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ABSTRACT

By the end of July 2020, the COVID-19 pandemic had infected more than 17 × 106 people and had spread to almost all countries worldwide. In
response, many countries all over the world have used different methods to reduce the infection rate, such as case isolation, closure of schools
and universities, banning public events, and forcing social distancing, including local and national lockdowns. In our work, we use a Monte
Carlo based algorithm to predict the virus infection rate for different population densities using the most recent epidemic data. We test the
spread of the coronavirus using three different lockdown models and eight various combinations of constraints, which allow us to examine the
efficiency of each model and constraint. In this paper, we have tested three different time-cyclic patterns of no-restriction/lockdown patterns.
This model’s main prediction is that a cyclic schedule of no-restrictions/lockdowns that contains at least ten days of lockdown for each time
cycle can help control the virus infection. In particular, this model reduces the infection rate when accompanied by social distancing and
complete isolation of symptomatic patients.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020565., s

I. INTRODUCTION

Statistical mechanics provides a set of very powerful tools to
model various biological and medical problems (see, for example,
Refs. 1–3 and many more). One of the most studied these days
is diffusion of pandemics, prompted by the current COVID-19
emergency (see, for example, Ref. 4). In addition, much of current
research studies the physical aspects of the spreading of the virus
(see, for example, Refs. 5–8). Many techniques currently employed
are based on the solution of differential equations (see, for example,
Refs. 9–11 and many more) or fitting formulas (see, for example,
Refs. 12 and 13). Both techniques are based on varied parameters
to obtain several scenarios that are then treated as parts of a sta-
tistical ensemble for analysis. For example, in many countries (e.g.,
Germany and Italy), there is ample discussion about the role of the
so-called R0 parameter, i.e., the average number of individuals that

a single actively infectious person can pass the virus to. The proce-
dures to estimate R0 are all based on a posteriori analyses but are
usually part of the parameters that governments use to decide on
measures to be taken.

In this paper, we propose a method that is essentially based on
modeling a population as a set of interacting classical particles, each
one with three states relative to the health status (susceptible to infec-
tion, infected and contagious, and recovered/died), in which stan-
dard thermodynamical parameters (temperature and density) are
used to describe the characteristics of the population. This method
allows us to apply the model to very different situations, ranging
from a city suburb population to a single university classroom. The
algorithm is based on standard Monte Carlo (MC) procedures of
sampling the transition among subsequent states, which are essen-
tially sampled from a statistical distribution, in the spirit of transport
MC algorithms.
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In our model, a healthy person (i) can become sick with a daily
probability, Pi =∑jPij, where Pij is a function of the distance between
each infected person (j) in the area and the healthy person (i). We are
treating the coronavirus spread as a “one-way” Monte Carlo Ising
model as follows: A healthy person becomes sick as a result of an
interaction with a sick person (or people), but a sick person stops
being sick (i.e., recovers or dies) within an average time of ∼14 days
although up to 40 days for severe cases (see Ref. 14 for the epidemiol-
ogy data). After that time, the recovered person can no longer infect
another person and cannot be sick again.

In contrast to other infection models, such as SIR9–11 in this
approach, the parameter R0 is a direct outcome of the simulation and
not pre-assumed. This is achieved by the relation between R0 and the
doubling time Td, which is a direct result of the infection probability
chosen, which is, in turn, a function of observable epidemiological
data and features of the studied population (e.g., average density
on a given area or mobility). In the following, we will present the
results of several simulations meant to reproduce the spread of the
coronavirus in the presence of different lockdown constraints. The
model’s high flexibility enables us to control many parameters such
as social distancing (SD), infection from an unknown source, etc.
In Sec. II, we will describe some details of the model. In Sec. III,
the different models of lockdown considered will be discussed.
Section IV is devoted to the presentation and discussion of the
results, and Sec. V, to the conclusions.

II. THE PARAMETERS AND PRELIMINARY
ASSUMPTIONS

Given the scarce information available, we had to make some
assumptions based on current data, which may be more stringent
than it might be required by the real nature of the virus. In par-
ticular, we relied on Ref. 14 for the coronavirus epidemiology data
and on Refs. 5 and 6 for the physical properties of the virus. We are
aware that this model cannot take into account every single spread-
ing event, but since such events affect the initial Td (which is a
function of the population density) and since the infection process is
random, we expect that the existence of such events will be reflected
in the numerical results. In addition, in contrast to real life, here,
there is no time gap between getting infected and being tested pos-
itive for the coronavirus. Therefore, an immediate decrease in the
rate of infection resulting from lockdown is expected in the model,
in contrast to the real data (see Ref. 15 for up-to-date data).

