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ABSTRACT

This paper illustrates a data-driven approach adopted to
address the PHME2020 Data Challenge competition. The
aim of the challenge was to estimate the Remaining Useful
Lifetime (RUL) of an experimental filtration device analyz-
ing its clogging status by means of static (e.g. data sheets,
fluid type, sensors) and dynamic (e.g. sensing data) infor-
mation. We address the problem employing different state-
of-the-art feature extraction, feature selection, and machine
learning techniques. In this paper, we describe the approach
followed to assess the problem and to generate robust and
adaptable prediction models together with a corresponding
performance assessment and robustness evaluation. The per-
formance of the proposed solution is calculated in term of
penalty score. The final penalty score 57.24 ranked 2nd in
the above-mentioned data challenge competition.

1. INTRODUCTION

In the last decades, there has been an increased interest in
Prognostics and system Health Management (PHM) due to its
capability of assuring productivity, performance, and reliabil-
ity of a system while moderating the maintenance expenses.
Predicting the Remaining Useful Lifetime (RUL) is the most
challenging part of PHM procedure that makes creating re-
liable and robust models to predict the RUL of tremendous
importance (Gouriveau, Medjaher, & Zerhouni, 2016).

In this paper we describe our data-driven approach to address
the problem of creating a model to predict the RUL of a crit-
ical filter (subject to clogging) equipping a filtration system
of an experimental rig built with the aim of simulating a filter
clogging failure in a realistic plant. This scenario is of high
interest in many engineering applications involving purifica-
tion of liquids or gas, e.g. for intercepting contaminants in
fuel for engines (Eker, Camci, & Jennions, 2015). The dataset
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for training and evaluation consists of several run-to-failure
observations of the rig under different conditions, character-
ized by combinations of particle size and solid ratio. The final
model shall be able to maintain its performance whenever a
smaller portion of the dataset is used as training set, and if
unforeseen data is given in input to the model.

In our approach, we did not try to model the degradation
curves directly, as done for example with a parameterized
model in (Sreenuch, Khan, & Li, 2015). We adopted a mainly
data-driven approach, where the curves are learned from the
experimental data during the training phase, but we also ex-
ploited to some extent a model-based component consisting
in the computation of the amount of clogging particles pro-
gressively intercepted by the filter.

This paper is structured as follows. In Sect. 2 our understand-
ing of the problem is provided. We then outline the approach,
and provide details of the feature selection and model setup in
Sect. 3. Moreover, in this section we also discuss our method-
ology for model validation and evaluation. Finally, we pro-
vide the analysis of the results and the comparison of pro-
posed models in Sect. 4.

2. UNDERSTANDING OF THE CHALLENGE

The filtration system on which the datasets provided by the
PHM Society were based, consists in an experimental rig built
with the aim of simulating a filter clogging failure. The main
components of this experimental system are:1

• A suspension composed by water and Polyetheretherke-
tone (PEEK) particles as injected fluid. The particles are
mixed with water in different concentrations in order to
test the adaptability of the final models.

• A filter: the critical component subject to clogging.
• A peristaltic pump, which maintains stable the flow of

the prepared fluid. It has been chosen in order to avoid
issues related to particles in the fluid.

1We refer the reader to the challenge web page for additional details about
the characteristics of the different components.
http://phmeurope.org/2020/data-challenge-2020.
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• Tubing, the majority of which is made of rigid
polypropylene to avoid expansions due to eventual pres-
sure build up, which might interfer with the observed
pressure increase as a result of the filter clogging.

• A dampener placed downstream with respect to the
pump, which drops any pulsation in the fluid flow.

• A series of flow meter to record the flow rate.
• Two pressure transducers placed respectively upstream

and downstream with respect to the filter, in order to
record the pressure drop due to the filter clogging.

The challenge provides the participants datasets correspond-
ing to different experiments where four different profiles,
given by the solid ratio of the fluid (0.4, 0.425, 0.45, 0.475),
and different particle sizes (small, medium, large) have been
considered. The dataset is composed of several sensorial
data such as the flow rate (flow rate), together with up-
stream (pup) and downstream pressure (pdown). The
particle size (psize) and the solid ratio (sratio) are
also given. All the sensorial data has been sampled at 10Hz.
For each particle size and solid ratio combination, the re-
spective dataset contains recording of four sensorial sample
streams. The available dataset does not include streams for
the medium particle size case, while the 0.475 solid ratio
is only provided in the validation set as depicted in Fig. 1.
More in details, the dataset consists of two distinct parts:

Figure 1. The struc-
ture of the PHME 2020
Challenge dataset.

