
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Advanced Methods for Content Based Image

Retrieval and Scene Classification in JPEG 2000

Compressed Remote Sensing Image Archives

Akshara Preethy Byju

Advisor: Co-advisor:

Prof. Dr. Lorenzo Bruzzone Prof. Dr. Begum Demir
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Abstract

Recent advances in satellite imaging technologies have paved its way to the RS big data

era. Efficient storage, management and utilization of massive amounts of data is one

of the major challenges faced by the remote sensing (RS) community. To minimize the

storage requirements and speed up the transmission rate, RS images are compressed be-

fore archiving. Accordingly, developing efficient Content Based Image Retrieval (CBIR)

and scene classification techniques to effectively utilize these huge volume of data is one

among the most researched areas in RS. With the continual growth in the volume of

compressed RS data, the dominant aspect that plays a key role in the development of

these techniques is the decompression time required by these images. Existing CBIR and

scene classification methods in RS require fully decompressed RS images as input, which

is a computationally complex and time consuming task to perform. Among several com-

pression algorithms introduced to RS, JPEG 2000 is the most widely used in operational

satellites due to its multiresolution paradigm, scalability and high compression ratio. In

light of this, the goal of this thesis is to develop novel methods to achieve image retrieval

and scene classification for JPEG 2000 compressed RS image archives.

The first contribution of the thesis addresses the possibility of performing CBIR di-

rectly on compressed RS images. The aim of the proposed method is to achieve efficient

image characterization and retrieval within the JPEG 2000 compressed domain. The

proposed progressive image retrieval approach achieves a coarse to fine image description

and retrieval in the partially decoded JPEG 2000 compressed domain. Its aims to reduce

the computational time required by the CBIR system for compressed RS image archives.

The second contribution of the thesis concerns the possibility of achieving scene clas-

sification for JPEG 2000 compressed RS image archives. Recently, deep learning methods

have demonstrated a cutting edge improvement in scene classification performance in

large-scale RS image archives. In view of this, the proposed method is based on deep

learning and aims to achieve maximum scene classification accuracy with minimal de-

coding. The proposed approximation approach learns the high-level hierarchical image

description in a partially decoded domain thereby avoiding the requirement to fully decode

the images from the archive before any scene classification is performed.

Quantitative as well as qualitative experimental results demonstrate the efficiency of

the proposed methods, which show significant improvements over state-of-the-art meth-

ods.



Keywords: content based image retrieval, deep neural networks (DNNs), scene clas-

sification, progressive image retrieval, JPEG 2000, compressed image domain, pyramid

match kernel, remote sensing
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Chapter 1

Introduction

1.1 Background and Motivation

The acquisition of satellite remote sensing data started in the early 1970’s and since

then there has been an exponential growth in the development of this technology. Re-

mote Sensing (RS) data provide relevant information on the Earth’s surface and are used

in wide number of applications such as agriculture, environment monitoring, disaster

management, meteorology, oceanography and urban planning. In the recent years, the

remarkable progress in the development of imaging sensors and satellite missions, which

has contributed to a massive growth in the volume of acquired RS data. Developments

in active and passive sensor technologies have contributed to the so called RS big data

era. RS big data are characterized by six key properties (Fig. 1.1): Volume, Velocity,

Variety, Veracity, Value and Visualization (6V dimensions) [1]. Volume indicates the

large amount of data that are acquired by the satellites. As an example, European Space

Agency’s (ESA) Sentinel missions (Sentinel-1, Sentinel-2 and Sentinel-3) alone provide

10 Terabytes (10 TB) of data per day [2]. At the end of 2019, the volume of data that

is archived from the Sentinel missions alone is estimated to be more than 12.5 PB [3].

Variety refers to the distinct continuous group of data obtained from multisource (e.g.,

multispectral, hyperspectral, Synthetic Aperture Radar (SAR)) and multi-temporal (time

series) images. Velocity refers to the speed of generation of the incoming data. For exam-

ple, Sentinel-2 and PRISMA (hyperspectral) missions have a revisit time of 5 and 7 days,

respectively [4; 5]. Veracity refers to the reliability and effectiveness of the acquired RS

data. The massive amount of data that are acquired every day must be accurate enough

to be efficiently utilized by the RS society. Lastly, Value and Visualization are other two

key aspects in RS big data that involve information loss and noise generated from the

many satellite missions [1]. In view of these features, developing efficient techniques for

storing, managing and effectively utilizing massive volumes of big data is one among the
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major challenges faced by the RS community.

RS Big 
Data

Volume

Velocity

Variety

Veracity

Value

Visualization

 

Figure 1.1: RS big data properties.

The availability of large volumes of data from satellite sensors with increased spatial,

spectral and radiometric resolution demands more storage space and thus, it is required

to compress images before storing them into any archive [6; 7; 8; 9; 10; 11; 12; 13; 14; 15].

Compression algorithms can be categorized as lossy and lossless. Lossless compression

techniques reduce the size of the images without degrading their quality whereas lossy

compression technique achieves higher compression ratio with a significant quality degra-

dation. In view of this, several compression algorithms were proposed in the RS literature

[7]. In the early 1980s, predictive coding compression techniques such as Differential Pulse

Code Modulation (DPCM) and Adaptive Differential Pulse Code Modulation (ADPCM)

were used in SPOT 1,2,3 satellites [16]. DPCM encodes data by predicting the difference

between the reference and previous pixel in a given image. If the correlation between

any two adjacent pixels is very small the signal-to-quantization-noise ratio (SQNR) also

decreases. Considering the current volume of the archives, the compression ratio achieved

by these predictive coding techniques is considerably low. In order to achieve better com-

pression that leads to a better use of the storage space, transform based coding techniques

have proposed where the images are converted into different domains. Joint Photographic

Experts Group (JPEG) was one among the first transform coding compression techniques

developed during the early 1990s [17]. JPEG uses Discrete Cosine Transform (DCT)
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which is a lossy compression technique that initially subdivides the image into several

blocks and then applies DCT to each of these blocks to obtain image blocks with varying

frequencies. As DCT is performed on each block of a given image, it generates block-

ing artifacts which generally occur at the boundaries of each block of the considered

image. In addition, JPEG compression algorithm is lossy and does not support lossless

compression. To address these limitations, JPEG 2000 image compression standard was

proposed [18]. JPEG 2000 uses Discrete Wavelet Transform (DWT), which allows for

a multiresolution representation of the images. The inherent multiresolution paradigm

within the JPEG 2000 image coding standard achieves higher compression ratio compared

to other compression algorithms, scalability and progressive transmission of the images.

Most of the operational RS satellites compress their images before storing into the archive

(e.g., Sentinel-2 uses JPEG 2000 compression algorithm and PRSIMA uses wavelet based

compression module) [19; 20].

In the past decade, several efforts were made to retrieve domain-specific relevant in-

formation at a fast rate from massive RS image archives. Traditional image retrieval

techniques strongly rely on metadata (such as keywords, tags, location, acquisition date

or time) to extract images from the archive. Recent developments demonstrated that also

in RS image retrieval can be done on the basis of the ’contents’. Thus, Content Based

Image Retrieval (CBIR) gained increasing attention in the RS community [21; 22]. When

a user provides a query image, the aim of the CBIR system is to retrieve similar images

associated with it. To achieve this, CBIR systems utilize the implicit information within

the considered image and archive images. Thus, the performance of a given CBIR system

depends mainly on efficient representation of this implicit information (feature descrip-

tors) of images in the archive. A general CBIR system has two steps: i) obtaining efficient

feature descriptors; and ii) similarity assessment between the query image and archive im-

ages. The existing RS CBIR techniques require fully decompressed (decoded) image as

input. Moreover, decompressing each image from a massive archive and applying feature

extraction and similarity assessment with respect to the submitted query image is a time

demanding and computationally complex task. In view of this, the thesis contributes to

the development of RS CBIR methods for JPEG 2000 compressed RS image archives.

In the recent years, deep learning (DL) emerged as one of the major breakthrough

in several RS image processing tasks [23; 24]. DL methods have demonstrated signifi-

cant success in several domains such as image retrieval, change detection and objection

detection. Among them, scene classification is of particular interest [25; 26; 27; 28]. Con-

sidering the huge volume of data that are stored in image archives, scene classification

approaches based on DL approaches have become very popular as they can manage the

complexities of handling massive amounts of multi-dimensional data in terms of feature
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descriptors and assessing similarity. The excellent performance of the DL methods in

obtaining highly discriminative feature descriptors automatically through the learning

process has become one of the major driving force that led towards their success. To

learn effective feature descriptors, DL methods require huge amounts of data that usually

are processed by powerful Graphic Processing Units (GPUs). Several DL architectures

were introduced to address RS scene classification problems [28; 29; 30; 31]. Deep Neural

Networks (DNNs) such as Convolutional Neural Networks (CNNs), Generative Adversar-

ial Networks (GANs), Recurrent Neural Networks (RNNs) have demonstrated impressive

classification performance. Among them, CNNs have shown a remarkable ability to ob-

tain feature representations that describe high-level semantic patterns of the considered

images. Generally, a DL method can be categorized into a supervised or an unsupervised

learning scheme. CNNs, are based on a supervised learning scheme and thus require an-

notated images for the training of the architecture. On the contrary, in the unsupervised

scheme, the DL network automatically clusters the data based on the inherent patterns

present in the images. Recently, GANs became popular due to their ability to generate

and learn feature descriptors from a limited amount of images in specific RS domains. It

is very important to emphasize the fact that DL methods are able to achieve impressive

performance at varying imaging conditions (such as scale, translation and rotation). The

continuous growth in the RS image archives allows DL architectures to learn much effi-

cient feature descriptors. Moreover, also in this context exiting DL architectures that are

used to address RS scene classification problems require full decompression of the images

before they are provided as input to the network. This is a strong limitation from the

computational point of view and require to explore the possibility of developing novel DL

architectures that can learn compressed domain features to perform scene classification.

1.2 Motivation and Novel Contribution of the Thesis

As mentioned in the previous section, existing RS image retrieval and scene classification

approaches require full decompression of the RS images. This is a time demanding and

computationally complex task to carry out in operational systems working on very large

archives. In computer vision and pattern recognition, several works were recently pro-

posed to study the possibility of obtaining feature descriptors in the compressed domain.

However, existing RS image retrieval systems do not consider this possibility despite the

massive volume of compressed images available in RS image archives. Thus, it is necessary

to develop novel approaches to efficiently perform image retrieval without the need for

fully decompressing all the images in the archive. On the basis of this analysis, the aim

of the thesis is to develop computationally efficient methods to perform image retrieval
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and scene classification in JPEG 2000 compressed domain. In particular, the main novel

contributions of the thesis are as follows:

1. A novel progressive Content Based Image Retrieval (CBIR) system that minimizes

the amount of decompression required for all the JPEG 2000 compressed images in

the archive.

2. An efficient approximation approach within a DNN framework to accurately charac-

terize the JPEG 2000 compressed domain wavelet sub-band information to achieve

scene classification in large-scale compressed RS image archives.

In the subsections below, we briefly describe each of the contributed methods.

Progressive Content Based Image Retrieval Approach

The continuous increase in the volume of compressed data in RS image archives demands

developing efficient CBIR systems. Although as mentioned there are several RS CBIR

systems in the literature that have demonstrated remarkable performances, they require

decompression of all the images to apply image description and similarity analysis, which

is a time demanding and computationally complex task [21; 22; 32; 33; 34; 35]. In view

of this, the first contribution of the thesis is to develop a novel progressive CBIR system

that minimizes the amount of decompression required for the retrieval of images from

compressed RS image archives. The system is based on the observation that the decoding

paradigm within the JPEG 2000 compression algorithm allows to progressively decode the

coarse to fine wavelet sub-band information. Thus, in the proposed approach we exploit

the possibility to avoid decompression of all the images in the archive by adopting a coarse-

to-fine image characterization and retrieval approach. The approach initially decodes the

codestreams associated to the coarsest level wavelet sub-band information, which can

be utilized to eliminate a few irrelevant images from the archive. Then, the successive

finer wavelet sub-band information associated to the subset of relevant images is decoded.

The similarity assessment is carried out by considering the features obtained from both

coarser and finer level wavelet sub-bands by adopting a pyramid match kernel. The image

description and similarity assessment are iterated until we decode the compressed images

to obtain the finest wavelet resolution sub-band. In this way, the proposed approach

eliminates irrelevant images during the early stages, thereby reduces the required decoding

time and thus speeding up the computational time of the proposed CBIR system. The

effectiveness of the proposed method is demonstrated on UCMERCED [36] and AID [37]

benchmark archives.
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Remote Sensing Image Scene Classification using an Approximation Approach

As mentioned in the previous section, all the existing methods require full decompression

of the images before scene classification can be carried out [38; 39; 40; 41; 42]. To address

this issue, in the second contribution of the thesis, we propose a novel approximation ap-

proach that allows to perform scene classification in the compressed RS image archives. In

this method, the finer level wavelet information (which is used in JPEG 2000) is approxi-

mated through few transposed deconvolutional layers. The approximated finer resolution

wavelet sub-band information is learnt through a series of convolutional layers to achieve

scene classification. Through this approximation approach, the requirement to fully de-

compress all the images is minimized thus speeding up the computational time required to

perform scene classification in the compressed RS image archives. The proposed method

includes a novel end-to-end trainable DNN architecture that efficiently exploits the finer

level wavelet sub-band information obtained using the approximation approach to achieve

computationally efficient scene classification in the JPEG 2000 compressed domain. The

effectiveness of the proposed method is demonstrated on AID [37] and NWPU-RESISC45

[43] benchmark archives.

1.3 Thesis Organization

This chapter has provided an overview of the current scenario and the motivation of the

thesis. It also summarized the existing compression algorithms and the challenges that

arises to apply image retrieval and scene classification approaches to compressed RS image

archives. The rest of the thesis is organized into five chapters.

Chapter 2 illustrates the JPEG 2000 compression algorithm that is fundamental to

understand the approaches proposed in the thesis. It also provides some basics on DNNs

(especially CNNs) to give the required background on the DL architecture for the next

part of the thesis. Chapter 3 provides an analysis of the state-of-the-art on the existing

image retrieval and scene classification approaches in RS. It also presents a review of the

existing JPEG 2000 compressed domain works on image retrieval and classification in

computer vision and pattern recognition.

Chapter 4 presents the novel image RS CBIR system in JPEG 2000 compressed domain

providing in detail the methodology, experimental results and a final discussion.

Chapter 5 describes the proposed novel approach using DNN to perform computation-

ally efficient scene classification in JPEG 2000 compressed image archives.

Finally, chapter 6 draws the conclusion of the thesis along with the possible future

research developments.



Chapter 2

Background and Fundamentals

In this chapter first we present the fundamentals of JPEG 2000 compression algorithm

and then we provide the background of deep neural networks (DNNs).