All simulations are performed assuming a surface area unit of
1 km2. Periodic boundary conditions are used, allowing us to get
rid of broad confinement effects (e.g., the lockdown of an entire
province or city) and look at the local dynamics of the infec-
tions within that area. In this work, we modeled the spread of
the COVID-19 virus as a function of the population density in a
specific surface. The application of periodic boundary conditions
means that we have an infinite number of identical systems; each
system is a replica of the others, i.e., if a person leaves the simu-
lation surface on one side, an identical person will enter the sur-
face from the other side. Population density is a function of the
number of households in a certain area since it is crucial to distin-
guish between the infection among household and non-household
contacts.16

A. Parameterization of the model
We have identified a list of parameters and corresponding val-

ues that describe the population and the infection’s kinetics. This list
is obviously partial, but it could be quite easily extended.

1. The probability of developing symptoms over time t. This is
described by a Gaussian peaked at t̄ = 5 days and with a
standard deviation σt = 1 day.

2. The number of effective households, denoted by N.
3. The fraction of “silent carriers,” which have no symptoms

(aka asymptomatic) but can infect other people. Their fraction
in the population is denoted by asilent , and the probability of
transmitting the infection has been set to 0.5.

4. Each sick person is considered contagious between the third
and the seventh day.

Simulations are started with a single infected person (the zero
patient). In some runs, infections from an unknown source (a
healthy person becomes sick without interaction with a known sick
person) are allowed. For the first 14 days, the infection has not
been detected yet, and the population walks freely without any
restrictions. In some of the simulations, we “force” sick people with
symptoms to maintain a distance of 8 m (i.e., stay at home) after
day 14. This restriction reduces the probability of non-household
infection.

B. Population dynamics
Our model is based on the principles of Brownian motion such

that for each day, the population position (R) and displacement (ΔR)
are given by

R→ R + ΔR , (1)

where ΔR =√Δx2 + Δy2 is distributed normally,

P[ΔR] = 1
2π2σ2

R
exp(−Δx

2 + Δy2

2σ2
R
) ,

where Δx (Δy) is the displacement in the x-(y-) direction and σ2
R, the

variance, is a function of the diffusion constant, D,

σ2
R = 2Dt , (2)

where t = 1 day. For a Brownian motion, the diffusion coefficient, D,
would be related to the temperature, T, using the Einstein relation

D = μkBT , (3)

where μ is defined as the mobility, kB is Boltzmann’s constant, and
T is the absolute temperature. By fixing T = 1, the diffusion coeffi-
cient would be directly related to the mobility. It is still interesting to
notice that the mobility could, in principle, be directly interpreted as
a sort of thermal parameter. In our model, the time period when the
population is allowed to move without restrictions is characterized
by a large value of σR (namely, σhigh = 500 m), i.e., high temperature,
while a lockdown is characterized by a lower σR (here, σlow = 0.5
× 100.5 m), i.e., low temperature. Thus, one can consider the infec-
tion rate problem in terms of heating/cooling of the system.
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C. The infection probability
The core of the model, which contains most of the epidemio-

logical data, is the probability for the ith healthy person to become
sick. We assume that for each contact with another infected person,
this process can be described by a Gaussian function of distance,
weighted with a factor that parametrizes the sick person’s conditions
and social interaction,17

Pi = int⎛⎝
nsick
∑
j=1

Pij + ξ
⎞
⎠

= int
⎧⎪⎪⎨⎪⎪⎩

nsick
∑
j=1

exp[(ri − rj)
2

2σ2
r
] × f (asilent ,nout) + ξ

⎫⎪⎪⎬⎪⎪⎭
, (4)

where

● ri(xi, yi) is the location of the ith healthy person and rj(xj, yj)
is the location of the jth sick person, so |ri − rj| is the distance
between them,

● nsick is the total number of sick people in the area,
● σr is the standard deviation (here, σr = 2.4 m) since recent

studies show that even a slight breeze can drive droplets
arising from a human cough over more than 6 m,6

● f (asilent , nout) is a function that considers the social activ-
ity of the sick person and whether he has symptoms, which
affect the spread of the virus outside the house. In our model,
we estimate that infection by asymptomatic people is ∼50%
lower than patients with symptoms,

● ξ is a random number between 0 and 1, which allows us to
consider some violation of the lockdown and the fact that
even during a full lockdown, people continue to go out of
their homes to buy grocery, go walking, etc.

In addition, we are assuming that each sick person will infect
some of his household members. Since the latest estimates are that
household infections are ∼15% from known cases (without lock-
down18), we estimated that the number of household infections is
uniformly distributed between 0 and 3. This number is constant for
all the simulations and does not depend on the population density
or the lockdown constraint.