• A training set containing 24
run-to-failure experiments. It
includes data acquired us-
ing small and large particle
sizes, and different solid ratio
related to the profile numbers
1, 2 and 3. For each com-
bination of particle size and
concentration, 4 different ex-
periments were provided.

• A validation set containing 8
run-to-failure experiments. It
includes data corresponding
to experiments using small
and large particle sizes, and
the solid ratios that are not
present in the training set
(i.e. profile number 4). For
each combination of particle
size and concentration, 4
different experiments were
provided.

The sensed data allow to extract the pressure drop (drop),
which consists in the difference between upstream and down-
stream pressures and gives an indication of the clogging status
of the filter. According to the challenge, the filter is consid-
ered clogged as soon as the pressure drop reaches 20psi.

The main objectives consist in predicting the RUL of the filter
given by its clogging status, and providing a model being able
to maintain its performance whenever a smaller section of the
dataset is used as training set.

In order to satisfy the objectives of the challenge, four differ-
ent models were requested: one model trained using all the
provided experiments, one by using only the 75% of them,
one by using the 50% and one using the 25%.

Model performances will be evaluated based on the following
penalty score:

∑
i∈{25,50,75,100}

(1.5 ∗MAE(Mi(Te)) + MAE(Mi(Tv))) (1)

where MAE is the Mean Absolute Error function selected for
the final evaluation, Mi is the model generated with i% ex-
periments, Tv is the aggregation of the training+validation
datasets, and Te is the test dataset.

3. APPROACH

The followed approach consists in using as first analysis the
given validation set as test set, in order to test the adapt-
ability of our model to unforeseen data, and further split the
training set into training and validation. However, we used
the full provided training+validation set to train the model
for the final delivery. The main workflow consists of i) fea-
tures extraction using rolling window techniques, ii) features
importance and correlation extraction leveraging on the cor-
relation matrix, Support Vector Machine (SVM) coefficients
of a linear kernel, Recursive Feature Elimination (RFE) and
monotonicity test with and without smoothing, iii) model
setup and validation using a repeated cross validation tech-
nique, and iv) a repeated approach for testing the model on
the training and validation sets in order to extract general-
ized final scores by averaging the errors of the repetitions.
The entire approach has been implemented on top of the
scikit-learn (Pedregosa et al., 2011) machine learning
infrastructure. In the following, we provide the most relevant
details of each of above steps.

3.1. Features selection

Since the definition of RUL of the filter is based on the time
instant at which the pressure drop reaches the threshold of
20psi, our approach is based on the analysis of the time evo-
lution of the curves representing that drop (Sreenuch et al.,
2015). We characterized the drop evolution by means of
several statistical features such as kurtosis (kurt), mean-
to-peak ratio (mpr), root mean square (rms), root mean
square in frequency-domain (rmsf), wavelet spectral en-
ergy (wse), skewness (skew), variance (var), standard
deviation (std), covariance (cov) and the slope of the lin-
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Figure 2. Pairwise bivariate distributions of the considered features.

ear regression (slope) (Hamadache, Jung, Park, & Youn,
2019). The computation of these features requires a proper
length of rolling window. For such analysis, we applied a
moving window with a length of 10 seconds which turns
out to be a reasonable and practical window length given the
dataset. This window corresponds to 100 sample points.

In addition to statistical features, we further extract a feature
that aims to indicate the amount of cumulative dirt intercepted
by the filter when the particles are suspended in the water
flowing through it. To this extent, we introduced the new fea-
ture, clog am, computed as the time integral of the product
between flow rate, particle size and solid ratio.

To identify the most informative features, we applied sev-
eral state-of-the-art feature selection techniques such as pair-
wise bivariate distribution analysis of the considered features
(Fig. 2), correlation matrix with absolute values (Fig. 3), RFE
and analysis of the coefficients of the linear kernel of a SVM 2

(Fig. 4), and monotonicity analysis (Fig. 5) with and without
smoothing. All the mentioned techniques were applied both
before and after a standardization of the features, although all
the included figures refer to the standardized ones.

This analysis highlighted that the most important features ap-

2Information about RFE and analysis of the coefficients of the linear kernel
of a SVM can be found in (Guyon, Weston, Barnhill, & Vapnik, 2002).
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Figure 3. Correlation of the features: it represents the abso-
lute value of the correlation.

pear to be flow rate, pup, drop, slope, rms, rmsf,
var, std, cov, and clog am, together with psize and
sratio, which define important information of the observed
experiment. Thus, these are the features we used for the re-
maining phases of our approach.

Figure 4. Features coefficients of a SVM linear kernel

We observerd, as it is expected, that the filter status (measured
as pressure drop) degrades monotonically until the full clog-
ging (when it reaches the 20psi as indicated in the challenge).
Therefore, we discarded all the data after the first sample that
results in passing this threshold.

