order
to ensure positive probability of 2,.

Proof. 1. Assume that J. < J on )y; we want to verify that

ks
EZHZZHHS;, < g on 2.
i=1

17



Use 1) and the estimate Lemma [3.5|1) to conclude

1<i<Je

Je
—Z 1271125 <9 ax A~ 1/2Z2||L2(ZI<:|]VZi\|2) < CeHF = on Q.
=1

The right-hand side above is below €7° for 3% > 09+ 5 and € < ¢y with sufficiently small
€0 = €0(00, ko). The additional condition kg < oy (which will be required in step 2. below)
imposes that oy > 10.
2. Recall that the last part in Lemmaayields P[Qs] > 1—-Cero max{’;—z, - , €90, 527}.
Hence, to ensure P[] > 0 requires 7 + 25 — kg > 0, 09 > Ko, 7 > %2 and k* < Cettroth,
B > 0. In addition, by step 1., kg > (00 + 5), o9 > 10, which along with v+ UOTH — Ko > 0,
09 > ko implies v > 13—9. O
Next, we bound max;<i<y [|[A™Y2Z|2 + Sk 327 [[VZ||? on the whole sample set. We
collect the requirements on the analytical and numerical parameters:
(B) Let uj € H?, £(u§) < C. Assume that (o9, ko, ) satisfy

2 19
oo > 10, 00>Ko>§(00+5), 7>max{§ %}

For sufficiently small ey = (09, 59) > 0 and leg > 3 from Lemma [3.1] and arbitrary
0<pB<s 1 , the time-step satisfies

k < Cmin{e", €2+%0+/5} Ve e (0,e0).

We note that, except for the higher regularity of the initial condition, the assumption (B)
is less restrictive than the assumption (A) from Section [2] Furthermore, the condition
E(uf) < C can be weakened to E(uf) < Ce™, o > 0, cf. [I7, Assumption (GA,)].

Lemma 3.7. Suppose (B). Then there exists C > 0 such that

1<5<J

J

i C k‘2 o+l %

E[ max || Z7||f- +54I<;ZHVZ 7] < (gTOmax{g,57+ EINO 0,52”’}) .
i=1

Proof. Recall the notation from (3.20), and split E[A;] = E[lg,A;] + E[lg;A,]. Due to
assumption (B) it follows directly from Lemma ii) and Lemma [3.6] that

k2 o 1
(3.24) E[lo,As] < Cmax{~, 75 7 62}
£

In order to bound E[LgcA,], we use the embedding L' C H™' which along with the
higher-moment estimate from Lemma iv) implies that

E[A7] < CE[|E(X7)]?] < CIE@* +1).
Next, we note that by Lemma [3.5] it follows that

C k? o
P[Q5] <1 —P[Q] < (C::—Ornax{—zl,asw 051,5‘70,527}.
18




Hence, using the Cauchy-Schwarz inequality we get

(NI

2 1
(3.25) E[lgA,] < (Pg]) /2 (E[42])"* < (ﬁmax %,EW%T ,500,5%})

= \gro

(S(uf)) -+ 1) )

After inspecting , we note that the statement follows by assumption (B), since
the latter contribution dominates the error. 0
The dominating error contribution in Lemma 3.7 comes from the term E[lqsA;]. This is
in contrast to Section [2] where the error contribution from the set €2{ can be made arbitrarily
small, due to the additional parameter [ > 0 in Lemma which can be chosen arbitrarily
large independently of the other parameters.
We are now ready to prove the first main result of this paper.

Theorem 3.8. Let ui € H?, let u be the strong solution of (1.1)), and let {X7, j=1,...,J}
solve Scheme. Suppose (A). Then there exists a constant C' > 0 such that for all 0< < %

B[ max [Ju(t;) — X3

1<j<T

2 1 1.2-p
2 _ k oo+l s k
< Cmax{53"°, (»3 " max{—, 7" ,5”0,527}> , } .
3 gimer

Due to condition (A)s it holds that o9 — kg < %00. Consequently the contribution £590 in

the error estimate is dominated by e~z ; it is only stated explicitly to highlight the error
contribution from the difference u — ucy from Section
Proof. We estimate the error via splitting it into three contributions,

i, lu(t) —ven(6) s+ s (1) — Xl + s X — XN == 4 114 11T
Lemma bounds E[I], Lemma , iv) yields E[I1I] < 'Zi,—;f, and E[/]]] is bounded in
Lemma 3.7} 0

Remark 3.9. An alternative approach to Theorem would be to follow the arguments in
[23] for a related problem, which exploit a weak monotonicity property of the drift operator
n , and stability of the discretization to obtain a strong error estimate for Scheme
of the form

: T
(3.26) E[ max Ju(t;) = X'l | < Coexp(D)R7 (8> 0).
While the error tends to zero for k | 0 in , this estimate is only of limited practical
relevancy in the asymptotic regime where € 1s small, since only prohibitively small step sizes
k< exp(—%) are required in to guarantee small approximation errors for iterates from
Scheme . Moreover, the error analysis that leads to does not provide any insight on
how to numerically resolve diffuse interfaces via proper balancing of discretization parameter

k and interface width € — which is relevant in the asymptotic regime where ¢ < 1.
19



4. SPACE-TIME DISCRETIZATION OF ([L.1])

We generalize the convergence results in Section [3| for Scheme to its space-time dis-
cretization. For this purpose, we introduce some further notations: let 7, be a quasi-uniform
triangulation of D, and V), C H! be the finite element space of piecewise affine, globally con-
tinuous functions,

V= {on € C(D); vn| € PI(K) VK €T},

and V), := {vn € Vi i (vp, 1) = 0}. We recall the L2-projection P2 : L? — V), via

(Pev—v,m,) =0 Vi €V,
and the Riesz projection Py : H! N1L2 — V), via

(V[PHW—U],Vnh) =0 Vo, € Vp,.
In what follows, we allow meshes T, for Whigh Py is H'-stable; see [10]. Also, we define the
inverse discrete Laplacian (—Ay)™! : L2 — V), via
(V(=Ap) " o, Vi) = (v, 1) YV, € V.

We are ready to present the space discretization of Scheme 3.1

Scheme 4.1. For every 1 < j < J, find a [V},)*-valued r.v. (X}, w]) such that P-a.s.

(X7 — X7 on) + k(Vwl, Von) = 7 (g, n) AW Von € Vy,
. 1 . .

e(VX], Vi) + g(f(X;]L)7¢h) = (w},¥n) Vi, € Vy,

XY= PBoui eV,.

For all 1 < j < J, the solution {(X},w])}1<j<s satisfies (X7,1) = 0 P-a.s.

Claim 1. {(X},w])}1<;j<s inherits all stability bounds in Lemma

Proof. 1’) In order to verify the corresponding version of i) for {£(X7)}1<;<7, we may choose
©n = wl(w) and ¥, = [X} — X] () in Schem, as in part i) of the proof of Lemma
We then obtain a corresponding version of (3.1, and (3.2).

