Article

Two-Lane Highways Crest Curve Design. The Case Study of Italian Guidelines

Marco Guerrieri ${ }^{\text {D }}$
DICAM-Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy; marco.guerrieri@unitn.it

Received: 31 October 2020; Accepted: 16 November 2020; Published: 18 November 2020

Abstract

The main purpose of the research is to evaluate the crest vertical curves radii R_{v}, not considering a conventional value of the opposing vehicle height h_{2}, but the average vehicle heights $\mathrm{h}_{2(\mathrm{~m})}$ and the value of the 15 th percentile of the height distribution $\mathrm{h}_{2(15)}$ of the passenger car population. The study only considered car models with more than 20,000 registered vehicles in Italy. One hundred and fifteen car models belonging to different brands were taken into consideration, for a total of over 9 million vehicles. For the statistical sample analyzed, the following vehicle heights were estimated: $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$. The deviations between the crest radii calculated with the Italian standard ($h_{2}=1.10 \mathrm{~m}$), and those obtained for $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$ are up to 12%. The differences $\Delta \mathrm{H}_{\mathrm{v}}$ between the values of the visible vehicle body height $\mathrm{H}_{\mathrm{v}}=\mathrm{H}_{\mathrm{V}}(\mathrm{t})$ calculated using, respectively, $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$ and $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ are modest. The value $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ could be adopted in order to reduce the highways construction costs. In fact, the research shows that the value $h_{2}=1.10 \mathrm{~m}$ is too conservative and leads to oversizing of the crest vertical curves. Therefore, it would be necessary to make an appropriate choice of h_{2} value in order to take into account the current heights of passenger cars.

Keywords: two-lane highways; crest vertical curves; highways design; passing sight distance (PSD)

1. Introduction

In highway design, vertical curves have to be used to transition grade changes. Vertical curves should be chosen considering many relevant issues such as driver safety, comfort, alignment aesthetics, and drainage purposes [1-4]. Vertical curves are of two classes: convex vertical curves, known as crest curves, and concave vertical curves, known as sag curves [5,6]. Parabolic or circular curves are the common choices for vertical curves both in highway engineering [1,5,6] and in railway engineering [7,8]. Generally, parabolic curves are preferred, because they provide a constant rate of curvature change [6,9].

The main purpose of a crest curve's design is to calculate the minimum vertical curve radius $\left(\mathrm{R}_{\mathrm{v}, \min }\right)$ that complies the required sight distance (stopping sight distance SSD or passing sight distance PSD), according to total grade change $\Delta \mathrm{i}$, design speed v , and drivers' comfort. As it is well known, too short a vertical curve radius may lead to insufficient sight distance.

Safe operation on crest vertical curves mainly depends on ample sight distance. Minimum stopping sight distance SSD should be ensured in all cases [6,9]. Table 1 shows the minimum radii of crest vertical curves as a function of design speed in various countries [6]. Wherever economically and technically feasible, passing sight distance PSD should be provided on two-lane highways [6,9].

In this article, the relationship between crest vertical curve radius R_{v}, passing sight distance PSD, driver eye height h_{1}, object (i.e., opposing vehicle) height h_{2}, and the characteristics of vehicle was obtained, considering for h_{2} not a conventional value (i.e., $\mathrm{h}_{2}=1.10 \mathrm{~m}$ in the case of the Italian guidelines $[10,11]$) but the real vehicle heights. This is because, in recent decades, there has been a generalized significant increase in the vehicles' height. For example, the roof top height of modern sport
utility vehicles (SUVs) is often more than 1.70 m . Therefore, in order to evaluate a reasonable value for h_{2} a statistical sampling of the height of vehicles circulating in Italy was carried out. In particular, the average vehicle heights $\mathrm{h}_{2(\mathrm{~m})}$ and the value of the 15 th percentile of the height distribution $\mathrm{h}_{2(15)}$ have been calculated.