Several compression algorithms are introduced in the RS literature (e.g., Differential

Pulse Code Modulation (DPCM), Adaptive DPCM, Joint Photographic Experts Group

(JPEG), lossy and lossless JPEG and JPEG 2000). In order to compress RS data, ear-

lier predictive coding compression techniques such as DPCM and ADPCM were used in

satellites such as SPOT 1,2,3 [44; 45]. DPCM encodes data by predicting the difference

between the reference pixel and the previous pixel. Although, using DPCM the inter-band

dependency is reduced and compression ratio is improved, with the increasing number of

RS data in the archives, these algorithms increase the computational complexity in image

retrieval as well as scene classification techniques. However, these techniques cannot be

used in archives where the numbers of images are huge and when there is a requirement

to obtain higher compression rate. Also, predictive based coding techniques are quite

complex when compared to other compression algorithms and extracting features from

them for RS data adds further computational overhead [7]. To achieve higher compression

ratio, transform based coding techniques were proposed where the images are converted

to their frequency domain. Among various transform based coding techniques better com-

pression rates were achieved with Discrete Cosine Transform (DCT) and Discrete Wavelet

Transform (DWT) [7]. JPEG and JPEG 2000 compression standards have adopted DCT

and DWT as their transformation techniques, respectively [17; 46]. Among the afore-

mentioned compression techniques, JPEG 2000 became very popular due to its ability to

achieve multiresolution paradigm, scalability and high compression ratio. In this thesis,

we focus on developing novel approaches to perform content based image retrieval and

scene classification in JPEG 2000 compressed image archives.

In view of this, Section 2.1 discusses the general block scheme of JPEG 2000 compres-

sion algorithm. Section 2.2 introduces the key concepts of CNN. These sections presents
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the necessary information that is required for the understanding of the methods proposed

in this thesis.

2.1 Overview of the JPEG 2000 Compression Algorithm

JPEG 2000 image compression standard was developed by the Joint Photographic Ex-

perts Group which is a joint committee of members from the International Organization

for Standardization and International Electrotechnical Commission (ISO/IEC) [46; 47].

JPEG 2000 is the successor of the JPEG compression standard that uses Discrete Cosine

Transform (DCT) which was initially developed in 1992. Figure 2.1 shows the general

block scheme of the JPEG 2000 encoder. When a compression algorithm is considered,

it can be either lossless (where the image compression is achieved without information

loss) or lossy (where the image compression is achieved with data loss). JPEG 2000

standard supports both lossless as well as lossy compression. The encoder of JPEG 2000

compression algorithm consists of three main blocks: i) Discrete Wavelet Transform; ii)

Quantization and iii) Entropy Block Coding with Optimized Truncation (EBCOT). The

original image can also be decoded (decompressed) from the compressed codestream us-

ing three steps: i) Entropy decoding; ii) De-quantization and iii) Inverse Discrete Wavelet

Transform (IDWT). The main properties of the JPEG 2000 compression algorithm that

makes it successful are as follows:

1. The images are represented using multi-resolution representation that is achieved

using DWT used in the compression standard.

2. Both lossy as well as lossless compression are supported with higher compression

ratios compared to the previous compression algorithms.

3. The packet structure organization of the wavelet sub-band allows progressive trans-

mission and decoding of the images based on resolution, quality, spectral band and

location.

4. Region-Of-Interest (ROI) coding of a given image is allowed.

5. Robustness to the transmission errors are proven.

In the following subsections, the three main blocks of the JPEG 2000 encoder are detailed.

For more details regarding the JPEG 2000 compression algorithm, the Reader is referred

to [18].
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Figure 2.1: General block scheme of the JPEG 2000 compression algorithm.

2.1.1 Discrete Wavelet Transform (DWT)

DWT is one of the important steps in the JPEG 2000 compression algorithm that results in

successive dyadic wavelet decomposition (which allows multiresolution analysis) of a given

image [18]. This multiresolution image representation form is utilised in several domains

such as image compression, noise removal, etc. Wavelets are mathematical functions

that decompose a given input image into several frequency components and analyze each

component based on the considered scale (resolutions) [48]. Let ψ(x) be a ’mother wavelet’

(wavelet function) of a wavelet basis L2(R). Then, a family of wavelet function ψs,d(x) is

obtained using scaling (s) and dilation (d) of the mother wavelet ψ(x) as:

ψs,d(x) =
√

2sψ(2sx− d) (2.1)

DWT of a given image Xi is obtained by passing it through a series of low-pass and

high-pass filters. If l is an impulse response, then the output of the low-pass filter is a

convolution of Xi and g which is obtained as:

Yi[n] = (Xi ~ l)[n] (2.2)

where Yi represents the approximation coefficients. The input image Xi is also passed

through a high pass filter h which results in detail coefficients. Fig. 2.2 represents low-

pass and high-pass filter bank realization of a given image Xi. Successive dyadic wavelet

decomposition applied to each image or tile separately transforms an image into one low

frequency (approximation coefficients - LL) sub-band and three high frequency sub-bands

(detailed coefficients - LH, HL and HH). If there are more than one decomposition level,

the lowest (LL) sub-band of the current resolution is further decomposed to the subsequent

approximation and detail wavelet resolution sub-bands. The maximum number of wavelet

decompositions that can be performed on a given image according to the JPEG 2000
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compression standard is 32. The approximation (LL) wavelet coefficients encompass the

information of the original input image at a lower wavelet resolution. The detail sub-

bands include the information such as edge, texture, etc of a given image. In the JPEG

2000 compression standard, successive dyadic wavelet decomposition for both lossy and

lossless compression is performed using Cohen-Daubechies-Feauveau (9,7) and Spline (5,3)

biorthogonal filter bank, respectively [18].
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Figure 2.2: Block scheme of the low-pass and high-pass filter realization for an image Xi.

2.1.2 Quantization

Quantization step maps the wavelet coefficients values obtained after DWT to a smaller

range of values [49]. This results in reduction of data precision and is used mainly with

lossy image compression techniques. In JPEG 2000 compression standard, mainly two

types of quantization techniques are available: i) scalar quantization, and ii) trellis coded

quantization (TCQ) [18]. For lossy compression, each of the wavelet coefficients is quan-

tized using a particular scalar value, while for the lossless compression the quantization

step is neglected. For scalar quantization, the wavelet coefficient obtained after DWT is

mapped to a smaller subset of values, depending on the step size used for the quantization

that can be represented as:

qLL(m,n) = sign(tLL(m,n))

⌊
tLL(m,n)

∆LL

⌋
(2.3)

where qLL(m,n) represents the quantized value of the tLL(m,n) wavelet sub-band and ∆LL

represents the quantization step. In the case of lossless compression, the quantization step

size is initialized as 1. Larger the quantization step size, higher the compression ratio.
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Lossless compression preserves a good quality of the given input image whereas in the case

of lossy compression higher compression ratio is achieved with degraded image quality.

Before performing the entropy coding, each quantized wavelet sub-band is sub-divided

into non-overlapping rectangular blocks called precinct and each precinct is further sub-

divided into non-overlapping blocks called code-blocks that are represented as bit planes.

Each code-block has usually size of 32× 32 or 64× 64 pixels. The size of code-blocks c is

usually in powers of 2 and c ≤ 4096. Fig. 2.1 shows the important blocks for JPEG 2000

compression algorithm. The bit rate control and resilience to the transmission error are

the major benefits achieved through this code-block representation.

2.1.3 Entropy Block Coding with Optimized Truncation (EBCOT)

EBCOT, the entropy coding paradigm used in JPEG 2000 framework requires code-blocks

of the wavelet sub-bands to generate the codestream of the given input data. EBCOT is

subdivided into two steps: i) Tier-1 ; and ii) Tier-2 encoding [18].

Tier-1 Encoding

In Tier-1 encoding, each code-block associated with each wavelet sub-bands is entropy-

coded using: i) Context Modelling; and ii) Arithmetic coding.

The code-block associated with each wavelet sub-band is represented in the form of

bit-planes. Contextual information of bit planes of these code-blocks that is achieved

by analyzing the neighborhood of these code-blocks can be obtained from three coding

passes: significance propagation pass, magnitude refinement pass and clean up pass. In

significant propagation pass, the bit is encoded if it is not significant or with at least

one significant neighbor. In magnitude refinement pass, all the bits that are significant

in the previous pass are coded and finally all the bits that are not coded are encoded

in the cleanup pass. The contextual information of these code-blocks is encoded from

Most Significant Bit (MSB) to Least Significant Bit (LSB) to obtain the compressed bit

stream, which is performed in the Tier-1 coding of EBCOT. The contextual information

obtained from these coding passes are then encoded using arithmetic binary MQ-coder

which results in a bitstream of a given input image.

Tier-2 Encoding

In Tier-2 encoding, the compressed bit streams are organized into several packets and

layers based on the resolution, component, spatial area and quality. Packet structure

contains information about a few spatially consistent subgroups of code-block within a

particular resolution, quality or level [18]. This packet structure organization allows to
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access the compressed bit stream of any resolution, level or component without decoding

the entire compressed image. Each packet contains a header that provides information

regarding the codestream associated with it. The packet structure provides information

regarding the number of coding passes, zero-bit plane information, the size of the data

obtained from a given code-block. This information is obtained in the header of a packet.

One main header is associated with the compressed codestream of a given image. This

main header includes information regarding the size of the image/tile, the number of

wavelet decomposition used for each spectral band/image/tile, type of quantization used

before entropy coding and several others. This freedom to access information regarding

any level, resolution or component without decoding the entire compressed image is often

termed as ‘scalability’. This arrangement allows a progressive encoding as well as

decoding that can be utilized to address image retrieval or scene classification problems

in JPEG 2000 compressed RS image archives.

2.1.4 Deep Neural Networks

Deep Neural Networks (DNNs) are a class of artificial neural networks (ANNs) that com-

prise of several non-linear operations that are used to learn hierarchical feature represen-

tations from a given set of images [24; 50].

A DNN generally comprises an input layer, multiple hidden layers and an output layer.

A DNN architecture consists of a minimum of three types of layers that helped to add the

term ’deep’ in a DNN. At each hidden layer, a discriminative set of feature representations

are learned based on the feature representations obtained from the preceding hidden layer.

Feature representations obtained from higher hidden layers are more discriminative as they

provide information such as edge, shape, etc. They have demonstrated their high feature

learning capability in several domains such as visual recognition, object detection, change

detection, classification and several others [28; 51]. These networks are inspired from the

ANNs, a class of neural networks that were developed from the biological neural networks

(which comprises human brain). Each layer constitutes a large number of neurons and

the input data is fed to these neurons. The non-linearity to a DNN model is provided by

the activation functions at each hidden layer. Each neuron in the hidden layer comprises

of these activation functions, which are mathematical representations that determine the

output of a particular neuron. Several types of activation functions were introduced to

the literature such as Sigmoid, , Leaky ReLU, etc [52]. As an example, ReLU activation

function can be defined as:

ReLU(z) = max{0, z} (2.4)

where, z is the input to a neuron in the hidden layer. The data required for a given DNN
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model can be categorized as: i) train, ii) validation and iii) test data sets. The training

set contains input data with their associated labels, which are used to learn the patterns

of the data, which are validated using the validation set (where the parameters of the

neural network is optimized). The test set contains a small subset of unlabelled data and

performance of the neural network is finally evaluated on the test set. Learning of a given

DNN can be categorised as: i) supervised ; and ii) unsupervised. In a supervised learning

scheme, the neural network is provided with labelled input data to train the model with

learned representations and predicts the class labels of the test set. In an unsupervised

learning scheme, the input data does not have an associated class label information and

the model automatically learns the pattern of the data automatically.

The performance of a neural network model mainly depends on a loss function, which

evaluates how well the given input dataset is modelled by the presented algorithm. The

aim of the considered model is to minimize the loss function to efficiently reduce the

distance between the training data and the expected outcome (class label). Mean squared

error (MSE), cross entropy function are some of the most commonly used loss functions

in the neural network models. The predicted outcomes obtained for all the input data

do not alone efficiently model the considered neural network architecture. Thus, the

generalisation capability of the proposed model is provided by the regularization function.

l1, l2, ridge regularization are some of the most commonly used regularization methods.

Although they have demonstrated impressive performance over several domains, still there

is a need to address several challenges. The two main challenges that are faced by the use of

DNNs are: i) overfitting; and ii) long computational time. Various DNN architectures such

as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short

Term Memory (LSTM) network were introduced to several RS domains. In the recent

years, experiments have shown the feasibility of using pre-trained deep architectures for

RS image scene classification tasks. Thus this approach gained increasing research interest

for several RS applications.

2.1.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), are a class of DNNs that employ the ’convolution’

operation in the hidden layers to perform a given task [24]. They are generally used when

the input is an image and have demonstrated their capability in image feature learning

and classification.

CNNs use a supervised learning scheme, where the network is trained using images

with their associated class labels. Given a set of labelled input data, CNNs train the

labelled data to learn the feature representations which are obtained using convolutional

operations. The supervised learning scheme of CNN uses backpropagation algorithm to
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Figure 2.3: Block scheme of the AlexNet architecture.

minimize the error between the input and predicted class labels. Figure 2.3 demonstrates

the block scheme of the AlexNet architecture. In the CNN architecture, one may notice

convolution and pooling (hidden) layers and finally a Fully Connected (FC) layer. Each

hidden layer in a CNN generally comprises of: i) convolutional; and ii) pooling layer.

Convolutional Layer

The convolutional layer obtains the feature representations of a given image that are

obtained based on a convolution operation between the considered filter and the input

image, which can be represented as,

Yi = Xi ~K (2.5)

where K represents the considered filter matrix, Xi represents the input image and Yi

represents the resultant matrix (feature map) obtained after the convolution operation.

A filter can be considered as a weight matrix that is used to obtain representative features

from the considered input image Xi. Each layer in a CNN represents varying features

obtained from the image. During training, the weights are randomly initialized and then

multiplied with the pixel values associated with the given filter. The filter of a given

size slides around the considered image and obtains the feature maps associated with it.

The pattern in which the filter slides across a given image is defined by the stride. If the

value of stride is one, then the output of the convolution operation is downsampled by

1. In addition to the stride value, the convolution layer requires the padding value to the

considered image. While performing convolution operation towards the edge of an image,

if the boundaries of the filter k is outside the image, then the resultant matrix cannot be

evaluated. To avoid this error, we add a zero-padding surrounding the considered image

(rows and columns). Padding maintains the information at the edges of an image that is

required during a convolution operation. The size of the resulting feature map is obtained
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as:

fsize =
w − k + 2p

s
+ 1 (2.6)

where fsize represents the size of the resultant feature map, w represents the width of

the input data, k denotes the filter size, p and s denote the value of the padding and

stride, respectively. CNNs are mostly considered with image recognition, classification

tasks because the filter k is shared with many images at several positions which reduces

the number of parameters required by the CNN network. The value of the filter usually

varies from 2× 2 to 9× 9.

Pooling Layer

After the convolutional layer, the pooling layer results in the downsampled size of the

feature maps obtained [24]. The downsampled feature maps represents the features ob-

tained after the convolutional layer which are mostly invariant to translation. Generally,

two types of pooling operations are used in CNNs: i) average pooling and ii) max pool-

ing. Given a filter size, average pooling obtains the average of the pixel values in the

considered filter of the feature map whereas max pooling obtains the maximum value of

the feature map in the considered neighborhood. In addition to translation invariance,

the pooling layer reduces the number of hyperparameters required which is achieved from

the reduction in the spatial dimension of the feature maps obtained and also reduces the

overfitting of the data.