The next argument in the proof of Lemma that leads to may again be repro-
duced for Scheme [4.1| by choosing ¢, = (—A;) 1 [X] — X7 ")(w), and using the definition of
(=Ap)7", as well as X7, Pog € L2 P-a.s., such that

19 (=) (X7 =XE 1 < (KIVwh 427 19(=20) " Pagll AW ) 19 (=A0) 7 (X7 =31,

since [|[V(=Ap) ™ Pragl| < [lgl| < C. | |
To obtain the first identity in for Scheme we use e7(g, w}) AW = &7 (Prag, wi) A;W,
such that the second equation in Scheme [4.1| with v, = Pr2g may be applied; as a conse-
quence, g has to be replaced by F2g in the rest of equality (3.5). This modification leads
to the term ||V P 2g|| in (3.6)), which is again bounded by ||[Vg||; the bound || P 2gi=~ < C,
20



which is required to bound the term As; from (3.7), follows by an approximation result;
cf. [7, Chapter 7]. The above steps then yield the estimate (3.8) for {(X7,w])}1<j<s.

ii’), iii’), iv’) We can follow the argumentation in the proof of Lemma [3.2| without change.
Claim 2. Lemma 3.4 holds for {(X7,w))}1<j<y, i Z] := X] — XgH;h satisfies P-a.s.

V4
max [|V(=An) "' Z|1” + cek > IV Z4 |

1<j<t —
<O—§:|Z Al —I—C’e”maxlz L Peg, Zi” 1)AW|+(J§VZ|AW|2
T e & hlIL? 1<j<e 129, p
for all ¢ < J, provided that additionally
(4.1) k< Cmin{eP hi}  h < Cmin{l, kPP

for any 8 > 0, and pcy, ey, Pex > 0. The exponents pey, ey, Per > 0 are chosen in order
to satisfy the assumptions of [16, Corollary 2| and [I7, Theorem 3.2]. In particular (4.1) is
required to obtain the fully discrete counterpart of Lemma iii)-iv).

Remark 4.1. Requirement ({4.1)> comes from [16, Corollary 2, assumption 4)] (see also
[17, Theorem 3.1, assumption 3)|). More precisely [16, Corollary 2| in the current setting is
applied for vy =1, 0 =1, p =4, 0y =0, N = 2 (where N is the spatial dimension) which
yields the condition for m (defined in |16, Corollary 2|):

2N 4+

w(h,e,N) < Ck’gw(l—i—ln%)_‘*‘ =

Z

z

Hence, 2 15 a consequence of the above condition for N = 2 where for simplicity we
estimate | Ink|™' > kP for sufficiently small k. Since 8 > 0 may be chosen arbitrarily small,
the resulting condition does not severely restrict admissible h > 0.

Proof. Again, we here denote by {( CHh,wéH;h)}lngJ C [V4]? the solution of Scheme

for ¢ = 0, whose stability and convergence properties are studied in [I6, 17]. Under the
assumption (4.1)), [I7, Theorem 3.2, (iii)] provides the bound

OrgaggHXcahHLoo <C.

We use this bound to adapt estimate to the present setting and get
(F(X7) = f(XEn). Z3) = (f (XéHh)Zi,Zj) —ClZ12s
> [1 — £ ](f (X(j:H h)Zf]w Z}jz) - CHZiszH:iS + 53(f (XéH h)Zf]w Zijz) .
Step 2. of the proof of Lemma involves the discrete spectral estimate (see Lemma

iv)) for { X%}, to handle the leading term on the right-hand side of (3.17) — which we do

not have for {XéH;h}j in the present setting. Therefore, we perturb the leading term on the
21



right-hand side of the last inequality, and use the L°°-bounds for XgH, XgH;h, as well as the
mean-value theorem to conclude

> (f'(X&) 7], Z3) - C||Zi||L3-
The remaining steps in the proof of Lemma now follow with only minor adjustments.

Claim 3. Additionally assume () Then Lemma holds for {Z,z}j, ie.,

Je
) max [V(=An) ' ZIP+ %) VZP < Ce on Qg

1<i<Je -
=1

0'0+1

‘ 4 Jen ‘ k2
i) ]E[HQQh(lmax 1V(— Ah)—lzgnu%kZung?)} < Cmax{ =y, e+ e e}
=1

Moreover, P[Qy,] > 1 — —max{kz,e 0;1,600,827}7 where g, 1= {w e Q; ﬁjgvh;h(w) <
gro} for Jopi=inf{l1<j<J:E3 |Zi|}, > e}, and

Jsh
> i— 1 2 2 e,
R b —571513}(’1‘2 PJL29>Z AW""EWZJAW‘ _HZ h”]LS'
=1 J

Proof. The proof for Lemma directly transfers to the present setting.

Claim 4. Lemma remains valid for {Zi}h accordingly, provided that h < CeP* and
k< Ch% e J.p = J for all w e Q.

Proof. We only need to adapt the interpolation argument for L3 to the present setting,
starting with the estimate || Z}|[3s < C||Z;|lu-1||VZ}||*. By the definition of the H™'-norm,
the definition and H'-stability of the L?-projection, and again the fact that (Z;,1) = 0, we
deduce

i (Z;UP]L2¢) (Z}INP]L2¢) (V((_Ah)ilz}lz)vvpﬂ_‘ﬂvb)
Z; -1 = sup ———= < C sup ~————= = (C sup
1Zhlles = o0 i = O VRl ~ SR T VRl
< OIV(=2n) " Zl-

Next, we formulate a counterpart of Lemma for the fully discrete numerical solution;
as a consequence of the Claims 1 to 4 above the corollary can be proven analogically to
Lemma with the assumption (B) complemented by the additional restriction on the

discretization parameters (4.1)).
22



Corollary 4.2. Suppose (B) and ({{-1]). Then there exists C' > 0 such that

12 . 1
E[ max ||Z] & +84k2||VZh|| <— max{—4,5 +205 ,5”07627}>2

1<5<J

We are now ready to extend Theorem [3.§ to Scheme [4.1]

Theorem 4.3. Let u be the strong solution of (1.1)), and {X,{; 1< < J} the solution of
Scheme[{.1 Assume (B) and (4.1). Then there exists C > 0 such that

E| max [Ju(t;) — X |

1<5<J

k> e 3 kP h41 kP
SCmax{(a‘”Omax{gj,gV 5 g0 27})2, L+ )},

ngH Efﬁcn
where mey, Mcyg > 0.