A comparative analysis between the vertical convex curves radii recommended in the Italian Guidelines for the Design of Road Infrastructures ($\mathrm{h}_{2}=1.10 \mathrm{~m}$) [10] and the homologous values calculated with the analytical relationships proposed in this research (based on $h_{2(m)}$ and $h_{2(15)}$ parameters) was developed.

The results show that the h_{2} value prescribed by the Italian guidelines [10,11] $\left(h_{2}=1.10 \mathrm{~m}\right)$ is excessively precautionary, since it results in $h_{2(m)}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$, respectively. It follows the oversizing of the radius of vertical convex curves and their length, with consequent greater highways construction costs.

Table 1. Minimum radii of crest vertical curves as a function of design speed in various countries (source [6]).

	Design Speed [km/h]										
	40	50	60	70	80	90	100	110	120	130	140
	Minimum Radius of Crest Vertical Curve [m]										
Austria	1500	2000	3000	4000	7500	-	12,500	-	20,000	-	35,000
Belgium	-	-	1600	-	-	7500	-	-	7824	-	-
Denmark	-	-	-	-	3500	-	6000	-	15,000	-	-
Germany											
1984	-	-	3750	3500	5000	7000	10,000	-	20,000	-	-
1995	-	1400	2400	3150	4400	5700	8300	-	16,000	-	-
New Research	-	-	800	1500	2700	4700	7600	-	17,500	-	-
France	700	-	1500	-	3000	-	6000	-	12,000	-	18,000
Italy	500	-	1000	-	3000	-	7000	-	14,000	-	-
The Netherlands	-	-	-	-	1800	-	4100	-	12,400	-	-
Spain	-	-	-	-	3500	-	6000	-	12,000		
Sweden	-	1100	-	3500	-	7000	-	10,000	-	-	-
Sweden *	-	600 *	-	1800 *		1800 *	-	-	-	-	-
Switzerland	620	1500	2100	3000	4200	-	10,500	-	18,000	-	31,000
United Kingdom	-	1100	1900	3300	5900	-	10,500	-	18,000	-	-
Canada	400	700	1500	2200	3500	5500	7000	8500	10,500	12,000	-
United States	500	1000	1800	3100	4900	7100	10,500	15,100	20,200	-	-
South Africa	600	-	2000	-	5000	-	10,000	-	20,000	-	-
Australia	-	540	920	1570	2400	4200	6300	9500	13,500	19,500	-
Japan	-	800	1400	-	3000	-	6500	-	11,000	-	-
Greece	-	1500	2500	3200	4300	5700	7400	11,000	15,000	20,000	-

Note: * Exceptional value.

2. The Overtaking Maneuver and the Passing Sight Distance (PSD)

The overtaking maneuver is a key issue for two-lane highways, because it requires occupying the opposing lane, which represents a serious safety concern [6,9,12,13].

Accidents occurred due to overtaking maneuvers represent around 38% of the total accidents on Italian two-lane highways [14]. Accident severity associated to overtaking maneuvers is usually higher than in other maneuver types [12,13].

The overtaking maneuver's frequency depends on various factors, including traffic volumes, users' motivation, and their psychophysical state and highway alignment (vertical and horizontal) [15]. The traffic flow variable that considerably influences the propensity to do an overtake maneuver is the vehicular density k. In steady-state traffic condition [16-18], the density k can be estimated by knowing the flow rate q and the mean space speed v_{s}, with the well-known fundamental relations of traffic flow: $\mathrm{k}=\mathrm{q} / \mathrm{v}_{\mathrm{s}}$.

As q increases for a given vehicle, the probability of encountering slow vehicles increases [19]. In other words, users have high probability to encounter slower vehicles and often are forced to queue up first and then overtake where the available sight distance D is greater than the passing sight distance PSD [19]. Consequently, the performance analyses of two-lane highways-whose objective is to determine the level of service (LOS) for an existing or proposed facility-include a specific evaluation of the percent time-spent-following [20].