Fully Connected (FC) Layer

The feature maps obtained after the convolution and pooling layers is represented in a

’flattened’ form using a FC layer. If the aim is to perform scene classification of images

associated with single labels, the values in these flattened vector represents the proba-

bilities of the class labels associated with a given image. As an example, if the given

image belongs to ’residential’ category, the FC vector will have higher probability values

associated with the residential class. The initial FC layers take as input the feature maps

along with their corresponding weights to predict the associated class label. The final

FC layer that consists of number of neurons equivalent to the number of classes in the

considered dataset provides the estimated probabilities along with their class labels.
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Chapter 3

State of the art in Compressed

domain CBIR and Scene

Classification

This chapter provides the state-of-the-art for CBIR in RS, existing approaches in JPEG

2000 compressed domain and scene classification of RS images using deep learning tech-

niques.

In this chapter, we provide a state-of-the-art analysis of the existing image retrieval

and scene classification approaches in RS. Existing studies to perform image retrieval

and scene classification for real large-scale RS image archives requires full decompression

of RS images which is a computationally demanding task to perform. The continuous

growth in the amount of compressed RS images demands developing efficient methods to

perform image retrieval and classification. Several operational satellites such as Sentinel

2, PRISMA uses JPEG 2000 algorithm that uses wavelet based compression technique to

store their images. In computer vision and pattern recognition, few studies highlight the

potential of developing novel retrieval and classification approaches in compressed domain

which has not yet been addressed to RS images.

This thesis focuses on developing novel methods to achieve computationally efficient

image retrieval and scene classification in compressed RS image archives. Thus, section

3.1 discusses the existing image retrieval techniques in both computer vision as well as

RS. Section 3.2 provides the state-of-the-art methods for scene classification in RS using

deep learning techniques. Section 3.3 discusses the existing methods that use JPEG 2000

compressed domain features in computer vision and pattern recognition.
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3.1 Remote Sensing Content Based Image Retrieval Systems

In view of the limitations that exist in conventional RS image retrieval systems as well as

the increasing availability of massive amount of compressed RS data, developing efficient

CBIR systems in compressed domain is one among the major challenges faced by the RS

society. A general RS CBIR system mainly comprises two steps: i) Feature Extraction;

and ii) Similarity Assessment [21]. Performance of a given CBIR system mainly depends

on:

1. effective modelling of feature descriptors for a given image, and

2. adept assessment of similarity between the query image and archive images.

Feature descriptors, which represents mathematical representations of a given image,

can be mainly categorized into two i) conventional and ii) learned, based on the analysis

of how they are obtained. Conventional (traditional) feature descriptors generally obtain

spectral, texture, edge, shape or intensity information using a single (global) represen-

tation for a given image. Spectral histograms [53], one among the earliest and simplest

global descriptor, is obtained by considering the marginal distributions obtained through

the responses of a given filter applied to a given image. Although these descriptors are

rotation and translation invariant, they are illumination sensitive [54]. Based on the ad-

vancing imaging technologies used to capture the RS data, images in the archive may

be affected by varying illumination conditions and further leads to a poor performance

of the CBIR system. Texture features, obtained using Grey level Co-occurrence Ma-

trix (GLCM), Local Binary Pattern (LBP) and its variants, Gabor descriptor have been

widely studied to address image retrieval problems in RS image archives. These repre-

sentations are obtained from statistical analysis of a given image or local image regions.

GLCM descriptor analyzes the inherent properties of a given image such as contrast, ho-

mogeneity, entropy, correlation coefficient, energy and several others [32; 55; 56; 57]. LBP

and its several variants models patterns present in a given image by considering a pixel

along with its surrounding neighborhood using binary codes has been found very effective

in RS CBIR [58; 59; 60; 61]. Similar to LBP, Gabor filter characterizes a given image

by analyzing the frequency distribution in the neighborhood of a given pixel [62]. Edge

features such as Histogram of Gradients (HOG), mathematical morphological operators

have also been studied to address image retrieval problems [36; 63; 64]. Global texture

features obtained from varying image scales has contributed to an improvement in the

performance when compared to the global image descriptors obtained at a single scale.

Considering the complexities in RS images, the performance of these aforementioned

low-level global feature representations to address image retrieval problems in real large-

scale archive is very low. In addition, these features do not consider the additional spatial
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or contextual information that exist within the sub-regions of high-resolution RS images

which could hasten the performance of a given CBIR system. Thus, global representa-

tion of feature descriptors obtained from several local regions (local-global representa-

tions) were considered. One such representation is the Scale-Invariant Feature Transform

(SIFT), which was proposed to capture the additional contextual information where the

features are obtained from several key-points (interest-points) obtained over a given im-

age [36; 65]. Further, their representation of bag-of-visual-words (BoVW) as well as

extended BoVW were introduced to image retrieval problems in RS [36]. Graph based

representations, where the nodes represent the region attributes and the edges represent

the spatial relationship between the regions were also proposed in RS CBIR [21]. Hash-

ing based methods were introduced where the images are represented using binary hash

codes to reduce the memory requirements also received increasing attention to RS image

retrieval problems [34; 66]. In addition to BoVW, Vector of Locally Aggregated Descrip-

tors (VLAD) was also another locally aggregated global representation of the features

obtained [67; 68].

In the recent years, the potential of DL methods to learn the high-level semantic

content of RS images has shown remarkable improvements in the retrieval performance

when compared to traditional descriptors for large-scale RS image archives. In [27], the

retrieval system utilizes the features obtained from the CNN to perform image retrieval

by considering the weight of each class in the given query image. Features obtained from a

CNN network can be directly obtained from the feature maps obtained after convolution

or max-pooling as well as from the FC layer. However, these high-dimensional features

require huge storage requirements which incur additional costs. To address this, Zhou et

al. [69] proposed a CNN networks that uses a three-layer perceptron to represent deep

features at a lower dimension. DL methods were also presented in the context of hashing

to generate semantically efficient CNN features and binary hash codes by considering

cross-entropy loss [70]. To consider scale variation of images in the archive, multi-scale

CNN (MCNN) was proposed to model RS images where representational deep features

are obtained [71]. However, training each CNN separately for images at varying scales is

cost-ineffective and computationally-demanding.

After obtaining the feature descriptors, the next step is to assess the similarity between

the query image and the archive images. One of the simplest measures used to calculate

the similarity is the k -nearest neighbour (k -nn) approach where the feature descriptor of

a given query image is used to obtain the first k best matches from the image archive

[22]. The similarity can also be computed using the distance measures such as Euclidean

distance, cosine similarity, Minkowski, Histogram Intersection (HI), Kullback Leibler Di-

vergence (KLD) and several others. When the feature descriptors obtained are histogram
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representations, HI is commonly used. For statistical representations obtained from the

images KLD, earth movers distance, wasserstein distance and several others measures are

used [72]. When RS images are modelled using graphs, methods such as inexact graph

matching strategy as presented in [21] is used to assess similarity. Image retrieval can also

be considered as a binary classification problem where there is a subset of relevant and

irrelevant images to a given query image. In this case, we can consider image retrieval

as a binary classification problem. Binary classifiers such as Support Vector Machines

(SVMs), Maximum Likelihood Classifiers (MLCs) were used to to address RS image re-

trieval [73; 74]. When RS images are represented using binary hash codes, hamming

distance measure is used to calculate the similarity [75; 76]. Spatial pyramid matching

(SPM) technique was proposed to model the local information of the images obtained

at several resolutions [77]. The local information obtained using BOVW histogram rep-

resentation from several resolutions are concatenated together to form the SPM feature

descriptor. However, they do not model the spectral information within the RS images

and thus, spatial-spectral pyramid matching (SSPM) technique was proposed to classify

hyperspectral RS images [78]. To reduce the classifiers error which are used to improve

the retrieval performance, Relevance Feedback (RF) was proposed where the user provides

feedback to examine the retrieved results [33].

3.2 Scene Classification using DL approaches in RS

In the recent years, the potential of DL methods to perform scene classification of RS im-

ages gained huge popularity due to its ability to learn the underlying high-level semantic

content of the images. Several efforts were carried out to develop effective scene classifi-

cation approaches in RS image archives. The main goal of any scene classification task

is to assign a class label to an image based on the analysis of the feature representations

obtained from them. Scene classification for RS images was conventionally performed

using several handcrafted features such as LBP, spectral histogram, GLCM and several

others. However, the performance of these handcrafted features are very shallow and

require human intelligence to obtain them which is a computationally demanding task

as well as incur additional labor costs. Recently, DL approaches has shown remarkable

improvements in performance in several domains in particular image scene classification.

CNN is one among the most popular DL algorithms that has shown its ability to learn

high-level semantic patterns in RS images and has demonstrated impressive improvements

in performance over traditional scene classification approaches. In the early years, train-

ing the CNN model from scratch was considered to perform RS image scene classification.

However, recently, it is shown that the use of pretrained models such as AlexNet [79],
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GoogleNet [80], VGG16 [81], CaffeNet [82] for RS images has helped to improve the scene

classification performance [37]. Two limitations arise while using pretrained models in

CNNs: i) image size constraint; and ii) overfitting problem, which leads to a decrease

in classification performance. In addition, the features obtained from high-level convo-

lutional layers are abstract and may not efficiently characterise objects present in the

considered image. To address this, Guoli et al. [83] proposed a novel approach that in-

tegrate the deep features obtained from intermediate convolutional layers to improve the

discriminative power of the feature descriptors and classification accuracy. However, this

approach do not consider the images at varying resolutions which are present in large-scale

RS image archives. In view of this, Zheng et al. [26] proposed a deep representation where

the feature representations at multiple scales are obtained from the image feature maps

using multiscale pooling (MSP) to improve the classification performance. Also, several

efforts were also made to obtain features obtained at varying resolutions using parallel

CNNs [84]. However, the training time required for these parallel CNNs are computa-

tionally demanding and is less efficient when compared to the standard CNNs. To reduce

the number of parameters included in the FC layer, Boualleg et al. [85] introduced the

novel approach where the parameters obtained from the FC layer is reduced using deep

forest classifier. In CNN model, one may consider that the features obtained from the

final convolutional layer and FC layer depicts the local and global information obtained

from the image. In [86], the proposed approach considers the combination of global and

rearranged local features to obtain representation with higher discriminative power to

perform scene classification.

Another notable class of DNN model are the Autoencoders (AE) that learns the com-

pressed image representations to perform scene classification [23; 40; 43]. Chen et al. [25]

proposed a novel DL architecture that uses stacked AEs to obtain highly representative

descriptors by combining the spatial information and deep features for hyperspectral im-

ages (HSI). They have shown remarkable improvement in classification performance over

traditional HSI classification methods. Following this, Ma e al. [87] proposed a frame-

work where both spatial and spectral information obtained from the HSI are considered

for classification. In [88], a two stream DNN framework was proposed where spectral

and spatial information are fed separately to perform HSI classification. They proposed a

weighted class probability fusion scheme to assign weights to features obtained from two

separate streams and has shown improvement when compared to state-of-the-art meth-

ods. However, considering the time demanding task of considering many hypercubes in

the nodes of hidden layers, a segmented stacked AE was proposed to handle subset of hy-

percubes at each segments [89]. To perform unsupervised deep feature extraction, sparse

AEs was considered. In [39], a hierarchical convolutional sparse AE was proposed that
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takes as input image patches to achieve discriminative features by considering the feature

maps obtained after pooling. Due to the limited availability of labeled samples, a novel

architecture that considers a siamese network and AE was proposed to perform scene

classification [90]. They utilised the ability of siamese network to increase the number

of training samples was utilized and AEs to learn the high-level semantic content. DL

models require large number of annotated training samples to learn the semantic struc-

ture of the data. Training models with limited number of training samples may result

in overfitting of the data. Inorder to alleviate the problem of overfitting that occur due

to the limited availability of training samples, recently Generative Adversarial Networks

(GANs) was introduced to RS scene classification problems.

In the recent years, GANs have demonstrated massive success in several RS domain in

particular scene classification[29; 42; 91; 92]. They generally have a generator (that learns

and generates the semantic content of the input data) and a discriminator (that classifies

the generated as well as the input data) network. MARTA GAN [93], was one among

the initial efforts made to exploit the performance of GAN in RS domain. They learn

the mid level features and global feature matching approach to improve the performance

of the state-of-the-art DL approaches. Zhu et al. [94] proposed a 1-D and 3-D GANs

to classify spatial and spatial-spectral information of hyperspectral images, respectively.

They use combination of two CNNs to generate and classify the hyperspectral images.

The performance of a given GAN model mainly depends on its ability to efficiently gen-

erate the images from the limited amount of given input data. In [30], an NL-GAN

was proposed to incorporate the non-local spatial information of the images to train the

GAN model and has shown improvement in the classification performance. In [95], a

semi-supervised hyperspectral GAN was proposed to achieve encouraging classification

performance with only limited number of labelled samples. The performance of GAN

model mainly depends on its ability to generate images as well as its discriminative capa-

bility in the generator and discriminator network, respectively. To address these issues, a

multiclass spatial-spectral GAN (MSGAN) was proposed in [96]. MSGAN also considers

the spatial-spectral information that is ignored otherwise in GAN models. The potential

of CNNs to learn high-level semantic representations of the image samples has led to the

introduction of deep convolutional GANs (DCGAN) [97]. Although GANs has proved

its ability to perform efficient scene classification, the training as well as optimization of

generator and discriminator network is computationally demanding when compared to

other DL models.

Recurrent Neural Networks (RNNs) is another branch of DL models that has become

popular in RS domain due to its ability to remember and predict past and future instances,

respectively [98; 99; 100; 101]. It has been widely used in RS time series studies and has
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recently become popular to address scene classification problems. In Mou et al. [31], the

proposed approach considers RNN model for the first time to perform scene classification

for hyperspectral images. They propose a novel parametric named as rectified tanh ac-

tivation function to analyze sequential hyperspectral data and has achieved remarkable

classification performance. Although RNN has demonstrated good scene classification

performance, they endure gradient vanishing problem that deteriorated its capability to

learn the previous instances. To address this, Long Short-Term Memory (LSTM) network

was introduced to improve the overall performance. To further explore the co-occurrence

relationship between various classes, a bidirectional attention network was proposed in

[102]. In [41], a novel framework is considered where the high-level semantic as well as

spatial features are given attention to improve the classification accuracy. In the consid-

ered work, they propose a method to reduce the required number of parameters of the DL

model by considering simple vector of the features obtained to feed into a network that

considered relevant image regions required for classification. The fact that the classifica-

tion performance could be improved by considering the relevant areas within an image

has encouraged to introduce attention mechanisms. Attention mechanism learn discrimi-

native relevant image features from specific region by avoiding the redundant information

obtained from irrelevant image regions. Sumbul and Demir [103] proposed a novel at-

tention scheme that considers the local image descriptors obtained from relevant image

regions. The fact that the classification performance could be improved by considering

local as well as global features is utilized in a novel local-global attention framework is

considered in [38]. Despite the computational complexity endured in training the DL

models, they have shown impressive classification performance and has huge potential to

address many research problems.