3.2. Neural Network Structure Setup

To address the challenge, we considered several sequential
machine learning models (e.g. support vector regressors) and
neural networks (e.g. long short-term memory) with differ-
ent structures, combining different preprocessing techniques.
In the first model (named A hereafter), we adopted a prepro-
cessing pipeline composed of a standard scaler, and a four-
layers sequential neural network (see Fig. 6) implemented on
top of the Keras (Chollet et al., 2015) infrastructure using
the Tensorflow (Abadi et al., 2015) backend. The first layer
(dense input) takes the 12 standardized selected features,

Figure 5. Features monotonicity coefficients without (picture
above) and with (picture below) smoothing.
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Figure 6. Neural network structure adopted for the challenge.

and outputs them as input of the following layer. The sec-
ond layer (dense 01) takes the 12 outputs from the previ-
ous layer and generates 32 outputs by means of the sigmoid
activation function. The third layer (dropout 01) takes the
32 outputs from the previous layer and drops the units with
a rate of 0.06 in order to prevent an overfitting model. The
final layer (dense 02) takes the 32 outputs from the previ-
ous layer and generates a single output corresponding to the
estimated RUL by means of the linear activation function.
The loss error function used is the mean-squared-error, while
the adopted optimizer is adam.

The first additional model (named B) consists in the same
structure as the above one, but adopting the relu activa-
tion instead of the sigmoid in the dense 01 layer, and
adjusting the level of the dropout 01 layer. The second
additional model (named C) has 16 nodes in the dense 01
layer instead of 32, again with an adjusted level of the
dropout 01 layer.

We then extracted the MAE as metrics and set the number
of epochs to 100. This last value in particular lets the train-
ing and validation losses converge without presenting signs
of over- or underfitting. The complete structure of the final
model has been selected according to the evaluation tech-
niques described in section 3.3.

3.3. Model Validation and Evaluation

We applied repeated K-fold cross validation (Kohavi, 1995)
in order to assess the generality of the considered different
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machine learning models and neural networks for this data
challenge. For simplicity, as regards this validation phase,
we refer to the aggregation between training+validation sets
as training set, while the mentioned validation sets are repre-
sented by the different K folds. Before proceeding with the
repeated cross validation, a first training was done in order
to have a first insight of the convergence of the losses (see
Fig. 7 for the results of the network depicted in Fig. 6) and
to be able to adjust the network structure in case of critical
losses convergence issues, together with the number of train-
ing epochs. Typical K-fold cross validation (Stone, 1974)
divides a dataset into K separate subsets. These subsets are
mutually exclusive and approximately equal size. In K it-
erations, one subset is chosen and the training procedure is
performed in the other K − 1 subsets. Then, yielded model
is tested on the chosen fold. In repeated K-fold cross vali-
dation, however, the whole aforementioned procedure is per-
formed N times in a way that the indexes are shuffled to select
K folds containing different portions of data among different
repetitions (Vanwinckelen & Blockeel, 2014). Furthermore,
in a repetition, each selected fold is used for validation; after
the K iterations using each fold as validation set, the pre-
dicted RUL value is reassembled and the errors are extracted.
For each repetition, a mean of the K losses is also extracted to
assess convergence of the losses among the repetitions. The
candidate model is selected only if training and validation
losses are convergent and the errors are reasonably low. This
approach contributes positively to stress the robustness and
generality of the model prior to its evaluating routine. The
choice of K plays an important role. Indeed, a poorly cho-
sen value for K may result in a mis-representative idea of the
skill of the model, such as a score with a high variance (that
may change a lot based on the data used to fit the model), or a
high bias, (such as an overestimate of the skill of the model).
We addressed the challenge using N = 6 and K = 5. In
particular, K = 5 was chosen since it guarantees that each
train/test group of data samples is large enough to be statisti-
cally representative of the considered dataset.

We applied the above approach to evaluate the performance
of each considered network.

The results of the network validation confirmed that the net-
work structure depicted in Fig. 6 is worth to continue with
the real training and evaluation (for this network the results
are depicted in Fig. 7). Thus, we proceeded by training the
network with the aggregation of different training+validation
sets of the challenge to create corresponding models. In par-
ticular, we created four models each corresponding to the split
of the training+validation data set to consider 25%, 50%, 75%
and 100% of the dataset. To select the 25-75% subsets, we
chose randomly 1 out of 4 for the 25%, 2 out of 4 for the 50%,
3 out of 4 for the 75% case from 4 different experiments for
each combination of particle size and concentration.

Figure 7. Losses over the epochs (in log scale).