Then, a PSD adequate for users to pass slow vehicles should be provided at frequent intervals on two-lane highways. In order to guarantee acceptable LOS, several highway design guidelines require a minimum percentage of passing zones in each direction of travel (e.g., 20% in Italy [10]).

To ensure suitable safety conditions, overtaking is only allowed in the zones where available sight distance is higher than the required overtaking passing sight distance PSD [12,21]. PSD is defined as the distance required to complete an overtaking maneuver when an opposing vehicle is approaching in the opposing lane.

The PSD can be estimated by means of several overtaking models. In the Italian model [10] (Figure 1), the speed v of overtaking vehicle (A) is assumed to be uniform during the right and left lanes occupation time. The speed of the overtaken vehicle B is $v-\Delta v$. Instead, the speed of the opposing vehicle C, in the opposing lane, is v.

Figure 1. Overtaking maneuver phases (Italian model [10,22]).
The minimum passing sight distance PSD is the sum of four subintervals [22]: $\mathrm{d}_{1}=\mathrm{v} \cdot \mathrm{t}_{1} ; \mathrm{d}_{2}=\mathrm{v} \cdot \mathrm{t}_{2}$; $\mathrm{d}_{3}=\mathrm{v} \cdot \mathrm{t}_{3} ; \mathrm{d}_{4}=\mathrm{v} \cdot\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)$, in which:

- v : design speed of the highway segment under analysis expressed in m / s;
- $\quad t_{1}=4 \mathrm{~s}$: time for lane change (from the right lane to the opposing lane);
- $t_{2}=2$ s: overtaking time (at the end of this time interval the rear bumper of vehicle A and the front bumper of vehicle B are at the same road section);
- $t_{3}=4 \mathrm{~s}$: time for lane change (from the opposing lane to the right lane).

Therefore, the minimum passing sight distance PSD is:

$$
\begin{equation*}
\mathrm{PSD}=2 \mathrm{v}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)=2 \mathrm{v}\left(\mathrm{t}_{1}+\frac{2 \mathrm{l}_{\mathrm{m}}}{\Delta \mathrm{v}}+\mathrm{t}_{3}\right) \tag{1}
\end{equation*}
$$

where:

- $\quad l_{m}=\left(l_{\mathrm{A}}+\mathrm{l}_{\mathrm{B}}\right) / 2$;
- $\quad 1_{A}$ length of the vehicle A;
- l_{B} length of the vehicle B.

Since $\frac{l_{\mathrm{m}}}{\Delta \mathrm{v}} \cong 1 \mathrm{~s}$, it results in:

$$
\begin{equation*}
\mathrm{PSD}=20 \mathrm{v}=5.5 \mathrm{~V}[\mathrm{~m}] \tag{2}
\end{equation*}
$$

in which V is the design speed expressed in km / h.

Figure 2 illustrates a comparison of minimum PSD values obtained with the several widespread models of Table 2, including the Italian model, in function of the highway design speed V.

Table 2. Passing sight distance (PSD) models.