We note that the exponents mey, Mg > 0 in the above estimate can be determined on
closer inspection of [16, Corollary 2| on assuming (4.1). Furthermore, assumption (4.1,

which is a simplified reformulation of assumption 4) in [I6, Corollary 2|, guarantees that

lim. o ({;i;f + h4(1f’f‘5>> —0.

eMcH

Proof. We split the error into three contributions,

E[ max [lu(t;) = Xjllg-] < 3E[ max Ju(t;) — uca(t;)|F-1]

1<5<J 1<5<J
+3 max fluea(t;) — Xoga i1 + 3E[ max [ X} — Xog [ ]

The first term is bounded by Ce3% as in Theorem . The second term is bounded by
2— 4 -
C(& S €L ﬁ)) thanks to [16, Corollary 2| (stated here in a simplified form, cf. Re-

gMCH £MCcH

mark , provided assumption (4.1]) holds. The last term is bounded by

1
oo+l
(Tomax{_475 Semen)’
g

thanks to Corollary O

5. SHARP-INTERFACE LIMIT

In this section, we show the convergence of iterates {X IY7_, of Scheme 3.1 to the solution
of a sharp 1nterface problem. Recall that in the absence of noise, the sharp interface limit
of is given by the following deterministic Hele-Shaw / Mullins—Sekerka problem: Find

s : [0,7] x D — R and the interface {I'5; 0 < ¢ < T} such that for all ¢ € (0,7] the
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following conditions hold:

(5.1a) —Auwvys =0 in D\ I
(5.1b) [Onrvus]pws = =2V on TY°,
(5.1c) Vys = Q3¢ on I'*®,
(5.1d) Optws = 0 on 0D,
(5.1e) Iy =T,

where 3¢ is the curvature of the evolving interface I''* and V is the velocity in the direction

of its normal nr, as well as [gUMS]FMs(Z) = (ag';f;f - agf;)(z) for all z € I'®®. The constant in

5.1c) is chosen as o = % cp, where cp = f_ll V2F(s)ds = %2%, and I is the double-well
potential; cf. [I] for a further discussion of the model.

Below, we show that iterates {X7}7_, of Scheme converge to the limiting Mullins-
Sekerka problem ; see Theorem for a precise specification of the convergence result.
For this purpose, we need sharper stability and convergence results than those available from
Section |3) which also requires to tighten the assumptions (B), and so to further restrict
admissible choices of 7 > 0. We note that the stronger stability estimates below are derived
using the (analytically) strong formulation of Scheme [3.1] i.e., P-a.s., a.e. in D:

XTI — XTIV — kAw! = e7gA;W

(5.2) —eAX7 + éf(Xj) =’

and 9, X7 = 9,u’ = 0 a.e. on D. The derivation can be justified rigorously (cf. Lemma[3.1] ii))
by the regularity of the Neumann Laplace operator, cf. [24, p. 217, Thm. 4].

Lemma 5.1. Assume (B). For every 2 < p < 3, there exists C = C(p) > 0 such that the
solution {X7}7_, of Scheme satisfies

E[max | X7|Pe] < Ce'™ rk*a"

1<5<J

Proof. 1. The second equation in Scheme (ie., (5.2)2) implies vVE|AX7(w)| <
Q%Eij(w)H + 2“?—2Ef|f(XJ(w))]|, for w € Q. Then Lemma ii), and Gagliardo-Nirenberg
and Poincaré inequalities imply

B[ mas VEIAX]] < [(kZuv 1)) + S e (10 + 1200

1<5<J 1<5<d

C Cvk

c o
9

C Cvk

€ g2

(5.3)

E| max 7|2V
1<5<J

1/2 912
E[ max ||Xj||]L4] E[ max ||VX]||2} )
1<5<J 1<y<J
24

IN



which is bounded by Ce™! for & < &* (which is guaranteed by assumption (B)).
2 p=2
2. Since WP — L> (p > 2), by Gagliardo-Nirenberg inequality || - [[o < Cpl| - |72 - I
(d =2, p > 2), Holder inequality, Lemma [3.2] iv), and step 1., we get for 2 < p < 3
E| max HXJ‘HPOO] < OE[ max Hvxiugp} < CE[ max |\VXjH2HAXjHP*2]
1<j<J 1<j<J

1<j<J

. 2 3— . —2
< CE[ max ||VXJ||§} pE[ max ||AXJ||T)
1<j<J

1<5<J
1 2 114 5y, _p=2 P2
< CeTE [ max VX kTR [V max |AX7])
1<5<J 1<5<J
< Ce ke = gkt
O

7 where

The following lemma sharpens the statement of Lemma for iterates {Z7}7_),

71 = X7 — X7},. It involves the parameter ngg > 0 from Lemma ii).
Lemma 5.2. Suppose (B). There exists C > 0 such that

J J

712 i _ 7i—1)2 (|2

B 1271°) + B[S 1127 = 27+ ek 3o 1A2°)
J= J=

_|_

o | =

J
E[|27V 20| + | XV 21| < Falh, <500, m0,7) 1=

1

J

2 oo+t 2 oo+l
o max{ %, &7 e eI\ § max{L 75 g0 e} ]
= max cro+ 10+ dncy ) gro+16 .

In order to establish convergence to zero (for € | 0) of the right-hand side in the inequality
of the lemma, we need to impose a stronger assumptions than (B); for simplicity, we assume

Neg > % in Lemma
(C;) Assume (B), and that (o9, ko,7) also satisfies
20 + 19 + 8ney Ko + 10 + 4ney
s R
For sufficiently small g = (0q, ko) > 0 and lgg > 3 from Lemma , and arbitrary
0<p< % the time-step satisfies

oo > 10+ kg + 4ngy, fy>max{

k< Cmin{s‘c}‘@”%ﬂ”“ﬂ‘*ﬁ} Ve e (0,e).

Compared to assumption (B), only larger values of 0¢, and consequently larger values of ~y
are admitted, as well as smaller time-steps k.

Proof. 1. We subtract Scheme [3.1] (in strong form (5.2)) for g #Z 0 and g = 0, respectively,

fix w € Q, and multiply the first error equation with Z7(w) and the second equation with
25



—AZI(w). After subtracting the resulting second equation from the first one and using that
(—Aw’, Z7) = (w’, —AZ’) we obtain
(Z7WF = 11277 + 127 = 27707) + ekl AZ7 )

(5.4) +§(f(Xj) — f(Xy), —AZT) =" (g, Z7) AW .

N —

We estimate the right-hand side above as
(9, 2) AW = (g, 27 = 277N AW + €7 (g, 277 AW
1, , ,
< 12 =27 + gl AW + 27 (9, 27T AW

We restate the nonlinear term in (5.4)) as

~(FO0) = FO), —AZ7) = (101X — (IXGIPXT — [ XG[2X7) — | X[ X, —AZ7)
—ﬁ(Zj,—AZj)
g

ks .. o P . k -

— (17 + 2XE) X+ XGP, - A7) - 2|V 2|
9 g
k (9 . k 12

= (22, -AZ) - 2|V
9 9

+%(12ﬂ]2xgﬁ, —AZ7) + %(jxgﬂﬁza —AZ)
3k . ‘ k ‘
= ?HZJVZJ||2_EHVZ]H2+I1+IQ7

where in the last step we used integration by parts (|Z7]229, —AZ7) = 3||Z7V Z7||>.
Next, we apply integration by parts to I, I, to estimate

L= (2 PXG A7) = L2V D X V) + (2V 2, V)]
o . , . . o
> 201Xl IV 2] + 19 Xgls |21 1279 271
o= P (XGPZ, A7) > DGV — X2 IV Xl | XV 2]

Hence, using Poincaré, Sobolev and Young’s inequalities, Lemma ii), and assumption
(B), we deduce that