3.3 Existing JPEG 2000 based feature descriptors

Although all the aforementioned scene classification and retrieval methods (Section 3.1

and 3.3) has shown remarkable performance, they require full decompression of the im-

ages before performing the retrieval or classification tasks. In computer vision and pattern

recognition, several notable efforts were carried out to model the partially-decoded com-

pressed image representations obtained while using JPEG 2000 algorithm. When JPEG

2000 is considered, two types of feature descriptors can be obtained: i) header-based;

and ii) wavelet-based features [104]. Header-based features are obtained directly from the

codestreams of a given image while wavelet-based features are obtained from the partially-

decoded wavelet coefficients (which are obtained from the sub-bands). Zargari et al. [105]

proposed an image retrieval approach where feature descriptors such as Maximum Bit His-
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togram (MBH), Importance Histogram, Compression Rate Vector are obtained directly

from the packet header information associated with a given code-block. In addition, it

is also possible to obtain the number of entropy coded bytes that were used to encode

a given code-block associated with a particular wavelet sub-band. In [106], they use the

number of zero bitplanes present in a given a code-block. However, the discrimination

power associated with these features are not effective when compared to the features that

are obtained from the partially decoded wavelet coefficients. In the past decade, many ef-

forts were put-forth to obtain efficient features from the wavelet sub-bands and has shown

to be effective to perform image classification/retrieval tasks.

The simplest and the most widely used texture descriptor that can be obtained from

the wavelet sub-band is the energy and mean descriptor which is obtained by calculating

the sum of squares and obtaining the mean of all the wavelet coefficients. However, en-

ergy descriptor neglects the semantic contents of the RS image and results in a very low

retrieval performance. In some studies, attempts were carried out to obtain the HOG,

GLCM, LBP descriptors from each wavelet sub-band for face recognition as well as clas-

sification tasks [107; 108; 109]. In [110], the proposed approach obtains histogram of the

local energy calculated at several patches of the wavelet sub-bands to perform texture

classification. However, calculating these descriptors from all the wavelet sub-bands at

each resolution and finally aggregating them is time-demanding as well as less efficient

when considering real large-scale RS image archives. Several efforts were made to use

mathematical morphological operations such as dilation and erosion when applied to im-

ages allows to obtain the shape information [56; 63]. Later, it was observed that all the

detail wavelet sub-bands demonstrate a near-Gaussian behavior and thereby several efforts

were put-forth to model them using Generalized Gaussian Distribution (GGD) [111; 112].

Teynor et al. [53] attempts to model the detail wavelet sub-bands using Gaussian Mixture

Model (GMM) and approximation coefficients using the color histograms. They observed

that the performance of GMM is superior over GGD for CBIR. Another variant of GGD

and GMM was Generalized Gamma Distribution (GΓD) used for image classification and

retrieval [113]. Although these statistical representations works efficiently, they are com-

putationally expensive and time demanding. They combine the edge information obtained

from the moduli of the horizontal and vertical wavelet coefficients with the angle or the

orientation of the images that is obtained using the tangent of the wavelet coefficients

of the horizontal and vertical wavelet sub-bands at each resolution. Considering the sce-

nario, there are no related efforts that were made to address the classification or retrieval

of images from JPEG 2000 compressed RS image archives.



Chapter 4

A Progressive Content Based Image

Retrieval in JPEG 2000 Compressed

Remote Sensing Archives

In this chapter we present a novel CBIR system that achieves a coarse to fine progres-

sive RS image description and retrieval in the partially decoded JPEG 2000 compressed

domain. The proposed system initially: i) decodes the code-blocks associated only to the

coarse wavelet resolution, and ii) discards the most irrelevant images to the query im-

age based on the similarities computed on the coarse resolution wavelet features of the

query and archive images. Then, the code-blocks associated to the sub-sequent resolution

of the remaining images are decoded and the most irrelevant images are discarded by com-

puting similarities considering the image features associated to both resolutions. This is

achieved by using the pyramid match kernel similarity measure that assigns higher weights

to the features associated to the finer wavelet resolution than to those related to the coarse

wavelet resolution. These processes are iterated until the codestreams associated to the

highest wavelet resolution are decoded. Then, the final retrieval is performed on a very

small set of completely decoded images. Experimental results obtained on two benchmark

archives of aerial images point out that the proposed system is much faster while providing

a similar retrieval accuracy than the standard CBIR systems.

Part of the chapter appears in:

1. Byju, A. P., Demir, B., Bruzzone., ’A Progressive Content Based Image Retrieval in JPEG 2000 Com-

pressed Remote Sensing Archives’, IEEE Transactions on Geoscience and Remote Sensing, accepted for

publication, 2020.
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4.1 Introduction

Recent developments in satellite technologies witnessed a massive accumulation of huge

amounts of data (petabytes) in RS image archives. Effective utilization (such as stor-

age, management and retrieval) of such huge amounts of data has become one among

the challenging issues faced by the RS community. Developing efficient solutions to ef-

fectively exploit these data using CBIR techniques is one of the most researched topics

in RS. However, in order to reduce the necessary storage requirements, RS images are

compressed before being stored in any archive [7; 8; 9; 10; 11; 12; 13]. This intensifies the

challenges involved in retrieving images from large-scale compressed RS image archives.

In computer vision and pattern recognition, few efforts were made to develop image re-

trieval techniques in compressed image archives. Although most of the existing RS CBIR

systems work efficiently (see Section 3.1), they require fully decompressed images as in-

put to the system to perform the image retrieval task. Considering the gigabytes worthy

images that are stored per day, applying decompression, obtaining feature descriptors

and assessing similarity to each image in the archive is impractical in real large-scale RS

image archives. In view of this, it is crucial to develop efficient image retrieval techniques

that: (i) minimize the amount of decompression required for the images; and (ii) achieve

similar performance when compared to the CBIR systems that require fully decompressed

images.

In this chapter, we present a novel progressive CBIR system that performs image re-

trieval in compressed RS image archives. We assume that the images in the archive are

compressed using the JPEG 2000 compression algorithm. In view of this, the proposed

system aims to minimize the amount of decompression applied to the images before the

retrieval is performed in real large-scale RS image archives. Here, we present a novel

system that: i) initially takes the codestreams associated with the coarsest wavelet res-

olution to obtain the feature descriptors; ii) performs a weighted kernel based similarity

assessment using pyramid match (PM) kernel to discard irrelevant images using the set

of features obtained. Further, code-blocks at a finer level associated with the remaining

subset of relevant images are estimated to compute the similarity considering the descrip-

tors obtained from both previous as well as the current wavelet resolution to identify the

first relevant images to be retrieved. The proposed system is completely unsupervised and

can be adapted to any image descriptor that can accurately describe wavelet coefficients.

Experimental results obtained on two benchmark archives demonstrate the effectiveness

of the proposed system.
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Figure 4.1: Block scheme of the proposed coarse to fine progressive RS CBIR system within the

JPEG 2000 framework.

4.2 Proposed CBIR system

4.2.1 Problem formulation

Let X = {Xi}Ni=1 be an archive that consists of a large number of N JPEG 2000 com-

pressed RS images, where Xi represents the i -th compressed image. Given a query image

(Xq ∈ X or Xq /∈ X ) the main objective of the proposed system is to retrieve a set of

relevant images Xrel⊂ X from the archive X that are semantically similar to Xq without

fully decoding all the images in X. We assume that images in the archive are compressed

by using the JPEG 2000 algorithm based on L wavelet decomposition levels, i.e. an image

Xi has one low-pass sub-band (approximation sub-band) and 3L high-pass (horizontal,

vertical and diagonal) sub-bands. Thus, the total number of sub-bands for a given image

with L decomposition levels is 3L+1. When JPEG 2000 is considered, the simplest ap-

proach to perform image retrieval consists of three main steps: 1) entropy-decoding of all

the images in the archive X, 2) extraction of image descriptors, and 3) analysis of sim-

ilarity and retrieval of images relevant to the query image. However, entropy-decoding

all the N images up to L decomposition levels in a large-scale image archive is time-

consuming and computationally challenging. To address this problem, we present a novel

CBIR system that achieves a coarse to fine progressive RS image description and retrieval

in the partially decoded JPEG 2000 compressed domain. Fig. 4.1 shows the general

block scheme of the proposed system. In the following sub-sections, we initially introduce

the method used for characterization of wavelet decomposition levels and then provide

detailed explanation on the proposed CBIR system.
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4.2.2 Characterization of Wavelet Decomposition Levels

In this chapter, we characterize each wavelet decomposition level with the texture descrip-

tors proposed in [114] as the magnitude of wavelet frame coefficients. Let hlXi
and vlXi

be

the horizontal and vertical sub-bands of an image Xi at the l -th wavelet decomposition

level. To define the texture descriptor H l
Xi

of the l -th level, the moduli ϕl
Xi

(u, v) of the

horizontal and vertical detail coefficients are initially calculated as follows:

ϕl
Xi

(i, j) =
√

[hlXi
(i, j) + vlXi

(i, j)]2, i = 1, 2, ...m;

j = 1, 2, ...n
(4.1)

where hlXi
(i, j) and vlXi

(i, j) represent horizontal and vertical coefficients, respectively,

which are associated to the sample location (i, j) for the l -th sub-band of m×n size. Then

the histogram H l
Xi

of ϕl
Xi

(i, j), i = 1, 2, ...m; j = 1, 2, ...n, which models the distribution of

the moduli obtained from the sum of squares of horizontal and vertical wavelet sub-band

coefficients, is taken as the descriptor of the l -th wavelet resolution. In order to estimate

the histogram H l
Xi

, initially the range of possible values are defined by the minimum

and maximum sample values of ϕl
Xi

(independently from the other wavelet decomposition

levels) and the range is divided into r histogram intervals (i.e., r histogram bins). Then,

the histogram H l
Xi

is computed by counting how many of the patterns belong to each

interval. Accordingly, the histogram describes a feature vector consisting of a marginal

distribution of moduli of wavelet horizontal and vertical detail coefficients. Note that

if a sufficient number r of histogram bins is defined, the histogram can represent the

underlying distribution with a high precision. Thus, the histogram associated with each

wavelet decomposition level of each image is capable of effectively capturing the texture

content of the related image. It is worth noting that texture descriptors obtained from the

lowest wavelet resolution are able to capture the global structure (coarse-scale objects) of

an image, whereas the texture descriptors obtained from the higher wavelet resolutions

are able to capture local detailed information (fine-scale objects). It is worth noting that

the texture descriptor is a histogram-based descriptor and thus rotation and translation

invariant. However, it is not scale invariant and does not explicitly model the different

illumination conditions. In any case, the proposed system is independent from the selected

descriptor and any descriptor that can accurately describe the wavelet coefficients can be

used.

4.2.3 Proposed Progressive CBIR System

The proposed progressive CBIR system initially decodes the code streams associated

with the lowest wavelet resolution (i.e., L-th level) for all N images in the archive and
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then extracts the texture descriptor HL
Xi

[where l=L in (4.1)] that models the marginal

distribution of moduli of wavelet horizontal and vertical detail coefficients at the L-the

level. Then, the similarities between the descriptors HL
Xi

and that of the query image HL
Xq

are measured by the Histogram Intersection (HI) kernel that is defined as [115]:

HI(HL
Xq
, HL

Xi
) =

r∑
i=1

min(Hr
Xq
, Hr

Xi
) (4.2)

where r represents the number of histogram intervals. Then, the most dissimilar images

to the query image, which are associated to the lowest similarity values, are discarded

and X is updated. The next step starts by: i) decoding the code-blocks associated to

the subsequent resolution level (i.e., l=L-1) of the remaining images in the archive and

the query image; and ii) extracting their texture descriptor HL−1
Xi

. Accordingly, each re-

maining image in X and the query image are represented by increasingly fine descriptors

associated to the first two wavelet resolutions. It is worth noting that descriptors associ-

ated to higher wavelet resolutions are capable of modeling more detailed information of

the fine-scale objects in the images with respect to those associated to the lower wavelet

resolutions. Thus, while estimating similarities between the query image and remaining

images, we give higher weight values wL−1 to the descriptors associated to the (L-1)-th

wavelet resolution than to weight values wL of the descriptors associated to the coarsest

L-th wavelet resolution. This is done by using the pyramid match (PM) kernel similar-

ity measure [116], which computes the weighted sum of all the implicit correspondences

between the texture descriptors of the different wavelet decomposition levels by both con-

sidering their weights and preserving their individual distinctness at each level. The PM

kernel takes a weighted sum of the number of matches (i.e., the number of samples that

fall into the same histogram interval) that occur at each level of resolution, by assigning

higher weights to the matches found at higher resolution with respect to those found at

coarser resolutions. The PM kernel is defined as [116]:

PM(H l
Xq
, H l

Xi
) =

L∑
m=l

wmNm, with l < L (4.3)

where, as suggested in [116], wm = 1/2m−1 and Nm shows the implicit partial correspon-

dence between any two successive wavelet decomposition levels. Note that the number of

matches found at level L can also include all the matches found at the finer level (L-1).

Thus, the number of new matches found at level L is given by:

Nm = HI(Hm
Xq
, Hm

Xi
)−HI(Hm−1

Xq
, Hm−1

Xi
) (4.4)

where m = 1,2,...L denotes the wavelet decomposition level. It is worth noting that the

PM kernel similarity measure is presented in [116] to assess the implicit partial match-
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ing correspondences between two multiresolution histograms to achieve a discriminative

classification of variable feature sets. In this chapter, we exploit it for estimating the simi-

larity among the image descriptors that are associated to different wavelet decomposition

levels.

After estimating the PM similarities, the most irrelevant images are discarded and

X is updated. Then next step starts by decoding the code-blocks associated to the

subsequent resolution (i.e., l=L-2) of the remaining images in X and describing the images

by increasingly fine descriptors associated to the three wavelet resolutions. The image

similarities are estimated by (4.4) including the three descriptors with their associated

weight values, and most irrelevant images are discarded. These decoding and discarding

processes are iterated until the code streams associated to the highest wavelet resolution

(i.e., when l=1) are decoded. Then the most similar images to the query are selected.

If the images in the archive are decomposed up to L wavelet levels, then the number

of stages that discards irrelevant images in the proposed system will be L-1. Due to the

progressive coarse to fine CBIR mechanism, the proposed system exploits a multiresolution

and hierarchical feature space to accomplish a progressive RS CBIR with an optimal use

of resources in terms of retrieval and decoding time. It is also worth noting that in the

final retrieval of the proposed CBIR system using the fine features, any search strategy

can be adopted.

4.3 Dataset description and experimental setup

To evaluate the effectiveness of the proposed system, we performed several experiments on

two benchmark archives. The first one is the widely used UCMERCED benchmark archive

that consists of 2100 images of size 256×256 pixels selected from aerial orthoimagery with

a spatial resolution of 30 cm [36]. Images are obtained from USGS National Map Urban

Area Imagery collection of the following U.S. regions: Birmingham, Boston, Buffalo,

Columbus, Dallas, Harrisburg, Houston, Jacksonville, Las Vegas, Los Angeles, Miami,

Napa, New York, Reno, San Diego, Santa Barbara, Seattle, Tampa, Tucson and Ventura.