Model Name or Country	Relationships
Italy [10]	$\mathrm{PSD}=5.5 \mathrm{~V}$
Switzerland [23]	$\mathrm{PSD}=6.7 \mathrm{~V}$
France [24]	$\mathrm{PSD}=550[\mathrm{~m}]$
Lieberman model [25]	$\begin{gathered} \text { PSD }=\mathrm{d}_{5}+\mathrm{PSD}_{\mathrm{c}} \\ \mathrm{~d}_{5}=\mathrm{G}_{1}^{\mathrm{N}}+1.47 \mathrm{t}_{5}+\Delta_{\mathrm{c}} \\ \mathrm{PSD}_{\mathrm{c}}=1.47\left(2 \mathrm{~V}_{1}+\mathrm{m}\right) \mathrm{t}_{6}+\mathrm{d}_{3} \\ \mathrm{t}_{6}=0.68\left[\left(\frac{\mathrm{G}_{1}+\Delta_{\mathrm{c}}}{\mathrm{~m}}\right)\right]+\left(\frac{1.47 \mathrm{~m}}{2 \mathrm{a}}\right) \\ \Delta_{\mathrm{c}}=\mathrm{G}_{1}-1.47 \mathrm{mt}_{6} \\ \mathrm{a}=\mathrm{a}_{\max }\left[1-\frac{\mathrm{V}_{1}+\frac{\mathrm{m}}{2}}{\mathrm{~V}_{\max }}\right] \end{gathered}$
Glennon model [26]	$\begin{gathered} \text { PSD }=2 \mathrm{~V}_{\mathrm{d}}\left(2.93+\frac{\mathrm{L}_{\mathrm{p}}-\Delta_{\mathrm{c}}}{\mathrm{~m}}\right) \\ \Delta_{\mathrm{c}}=\mathrm{L}_{\mathrm{p}}+1.47 \mathrm{~m}\left\{\frac{\left(2.93+\mathrm{L}_{\mathrm{i}}+\mathrm{L}_{\mathrm{p}}\right)}{1.47\left(2 \mathrm{~V}_{\mathrm{d}}-\mathrm{m}\right)}-\left[\frac{5.87 \mathrm{~V}_{\mathrm{d}}\left(2.93 \mathrm{~m}+\mathrm{L}_{\mathrm{i}}+\mathrm{L}_{\mathrm{p}}\right)}{1.47 \mathrm{~d}_{\mathrm{a}}\left(2 \mathrm{~V}_{\mathrm{d}}-\mathrm{m}\right)}\right]^{\frac{1}{2}}\right\} \end{gathered}$
Hassna et al. Model [27]	$\begin{gathered} \operatorname{PSD}_{\mathrm{c}}=2.93 \mathrm{~V}_{\mathrm{d}}\left(\mathrm{t}_{6}+\mathrm{h}\right) \\ \mathrm{t}_{6}=\mathrm{p}_{\mathrm{a}}+\mathrm{t}_{\mathrm{a}}-\frac{\mathrm{d}_{\mathrm{a}} \mathrm{t}_{\mathrm{a}}}{5.8 V_{\mathrm{d}}}\left(\mathrm{t}_{\mathrm{a}}+2 \mathrm{~h}\right) \\ \mathrm{t}_{\mathrm{a}}=-\mathrm{h}+\sqrt{\frac{\mathrm{h}^{2}+5.88 \mathrm{~V}_{\mathrm{d}}\left[\mathrm{~L}_{\mathrm{p}}+\mathrm{L}_{\mathrm{i}}+1.4 \mathrm{~h}\left(2 \mathrm{~V}_{\mathrm{d}}-\mathrm{m}\right)\right]}{1.47 \mathrm{~d}_{\mathrm{a}}\left(2 \mathrm{~V}_{\mathrm{d}}-\mathrm{m}\right)}} \\ \Delta_{\mathrm{c}}=\mathrm{L}_{\mathrm{p}}+1.47\left(\mathrm{~V}_{\mathrm{d}} \mathrm{~m}\right) \mathrm{h}-1.47 \mathrm{mt}_{6} \\ \operatorname{PSD}_{\mathrm{c}}=2.93 \mathrm{~V}_{\mathrm{d}}\left(\mathrm{t}_{\mathrm{h}}^{*}+\mathrm{h}\right) \\ \mathrm{t}_{6}^{*}=\frac{1.47\left(\mathrm{~V}_{\mathrm{d}}-\mathrm{m}\right) \mathrm{h}+\mathrm{L}_{\mathrm{p}}}{1.47 \mathrm{~m}} \\ \left.\mathrm{PSD}_{\mathrm{c}}=2.93 \mathrm{~V}_{\mathrm{d}} \cdot \mathrm{t}_{\mathrm{t}}+\mathrm{h}\right) \Delta_{\mathrm{c}} \leq 0 \\ \mathrm{PSD}_{\mathrm{c}}=2.93 \mathrm{~V}_{\mathrm{d}}\left(\mathrm{t}_{6}^{*}+\mathrm{h}\right) \Delta_{\mathrm{c}} \geq 0 \end{gathered}$
Van Valkenburg and Michael model [28]	$\begin{aligned} & P S D=230 \mathrm{~m} \text { for } \mathrm{V}=50 \mathrm{~km} / \mathrm{h} \\ & \mathrm{PSD}=365 \mathrm{~m} \text { for } \mathrm{V}=70 \mathrm{~km} / \mathrm{h} \\ & \text { PSD }=575 \mathrm{~m} \text { for } V=110 \mathrm{~km} / \mathrm{h} \end{aligned}$
Rilett et al. model [29]	$\begin{aligned} & \mathrm{PSD}_{\text {complete }}= 1.47 \mathrm{~V}_{\text {crit }} \mathrm{t}_{5}+\frac{1.47 \mathrm{at}_{3}^{2}}{2}+1.47 \mathrm{~V}_{\mathrm{d}} \mathrm{t}_{6} \mathrm{~d}_{3} \\ &+1.47 \mathrm{~V}_{0}\left(\mathrm{t}_{5}+\mathrm{t}_{6}\right) \\ & \mathrm{PSD}_{\text {short }}= 1.47 \mathrm{~V}_{\text {crit }} \mathrm{p}_{\mathrm{a}}+1.47 \mathrm{~V}_{\text {crit }} \mathrm{t}_{8}-\frac{1.47 \mathrm{dt}_{5}^{2}}{2}+ \\ & 1.47 \mathrm{~V}_{\text {min }} \mathrm{t}_{9}+\mathrm{d}_{3}+1.47 \mathrm{~V}_{0}\left(\mathrm{p}_{\mathrm{a}}+\mathrm{t}_{8}+\mathrm{t}_{9}\right) \end{aligned}$
American Association of State Highway and Transportation Officials-AASHTO Green Book [30]	$\begin{gathered} \text { PSD }=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}+\mathrm{d}_{4} \\ \mathrm{~d}_{1}=\frac{\mathrm{t}_{1}}{3.6}\left(\mathrm{~V}-\mathrm{m}-\frac{\mathrm{at}_{1}}{2}\right) \\ \mathrm{d}_{2}=\frac{1}{3.6} \mathrm{Vt}_{2} \\ 30 \mathrm{~m} \leq \mathrm{d}_{3} \leq 90 \mathrm{~m} \\ \mathrm{~d}_{4}=2 / 3 \mathrm{~d}_{2} \end{gathered}$