Ck

- 814—211(;1-[

—(F(X) = f(Xew), =AZ7) 2 122V 2P + [ Xes V2 |7]

- =
26
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2. We insert these bounds into (5.4)), sum up over all time-steps, take max;<; and expecta-
tions,

J J
1 1, . 4 4
J _ J ]71 2 7 2
SE[max | 2/7] + E[Y_ 712 — 272 + k3 A7)
7j=1 7j=1
k J
e
(5.5) +2—€;E[||ZJVZJ|| ALY

Ck < ‘ d .~
S mZE[HVZ]H } "‘EVE[ max Z(g,Z 1)A W:| _{_0527
=1 i—1
We use the discrete BDG-inequality (Lemma and the Poincaré inequality to estimate
the last term as follows,

1<5<J
=I= i=1

i I
8| max (9.2 AW))] §C’€7HgHLooE[k;HVZ7 ]

We now use Lemma to bound the right-hand side of (5.5)). U

A crucial step in this section is to establish convergence of maxi<j<y||Z7||L~ for e | 0;
it turns out that this can only be validated on large subsets of {2, which motivates the
introduction of the following (family of) subsets: For every 2 < p < 3, we define

1

(5.6) K=Ky = [51*1”/’{:27Tp ln(é?l*p)] "
and the sequence of sets {Qﬁj}f,l C Q via
(5.7) Q. ={we: max | X e < K} (k>0).

Note that Q. ; C Q, ;j_1. Markov’s inequality yields that

. 2)|p
(5.8) P[0,,] > 1 Efmaxi<os; [ X*[E<]

KP
Clearly, lim min P[Q, ;] =1 by Lemma [5.1]

el0 1<5<J
We use Lemma [5.2] to show a local error estimate.

Lemma 5.3. Assume (B) and 2 < p < 3. Then there exists C > 0 such that
712 : o
E[Orgjagg]lgszVZ | } < Fo(k, €500, Ko, 7) 1=

. (1+ k?) ‘ (1+k%) /1 k? oot o o \7
= Cmax{T.ﬂ(kJ,g,ag,/{O,v),m(gmax g,éﬁ 3, 0,67}> }
In order to establish convergence to zero (for € | 0) of the right-hand side in the inequality

of the lemma, we impose again a stronger assumptions than (Cy):
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(C2) Assume (Cy), and that (09, ko,7y), and k satisfy
(5.9) lgﬁ)l}}(k,a; 00, Ko,y) = 0.

Remark 5.4. A strategy to identify admissible quadruples (oo, Ko, , k) which meet assump-
tion (Cy) is as follows:
(1) assumption (Cy) establishes lim. o F1(k,€; 00, k0,7) = 0, which appears as a factor
in the first term on the right-hand side in Lemma [5. 3,
K2 1-3p 2 2-p .
(2) the leading factor in Fy is :—; =+4<c¢ b |In(e'7)|7k v, for 2 < p < 3 via .
To meet therefore additionally requires for some p > 2

1—

(5.10) k%}"l(k:, €00, Ko, Y)E v ‘ln(al’p)‘% — 0 (e10),

and hence

1—

(5.11) [.7-"1(/’{;,5; 00, Ko, Y )E b ‘ln(é?l’p)‘%] o o(k) .

A proper scenario is k = €% for some a > 0 to meet assumption (C,). We then
sharpen this choice of the time-step to k = & for some a > a > 0 to have

1—-3p

Fi(k,e;00,k0,7)e P In? (el_p) < el

for an arbitrary n > 0. We now choose 2 < p, s.t. ]3%2 > 0 s suffictently large to

meet .

(3) We may proceed analogously for the second term on the right-hand side in Lemma
5.3

Proof. 'We subtract Scheme for ¢ 2 0 and g = 0 for a fixed w € Q, and multiply the
first error equation with —AZ’(w), and the second with A?Z7(w). We integrate by parts in
the nonlinear term and obtain

1 . . . . :
SUNVZIP = IVZH P+ V2 = Z701°) + ekl VAZ|?
k

(5.12) = g(V[f(Xﬂ') — f(X&)), VAZT) + &7 (g, —AZT)A;W = T + 11

We proceed as in the proof of Lemma [5.2| and rewrite the nonlinearity on the right-hand side
as

k ) ) . 3k . . )
1= (VIZPZ),VAZ) + (V]2 X, VAZ)

3k A _ ok |
‘*'?(VHXéH‘QZJ]? VAZJ) + g||AZJ||2

k )
= Il—i-IQ—'—Ig—i—gHAZ]HQ
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We estimate

Ck - A ) k )
SN2 R 27V 2P + | VAZ|?,

I, <

I, < Ck VA X7 VZI? + || Z7 Z12 IV X212 ek VAZ?

2 < — (I 100 | X2l 12 | 12+ 1 27|12 | 22|24 | V X 1 E0) + 3 | =,
C . . ck )

I; < —3(HXéHHﬁooHVZJHia+HXéHHiooHVXéHHéHWH@)+§HVAZJHQ-

We estimate S7,_, Ip on Q,; via Lemma ii)-iii) and the embedding H' < IL* on recalling
(57

C(l+ k?)k

C(1+ r?)k 2
o QD g e 4 QL

3
(5.13) 1o, Y T, <lq,, —HVAZﬂH? V2|2
/=1

We multiply (5.12)) by 1g, ;, sum up for 1 <14 < j, take max;<;<; and expectation, employ
the identity ( 1[ lo,, , —1lg,, >0)

K,j—1

2= 19272 = (L, V272 = o, IVZP))|

.
Il
—

§E [0%‘625 Z (19”(
J

1 1 12
:—E[riljax Tg, HVZJH QZE[(ﬂgﬁ,j,l—ﬂaﬁ,j)\lvz [ }

Jj=1

use Lemmata and to estimate ([5.13)) and obtain

J
1 i 1|12 1 j—1112
SE|max 10, V27)?] + §ZIE[<HQH,“ ~Ta,,) IVZ?]
j:
1 J
—17112 j 112
(5.14) 52_: o, (IV127 = 277 + ekl VAZ|1) |

C(1+ x?) Cl+r*)/C k2 Leott o 5 \d
SmaX{s—zfl(k,&f;O'o,lio,’)/),W(—ma}( g,é"y 3 ,€ 0,57}> }

+57E[ max z]: 1o, . (g, —AZi)AZ-W] .