III. LOCKDOWN STRATEGIES
To date, lockdown has been imposed in many countries to

reduce R0 and, as a result, to increase Td, the doubling contagion
time. It still remains unknown if the disease will start spreading again
without control or if new local outbreaks will appear. In our work,
we tested three different types of lockdown strategies. This choice is
just representative of a potentially much broader set of options that
could be analyzed using this method by simply varying the corre-
sponding parameters and with a minimal computational cost. For
all the models presented in this paper, we assumed the following
conditions:

● Days 1–14: no restrictions.
● Days 15–50: full lockdown with moderate social distancing

(SD), i.e., people are forced to maintain a distance of 3 m
from each other.

● Days 51–200: people must wear face-masks so that the daily
infection probability (for the non-household members) is
reduced to

int
⎧⎪⎪⎨⎪⎪⎩

nsick
∑
j=1

0.7 × exp[(ri − rj)
2

2σ2
r
] × f (asilent ,nout) + ξ

⎫⎪⎪⎬⎪⎪⎭
. (5)

A very recent HKU hamster research study shows that by wear-
ing a proper mask, the infection probability can be reduced by a
factor of 3.19 Therefore, given that not all of the population wears
a mask properly and given the findings of Ref. 20, we estimated the
probability of infection when wearing masks to be 1.4 times lower
than that without masks.

Days 1–14 are the heating phase of the system. Thus, we expect
the fastest increase in the number of patients these days. During days
15–50, we predict a phase transition from a hot system to a colder
system (almost solid-like), which will reduce the infection rate. The
system phase on days 51–200 is a result of the different models such
that

1. model 1: Days 51–200: no restrictions,
2. model 2: Days 51–200: cycles of one week with no restrictions

and one week of full lockdown, and
3. model 3: Days 51–200: cycles of one week with no restrictions

and two weeks of full lockdown.

Each model was tested with the following constraints:

● with and without moderate social distancing (SD) on days
51–200,

● with and without infection from unknown sources (infected
people not traceable to any known infection chain),

● with and without strict SD for symptomatic patients after the
14th day (sick people with symptoms are forced to maintain
a distance of 8 m from healthy people, equivalent to strict
home isolation).

Hence, for each population density, N, we have 24 different
simulations that we will use later to assess the effect of both SD and
lockdown on the number of cases as a function of time.

IV. RESULTS
For the COVID-19 epidemic, the observed values of R0 sug-

gest that each infection directly generates 2–4 more infections in the
absence of countermeasures like social distancing.9,21 The doubling
time, Td, is a function of R0

22 such that the higher the R0, the lower
the Td. In particular, Td = 2.5 days corresponds to R0 = 4.

In our model, both R0 and Td are directly obtained from the
simulation and not pre-assumed. Figure 1 presents the doubling
time, Td, as a function of the effective density, N. We have calcu-
lated the percentage of active cases from the total population in the
first 14 days for each N. The calculation was performed in the heat-
ing phase only since there are no restrictions. This allows for a sort
of calibration of the model to encompass the intrinsic features of the
disease.

Figure 1 shows that Td is a decreasing function of density. It
was shown in Ref. 22 that for low R0(1 < R0 < 1.5), the doubling time
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FIG. 1. Doubling time, Td , of the percentage of active cases of the total population
in the first 14 days as a function of the population density, N (dots). The solid line
marks the value of Td = 2.5 days, corresponding to R0 = 4.

spans between 12 < Td < 20 days, in contrast to high R0(3.5 < R0 < 4),
where Td is ≈2.5 days and where lim

N→∞
Td ≈ 1.5 days. The significant

difference between high and low R0 is reflected in our calculations
by a high error for high doubling times, which are compatible with
low population densities.

The relation between Td and R0, as shown in Fig. 1, means that
attempting to describe a wide area’s current situation by means of
some average value of R0 might be highly inappropriate. On the
other hand, the spread of the disease over smaller, more homo-
geneous areas in which the population shares a certain degree of
mobility and social behavior would be quite well described by this
parameter.

To give an example, a value ofTd ≈ 2.5, corresponding toR0 = 4,
in the current model would correspond to N = 1.1 × 104 house-
holds per square kilometer. While this might appear as an unrea-
sonably high density in an average urban context, it is still much
lower than the average density in kindergartens, university class-
rooms, crowded social, religious, or sports events, etc. Hence, from
now on, we will consider the value of N = 1.1 × 104 as representative
of potentially dangerous situations present daily before the begin-
ning of the pandemic. This will also show how different constraints
affect the initialR0 = 4, which is the highest estimation forR0 without
restrictions.