Figure 2. Passing sight distance (PSD) models comparison.

3. Analytical Derivation of Crest Curve Minimum Radius

The minimum radius of crest curves based on passing sight distance (PSD) criteria generally is satisfactory from the standpoint of safety, comfort, and appearance [15,22]. In this section, the detailed derivation process for the analytical relationship between passing sight distance (PSD), driver eye height h_{1}, object (i.e., opposing vehicle) height h_{2}, and the necessary parabolic vertical crest curve radius R_{V} is presented.

Let the left-hand side road grade be i_{1}, and right-hand side road grade i_{2}, the total grade change $\Delta \mathrm{i}=\mathrm{i}_{2}-\mathrm{i}_{1}<0$ (assuming $\mathrm{i}_{2}<\mathrm{i}_{1}$), and L the crest vertical curve length. The origin of the coordinates is selected at point O (beginning of the vertical curve) (Figure 3). If the vertical curve follows a parabolic shape, the curve equation is:

$$
\begin{equation*}
y=a x^{2}+b x \tag{3}
\end{equation*}
$$

Figure 3. Parameters considered in determining the crest vertical curve radius.
The coefficients a and b can be obtained by the following boundary conditions:

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{x=0}=b \text { therefore } b=i_{1} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}=2 \mathrm{a} \text { therefore } \mathrm{a}=\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \tag{5}
\end{equation*}
$$

The vertical curve equation $y=a x^{2}+b x$ can be rewritten as Equation (6)

$$
\begin{equation*}
\mathrm{y}=\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{x}^{2}+\mathrm{i}_{1} \mathrm{x} \tag{6}
\end{equation*}
$$

the coordinates in the summit of the parabola (point A of Figure 3) are:

$$
\begin{align*}
\mathrm{x}_{\mathrm{A}} & =-\frac{\mathrm{i}_{1}}{\Delta \mathrm{i}} \mathrm{~L} \tag{7}\\
\mathrm{y}_{\mathrm{A}} & =-\frac{\mathrm{i}_{1}^{2}}{2 \Delta \mathrm{i}} \mathrm{~L} \tag{8}
\end{align*}
$$

the relationship of the curvature is:

$$
\begin{equation*}
\frac{1}{\mathrm{R}}=\frac{\frac{\Delta \mathrm{i}}{\mathrm{~L}}}{\left[1+\left(\frac{\Delta \mathrm{i}}{\mathrm{~L}} \mathrm{x}+\mathrm{i}_{1}\right)^{2}\right]^{\frac{3}{2}}} \tag{9}
\end{equation*}
$$

Equation (9) allows to calculate the radius of the osculating circle in the points O, A, and B :

$$
\begin{gather*}
\mathrm{R}_{\mathrm{o}}=\frac{\left[1+\mathrm{i}_{1}^{2}\right]^{\frac{3}{2}}}{\Delta \mathrm{i}} \mathrm{~L} \tag{10}\\
\mathrm{R}_{\mathrm{B}}=\frac{\left[1+\left(\mathrm{i}_{1}+\Delta \mathrm{i}\right)^{2}\right]^{\frac{3}{2}}}{\Delta \mathrm{i}} \mathrm{~L} \tag{11}\\
\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{L}}{\Delta \mathrm{i}} \tag{12}
\end{gather*}
$$

The minimum radius of curvature R_{v} is located at point A, therefore we can assume $R_{v}=R_{A}$. Let $\mathrm{D}=$ PSD (cfr. Figure 4). The relationship between the minimum radius of curvature R_{v}, the passing sight distance D, the driver eye height h_{1}, object (i.e., opposing vehicle) height h_{2}, and the total grade change $\Delta \mathrm{i}$ can be derived using the geometric schemes, as depicted in Figure 4 . More specifically, Figure 4 illustrates the influence of vertical curvature on visibility. Two conditions must be considered $[1,9,22,31]$:
a. Passing sight distance is shorter than vertical curve length ($\mathrm{D}<\mathrm{L}$);
b. Passing sight distance is longer than vertical curve length $(\mathrm{D}>\mathrm{L})$.

Figure 4. Crest curve radius derivation (case (a): D < L; case (b): D $>$ L).

3.1. Case in Which $D<L$

Consider the case in which the passing sight distance is shorter than the vertical curve length ($\mathrm{D}=\mathrm{PSD}<\mathrm{L}$). Using the geometric parameters in Figure 4, it results in [22]:

$$
\begin{gather*}
\mathrm{h}_{1}=a p^{2} \tag{13}\\
\mathrm{~h}_{2}=\mathrm{aq}^{2} \tag{14}\\
\mathrm{D}=\mathrm{p}+\mathrm{q}=\frac{1}{\sqrt{\mathrm{a}}} \cdot\left(\sqrt{\mathrm{~h}_{1}}+\sqrt{\mathrm{h}_{2}}\right) \tag{15}\\
\mathrm{L}=\frac{\Delta \mathrm{i} \cdot \mathrm{D}^{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+2 \sqrt{\mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}\right)} \tag{16}\\
\mathrm{R}_{\mathrm{V}}=\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{L}}{\Delta \mathrm{i}}=\frac{\mathrm{D}^{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+2 \sqrt{\mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}\right)} \tag{17}
\end{gather*}
$$