To evaluate the performance of the proposed method, we considered the annotations of the

images with multi-labels. The total number of the multi-labels is 17 (which are: airplane;

bare-soil; buildings; cars; chaparral; court; dock; field; grass; mobile-home; pavement;

sand; sea; ship; tanks; trees; water), while the number of labels associated with each

image varies between 1 and 7 [117]. For the example of images with their associated

multi-labels the reader is referred to [117].

The second archive is the AID benchmark archive that consists of 10,000 aerial images

Annotations are available at ‘http://bigearth.eu/datasets.html’.



Dataset description and experimental setup 35

of size 600×600 pixels with spatial resolution variable between 0.5 m. and 8 m. To assess

the effectiveness of the proposed system, we considered the annotations of the images

with single labels. The total number of single labels is 30 (i.e., airport, bare land, baseball

field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest,

industrial, meadow, medium residential, mountain, park, parking, playground, pond, port,

railway station, resort, river, school, sparse residential, square, stadium, storage tanks and

viaduct). For examples of images and their labels the reader is referred to [37].

To assess the effectiveness of the proposed system, the images of both archives were

initially compressed by the JPEG 2000 algorithm by using 3 wavelet decomposition levels

(i.e., L = 3). It is worth noting that since the size of the code-block used to obtain

the JPEG 2000 compressed codestream must not be less than 32 × 32 pixels to obtain

relevant information from the compressed images, in both archives it is not possible to

use L > 3. Each sub-band is represented by a 24-dimensional feature descriptor. After

decoding the code streams associated to the lowest decomposition level (l=3), T1 of the

most irrelevant images are discarded, where T1 represents the percentage of discarded

images. Then, T2 of the most irrelevant images are discarded after decoding the second

lowest decomposition level (l=2), where T2 represents the percentage of discarded images

at the second level. Finally, the image retrieval is performed based on the k -nearest

neighbor (k -nn) search strategy by using jointly with the features obtained from the

highest wavelet decomposition level and the previous levels from the remaining subset of

relevant images.

Results of each system for the UCMERCED archive are provided in terms of: i)

average recall, ii) average precision, and iii) average computational time obtained in 2100

trials performed with 2100 selected query images from the archive. For the details on

how the recall and precision are calculated in the framework of multi-label image search

and retrieval problems, the reader is referred to [117]. The results obtained for the AID

archive are provided in terms of (i) average precision, and (ii) average computational time

associated to 10,000 trials with 10,000 selected query images from the archive. Note that

while we estimate the average precision and recall for multi-label image retrieval, for the

single label case, average precision and recall reduce to the same performance measures as

that of the multi-label image retrieval. Thus, we report only the average precision values

for the single label retrieval experiments. The retrieval performance for both archives

was assessed on the top-20 retrieved images. All the experiments are implemented via

MATLAB® on a standard PC with Intel®Xeon®CPU i3-6100 @ 3.40GHz, 16GB RAM.
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4.4 Experimental Results

We carried out several experiments in order to: 1) compare the effectiveness of the con-

sidered descriptor that models the distribution of moduli of the horizontal and vertical

detail coefficients (called as the DMHV descriptor hereafter) with respect to the popular

descriptors that model the wavelet coefficients; 2) performance analysis with respect to

varying values of T1 and T2 of discarded images after decoding code streams associated

with the first two wavelet decomposition levels; and 3) evaluate and compare the effec-

tiveness of the proposed system with respect to (i) a standard-CBIR system using SIFT

features obtained from fully-decoded images; (ii) a standard-CBIR system using DMHV

descriptors without coarse to fine strategy.

4.4.1 Comparison of the image descriptors in the compressed domain

In the first set of trials, we analyze and compare the effectiveness of the DMHV descriptor

with the widely used descriptors adapted with wavelet coefficients in the literature. The

selected descriptors are: 1) the extended energy signature (EES) [118]; 2) the local binary

pattern (LBP) [59]; 3) the gray level co-occurrence matrix (GLCM) based measure [57];

4) the joint use of the EES and the LBP; and 5) the local energy histogram (LEH) [110].

To have a fair comparison, we applied the DMHV descriptor to the entropy decoding of all

wavelet decomposition levels (i.e., the coarse to fine retrieval strategy is not considered).

Tables 4.1 and 4.2 show the results obtained for the UCMERCED and AID archives,

respectively. From the tables, one can observe that the DMHV descriptor provides the

highest accuracy for both archives. This is achieved at the cost of increasing the required

computational time. The GLCM-based descriptor provides the second best performance.

In detail, the DMHV descriptor results in an improvement of almost 6.34% and 6.86%

in average precision and average recall, respectively for the UCMERCED archive when

compared to the GLCM based descriptor with slightly higher computational time.

Fig. 4.2 and 4.3 show an example of images retrieved from the UCMERCED and AID

archives, respectively, by considering all the above-mentioned descriptors. In Fig. 4.2 the

query image includes bare soil, buildings, cars, pavement and trees. The retrieval order and

the multi-labels associated with each image are given above and below the related image,

respectively. By analyzing the figure one can observe that all the images retrieved by

using the proposed DMHV descriptor [see Fig. 4.2(g)] contain almost all the class labels

included in the query image. On the contrary, the images retrieved by using the other

descriptors mostly contain only one or two of the class labels [see Fig. 4.2(b-f)]. In Fig.

4.3 the selected query image is from dense residential category and the retrieved images

with their associated single labels are provided below the related image. By analyzing
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Table 4.1: Comparison of the performance for different descriptors (UCMERCED archive).

Descriptors
Average

Precision (%)

Average

Recall (%)

Feature

Extraction

time (

seconds)

EES [18] 59.80 61.73 7.11

LBP [59] 47.76 47.79 9.08

GLCM [57] 61.84 64.01 34.28

EES and LBP 59.24 60.84 20.97

LEH [110] 59.80 62.18 11.07

DMHV 68.18 70.87 29.08

Table 4.2: Comparison of the performance for different descriptors (AID archive).

Performance Metric EES [18] LBP [59] GLCM [57] EES and LBP LEH [110] DMHV

Average

Precision (%)
51.34 49.97 52.97 51.17 50.57 59.97

Feature Extraction

Time (seconds)
23.14 30.61 73.91 65.73 40.57 75.59

Table 4.3: Average precision and recall for the proposed progressive coarse to fine RS CBIR

system at each level when T1=25% (UCMERCED archive).

Decomposition Levels Average Precision(%) Average Recall(%)

Level 1 (Coarsest Feature) 65.04 67.09

Level 2 (Fine Feature) 67.76 67.79

Level 3 (Finest Feature) 68.28 70.94

the figure one can observe that all the images retrieved by using the DMHV descriptor

[see Fig. 4.3(g)] belong to the dense residential category. When the other descriptors are

used, some irrelevant images associated with category labels airport, baseball field and

sparse residential are retrieved. By a visual analysis of all these results, we observe that

the DMHV descriptor accurately models the content associated with each query image,

resulting in retrieval of the visually most similar images from the archive.
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Figure 4.2: Example of (a) query image; and retrieved images by using (b) the EES descriptor,

(c) the LBP descriptor, (d) the GLCM descriptor, (e) a combination of the EES and the LBP

descriptors, (f) the LEH descriptor and (g) the DMHV descriptor (UCMERCED archive).

4.4.2 Performance of the proposed system versus T1 and T2 values

In this subsection, we analyze the performance of the proposed progressive-CBIR system

with respect to the parameters T1 and T2. Tables 4.3 and 4.4 report the performance

measures obtained after performing pyramid match kernel similarity measure using fea-

tures obtained from each wavelet decomposition level for UCMERCED and AID archives

respectively. By analyzing the tables, one can see that there is a significant improvement

in the performance measures when hierarchical weights are assigned to the progressively
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Figure 4.3: Example of (a) query image; and retrieved images by using (b) the EES descriptor,

(c) the LBP descriptor, (d) the GLCM descriptor, (e) a combination of the EES and the LBP

descriptors, (f) the LEH descriptor, and (g) the DMHV descriptor (AID archive).

obtained coarse to fine features in the proposed image retrieval system in the compressed

domain. The implicit correspondence between the feature sets obtained between any two
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(a) (b)

Figure 4.4: (a) Average precision and (b) average recall provided by the proposed PCF-CBIR

system versus T1 and T2 (UCMERCED archive).

Figure 4.5: Average precision provided by the proposed PCF-CBIR system versus T1 and T2

(AID archive).
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Table 4.4: Average precision for the proposed progressive coarse to fine RS CBIR system at

each level when T1=25% (AID archive).

Decomposition Levels Average Precision(%)

Level 1 (Coarsest Feature) 55.67

Level 2 (Fine Feature) 57.74

Level 3 (Finest Feature) 60.12

wavelet decomposition levels adds more discriminant texture information, which is utilized

to discard irrelevant images to the query image at a very early stage. In our experiments

the value of the parameter T1 that represents the percentage of images discarded at the

first level is varied in the range between 0% and 100% with step-size increment of 5%.

Fig. 4.4 and 4.5 show the performance of the proposed RS CBIR system in terms of

precision and recall versus the varying values of T1 and T2 for the UCMERCED and the

AID archives, respectively. By analyzing Fig. 4.4 (UCMERCED archive), one can notice

that there is no change in the performance measures when the value of T1 varies between

0% and 90%. This shows that the compressed domain texture features obtained at a very

coarse level are able to efficiently characterize the images in the archive. In other words,

we can conclude that the DMHV descriptor are able to efficiently discriminate 90% of the

images in the archive using only the coarser features. We can see a continuous decrease in

the performance metrics when T1>90% of the images are discarded at a very early stage

using coarse features because of discarding relevant images in the initial stage. This occurs

because descriptors obtained from the coarser resolution are able to characterize relevant

images with respect to the query image. From the Fig. 4.5 (AID archive) we observed

that there is no change in the precision values when the value of T1 varies between 0%

and 75%. This demonstrates the ability of the features obtained from the coarser level

to efficiently characterize images having varying spatial resolution in the AID archive.

Thus, the value of T1 should be selected on the basis of a trade-off analysis between

computational complexity and performance of the final retrieved images. On the basis of

these results, we fixed the value of T1 as 25%.

To further investigate the performance of the proposed system, we analyzed the char-

acteristics of the images that are discarded using the coarse features and second lowest

fine features. Fig. 4.6 and 4.7 show an example of the images discarded using the coars-

est features and the second lowest fine features for both the archives. In detail, Fig. 4.6

demonstrates the discarded images when a query image that contains bare soil, buildings,

cars, pavement, trees is selected from the UCMERCED archive. From the analysis, one

may observe that using only the coarsest level features, one can discard highly irrelevant
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bare soil, buildings, cars, pavement, trees

(a)

dock,
ship,water

trees grass, sand,
trees, water

mobile-home,
pavement,

trees

(b)

cars,
pavement,

trees

court, grass,
pavement

bare-soil,
grass,

buildings,
pavement

cars,
pavement,

trees

(c)

Figure 4.6: Example of (a) query image; (b) images discarded using coarsest features; and (c)

images discarded using second lowest fine features (UCMERCED archive).

images to the query image that contain labels such as dock, ship, water, forest, mobile-

home. This shows that the coarsest level features are enough to reject highly irrelevant

images from the archive at a very early stage. This further speeds up the proposed sys-

tem as only a subset of relevant images requires decoding. In the second iteration, using

the fine features, the system is able to discriminate properly highly similar images with

respect to the given query image. Thus, using the second lowest fine feature [see Fig.

4.6(c)] the images with more similar class label-sets such as cars, pavement, trees are dis-

carded. We observed similar results when the AID archive is considered. Fig. 4.7 shows

the images discarded when a query image is selected from dense residential category of

the AID archive. By analyzing the figure, one can observe that using only the coarsest

level features [see Fig. 4.7(b)], one can discard irrelevant images that contain labels such

as beach, forest, pond and center. Using the second lowest fine features [see Fig. 4.7(c)],

the proposed system is able to discriminate images that contain label sets such as port,

railway station, park and parking.

Fig. 4.8 shows the behaviour of the computational time (including both decoding
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dense residential

(a)

beach forest pond center

(b)

port railway

station

park parking

(c)

Figure 4.7: Example of (a) query image; (b) images discarded using coarsest features; and (c)

images discarded using second lowest fine features (AID archive).

and feature extraction) versus the percentage of the images discarded after decoding the

2nd wavelet decomposition level (for which T1 percent of images are discarded) and the

1st wavelet decomposition level (for which T2 percent of images are discarded) for the

UCMERCED archive. Initially, the coarse features are obtained after decoding all the

N images in the archive. Then, T1 of the images are discarded and the second lowest

fine features are obtained for the subset of the remaining relevant images. Fig. 4.8-

a shows the computational time required to decode and obtain features from the 2nd

wavelet decomposition level. From the graph, one can notice that, as the percentage of

images discarded increases, the computational time required to decode and obtain features

from the resulting subset of relevant images decreases. Fig. 4.8-b shows the required

computational time to decode and obtain features from the 1st wavelet decomposition

level. When the value of T1 decreases, the time taken to decode and obtain features after

eliminating T2 (which is defined as 1−T1) also decreases and vice-versa. Thus, the graph

is not linear and the computational time peaks when T1= T2=50%. From an analysis of
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(a)

(b)

Figure 4.8: Variation in computational time (including both decoding and feature extraction)

versus (a) T1 and (b) T2 (UCMERCED archive).

Table 4.5: Average precision and recall of the standard CBIR system that uses SIFT features,

standard RS CBIR system without coarse to fine strategy and the proposed progressive coarse

to fine RS CBIR system (UCMERCED archive).

Method
Average

Precision(%)

Average

Recall(%)

Decoding time

(in seconds)
CBIR time

(in seconds)

Standard-CBIR (SIFT

features [65])

65.68 68.73 113.65 161.50

Standard-CBIR

(DMHV descriptors

without coarse to fine

approach)

68.18 70.87 99.74 51.14

Proposed

progressive-CBIR

68.28 70.94 58.18 29.08

the peaks of the graphs, we can conclude that when we reduce the number of images that

require decoding to a high wavelet decomposition level, the computational time taken by

the retrieval system decreases. The same behavior is also obtained when the AID archive

is used.
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Table 4.6: Average precision and recall of the standard CBIR system that uses SIFT features,

standard RS CBIR system without coarse to fine strategy and the proposed progressive coarse

to fine RS CBIR system (AID archive).

Method
Average

Precision(%)

Decoding time

(in seconds)
CBIR time

(in seconds)

Standard-CBIR (SIFT

features [65])

55.29 259.65 271.44

Standard-CBIR

(DMHV descriptors

without coarse to fine

approach)

59.97 234.25 141.31

Proposed

progressive-CBIR

60.12 127.56 75.59

4.4.3 Comparison of the proposed CBIR system with the state-of-the-art

systems

In this subsection, we compare the effectiveness of the proposed system (proposed progressive-

CBIR) with: i) a standard-CBIR system that exploits the SIFT features obtained from

fully decoded images; ii) a standard-CBIR system that exploits the DMHV descriptors

without coarse to fine strategy. Tables 4.5 and 4.6 report the results for the UCMERCED

and the AID archives, respectively, along with the required decoding time and CBIR

time. The decoding time is associated to the time required for decoding the code streams,

whereas the CBIR time is associated to the time taken by both the extraction of the

descriptors and the retrieval of the images. It is worth noting that in the proposed

progressive-CBIR system decoding of an image from the archive depends up on its rele-

vancy in the retrieval with respect to the given query image.