The various probability densities are sampled by means of stan-
dard techniques, in the spirit of a kinetic Monte Carlo simulation, for
predicting the number of coronavirus cases as a function of time for
different lockdown models and external constraints. Each case has
been run 100 times. Note that each run starts with the same initial
condition, only one sick person. Since the Monte Carlo algorithm
is based on random numbers, we expect that every run will yield
slightly different results. Repeating the simulation for 100 separated

FIG. 2. Numerical results of the percentage of active cases of the total population of infected cases. The upper panels (a) and (b) present the numerical results for infection
from known sources, while the lower panels (c) and (d) show the numerical results for infection from unknown sources. In both cases, in the left panels (b and d), the
numerical results are for the case where sick people with symptoms must maintain a distance of 8 m from healthy people (strict SD). For all panels, the solid (dotted) line
is model 1 with (without) moderate social distancing (SD), the long (short) dashed line is model 2 with (without) moderate SD, and the long (short) dotted-dashed line is
model 3 with (without) moderate SD. The dashed vertical line is located on day 15, the first day of the lockdown. Errorbars in panel (a) originate from the simulation’s rmsd,
computed from the 100 different samples generated to compute each curve. On the other curves, the uncertainty is similar and is omitted for improving the readability of the
figures.
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FIG. 3. Inset of Fig. 2(c) for the case of infection with additional unknown sources.
The solid (dotted) line is model 1 with (without) social distancing (SD), the long
(short) dashed line is model 2 with (without) SD, and the long (short) dotted-dashed
line is model 3 with (without) SD.

runs evaluates the algorithm’s robustness. Results have been aver-
aged and analyzed to determine the statistical error. Figure 2 shows
our numerical results for the different simulations for the case of
R0 = 4 in the first 14 days. The upper (lower) panels of Fig. 2 are the
numerical results without (with) unknown sources. In panels (b) and
(d), the numerical results for the case where sick people with symp-
toms must maintain a distance of 8 m from healthy people (strict
SD) are shown.

As previously pointed out, the numerical results presented in
Fig. 2 do not make any assumption on the doubling time, Td, but
only on some observed features of the disease. Even though it is chal-
lenging to model each coronavirus infected area’s specific characters,
some characteristics are common to all simulations. The first 50 days
have the same constraints—no restriction from the first day up to
day 14 and a full lockdown from day 15 until day 50. Our numerical

results show that even for R0 = 4, forcing a lockdown after 14 days
from the first case controls the spread of the coronavirus in a way
that the peak number of cases occurs on day 24, while the rate of
increase in the number of cases starts decreasing as of the 15th day.
In addition, since the average time for recovery is 14 days (although
up to 40 days for very severe cases) and the typical infection period
ranges from the third day until the seventh day, the decreasing rate of
the number of active cases during the lockdown is much slower than
the increasing rate of the number of active cases without restrictions
[as seen in various countries around the world (see Ref. 15 for up-to-
date data)]. Hence, we find that for an initial heating period of 14
days, the necessary lockdown period (i.e., the cooling time) required
to reduce the number of active cases is much longer than 14 days.

As of today, many countries examine different exit strategies
due to the decreased number of active cases. In our simulations, we
have tested several such exit strategies using different constraints. All
of our numerical results indicate that the isolation of symptomatic
patients [strict social distancing, panels (b) and (d) of Fig. 2] is effec-
tive and can reduce the peak number of active cases by a factor of
about two without further restrictions, and up to a factor of 10 for
model 3. In addition, from Fig. 2, we find that moderate social dis-
tancing can reduce the number of active cases but never as effectively
as home isolation of symptomatic patients.

Figure 3 is an inset of Fig. 2(c). From Fig. 3, is it easy to see
the effect of the cyclic no-restriction/lockdown pattern. In princi-
ple, since the no-restriction/lockdown pattern is periodic in time,
we would expect that the number of active cases as a function of
time will have the same periodicity. For all the three models, there
are no restrictions from day 51 until day 57 (green area, A). From
day 58 until day 64 (red area, B), we impose a lockdown in mod-
els 2 and 3, which is reflected in a more moderate increase in the
number of active cases than that of days 51 until 57. From day 65
until day 72 (yellow area, C), there is still a full lockdown in model
3, while there are no restrictions in models 1 and 2. From Fig. 3, it