According to Equation (17), the minimum radius of curvature R_{v} (point A of Figure 3) is not a function of the total grade change $\Delta \mathrm{i}$.
3.2. Case in Which $D>L$

Consider the case in which the passing sight distance is longer than the vertical curve length $(\mathrm{D}=\mathrm{PSD}>\mathrm{L})$. Using the geometric parameters in Figure 4, it results in [22]:

$$
\begin{gather*}
\mathrm{h}_{1}=\mathrm{a} \cdot \mathrm{p}^{2}+2 \cdot \mathrm{a} \cdot \mathrm{p} \cdot \mathrm{~m}_{1} \tag{18}\\
\mathrm{~h}_{2}=\mathrm{a} \cdot \mathrm{q}^{2}+2 \cdot a \cdot \mathrm{q} \cdot \mathrm{~m}_{2} \tag{19}\\
\mathrm{~m}_{1}=\frac{\mathrm{h}_{1}}{2 \cdot \mathrm{a} \cdot \mathrm{p}}-\frac{\mathrm{p}}{2} \tag{20}\\
\mathrm{~m}_{2}=\frac{\mathrm{h}_{2}}{2 \cdot \mathrm{a} \cdot \mathrm{q}}-\frac{\mathrm{q}}{2} \tag{21}\\
\mathrm{D}=\mathrm{m}_{1}+\mathrm{L}+\mathrm{m}_{2}=\frac{\mathrm{h}_{1}}{2 \cdot \mathrm{a} \cdot \mathrm{p}}+\frac{\mathrm{h}_{2}}{2 \cdot a \cdot(\mathrm{~L}-\mathrm{p})}+\frac{L}{2} \tag{22}
\end{gather*}
$$

The minimum value of the sight distance can be obtained deriving the Equation (22) and by the following condition:

$$
\begin{equation*}
\frac{\mathrm{dD}}{\mathrm{dp}}=\frac{-\mathrm{h}_{1}}{2 \cdot \mathrm{a} \cdot \mathrm{p}^{2}}+\frac{\mathrm{h}_{2}}{2 \cdot \mathrm{a} \cdot(\mathrm{~L}-\mathrm{p})^{2}}=0 \tag{23}
\end{equation*}
$$

then

$$
\begin{gather*}
\mathrm{p}=\frac{\mathrm{L}}{1+\sqrt{\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}}} \tag{24}\\
\mathrm{q}=\mathrm{L}-\mathrm{p}=\mathrm{p} \cdot \sqrt{\frac{\mathrm{~h}_{2}}{\mathrm{~h}_{1}}} \tag{25}
\end{gather*}
$$

plug Equations (24) and (25) into Equation (22), after minor rearrangement, it results in:

$$
\begin{gather*}
\mathrm{D}=\frac{\mathrm{L}}{2}+\frac{\mathrm{h}_{1}+\mathrm{h}_{2}+2 \cdot \sqrt{\mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}}{\Delta \mathrm{i}} \tag{26}\\
\mathrm{~L}=2 \cdot\left(\mathrm{D}-\frac{\mathrm{h}_{1}+\mathrm{h}_{2}+2 \cdot \sqrt{\mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}}{\Delta \mathrm{i}}\right) \tag{27}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{V}}=\mathrm{R}_{\mathrm{A}}=\frac{2}{\Delta \mathrm{i}} \cdot\left(\mathrm{D}-\frac{\mathrm{h}_{1}+\mathrm{h}_{2}+2 \cdot \sqrt{\mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}}{\Delta \mathrm{i}}\right) \tag{28}
\end{equation*}
$$

According to Equation (28), the minimum radius of curvature R_{v} (point A of Figure 3) is a function of the total grade change $\Delta \mathrm{i}$.