0<j<J 4
=1
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To estimate the stochastic term we use 0,9 = 0 on 9D and proceed as follows,

J J
e'E [01%&25; lo, . (—Ag, Z’)AiW] =¢"E [Orgjagf]izl <]lﬂh (-Ag, 2" = Z7 ) AW

1o, (Y9, VZ ) AW+ (I, — Ta,.,) (Ve VZ) AW )|

g'y J ; i J .
< 3 2E(IZ - 2T+ IAPIAWE] + B max 3 ta, (Vo V2 A

1< A J
+7 2 El(la,, —1o,.) IVZ7P] +Ck Y E[IVgl?]

i=1 =1

The first term on the right-hand side may be bounded by Lemma the third term is
absorbed in the left-hand side of (5.14)), and for the second term we use the discrete BDG-
inequality (Lemma and Lemma [3.7] to estimate

='E| max i: I, . (Vg, V2 ) AW|

0<j<J <
=1

=

1

J 1
- 3 _Cev/C k? o
< O |Vgll~E |k Y IVZT 2| < S (o5 max{ 5,777 e, 1))

i=1

Hence, the statement of the lemma follows from and the above estimates on noting
that (ﬂgﬁ,j - ﬂgmjily = 19&,3‘71 - ]IQKJ. 2 0. O

The L*°-estimate in the next theorem is a crucial ingredient to show convergence to the
sharp-interface limit.

Theorem 5.5. Assume (Cz). For any 2 < p < 3, there exists C = C(p) > 0 such that

i p . 2—p _ p—2
]E[max]lg 1 Z7 || Lo §CET/{?(F2(]€753007/€07’Y))3 p(fl(k,f?;go,/‘éoﬁ)) ’.

0<i<d

Proof. We proceed analogically as in step 2. in the proof of Lemma 5.1} We use the Sobolev

and Gagliardo-Nirenberg inequalities, apply Holder inequality twice; then use Lemma [5.3

Lemma 5.2 (i.e., E[ek|AZ7||?] < C) along with the triangle inequality in combination with
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Lemma [3.1] 1), Lemma [3.2]iv) and get for 2 < p < 3 that
E[max Mmuzfupw} < OEL@% To, .Hvzjug,,} < CJE[ max 1 .HVZJ'H?HAZJ'HH]
s _]_ s . K,J

1<j<J

< CE[ max 1o, ,|[VZ/| =3 5)] pE[ max ||V 27| 5= HAZJH}
<j<J

1<5<J

gc(m,a;ao,mo,w)g"’E[lrg]agg||vzju4} (ek) " TE[ek|aZ ] T

_ p=2
( ) (-F2(k €] 0-07’%077))3 p(fl(kug; 0'07/£077>) 2
. . 1/2

—1( max = VX +E[52 max Hvxynﬂ )
<j< 1<5<J

p—2

k (.FQ(]C €00, /i(),”Y))?)_p(Fl(k,g;O'g, Iﬂ?o,’}/))? .

m\@

< Cem

OJ
In order to establish convergence to zero (for € | 0) of the right-hand side in the inequality
of the theorem, we impose again a stronger assumption than (Cs):

(C3) Assume (C,), and that (o9, ko,7), and k satisfy
(5.15) h{gl [5_pk2_p(f2(k75300, 50,7))6_2])(]:1(]{575; 00, Féoﬁ))p 2]% =0.

Remark 5.6. We discuss a strategy to identify admissible quadruples (oq, ko,7, k) which
meet assumption (Cz): for this purpose, we limit ourselves to a discussion of the leading
term inside the mazimum which defines Fy (see Lemmal[5.3), and recall Remark [5.4)

(1) To meet instead of , we have to ensure that for some 2 < p < 3

4—p

8’%/@2%1)@:2?5 P |ln = p)|12’>3 <.7:1(k,5;00,f€0,’y)) F 50 (e10)

and hence

ar (=s3=) In 2(3-p)
P

[(Fl(lﬁg;o-(]a"i()v’)/)) i 8_%6 H 1 p)‘ i| e = O(k)
(2) We may now proceed as in (2) in Remark [5.4) to identify proper choices k =
(> 0) and p =2+, for sufficiently small 6 > 0, that guarantee (5.15).

We are now ready to formulate the second main result of this paper, which is convergence
in probability of the solution {X7}7_; of Scheme to the solution of the deterministic
Hele-Shaw /Mullins-Sekerka problem (-1) for e } 0, pr0v1ded that assumption (C3) is valid,
and has a classical solution; cf. Theorem 5.7} - below. The proof rests on

a) the uniform bounds for {1g,_, || 27| }/_ 1 (see Theorem , and the property that
lim, o max;<j<; P[Q, ;] =1 (m Lemma for the sequence {Q,;}/_, C Q, and

b) a convergence result for {Xgn}}]:o towards a smooth solution of the Hele-Shaw /Mullins-
Sekerka problem in [I7, Section 4].
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For each ¢ € (0, g¢) we consider below the piecewise affine interpolant in time of the iterates

{X7}7_ of Scheme [3.1] via

t—tig . ti—t..

s X7 4 =X for o <t <ty
Let T'gg C D in (5.1€) be a smooth closed curve, and (uys, ™) be a smooth solution of (5.1)
starting from Tgp, where I'™ = Jo_,.,{t} x I'}°. Let d(¢,z) denote the signed distance
function to T'Y® such that d(¢,2) < 0 in Z}'®, the inside of I'f®, and d(¢,z) > 0 on OfF :=
D\ (T NZ}#), the outside of I'}®. We also define the inside 7" and the outside O™,

(5.16) XR(t) =

7" :={(t,z) € Dr: d(t,z) <0}, O" .= {(t,x) € Dr: d(t,z) > 0}.
For the numerical solution X* = X®*(¢, z), we denote the zero level set at time t by Ff’k,
that is,
| {zeD: X**(t,z)=0} 0<t<T).
We summarize the assumptions needed below concerning the Mullins-Sekerka problem (5.1)).

(D) Let D C R? be a smooth domain. There exists a classical solution (vys, ™) of (5.1)
evolving from gy C D, such that I C D for all ¢ € [0, T].

By [1, Theorem 5.1|, assumption (D) establishes the existence of a family of smooth solutions
{uf }o<c<1 which are uniformly bounded in € and (¢, z), such that if ug, is the corresponding
solution of (L.1)) with g = 0, then

: . [ 41 i (t,z) € O, :
i) 161%1 ugy(t, x) = { 1 i (ta) € T uniformly on compact subsets of Dr |

1
ii) liﬂ)l(gf(ufm) — eAugy) (t,z) = v"S(t, z) uniformly on Dy .

The following theorem establishes uniform convergence of iterates { X” 3-]:0 from Scheme
in probability on the sets 7", O3,

Theorem 5.7. Assume (C3) and (D). Let {X®}o<ecs, in be obtained via Scheme
(5.1 Then

. . 57k’ _
i) 16111011?[{”)( — 1y >a forall A€ O™} =0 Va>0,

ii) ligllED[{HXa’k+1||C(A)>a forall A€Z™}] =0  Va>0.

Proof. We decompose Dy \ ' = 7" U O and consider related errors X5 +1, XgF — 1
and X=F — X5F.
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1. By [17, Theorem 4.2] the piecewise affine interpolant X* of {XgH}j:() satisfies
i) X5 — +1 uniformly on compact subsets of O" (e10),
i) XgF — —1 uniformly on compact subsets of 7" (e40).
2. Since Q. ; C Q,,; for 1 < j < J, Theorem 5.5 and (Cs) imply (2 < p < 3)
E|[max 1o, ,||Z7|[f~] = 0 (e10).