From the tables, one can observe that the proposed progressive-CBIR system provides

higher accuracies with significantly reduced decoding and CBIR times for both archives

compared to the standard-CBIR system that uses SIFT features. As an example, the

proposed system outperforms the standard CBIR system by almost 3% in precision and

2% in recall for the UCMERCED archive, and almost 4% in average precision for the AID

archive. The accuracies obtained by using the standard-CBIR system that exploits the

same descriptor without applying the proposed coarse to fine strategy are very similar

to those obtained by the proposed system for both archives. However, required decoding

and CBIR times for the proposed progressive-CBIR system are almost half of the time
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Figure 4.9: Example of (a) query image; and retrieved images by using (b) the standard-CBIR

system that uses SIFT features; and (c) the proposed progressive-CBIR system (UCMERCED

archive).

required for the standard systems. In detail, for the UCMERCED archive the standard RS

CBIR system that uses SIFT features (which requires complete decoding of the images)

takes 113.65 seconds as the decoding time, whereas the proposed system takes 58.18

seconds. This shows that there is a sharp improvement in computational time (with

same performance measures as the standard-CBIR system) when the image retrieval is

performed in the compressed domain. All these results confirm that in the proposed

system, discarding irrelevant images and adopting a progressive coarse to fine strategy

shows significant improvements over the existing RS CBIR systems. Note that, as shown

in the tables, discarding irrelevant images at a very early stage considerably reduces the

CBIR time. Fig. 4.9 shows an example of results with a query image selected from the

UCMERCED archive that includes six class-labels: bare soil, buildings, cars, pavement
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baseball field

(a)

1st 5th 10th 15th

baseball field baseball field sparse

residential

sparse

residential

(b)

1st 5th 10th 15th

baseball field baseball field baseball field sparse

residential
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Figure 4.10: Example of (a) query image; and retrieved images by using (b) the standard system

without coarse to fine strategy; and (c) retrieved images by proposed progressive-CBIR system

(AID archive).

and tree, while Fig. 4.10 shows an example of results with a query image that belongs

to the baseball field category within the AID archive. Through these examples one can

see that the images retrieved from the progressive-CBIR are more relevant than those

retrieved by the standard-CBIR system that uses SIFT features for both archives. As an

example, the images retrieved using standard-CBIR system based on SIFT features does

not include most of the class label sets as that of the query image for the UCMERCED

archive (Fig. 4.9).
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4.5 Conclusion

In this chapter we have introduced a novel content-based image retrieval (CBIR) system

that accomplishes a coarse to fine progressive RS image description and retrieval in par-

tially decoded JPEG 2000 compressed domain. The proposed system considers that the

amount of data that needs to be entropy decoded is directly related to the relevancy of

the images in the retrieval process. To reduce the time required for fully-decoding im-

ages, the proposed system initially decodes only the code-blocks associated to the lowest

wavelet resolution of all images in the archive. Then, based on the similarities estimated

by the histogram intersection kernel among the coarse resolution wavelet descriptors of

the query image and those of the archive images, the most irrelevant images related to the

smallest similarity values are discarded. This step allows identification and elimination of

the most irrelevant images at a very early stage to reduce the subsequent decoding time.

The processes of code-blocks decoding and elimination of the irrelevant images (with

respect to the similarities among the descriptors associated to the considered wavelet res-

olutions) are iterated until the code streams associated to the highest wavelet resolution

are decoded. Then, the most similar images to the query are selected. By this way, the

proposed system exploits a multiresolution and hierarchical feature space representation

and accomplishes a progressive RS CBIR with significantly reduced retrieval time. To

characterize each resolution level, a texture descriptor that models the distribution of

moduli of the horizontal and vertical detail coefficients is used. In order to evaluate the

similarities among the descriptors that model different wavelet resolutions, the pyramid

match kernel is exploited. The pyramid match kernel computes the weighted sum of all

the implicit correspondences between the descriptors of the different wavelet decomposi-

tion levels by considering the importance of the descriptors at different wavelet resolution

levels.

Experimental results obtained on a benchmark archive show that the proposed system

results in similar accuracies with respect to a standard-CBIR system (which operates on

the fully decoded image domain) with significantly reduced decoding and thus retrieval

time. This is due to the progressive removal of a very large amount of irrelevant images,

which allows to apply the final retrieval process only to a very small set of images (which

are highly relevant to the query image). We emphasize that this is a very important

advantage, because the main objective of large-scale CBIR is to optimize the search and

retrieval time with a minimum amount of fully decoded images. Thus, the proposed sys-

tem is promising for possible operational applications due to both its general properties

and also its simplicity in the implementation. Note that the archives used in the experi-

ments are benchmarks. However, in many real applications the search is expected to be
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applied to much larger archives. For large scale CBIR problems, by using our system the

gain in both retrieval and decoding time is expected to be increased considerably with

respect to the standard-CBIR systems. As a final remark, we point out that the proposed

system can be easily adapted to the CBIR problems for which images are compressed by

other compression algorithms by properly defining the image description algorithm in the

(partially) compressed domain.
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Chapter 5

Approximating Wavelet

Representations through Deep

Neural Network for Compressed

Remote Sensing Image Scene

Classification

In this chapter we propose a novel approach to achieve scene classification in the JPEG

2000 compressed RS images. The proposed approach consists of two main steps: i) approx-

imate finer resolution sub-bands of reversible biorthogonal wavelet filters used in JPEG

2000; and ii) characterize high-level semantic content of the approximated wavelet sub-

bands and perform scene classification based on the learnt descriptors. This is achieved

by taking as input codestreams associated with the coarsest resolution wavelet sub-band to

approximate finer resolution sub-bands using a number of transposed convolutional layers.

Then, a series of convolutional layers is used to model the high-level semantic content of

the approximated wavelet sub-band. Thus, the proposed approach models the multiresolu-

tion representation of the JPEG 2000 compression algorithm in an end-to-end trainable

unified neural network. In the classification stage, the proposed approach takes as in-

put only the coarsest resolution wavelet sub-bands, thereby reducing the time required to

apply decoding. Experimental results obtained on two benchmark aerial image archives

demonstrate that when compared to traditional RS scene classification approaches (which

requires full image decompression), the proposed method significantly reduces the compu-

tational time keeping similar classification accuracies.
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5.1 Introduction

Due to the recent advances in satellite technology, RS society has witnessed a huge explo-

sion in the volume of the data. Simultaneously, the amount of insightful information that

can be extracted from them has also increased. One of the challenging issues faced by the

RS society is the development of efficient scene classification approaches in real large-scale

RS image archives. Although pixel-level and object-based classification has demonstrated

excellent performance, they do no consider the high-level semantic information within the

images. To address this, remarkable efforts are carried out to develop efficient scene clas-

sification approaches. Scene classification methods assign class labels to each image and

several efforts have been made to develop effective approaches over the past several years.

Performance of any scene classification method mainly depends on obtaining powerful

discriminative features from the images. Conventional methods that obtain handcrafted

traditional descriptors to perform scene classification are extensively time demanding and

computationally complex. In the recent years, the potential of DL methods has gained

increasing attention to address RS scene classification problems due to its remarkable

ability to learn discriminative image representations [83; 84; 85; 86; 98; 99; 100; 101].

Their ability to learn high-level semantic content of the images has resulted in obtaining

high classification performance over the state-of-the-art traditional methods (see Section

3.2). Although all the existing DL models have shown excellent performance in RS scene

classification problem, they require fully decompressed input images.

To address this limitation, in this chapter we present a novel approach that benefits

from DNN to perform scene classification by minimizing the amount of image decom-

pression. The proposed approach includes two main steps: (i) approximating wavelet

sub-bands or fully decoded image; and (ii) feature extraction and classification of the

approximated wavelet sub-band. The proposed approach initially approximates finer

(highest) wavelet resolution sub-bands of the reversible biorthogonal filter used in the

JPEG 2000 from the coarsest (lowest) resolution wavelet sub-band. To achieve this, the

proposed approach employ a series of deconvolutional layers through which the finer res-

olution wavelet sub-bands (approximated image) are approximated. Then, the high-level

semantic content of the approximated wavelet sub-bands (approximated mage) are learned

through a sequence of convolutional layers and finally performs scene classification. By

this way, the proposed approach utilizes the multiresolution paradigm inherent within

the JPEG 2000 compression algorithm to achieve an efficient scene classification at a

faster computational rate. Experimental results performed on two benchmark archives

demonstrate the effectiveness of the proposed method.
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Figure 5.1: Block scheme of the proposed approximation and classification approach in the

compressed domain.

5.2 Proposed Scene Classification Approach in JPEG 2000 Com-

pressed Domain

5.2.1 Problem Formulation

Let X = {Xi}Ni=1 be an archive that contains N JPEG 2000 compressed RS images, where

Xi represents the ith image. The main objective of the proposed method is to assign to

a given input image Xi ∈ X a class label yi ∈ Y, where Y is a set of Q class labels.

Let us assume that all the images in the archive are decomposed up to L resolutions.

Each image in the archive will be represented as one approximation sub-band and 3L

detail sub-bands (i.e. horizontal, vertical and diagonal). In JPEG 2000 compressed

image archive, the straightforward approach to perform scene classification is to: i) apply

entropy decoding to the codestreams associated with all the images in the archive; and ii)

obtain the image descriptors. However, decoding all the images from a compressed archive

is time demanding and computationally expensive. Thus, we propose a novel approach

to achieve scene classification in the JPEG 2000 compressed domain that benefits from

DNNs. Figure 5.1 shows the block scheme of the proposed approach.
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Figure 5.2: Example of approximation of a finer level wavelet sub-bands using transposed con-

volution.

5.2.2 Approximation of the wavelet coefficients

We propose a novel approach based on DNN that efficiently approximates a decompressed

image to perform scene classification in a large scale JPEG 2000 compressed image archive.

Our objective is: i) to improve the computational time when compared to models that

require fully decoded images; and ii) to implement a novel DL model that performs scene

classification in the compressed domain with minimal decompression. To achieve this,

the proposed approach initially obtains the codestream associated with the coarsest level

wavelet sub-band (see Fig. 5.1) that provides the global scale information of any given im-

age. Accordingly, the proposed approach approximates the finer level (higher resolution)

wavelet sub-bands (or the image itself) through a series of transposed convolutional lay-

ers. The approximated finer level wavelet sub-band (image) provides detailed information

of a given image. To achieve this, the proposed approach considers m transposed convo-

lutional layers, where m corresponds to the number of wavelet decomposition levels that

were initially used to compress a given image Xi ∈ X. We obtain the features associated

with the approximated wavelet sub-band (partially decompressed or image level infor-

mation) by using five convolutional layers and two fully connected (FC) layers to obtain

the classification scores. During classification, the proposed approach requires only the

coarsest level wavelet sub-band information thereby reducing the amount of time required

to perform decompression of images in the archive. The detailed information regarding

the approximating wavelet sub-band and feature extraction are provided below.

Given a JPEG 2000 compressed image Xi, we initially decode the k -th codestream



Proposed Scene Classification Approach in JPEG 2000 Compressed Domain 55

(where k << m) associated with the given image to obtain the approximated and detail

wavelet sub-bands where m represents the total number of wavelet decomposition levels

used to compress the images in the considered archive. Let GL = {aLXi
, hLXi

, vLXi
, dLXi

}
denote the approximation, horizontal, vertical and diagonal sub-bands of an image Xi

at the Lth wavelet decomposition level (coarsest wavelet sub-band). Let AL−1 = {aL−1
Xi

,

hL−1
Xi

, vL−1
Xi

, dL−1
Xi
} be the next finer level approximated sub-bands at level L − 1. The

proposed approach initially approximates the finer level wavelet sub-bands that are es-

timated from the coarsest (low-level) wavelet sub-bands to learn the high-level semantic

contents of the approximated finer level wavelet sub-band or image. To achieve this, k -th

codestream associated with the compressed image Xi are modelled to approximate the

m-th level wavelet sub-bands. In the proposed model, approximation is performed using a

series of transposed convolutional layers. In CNN, the convolution and pooling operation

generally reduces the size of the output. Thus, we can consider, ’convolution’ as a matrix

multiplication between the given input AL−1 and C to obtain GL, where C represents the

sparse matrix which can be obtained as:

GL = C · AL−1 (5.1)

The non-zero elements in the sparse matrix C can be constructed using the kernel coeffi-

cients of the convolution operation as follows:

C =


k11 ... k1q 0 ... k2q ... kpq 0 ...

0 k11 ... k1q 0 ... k2q ... kpq ...

0 0 k11 ... k1q 0 ... k2q ...

... ...

0 0 0 0 ... kpq

 , (5.2)

where p and q represent the kernel size and kij is the element of the kernel (where i and j

are the row and column indices of the kernel, respectively). Convolution operation takes

the input matrix AL−1 which is then flattened into a vector and multiplies the flattened

input with C. The matrix multiplication result is reshaped to obtain the final output GL.

It is worth noting that during the forward and backward passes of CNNs, convolution

operations are applied with C and CT , respectively.

In computer vision and pattern recognition, transposed convolution has proved to be

an efficient algorithm that uses the gradient of the convolution operation (for a given

image) to perform image restoration and reconstruction [119]. Our proposed approach

approximates finer wavelet sub-bands using transposed convolution as shown in Fig. 5.2.

Given a kernel k, the transposed convolution multiplies the flattened input vector GL

with CT during the forward pass and multiplies (CT )T = C during the backward pass
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to obtain AL−1. The finer level wavelet sub-bands can be obtained as:

AL−1 = CT ·GL (5.3)

Thus, in this operation we swap the backward and forward pass of the convolution op-

eration which is used in a standard CNN networks. Accordingly, using m transposed

convolutional layers, the proposed approach allows to approximate the image Am. For

the transposed convolutional layers, if we use a stride S, padding P and kernel k, then

the size of the approximated wavelet sub-bands (AL−1
size ) obtained from the coarser level

wavelet sub-band (AL
size) is given by:

AL−1
size = S ∗ (AL

size − 1) + k − 2P. (5.4)

The proposed approximation approach reflects the inherent multiresolution paradigm

within the JPEG 2000 compression algorithm within an end-to-end unified framework.

While approximating sub-bands, we consider two scenarios:

Scenario 1: Minimal Decoding

In this Scenario, the proposed approach uses only the codestreams associated with the

coarsest level (Lth level) wavelet sub-bands to approximate the finer level sub-bands (im-

age itself). Here, the aim is to minimize the amount of decompression time required to

perform scene classification by approximating wavelet sub-band (image) using only the

coarsest level sub-bands. The coarsest level wavelet sub-band provides global scale infor-

mation of the considered image. Thus, here, although the amount of time required for

decompression is significantly reduced, the quality of approximation is moderately dimin-

ished. Fig. 5.3 illustrates the case when the proposed approach takes the codestreams

associated with 32 × 32 coarsest level wavelet sub-band to approximate the image Am

using m transposed convolutional layers.