The model based on 100% of the data is trained and fur-
ther evaluated on the full aggregation of training+validation
datasets, computing the corresponding MAE. The evaluation
of the 25%, 50% and 75% models has been performed with
the aim of extracting a robust and generalized error function.

Let s be the number of samples for each combination of par-
ticle size and solid ratio, p be the used percentage of train-
ing+validation data used to train the model (i.e. 75%, 50%
and 25%), and k be the number of distinct combinations of
particle size and solid ratio, then we derive from the train-
ing+validation dataset

(
s

p∗s
)k

different subsets.

(RMSE) (R2) (MAE)

Figure 8. Evaluation results over the repetitions for the 25%,
50%, 75% cases for N = 20 (top 25%, mid 50%, bottom row
75% resp.).

Following repetitive steps have been performed in order to
compute the models and to test the respective robustness for
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each of the 25%, 50% and 75% cases. First, N folds were
taken from the previously computed subsets of the train-
ing+validation datasets. Then, iteration over this set of N
folds were performed, and after training the model on this
training+validation dataset, we evaluated the network on the
entire training+evaluation dataset to extract the respective
MAE errors. We considered N = 20 for the experiments
since it guarantees to have a statistically representative analy-
sis of the considered datasets. The results for the network de-
picted in Fig. 6 on the three models are reported in Fig. 8. Af-
ter verifying that the models are substantially equivalent, the
model was retained for the considered case is the last model
fitted.

The list of size N of the computed MAE errors values for
each of the three model allows to verify the robustness of the
proposed models. However, only the MAEs of the selected
models (i.e. the last model fitted for each percentage among
its repetitions) represent the data used to calculate the final
score for coherence.

4. RESULTS

The penalty score function to be used for the challenge is the
one of Equation 1. The approach discussed in Sec. 3.3, en-
abled us to calculate the portion of the penalty score of the
training+validation datasets for the three considered models.
The results of these models are reported in Table 1.

MAE(Mi(Tv))
Mi A B C

100% 1.646 1.285 2.125
75% 1.763 1.358 1.814
50% 2.037 1.752 2.059
25% 2.381 1.977 2.826

Penalty Score 7.827 6.373 8.824

Table 1. Comparison between the considered models.

We can observe that the choice of a smaller amount of train-
ing data results in an increasing error value. Judging by MAE
values, the results show that model B exhibits the best perfor-
mance among the proposed models. However, validation and
evaluation analysis showed that the models based on the sig-
moid activation function (model A) are more robust to unfore-
seen data with respect to the relu function (model B). There-
fore, we opted to use model A as the final candidate to run the
challenge.

Equation 2 represents the final penalty score reported by the
tests applied by the PHM Society on the provided models.
The final score for the model A (which at the end ranked 2nd
in the competition) is:

∑
i∈{25,50,75,100}

(1.5 ∗MAE(Mi(Te)) + MAE(Mi(Tv))) = 57.24. (2)

The notebook and all the material to reproduce the results
reported in this paper can be downloaded from https://
bit.ly/fbkphme20challenge.

CONCLUSION

The approach we adopted in this challenge was mainly in-
spired by a generic data-driven learning framework, in which
the training phase plays the predominant role in mapping ob-
servations into the desired RUL estimate. We decided also to
inject some model-based knowledge with the calculation of
a specific feature that expresses the amount of dirt progres-
sively intercepted by the filter, given the size and concentra-
tion of the suspended particles. We are aware that the model-
based aspect could be improved by considering a more pre-
cise physics-based clogging progression model (Eker et al.,
2015) and a more accurate fitting of the parameters charac-
terizing the pressure-drop curves, e.g. with particle filtering,
as done in (Sreenuch et al., 2015). Such improvements would
be relevant especially when particle size and concentration
cannot be known exactly and must be inferred from the ob-
served data.
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Eker, Ö. F., Camci, F., & Jennions, I. K. (2015, 12). Physics-

based prognostic modelling of filter clogging phenom-
ena. Mechanical Systems and Signal Processing, 75,
395-412. doi: 10.1016/j.ymssp.2015.12.011

Gouriveau, R., Medjaher, K., & Zerhouni, N. (2016). PHM
and Predictive Maintenance. In From prognostics and
health systems management to predictive maintenance
1 (p. 1-13). John Wiley & Sons, Ltd.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene
selection for cancer classification using support vector
machines. Machine learning, 46(1-3), 389–422.

Hamadache, M., Jung, J. H., Park, J., & Youn, B. D.
(2019, Jun 01). A comprehensive review of artificial
intelligence-based approaches for rolling element bear-
ing phm: shallow and deep learning. JMST Advances,
1(1), 125-151.

Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In

6



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Proceedings of the 14th International Joint Conference
on Artificial Intelligence, IJCAI 95, Montréal Québec,
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