FIG. 4. Numerical results of the percent-
age of active cases of the total popula-
tion of infected cases. The upper pan-
els (a) and (b) present the numerical
results of infection from known sources,
while the lower panels (c) and (d) present
the numerical result for infection from
unknown sources. In both cases, in pan-
els (b) and (d), the numerical results
are for the case where sick people with
symptoms must maintain a distance of
8 m from healthy people (strict SD). For
all panels, the solid (dotted) line is for
σ low = 0.5 × 100.1 m with (without) mod-
erate social distancing (SD), the long
(short) dashed line is for σ low = 0.5
× 100.3 m with (without) moderate SD,
and the long (short) dotted-dashed line
is for σ low = 0.5 × 100.4 with (without)
moderate SD.
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is easy to see that the increased effectiveness of model 3 in reduc-
ing the number of active cases originates from the fact that, since
it takes more than a week to cool the system (which is a result
of the infection period), a week–week strategy cannot cause sig-
nificant cooling of the system. An effective exit strategy might be
based on time cycles and must include at least ten days of lock-
down (see, for example, Ref. 9). In addition, one can use differ-
ent (no time based) no-restoration/lockdown patterns such as those
presented in Refs. 23 and 24. The lockdown strategies presented
in Refs. 23 and 24 are not time-dependent; in contrast, they are
based on optimization of a fixed number of infected/expired peo-
ple over time. In general, our model can also be used for building
these kinds of no-restriction/lockdown patterns for each population
density.

In Fig. 4, we present our numerical results for a 4/10 day cyclic
exit strategy for different σlow. Similar to Fig. 2, here, the upper
(lower) panels are the numerical results without (with) unknown
sources. For both cases, in the left panels [(b) and (d)], the numer-
ical results are for the case where sick people with symptoms must
maintain a distance of 8 m from healthy people (strict SD).

Figure 4 shows that, as predicted, for instance, in Ref. 9, a
4/10 day cyclic exit strategy is useful for controlling the infection
rate accompanied by home isolation of symptomatic patients. The
comparison between Figs. 2 and 4 indicates that although the maxi-
mal percentage of active cases is similar for both the week/two-week
pattern and the 4/10 pattern, there are differences between the two
patterns. For the 4/10 pattern, this cyclic pattern induces a mod-
erate increase in the percentage of active cases but without a local
decrease in the number of patients until the peak on the 130th day.
In contrast, for the case of the week/two-week pattern, the two-week
lockdown will cause a local decrease in the percentage of active cases
and a more steep increase in the percentage of active cases during
the no-restriction week accomplished by a peak in the percentage of
active cases on the 110th day. Hence, the comparison between the
two patterns implies that a cyclic no-restriction/lockdown pattern
can control the spread of the epidemic in daily life, even for an initial
doubling time of 2.5 days.

FIG. 5. Total number of active cases in Sweden (normalized) from the 100th
case until today (dots). The solid line is our prediction for the spreading of the
coronavirus for a population density of N = 3500 households.

V. COMPARISON WITH REAL DATA (SWEDEN)
From the beginning of March 2020, Sweden took a different

approach from the rest of the world by not imposing a policy of
lockdown on its citizens. Therefore, it is of interest to examine the
rate of increase in the total number of active cases in Sweden from
the beginning of March until today (see Ref. 15 for up-to-date data),
compared to our model under the assumption of no restrictions. In
Fig. 5, we show the total number of active cases in Sweden (normal-
ized) from the 100th case until today, in comparison to our predic-
tions for a population density of N = 3500 households. Note that this
population density is much more diluted than the population den-
sity used for the previous simulations, which may explain the slow
rate of increase in the virus spread even when there are no limits.
Figure 5 shows that our model can predict the spread of the virus for
different societies, reflected with varying densities of population.

VI. CONCLUSIONS
This paper presented a kinetic Monte Carlo algorithm for mod-

eling different scenarios of the infection rate of the novel coronavirus
disease. This model’s main feature lies in its extreme flexibility and
in the fact that the parameter R0 is obtained from the simulation
and not pre-assumed. It can rather be used, in principle, as a way to
tune up the other parameters better based on the post-processing of
clinical and epidemiological data.

Although it is challenging to model the specific characters of
each coronavirus infected area, our results show that strict social dis-
tancing and a cyclic time pattern might help to keep the infection
rate under control over a long period, even for an intrinsic dou-
bling time of 2.5 days and in the presence of infection from unknown
sources. Our ability to model and prove differences between the dif-
ferent lockdown patterns sharpens the need for physical and mathe-
matical models that allow examining different ways for reducing the
spread of the epidemic. From the physical point of view, effective
strategies for controlling the infection rate of a specific area should
lower its effective temperature as much as possible by keeping social
distancing and avoiding creating hot spots such as those related to
high concentrations of people on a daily basis.
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