0<j<J
The discussion around (j5.8]) shows lim. o P[Q2\ €, s] = 0. Let a > 0. By Markov’s inequality
P[{ max | 27|V« > a}] < P[{ max [|Z7|} > a} N Q] + P[Q\ Q]

0<j<J 0<j<J
1 :
- J(|P
< QE[O@% 1o, |27 m} +P[O\ Q] =0 (210).
The statement then follows by the triangle inequality and part 1. 0

A consequence of Theorem is the convergence in probability of the zero level set
{T=*: t > 0} to the interface I of the Mullins-Sekerka,/Hele-Shaw problem (5.1).

Corollary 5.8. Assume (C3) and (D). Let { X }ococr, in be obtained via Scheme
(51 Then

imP[{ sup  dist(z,I}®)>a}] =0 Va>0.
T e, xret

Proof. We adapt arguments from the proof of [I7, Theorem 4.3].
1. For any n € (0,1) we construct an open tubular neighborhood

N, = {(t,z) € Dr: |d(t,z)| <n}

of width 27 of the interface I™® and define compact subsets

Ar =T\ N, Ao = 0"\ N,
Thanks to Theorem [5.7| there exists €9 = €o(n) > 0 such that for all € € (0,&g) it holds that
P[{|X*"(t,x) — 1| < nfor (t,z) € Ao}] > 1—1n,
(5.17) P[{]Xe’k(t,a:)+1] < n for (¢, z) EAZ}} >1—n.
In addition, for any t € [0,7], and z € ™%, since X¢(¢,2) = 0, we have
(5.18) | XH(t, @) — 1] = [ X*(t,2) + 1] =1.
~ INote that the mesh requirement k = O(h9) stated in [I7, Theorem 4.2] does not apply for the semi-
discretization in time of with ¢ = 0. In fact, in [I7] — where the involved parameters k, h, e tend to
zero simultaneously — the given constraint goes back to requirement [I7, Theorem 3.1, 3)] which uses [I7,

(3.28)], where we formally send h | 0 first (with p =v =0 =1, N = 2) to address our case.
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2. We observe that for any n € (0, 1)

P{(t,T7");t€[0,T) C N} = P[{{(t,z): t€[0,T), X**(t,z) =0} C N, }]
(5.19) = 1-P[{3(t,2) € Dr \ N, : X (t,x) = 0}]
= 1- P[ﬁg} i

On noting (5.18) we deduce that P[Q23] < P[Q3] where
Qs :={3(t,x) € Ao : [ X (t,2) — 1| >n v I(t,x) € Az : |[X*"(t, ) + 1| > n}.
By (5.17)), it holds for € € (0,¢¢) that

1-PQs] > P[Q\ Q3] = P[{V(t,2) € Ao : |XF(t,2) — 1| <7
AY () € Az | XF(t,z) + 1] <n}] >1—29.

Inserting this estimate into ((5.19) yields for all € € (0, &)

P[{ sup dist(z,[™) <a}] > P[{(t,TT"), t€[0,T]} CN,]

(t,@)€[0,T)xT5F
2 I 27]7

which holds for any o > 7. The desired result then follows on noting that n can be chosen
arbitrarily small once we take lim.|o in the above inequality. 0

Remark 5.9. The numerical experiments in Section[0] suggest that the conditions on v and
k which are required for Theorem to hold are too pessimistic; in particular, they indicate
convergence to the deterministic Mullins-Sekerka/Hele-Shaw problem already for v = 1,
k= Ole).

6. COMPUTATIONAL EXPERIMENTS

The computational experiments are meant to support and complement the theoretical
results in the earlier sections:

e Convergence to the deterministic sharp-interface limit for the space-time white
noise in Section We study pathwise convergence of the white noise-driven simula-
tions to the deterministic sharp interface limit, which is a scenario beyond the one for
regular trace-class noise where Theorem and Corollary establish convergence
in probability.

e Pathwise convergence to the stochastic sharp interface limit (introduced in
Section below) for spatially smooth noise in Section where we also examine

the sensitivity of numerical simulations with respect to the mesh refinement.
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6.1. Implementation and adaptive mesh refinement. For the computations below we
employ a mass-lumped variant of Scheme

(X7 = X0 on)n + k(Vwy, Vou) = €7 (g0, W", o1),, Von € Vi,
, 1 , A
(6.1) e(VX), Vi) + g(f(X;JL)a Un), = (wh, Yn)n Vi € Vy,

0__ ,&h

where the standard L2-inner product in Scheme is replaced by the discrete (mass-lumped)
inner product (v,w), = [, Z"(v(z)w(z))dz for v,w € Vj, where Z" : C(D) — V), is the
standard interpolation operator. In all experiments we take D = (0,1)? C R? and g is taken
to be a constant. We note that an implicit Euler finite element scheme similar to Scheme
has been used previously in [19], which also performs simulations to study long time behavior
of the system for different strengths of the (space-time white) noise with fixed .

For a given initial interface I'gy we construct an e-dependent family of initial conditions

{u§}eso as uf(x) = tanh(d%x)) where dj is the signed distance function to I'sg. Consequently,

{u§}e>0 have bounded energy and contain a diffuse layer of thickness proportional to € along
Loo, and uf(x) =~ —1, uj(z) ~ 1 in the interior, exterior of I'gg, respectively. The construction
ensures that fD ugdz — my for ¢ — 0, where my is the difference between the respective

areas of the exterior and interior of Iyy in D. For convenience we set ug”" = Z"ug.

The discrete increments A;Wh = Wh(t;) — W"(t;_;) in are Vj-valued random
variables which approximate the increments of a Q-Wiener process on a probability space
(Q, F,P) which is given by

= Z)\iei(x)ﬁi(t)a

where {e;};cn is an orthonormal basis in L?(D), {;}:en are independent real-valued Brow-
nian motion, and {\; };cy are real-valued coefficients such that Qe; = Ae¢;, i € N. In order
to preserve mass the noise is required to satisfy P-a.s. [, W(t,2)dx =0, ¢t € [0,T].

In the experiments below we consider two types of Wiener processes: a smooth (finite
dimensional) noise and a L2-cylindrical Wiener process (space-time white noise). The smooth
noise is given by

64
= 1
AW (t, x) Z cos(2mkx1) cos(2mlma) N By x = (21, 22) € 0,1]%,
255

where A;Bre = Bre(t;) — Pre(tj—1) are independent scalar-valued Brownian increments. The
discrete approximation of the smooth noise is then constructed as

Mh

(6.2) AWz W (¢) (),



where ¢y(zp,) = dpm, £ = 1,..., L are the (standard) nodal basis function of V;, i.e., V; =
span{¢y, £ = 1,...,L}. The space-time white noise (Q = I) is approximated as (cf. [5])

L
AWh(z) =) e %) Ap  VeeDCR.