Scenario 2: Partial Decoding

In this Scenario, the proposed approach takes the coarsest level (Lth level) wavelet sub-

band information to decode the finer level (L − 1th level) wavelet sub-band, which is

exploited to approximate the finest level wavelet sub-bands (image itself). Here, the

amount of decompression time required is reduced moderately to achieve favourable per-

formance, when compared to the case where the images requires full decompression. The

finer level wavelet sub-bands provide fine scale information of a given image. Thus, the

wavelet sub-bands (image) approximated from the finer level sub-bands incorporate the

detailed fine scale information that enhance the classification accuracy with moderate
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Figure 5.3: Illustration of the proposed approach when the approximated image is obtained from

codestream of coarsest level wavelet sub-band.
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Figure 5.4: Illustration of the proposed approach when the approximated image is obtained from

codestream of decoded finer level wavelet sub-band.

reduction in time. Fig. 5.4 illustrates the case when a 32 × 32 coarsest level wavelet

sub-band is employed to decode the finer level sub-band of size 64 × 64. Then, decon-

volution is applied to the decoded finer level wavelet sub-band to approximate the finest

level wavelet sub-band (image).

5.2.3 Feature Extraction and Classification

The feature extraction and classification step aims to obtain features from the approxi-

mated wavelet sub-bands (image). To this end, we consider a model with five convolu-

tional layers with a number of filters similar to that of the AlexNet [120] and two fully

connected (FC) layers. By modifying the feature extraction and classification steps, we

can obtain powerful discriminative features. To demonstrate the effectiveness of recent DL

models when used in the compressed domain wavelet subband information, we selected

the ResNet50 [121] architecture to compare with the results obtained by the AlexNet.
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Then, the output obtained from the final FC layer is mapped into Q classification scores.

To reduce information loss, we considered zero padding and stride of 1 in each convolu-

tional layer, which is followed by a max-pooling layer except the third and fourth. As

no pretrained model on wavelet coefficients are available, the proposed end-to-end model

was trained from scratch with random weight initialization. The final classification of the

model is obtained by learning the approximations obtained through several transposed

convolutional layers. The total loss function (Ltotal) of the proposed approach is the sum

of the approximation loss (Lapproximation) and classification loss (Lclassification), which is

obtained as:

Ltotal = Lclassification + Lapproximation (5.5)

The Lapproximation function is obtained as the sum of mean squared error (MSE) between

the approximated wavelet sub-bands and decoded wavelet sub-bands at each level l which

is obtained as:

Lapproximation =
1∑

i=L

m∑
j=1

n∑
k=1

||Ai(t[j, k])−Di(t[j, k])||2 (5.6)

where m × n represents the size of the considered wavelet sub-bands at level l, t[j, k]

denote the wavelet coefficient at position [j, k] and Di represents the decoded wavelet

sub-band at any given level i.

To evaluate the Lclassification, we chose the cross-entropy loss function, which is pre-

dominantly used for scene classification problems and is defined as:

Lclassification = −
Q∑
i=1

yilogŷi (5.7)

where ŷi denotes the predicted class label. To improve the performance batch normaliza-

tion (BN), dropout was carried out after each convolutional layer. To overcome vanishing

gradient problem, Rectified Linear Unit (ReLU) activation was used after both the con-

volutional and transposed convolutional layers. Section 5.3 provides the more detailed

information regarding the training details and the parameters. It is worth noting that,

the proposed end-to-end model can be adopted to perform scene classification, where

the images are compressed using JPEG 2000 compression algorithm as well as when the

images are compressed using any wavelet based approach.

5.3 Dataset Description and Experimental Setup

Several experiments were performed to evaluate the performance of the proposed approach

on two benchmark archives. The first one is the NWPU-RESISC45 benchmark archive
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Table 5.1: Number of images considerd for each archive in the training, validation and test data.

Image Archive Training Validation Test

NWPU-RESISC45 25200 3150 3150

AID 8000 1000 1000

that consists of 31,500 single-labeled images with 45 different categories (i.e. airplane,

airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular

farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course,

ground track field, harbor, industrial area, intersection, island, lake, meadow, medium

residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway

station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse

residential, stadium, storage tank, tennis court, terrace, thermal power station and wet-

land). Each category has 700 scene classes and each image in the archive has size 256×256

with a varying spatial resolution between 0.2m to 30m per pixel. The reader is referred

to [43] for detailed information.

The second archive is the AID benchmark archive that contain 10,000 single-labeled

high-resolution RS images with 30 different categories (i.e. airport, bare land, baseball

field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest,

industrial, meadow, medium residential, mountain, park, parking, playground, pond, port,

railway station, resort, river, school, sparse residential, square, stadium, storage tanks,

viaduct). Each image has size 600× 600 pixels with a spatial resolution in the range from

0.5m to 8m. For more detailed information about the image archive reader is referred to

[37].

To assess the effectiveness of the proposed model, the images of both the archives

were compressed using the JPEG 2000 algorithm. Due to the minimum codeblock size

constraint (see Section 2.1), we considered a three level wavelet decomposition based on

the size of the images for both the archives (L = 3). The codestreams associated with

the coarsest wavelet sub-band (l = 3) is used as the input to the proposed approach. The

number of transposed convolutional layers (m) is equivalent to the number of wavelet

decomposition levels used in the considered image archive. To avoid information loss,

we selected the size of the filter as 1 × 1 with stride 1 and padding 0. The number of

filters used for approximating the wavelet sub-band is 12 × 12 and the image is 3 × 3.

During the case study of Scenario 2, we considered decoding upto (m−1) wavelet decom-

position levels. Both the labeled image archives were initially divided into three subsets:

training (80%), validation (10%) and test (10%) as shown in Table I. Images included

in each subset were randomly sampled. The training of the proposed model was carried
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out with the Stochastic Gradient Descent (SGD) that uses the Adaptive Moment Esti-

mation (Adam). During training, the Xavier initialization method was used to learn the

weights and parameters for the proposed model. As there are no pretrained models to per-

form scene classification in the compressed domain, that use wavelet coefficients, all the

experiments were performed starting from scratch. In addition, to achieve accurate per-

formance, experiments were carried out varying learning rate between 0.1 and 0.0001. The

performance of the proposed architecture was assessed quantitatively and qualitatively by

using classification accuracy, training time (in sec), validation time (in sec), test time (in

sec) and Root Mean Square Error (RMSE) of the approximated sub-band images. The

performance of the proposed architecture was assessed quantitatively and qualitatively

by using: 1) classification accuracy; 2) computational time (in sec) of training, validation

and test phases; and 3) Root Mean Square Error (RMSE) of the approximated sub-band

images. It is worth noting that computational time of the test phase was considered as

classification time. All the experiments were performed in Nvidia Tesla V100.
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Figure 5.5: Qualitative results of sub-band approximations associated to LL wavelet sub-band

of an image belonging to building category in the NWPU-RESISC45 archive.
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Figure 5.6: Qualitative results of sub-band approximations associated to LH wavelet sub-band

of an image belonging to building category in the NWPU-RESISC45 archive.

5.4 Experimental Results

To evaluate the effectiveness of the proposed approach, we performed several experiments

to: i) assess the quality of the proposed approximated images compared to the decoded

wavelet sub-band (image) ones; ii) analyze the performance of the proposed approxima-

tion approach for Scenarios 1 and 2 (mentioned in Section 5.2.2); and iii) compare the

performance and computational gain with respect to a standard CNN. In the first set of

experiments, we assess the qualitative as well as quantitative performances of the pro-

posed approximation approach for scene classification for both NWPU-RESISC45 and

AID benchmark archives.

5.4.1 Qualitative Analysis of the Approximated Images

This subsection provides the analysis of the images obtained from the proposed approxi-

mation approach for both NWPU-RESISC45 and AID archive. To this end, we considered

two different cases under each Scenario 1 and 2 where:

1. Scenario 1 - the coarsest level wavelet sub-bands are used to approximate the image

level information;
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Figure 5.7: Qualitative results of sub-band approximations associated to HL wavelet sub-band

of an image belonging to building category in the NWPU-RESISC45 archive.

2. Scenario 1 - the coarsest level wavelet sub-bands are used to approximate the inter-

mediate finer level wavelet sub-bands;

3. Scenario 2 - decoded finer level wavelet sub-bands are used to approximate the image

level information;

4. Scenario 2 - decoded finer level wavelet sub-bands are used to approximate interme-

diate finest level wavelet sub-bands.

Fig. 5.5-5.12 show the approximated images obtained for LL, LH, HL and HH wavelet sub-

bands for the NWPU-RESISC45 and AID archive building category when the experiments

were performed with AlexNet architecture. To qualitatively analyze the efficiency of the

proposed approach, we provide the RMSE value between the approximated image and

the decoded image. Given a coarser level wavelet sub-band (64 × 64) from the NWPU-

RESISC45 archive building category, one can notice that the proposed approach is efficient

to model the finer level wavelet sub-band (128 × 128). It converge fast (around Epoch

50) for all the wavelet sub-bands. Furthermore, we can also observe that although the

approximated image is slightly blurred, the model is able to learn the semantic content of

the approximated image of the building category. The RMSE values obtained for LL sub-
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Figure 5.8: Qualitative results of sub-band approximations associated to HH wavelet sub-band

of an image belonging to building category in the NWPU-RESISC45 archive.

bands are 157.86, 165.62, 166.96 for Red (R), Green (G) and Blue (B) bands, respectively.

Transposed convolution used to approximate the finer level wavelet sub-bands (image)

introduces a loss to the fine-scale detailed information. This is visible from the LL sub-

band finest approximated images of (128× 128) (see Fig. 5.5). The RMSE values for the

HL (vertical) sub-bands which are 8.38, 8.64 and 8.74 for RGB bands, respectively. In

addition, we also notice decreased RMSE values for the detail wavelet sub-bands (which

are LH, HL and HH) when compared to the approximation wavelet sub-band (which

is LL). Thus, we can see that the transposed convolution used efficiently approximates

the detail wavelet sub-bands. Given a coarser wavelet sub-band (150 × 150) from the

AID archive railway station category, we can observe that the proposed approach starts

converging around Epoch 50 and that it models the edge information modelled effectively.

The RMSE values obtained for the LL wavelet sub-bands are 207.34, 219.81, 219.10 for

R, G and B bands, respectively. Also, the RMSE values obtained for the approximation

sub-bands are higher as compared to the detail wavelet sub-bands. This is attributed to

the range of values of wavelet coefficients in detail sub-bands when compared to the lower

resolution image obtained in the approximation wavelet sub-bands.
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Figure 5.9: Qualitative results of sub-band approximations associated to LL wavelet sub-band

of an image belonging to railway station category in the AID archive.
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Figure 5.10: Qualitative results of sub-band approximations associated to LH wavelet sub-band

of an image belonging to railway station category in the AID archive.
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Figure 5.11: Qualitative results of sub-band approximations associated to HL wavelet sub-band

of an image belonging to railway station category in the AID archive.
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Figure 5.12: Qualitative results of sub-band approximations associated to HH wavelet sub-band

of an image belonging to railway station category in the AID archive.
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Table 5.2: Classification accuracy and computational time for the proposed Approximation

approach (NWPU-RESISC45 archive).

Proposed Approximation Approach Accuracy (%)
Computational Time (sec)

Train Validation Test

Scenario 1

Approximating image

(32× 32) → (64× 64) → (128× 128) → (256× 256)
73.27 8770.76 6.13 5.17

Approximating finest level wavelet sub-bands

(32× 32)→ (64× 64)→ (128× 128)
74.05 6739.87 5.28 5.68

Approximating finer level wavelet sub-bands

(32× 32) → (64× 64)
65.42 568.99 0.38 0.51

Scenario 2

Approximating image

(64× 64) → (128× 128) → (256× 256)
80.09 8630.20 106.37 106.51

Approximating finest level wavelet sub-bands

(64× 64)→ (128× 128)
79.92 8393.79 102.03 101.81

Approximating image

(128× 128) → (256× 256)
78.54 8853.99 207.24 206.81

5.4.2 Results of the Proposed Approximation Approach for NWPU-RESISC45

and AID Archive

This subsection presents the classification accuracies and the computational time required

by the proposed approach. For the following experiments, the feature extraction and clas-

sification steps of the proposed approach have been based on the AlexNet model. Table

5.2 reports the performance of the proposed approximation approach (both Scenario 1

and 2) for the NWPU-RESISC45 benchmark archive. Note that the computational time

includes the decoding time required for the considered images. From the numbers in

Table 5.2 associated to Scenario 1, one can notice that the proposed approach employs

the coarsest level wavelet sub-bands (32 × 32) to approximate: i) the image (256 × 256)

after applying three transposed convolutional layers; ii) the finest level wavelet sub-band

(128 × 128) after applying two transposed convolutional layers; and iii) the finer level

wavelet sub-band (64 × 64) after applying one transposed convolutional layer. As one

can observe, approximating the finest level wavelet sub-band (128 × 128) achieves the

best classification performance when compared to the other two cases. This is because

when the coarsest level wavelet sub-bands are used to approximate image (which requires

three transposed convolution layers), the details of the approximated fine-scaled objects

are reduced. Nonetheless, when the finest level wavelet sub-bands (128 × 128) are ap-

proximated, (which requires only two transposed convolution layers) we gain in terms of

both performance and computational time. Thus, we can conclude that, as the number

of layers used for approximation decreases, the performance increases. In the third case,

where the finer level sub-bands (64 × 64) is approximated (using one transposed convo-
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Table 5.3: Classification accuracy and computational time for the proposed Approximation

approach (AID archive).

Proposed Approximation Approach Accuracy (%)
Computational Time (sec)

Train Validation Test

Scenario 1

Approximating image

(75× 75) → (150× 150) → (300× 300) → (600× 600)
74.64 14539.87 14.26 14.03

Approximating finest level wavelet sub-bands

(75× 75) → (150× 150) → (300× 300)
76.92 13598.14 13.87 14.91

Approximating finer level wavelet sub-bands

(75× 75)→(150× 150)
77.34 10115.91 8.62 9.90

Scenario 2

Approximating image

(150× 150) → (300× 300) → (600× 600)
79.91 14183.46 253.98 279.28

Approximating finest level wavelet sub-bands

(150× 150)→(300× 300)
79.24 13847.33 224.36 227.34

Approximating image

(300× 300) → (600× 600)
78.52 14964.64 326.34 331.65

lutional layers), the size of the approximated wavelet sub-bands does not provide enough

image information to train the classifier. Thus, the resulting classification accuracy is the

lowest (i.e. 65.42%) when compared to the other two cases.

From the numbers in Table 5.2 associated to Scenario 2, one can see that the proposed

approach has used the decoded finer level wavelet sub-bands (64× 64) to approximate: i)

the image (256×256) after applying two transposed convolutional layers; and ii) the finest

level wavelet sub-bands (128 × 128). In the third case, the proposed approach uses the

decoded finest level wavelet sub-bands (128× 128) to approximate the image (256× 256).