=1 1/3 !SUpp o

In order to preserve the zero mean value property of the noise we normalize the increments
as

—~ 1 —~
(6.3) AW =AW — —/ AW da.
Dl Jp

The Wiener process is simulated using a standard Monte-Carlo technique, i.e., for w,, € €2,
m = 1,..., M, we approximate the Brownian increments in , as A;Bi(wm) =~
VENT(0,1)(wy,), where N7 (0,1)(w,y,) is a realization of the Gaussian random number gener-
ator at time level ¢;. The discrete nonlinear systems related to (realizations of) the scheme
are solved using the Newton method with a multigrid linear solver.

To increase the efficiency of the computations we employ a pathwise mesh refinement
algorithm. For a realization thm = X (wm), wm € Q of the Vj-valued random variable

X! we define nyqq(z) = maX{|VXf;7m(x)], |VX}JZ:n1(x)|} and refine the finite element mesh
in such a way that A(z) = huin if €ngrea(z) > 1072 and A(z) & hpax if engraa(z) < 1073
the mesh produced at time level j is then used for the computation of X] 1 The adaptive
algorithm produces meshes with mesh size h = h,,;, along the interfacial area and h ~ hyax
in the bulk where u ~ £1, see Figure [3| for a typical adapted mesh. In our computations we
choose hpax = 27° and A, = 76, ie. hmin = hmax for € > 1/(16m) and huy, scales linearly
for smaller values of €.

In the presented simulations, mesh refinement did not appear to significantly influence
the asymptotic behavior of the numerical solution. This is supported by comparison with
additional numerical simulation on uniform meshes. The observed robustness of numerical
simulations with respect to the mesh refinement can be explained by the fact that the
asymptotics are determined by pathwise properties of the solution on a large probability
set. This conjecture is supported by the convergence in probability in Theorem and
Corollary In the present setup the (possible) bias due to the pathwise adaptive-mesh
refinement did not have significant impact on the results. In general, the use of adaptive

algorithms with rigorous control of weak errors may be a preferable approach, cf. [25].
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6.2. Stochastic Mullins-Sekerka problem and its discretization. We consider the
following stochastic modification of the Mullins-Sekerka problem (5.1])

(6.4a) —Avdt =gdW in D\ Ty,
(6.4b) (O], = =2V on I,
(6.4c) v=ax on I,
(6.4d) Opv =0 on 0D,
(6.4¢) Ty = oo

We note that the only difference between (5.1) and (6.4)) is in the equations ({5.1a)), (6.4al),

respectively. Alternatively equation (6.4a)) can be stated in an integral form as

t t
—/ AvdSZg/ dWw in D\TI}.
0 0

For the approximation of the stochastic Mullins-Sekerka problem , we adapt the
unfitted finite element approximation for the deterministic problem from [6]. In par-
ticular, let V"' be a polygonal approximation of the interface I" at time ¢;_;, parameterized
by Y7~! € [Vi(I)]?, where I = R/Z is the periodic unit interval, and where V,(I) is the
space of continuous piecewise linear finite elements on I with uniform mesh size h. Let
7 . C(I) = Vi,(I) be the standard nodal interpolation operator, and let {-,-) denote the
L*~inner product on I, with (-, ), the corresponding mass-lumped inner product. Then we
find v] € Vy,, Y/ € [V,(I)]? and &}, € V,(I) such that

T — 2 2 [ Y o] o Y 1) = (0B W ),
(6.5a) Vo, €V,

(6.5b)  (vh, xa 1Y 1) — a{ml, xan I T e =0V xi € Vi(J),

(6.5¢) (kb v Lo Y7 o ln A (Y Lo Inl I 7117 =00 Vo € [VA(D)]?.

In the above, p denotes the parameterization variable, so that |[Y77!],| is the length ele-
ment on TV=1 and v/ ~' € [V,(I)]? is a nodal discrete normal vector, see [6] for the precise
definitions.

6.3. Convergence to the deterministic sharp-interface limit.

6.3.1. One circle. We set v = 1, g = 87 and consider the discrete space-time white noise
. We note that the considered space-time white noise does not satisfy the smoothness
assumptions required for the theoretical part of the paper (i.e., v > 1 and tr(AQ) < o0),
however the numerical results indicate that for € | 0 the computed evolutions still converge
to the deterministic Mullins-Sekerka problem ([5.1]).

The numerical studies below are performed using the scheme (6.1)) with adaptive mesh
refinement. The time-step size for ¢ = 27°/(64w), i = 0,...,4 was k; = 27107°. The
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motivation of the different choice of the time-step is to eliminate possible effects of numerical
damping and to ensure the convergence of the Newton solver for smaller values of e.

For each £ we use the initial condition ug’h that approximates a circle with radius R =
0.2. Since circles are stationary solutions of the deterministic Mullins-Sekerka problem,
the convergence of the numerical solution for the stochastic Cahn-Hilliard equation to the
solution of the Mullins-Sekerka problem for € | 0 can be determined by measuring the
deviations of the zero level-set of the solution Xj, j =1,...,J from the circle with radius
R = 0.2 for a sufficiently large computational time. We note that the zero level-set of
the initial condition ug’h above, exactly approximates the corresponding stationary solution
of the Mullins-Sekerka problem, but it is not a stationary solution of the corresponding
(discrete) deterministic Cahn-Hilliard equation, i.e., of with ¢ = 0. In order to obtain
the optimal phasefield profile across the interfacial region, we let ug’h relax towards the
discrete stationary state by computing with for g = 0 for a short time and then use
that discrete solution as the actual initial condition for the subsequent simulations.

The results in Figure [1}indicate that for decreasing ¢ the evolution of the zero level set of
the numerical solution approaches the solution of the deterministic Mullins-Sekerka model,
which is represented by the stationary circle with radius 0.2. We observe that the deviations
of the interface from the circle are decreasing for smaller ¢.

0.012 T T T

T
eps=1/64pi ——
eps=1/128pi
eps=1/256pi -------- i
eps=1/512pi
eps=1/1024pi ————

0.01

0.008

0.006

0.004

0.002 -

-0.002

-0.004

-0.006

-0.008 L L L L
0 0.02 0.04 0.06 0.08 0.1

FIGURE 1. Deviation of the interface along the z-axes from the circle for
e=27"/(647),i=0,...,4.

6.3.2. Two circles. In this experiment we consider the same setup as in the previous one
with an initial condition which consists of two circles with radii B; = 0.15 and Ry = 0.1,
respectively. The evolution of the solution is more complex than in the previous experiment

as the interface undergoes a topological change. To minimize the Ginzburg-Landau energy,
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the left (larger) circle grows, the right (smaller) circle shrinks and the resulting steady state
is a single circle with mass equal to the mass of the two initial circles; see Figure [2| for an
example of a deterministic evolution with ¢ = 1/(5127). In Figure [3| we display the graph

FIGURE 2. Numerical solution for e = 1/(5127) at time ¢ = 0,0.007,0.008.

of the evolution of the position of the x-coordinate of rightmost point of the interface along
the z-axis (i.e., we consider the rightmost point on the right (smaller) circle and after the
right circle disappears we track the rightmost point of the left circle) for the deterministic
Cahn-Hilliard equation as well as for typical realizations of the stochastic Cahn-Hilliard
equation for decreasing values of ¢, and of the deterministic Mullins-Sekerka problem. Here
the evolutions for the Mullins-Sekerka problem were computed with the scheme in the
absence of noise. We observe that the solution of the stochastic Cahn-Hilliard equation with
the scaled space-time white noise (6.3) converges to the solution of the deterministic Mullins-
Sekerka problem for decreasing values of the interfacial width parameter. In addition, the
differences between the the stochastic and the deterministic evolutions of the Cahn-Hilliard
equation diminish for decreasing values of ¢.

6.4. Comparison with the stochastic Mullins-Sekerka model. We use the numeri-
cal scheme to study the case of non-vanishing noise, i.e., v = 0, with the discrete
approximation of the smooth noise (6.2)). The noise is symmetric across the center of the
domain in order to facilitate an easier comparison with the Mullins-Sekerka problem. The
computations below are pathwise, i.e., in the graphs below we display results computed for
a single realization of the Wiener process. If not mentioned otherwise we use the time-step
size k = 107°.

The initial condition is taken to be the e-dependent approximation of a circle with radius
R =0.2as in In the computations, as before, we first let the initial condition relax
to a stationary state and then use the stabilized profile X7 := X7 as an initial condition for
the computation. The zero level-set of the stationary solution X,Jf is a circle with perturbed
radius R = 0.2 + O(e), where in general the perturbation O(g) also depends on the finite
element mesh. To compensate for the effect of the perturbation in the initial condition for
larger values of € we represent the interface by alevel set I := {z € D; X} (z) = ur} (ie., I}

is the zero level set of the discrete solution at time level ¢;) where the values ur = X7+(0.2,0),
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FIGURE 3. (left) Position of the rightmost point of the interface for the sto-
chastic and the deterministic Cahn-Hilliard equations with ¢ = 27%/(64r),
t=0,...,4, v =1 and the deterministic Mullins-Sekerka problem; the values
are shifted by —0.5. (right) Zoom on the adapted mesh around the smaller
circle for e = 1/(5127) at ¢ = 0.007.

i.e., it is the "compensated” level-set for which the stationary profile F{jr coincides with the
circle with radius R = 0.2. The usual value for the "compensated” level-set was ur ~ 0.27
in the computations below.

We observe that in order to properly resolve the spatial variations of the noise it is nec-
essary to use a mesh size smaller or equal to Amax = 277 for the discretization of the Cahn-
Hilliard equation. The computations for the Mullins-Sekerka problem, using the scheme
(6.5), were more sensitive to the mesh size, and an accurate resolution for the considered
noise required a mesh size hya = 278, cf. Figure [4| which includes the results for hya, = 278
as well as hpax = 277,

In Figure {4] we compare the evolution for the stochastic Cahn-Hilliard equation for ¢ =
1/(327), € = 1/(647) on a uniform mesh with h = 277 h = 278 respectively, with the
evolution of the stochastic Mullins-Sekerka problem on uniform meshes with h = 277,
h = 278, respectively, for a single realization of the noise. We also include results for
e = 1/(1287), ¢ = 1/(5127), where to make the computations feasible we employ the
adaptive algorithm with Ama = 278 and Amax = 277, hmax = 2711, respectively. Furthermore,
in order to ensure convergence of the Newton solver for ¢ = 1/(5127) we decrease the time-
step size k = 107%. To be able to directly compare with the results for ¢ = 1/(5127), we
take the values of the realization of the noise generated with step size k = 107, which
was used in the other simulations, and to obtain values at the intermediate time levels we
employ linear interpolation in time. We observe that the results in Figure [ for the stochastic
Mullins-Sekerka model are more sensitive to the mesh size, i.e., the graph for the mesh with
h = 277 differs significantly from the remaining results. For the mesh with Ami, = 27° the

results for the stochastic Mullins-Sekerka model are in good agreement with the results for
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FIGURE 4. Oscillations of the interface along the z-axis (x,0) on uniform
meshes for the stochastic Cahn-Hilliard equation with e = 1/(327), h = 277,
e =1/(647), h = 275, & = 1/(1287), hain = 279, £ = 1/(51271), hui = 211
and for the stochastic Mullins-Sekerka problem with h = 277 and h = 278
with the noise (top left); detail of the evolution (top right); evolution of
the zero level-set of the solution (bottom middle).

the stochastic Cahn-Hilliard model. We note that for values smaller than e = 1/(1287) we do
not observe significant improvements of the approximation of the stochastic Mullins-Sekerka
problem. This is likely caused by the discretization errors in the numerical approximation
of the stochastic Mullins-Sekerka model which, for small values of ¢, are greater than the
approximation error w.r.t. € in the stochastic Cahn-Hilliard equation.

From the above numerical results we conjecture that for £ | 0 the solution of the stochastic
Cahn-Hilliard equation with a non-vanishing noise term (7 = 0) converges to the solution of a
stochastic Mullins-Sekerka problem . Formally, the stochastic Mullins-Sekerka problem
can be obtained as a sharp-interface limit of a generalized Cahn-Hilliard equation where
the noise is treated as a deterministic function Gy (t) = g W (t), cf. (2.3) in [3] and (1.12) in
[4].
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To examine the robustness of previous results with respect to adaptive mesh refinement
we recompute the previous problems with the noise using the adaptive mesh refine-
ment algorithm with A, = 27% and hp, = 7€. The stochastic Mullins-Sekerka model is
computed with hp.. = 27% and the mesh is refined along the interface I" with mesh size
Amin = 278,

We note that with adaptive mesh refinement the results differ from those computed using
uniform meshes, since the noise is mesh dependent. For instance, in the regions with
coarse mesh the noise is not properly resolved. The computed results with the adaptive
mesh refinement can be interpreted as replacing the additive noise with a multiplicative
type noise that has lower intensity when u ~ £1. The presented computations contain an
additional “geometric” factor in the numerical error that is due to the fact that the mesh is
adapted according to the position of the interface, as well as due to the fact that the adaptive
mesh refinement algorithm for the Mullins-Sekerka problem is different. Nevertheless, the
results are still in good agreement with the stochastic Mullins-Sekerka problem, see Figure
In particular we observe that the convergence for smaller values of ¢ is more obvious for the
zero level-set of the solution than in the case of uniform meshes. In Figure [5] we also include
a graph (’ftilde’ in pink) which was computed using a modification of scheme (6.1)) with
(F(X1),4n) replaced by (f(X7, X] "), vn) where f(X7, X)) = (X712 - 1)(X] + X77);
for equal time-step size the modified scheme provides worse approximation of the Mullins-
Sekerka problem due to numerical damping.
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FIGURE 5. Oscillations of the "compensated” level-set along the z-axis (z,0)
with adaptive mesh refinement with Ay, = 279 for stochastic Cahn-Hilliard
equation with ¢ = 1/(327), hpm = 277, ¢ = 1/(647), hpm = 27°,
e = 1/(1287), hpin = 277, and the stochastic Mullins-Sekerka problem with
hamin = 278, hmax = 2% with the noise (left picture); evolution of the
corresponding zero level-set (right picture).
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