As one can see, all the three cases report almost similar classification accuracies with very

small differences. However, if we compare the computational times, we can observe that

the training time required for approximating the finest level wavelet sub-bands is lower

than the time required to approximate the images. The training time required when the

finest level wavelet sub-bands are used is 6739.87 sec. In the classification phase, the

proposed approach takes 206.81 sec when the image is approximated after decoding two

wavelet decomposition levels. In the first case, where the image is approximated using the

the finer level wavelet sub-bands (64×64), the required computational time is only 106.51

sec. The overall gain is achieved when the finest level wavelet sub-bands (128 × 128) is

approximated.

When we compare Scenarios 1 and 2 (Table 5.2), we can notice that the proposed

approach attains good classification accuracies when the finest level wavelet sub-bands

are used. If we analyze the performance of the proposed approach when the finest level

wavelet sub-bands (128 × 128) are obtained, it achieves an accuracy of 74.04% when

the coarsest level wavelet sub-bands are used with a required classification time as 5.68
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sec. In the other case, approximating the finest level wavelet sub-bands (128 × 128)

after decoding results in 79.92% classification accuracy with a higher computational time

of 101.81 sec. We can observe that the proposed approach obtains accuracy of 74.05%

when only the coarsest level wavelet sub-bands are used with a significantly reduced

computational time 5.68 sec. If we perform one level wavelet decoding to obtain the finer

level (64 × 64) wavelet sub-bands, which is used to approximate the finest level wavelet

sub-bands (128 × 128), we notice an increase of 5.87% in classification accuracy. This

shows that the proposed approach achieves reasonable classification performance with

the coarsest wavelet sub-bands. Thus, the experimental results demonstrate that the

finest level wavelet sub-bands (partially decoded domain) provide sufficient information

for an efficient scene classification with reduced computational time.

Table 5.3 reports the performance of the proposed approach on the AID benchmark

archive. From Table 5.3 (Scenario 1 and 2), the proposed approach employs the coarsest

and the decoded finer level wavelet sub-bands (75 × 75) to approximate the finer level

wavelet sub-bands (the image itself). While analyzing the part of Table 5.3 associated to

Scenario 1, we can notice that the proposed approach employs the coarsest level wavelet

sub-band to approximate: i) the image level information (600 × 600); ii) the finest level

wavelet sub-bands (300 × 300); and iii) the finer level wavelet sub-band (150 × 150).

From the results, we can observe a good accuracy of 77.34% when we approximate the

finest level wavelet sub-band (150 × 150). This is because, the size of the coarsest level

wavelet sub-band employed provides sufficient information to approximate finer level sub-

bands (150× 150) without large information loss with only one transposed convolutional

layer. However, when we use two or more transposed convolutional layers to approximate

finer level wavelet sub-bands (the image itself), the accuracy is reduced. This is because

the coarsest level wavelet sub-bands (75 × 75) introduce checkerboard artifacts when

two or more transposed transposed convolutional layers are included. In addition, the

training and classification times required are 10115.91 sec and 9.90 sec, respectively. Thus,

it requires minimum decoding, which reduced the additional overhead required before

classification.

In the part of Table 5.3 associated to Scenario 2, the proposed approach employs: i)

the finer level wavelet sub-bands (150× 150) to approximate the image level information

(600×600); ii) the finer level wavelet sub-bands (150×150) finest level wavelet sub-bands

(300 × 300); and iii) the finest level wavelet sub-bands (300 × 300) to approximate the

image (600 × 600). If we compare the classification accuracies, we can observe that the

highest classification accuracy of 79.91% is achieved when the finer level wavelet sub-bands

(150 × 150) are used to approximate the image (600 × 600). However, the training time

required to approximate the finest level wavelet (300 × 300) from the finer level wavelet
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Table 5.4: Classification accuracy and computational time for the proposed approximation ap-

proach and a standard CNN (NWPU-RESISC45 archive).

Model Method Accuracy (%)
Computational Time (sec)

Train Validation Test

AlexNet

Proposed Approximation

Approach

Approximating finest level wavelet sub-bands

(32× 32) → (64× 64) → (128× 128)
74.05 6739.87 5.28 5.68

Approximating finest level wavelet sub-bands

(64× 64) → (128× 128)
79.92 8393.79 102.03 101.81

Standard CNN

Fully decompressed image

(256× 256)
80.11 7478.89 305.13 306.24

Without any decompression

(32× 32)
54.01 314.20 0.13 0.12

ResNet50

Proposed Approximation

Approach

Approximating finer level wavelet sub-bands

(75× 75) → (150× 150)
85.91 16953.31 15.61 16.01

Approximating finest level wavelet sub-bands

(150× 150) → (300× 300)
93.98 18992.71 124.32 125.64

Standard CNN

Fully decompressed image

(600× 600)
94.85 17234.51 326.63 325.98

Without any decompression

(75× 75)
76.31 763.24 3.64 3.98

sub-bands is lower when compared to the other two cases and the classification accuracy

is 79.24% which is very close to the highest one. In addition, this last case has also the

lowest classification time. From the experimental results, we can conclude that, if the size

of the coarsest level wavelet sub-bands is large enough (e.g. as in the case of (75 × 75)

AID archive), the proposed approach requires only one approximation level to achieve an

acceptable classification accuracy.

5.4.3 Comparison of the Proposed Approach with a Standard CNN.

In this subsection, we compare the effectiveness of the proposed approach with: i) a

standard-CNN model where full decompression of images is required; and ii) a standard-

CNN model that takes as input the coarsest level wavelet sub-bands (which can be ob-

tained from the codestreams of the compressed image). For the following experiments,

the feature extraction and classification parts are based on the ResNet50 model. Ta-

bles 5.4 and 5.5 report the classification accuracies and computational times for the

NWPU-RESISC45 and AID image archives, respectively. It is worth noting that dur-

ing classification the proposed approach requires only the codestreams associated with

the coarsest level wavelet sub-bands, whereas the standard-CNN model requires the fully

decompressed images. By analyzing the tables one can observe that the computational

time required by the proposed approach is significantly reduced when compared to that of

the standard-CNN model. In addition, we can also notice that the proposed approach at-

tains almost similar classification accuracies when compared to the standard-CNN model
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Table 5.5: Classification accuracy and computational time for the proposed approximation ap-

proach and a standard CNN (AID archive).

Model Method Accuracy (%)
Computational Time (sec)

Train Validation Test

AlexNet

Proposed Approximation

Approach

Approximating finer level wavelet sub-bands

(75× 75) → (150× 150)
77.34 10115.91 8.62 9.90

Approximating finest level wavelet sub-bands

(150× 150) → (300× 300)
79.24 13847.33 224.36 227.34

Standard CNN

Fully decompressed image

(600× 600)
79.54 12582.21 412.37 422.84

Without any decompression

(75× 75)
61.91 946.23 7.90 8.25

ResNet50

Proposed Approximation

Approach

Approximating finer level wavelet sub-bands

(75× 75) → (150× 150)
84.92 17256.34 14.32 14.13

Approximating finest level wavelet sub-bands

(150× 150) → (300× 300)
92.24 b24356.75 298.26 299.50

Standard CNN

Fully decompressed image

(600× 600)
93.01 21731.25 443.91 443.12

Without any decompression

(75× 75)
69.78 1231.24 13.56 13.14

that uses fully decompressed images. On the contrary, if we perform classification using

the coarsest level wavelet sub-bands, the classification accuracy is significantly reduced.

By analyzing the AlexNet model results for NWPU-RESISC45 archive (Table 5.4), we

can notice that the classification accuracy obtained by using fully decompressed images

with a standard CNN is 80.11%, with a classification time (i.e. test time) of 306.24

sec. The proposed approach results in a very similar classification accuracy of 79.92%

when only one level of decoding is performed with a lower classification time of 101.81

sec. When the coarsest level wavelet sub-bands (32× 32) are used to approximate finest

level wavelet sub-bands (128 × 128), the required classification time is of more than an

order of magnitude smaller at the cost of almost 5% lower classification accuracy. When

the coarsest level wavelet-subbands are used in the standard CNN, we obtain the lowest

classification accuracy with the lowest classification time. By analyzing the ResNet50

model results for the AID archive (Table 5.4), the classification accuracy obtained by

fully decompressing the images is 94.85% with a classification time of 325.98 sec. The

proposed approach results again in a very similar classification accuracy of 93.98% by

reducing classification time (i.e. test time) to 125.64 sec.

By analyzing the AlexNet model results for NWPU-RESISC45 archive (Table 5.5), we

observe that the proposed approach results in a classification accuracy of 77.34% when

the coarsest level wavelet sub-bands are used, with a classification time of 9.90 sec. When

we compare the performance of the proposed approach with the standard-CNN, although

the classification accuracy is reduced by 2.20%, there is a significant gain in terms of
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the classification time that is reduced to 9.90 sec. Also, it is important to note that

the proposed approach reaches a classification accuracy of 79.24% which is similar to

that obtained by the standard-CNN approach that requires fully decompressed images.

By analyzing ResNet50 model results for the AID archive (Table 5.5), the classification

accuracy obtained by fully decompressing the images is 93.01% with a computational time

of 444.12 sec. The proposed approach results in a similar classification accuracy of 92.24%

with a computational time 299.50 sec. By analyzing the results, one can conclude that

the proposed approach minimizes the computational time considerably when compared

to the standard-CNN model. In addition, by using a powerful CNN model like ResNet50,

the performance is also improved. However, this is achieved at the cost of increasing the

computational time.

5.5 Conclusion

In this chapter, a novel approximation approach has been presented to perform RS image

scene classification in the JPEG 2000 compressed domain by using DNNs. The proposed

approach minimizes the amount of image decoding by training the DNN model using the

approximations obtained from the codestreams associated to the coarser level wavelet sub-

bands. To this end, the proposed method initially takes the codestreams associated to the

coarsest level wavelet sub-bands to feed the model with a few transposed convolutional

layers in order to approximate the finer level wavelet sub-bands. Then, the high-level se-

mantic content of the approximated images is obtained through five convolutional layers

followed by two FC layers. The aim of the transposed convolutional layers is to approxi-

mate the finer level wavelet sub-bands without requiring to decode the images (in order to

obtain the features for scene classification). This significantly reduces the decoding time

required for scene classification, which is the dominant aspect while performing scene clas-

sification in compressed RS image archives. Then, the features obtained from the finer

level wavelet sub-bands are obtained through the convolutional layers. In addition to the

classification loss, the estimation loss is also calculated between the approximated wavelet

coefficients and the original wavelet coefficients. Accordingly, during training, the model

learns the intrinsic behavior of the original compressed domain features that are reduced

through the estimation loss. In addition, the time required to fully-decode the images is

considerably minimized during the classification phase. The proposed model is then used

to perform scene classification with JPEG 2000 partially compressed RS images.

Experimental results in terms of scene classification accuracy and computational gain

on two benchmark archives demonstrates the effectiveness of the proposed approach.

This is mainly related to the significant reduction of the decoding time associated with
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the use of a large amount of compressed images. As there is a trade-off between the

computational gain and the classification accuracy based on the number of transposed

convolutional layers, one can always choose the number of layers depending on the re-

quirements in computational time and accuracy. The qualitative images obtained from

the approximations show that the proposed approach operates efficiently only with the

original coarsest level wavelet coefficients as input source. The results obtained from the

experiments demonstrate the ability of the proposed approach:

1. To perform image scene classification within the compressed domain.

2. To significantly improve the computational gain by minimizing the amount of de-

compression required compared to the existing scene classification methods (which

works in uncompressed domain).



Chapter 6

Conclusions and Future

developments

In this thesis, we presented novel methods to perform CBIR and scene classification in

real large-scale compressed RS image archives. Current trends in increase in the volume

of compressed RS data demands the need to exploit the possibility to efficiently utilize

the information obtained from compressed images in big data archives. Although the

existing state-of-the-art presents several studies to achieve image retrieval and scene clas-

sification, they require fully decompressed images as input. Limited studies exploit the

possibility to address the challenges and possibilities to perform scene classification and

retrieval in compressed RS image archives. The proposed methods thereby contributes a

valuable effort with a possibility of a new interesting research direction to solve big data

problems in compressed RS image archives. The focus of the proposed thesis relies on

the accurate image characterization within the compressed domain. This thesis proposed

two novel contributions that showcased significant improvements in performance as well

as computational time when compared to the state-of-the-art methods.

In the first contribution of the thesis, we proposed a novel RS CBIR system that

achieves image characterization and retrieval in the JPEG 2000 compressed RS image

archives. The proposed method significantly reduces the decoding time required by all

the images in the archive by eliminating irrelevant images using hierarchically achieved

partially decoded image descriptors. Experimental results obtained on two benchmark

archives pointed out that the proposed approach resulted in similar retrieval performance

when compared to the fully decompressed domain. In addition, the proposed method

demonstrated a significant reduction in the decoding as well as the retrieval time in

compressed RS image archives. The overall sharp improvement in performance (in terms

of computational time) is achieved because of the elimination of irrelevant images in
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reference to the query image during the early retrieval stages that further reduces the

decoding as well as required retrieval time. Moreover, the proposed approach can be

adopted for archives that uses other compression algorithms by modifying the image

description used in the proposed approach.

In the second contribution of the thesis, we proposed a novel approximation approach

that is achieved in an end-to-end DNN architecture to achieve scene classification in com-

pressed images. The proposed method showcase the potential of DNNs to achieve scene

classification for compressed RS image archives with significantly reduced computational

time when compared to the state-of-the-art systems. The results confirm the effectiveness

of the proposed approximation approach (that uses the transposed convolutional layers)

to efficiently characterize the compressed domain wavelet subband information. The num-

ber of transposed convolutional layers can be selected based on the user requirements as

there is trade-off between the computational time and the classification performance. The

proposed approach could be adopted by other compression algorithms by modifying the

transposed convolutional layers. In view of the growth of RS big data archives, the second

contribution introduces a research direction very important for operating scene classifi-

cation directly on compressed archives. Note that the proposed approach is not limited

to JPEG 2000 compressed archives but can be directly applied to any image archive that

considers wavelet based compression approach. In addition, it can be adapted to be used

in the framework of other compression algorithms by modifying the technique used for

approximating the compressed domain features.

In the thesis, we explored the potential of developing image retrieval and scene clas-

sification approaches for compressed RS image archives. By analysing the experimental

results obtained from the proposed methods, we observe a few interesting research di-

rections as part of the future developments of the presented methods. First, we plan to

validate the proposed progressive image retrieval system on larger image archives. Fur-

ther, time will be devoted to develop methods that could combine the features obtained

from different spectral bands to speed up the retrieval rate. In view of the second contri-

bution of the thesis, we plan to explore scene classification in the context of Generative

Adversarial Networks in compressed domain. The ability of Generative Adversarial Net-

works to produce images can be adapted to approximate the wavelet subband information

which can be utilised to address scene classification problems. Finally, we aim to focus

on developing novel methods to perform scene classification and retrieval when the image

compression is achieved within the DNNs. Recent advances in deep learning has demon-

strated its ability to compress RS images. Several novel models that considers RNNs,

LSTMs, GANs has been proposed to compress the data. In view of this, we plan to study

the development of models that can extract features within a deeply compressed domain.
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