4. Passing Sight Distance, Opposing Vehicle Height h_{2}, and Eye Height h_{1}

An object (i.e., opposing vehicle) height of $h_{2}=1.10 \mathrm{~m}$ is adopted by the Italian Guidelines for the Design of Road Infrastructures [10] for the calculation of passing sight distance PSD. Such value appears not to be in compliance with the average height of the current passenger car population. In fact, over the past few decades, sales of sport utility vehicles (SUVs) have increased. At the same time, even utility cars have undergone increases in overall size and, in particular, in height.

For this reason, a specific analysis was carried out concerning the Italian passenger car population until 2006, coinciding with the year of publication of the latest Italian Guidelines for the Design of Road Intersections [11].

The research was carried out using the Italian car population data updated to 31 December 2006, registered by the Italian Automobile Club (ACI) and by the Public Vehicle Registration Office (PRA) [32]. On that date, the vehicles circulating in Italy were $35,297,282$. The study only considered car models with more than 20,000 registered vehicles. Specifically, 115 vehicle models belonging to different brands were taken into consideration, for a total of over 9 million vehicles. For each of the 115 models considered, the overall height was deduced.

Table 3 shows the summary data. In the study, the average vehicle heights $h_{2(\mathrm{~m})}$ and the value corresponding to the 15 th percentile of the height distribution $h_{2(15)}$ were estimated, obtaining, respectively, the values $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$.

As shown in the histogram of Figure 5, the largest number of registered vehicles $(4,151,428)$ falls in the height range $1.40-1.44 \mathrm{~m}$, follow the intervals $1.45-1.49 \mathrm{~m}$ and $1.50-1.54 \mathrm{~m}$, with $1,449,211$ and $1,100,024$ vehicles, respectively. The sum of the vehicles falling into these three classes is $6,700,663$, namely the 73% of the number of passenger cars examined.

According to the Italian Guidelines for the Design of Road Infrastructures and Intersections [10,11], the obstacle that the driver must be able to see during the overtaking maneuver (i.e., opposing vehicle) has a height $h_{2}=1.10 \mathrm{~m}$. Evidently, this is a very conservative value compared to the inferred values $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$. The remarkable differences between the height of the obstacle provided by the Italian guideline $\left(\mathrm{h}_{2}\right)$ and those derived from the real passenger car population $\left(h_{2(\mathrm{~m})}\right.$ and $\left.\mathrm{h}_{2(15)}\right)$ lead to significant differences in the values of the radii of the crest curve $\left(\mathrm{R}_{\mathrm{v}}\right)$. Instead, the driver's eye height $h_{1}=1.10 \mathrm{~m}$ is congruent with the values adopted internationally (Table 4) [33].

Figure 5. Absolute frequency distribution of passenger cars heights.

Table 3. Top 20 car models registered in Italy listed by number of vehicles sold.

N.	Brand	Model		Number of Vehicles Registered (Year 2006)	Overall Height h [mm]
1	Fiat	Seicento	1.1 I	480,518	1430
2	Fiat	Panda	900 IE	466,607	1440
3	Fiat	Uno	45 3P	448,715	1430
4	Lancia	Y	1.2 I	439,421	1440
5	Fiat	Punto	55 3P	438,184	1480
6	Fiat	500	L	381,766	1330
7	ford	Ка	1.3	232,805	1370
8	Renault	Clio	1.11 3P	223,814	1420
9	Renault	Twingo	1.2	222,087	1420
10	Fiat	Panda	1.2	222,035	1540
11	Opel	Corsa	1.0112 V 3 P	219,870	1440
12	Autobianchi	Y10	Fire	175,018	1430
13	Ford	Focus	1.8 TDDI 5P	167,753	1500
14	Toyota	Yaris	1.0 I 16 V 3 P	157,158	1530
15	Volkswagen	Golf	1.9 TDI Variant	126,521	1490
16	Peugeot	206	1.4	120,518	1430
17	Nissan	Micra	1.0 CAT	116,472	1540
18	Alfa Romeo	147	1.9 JTD	113,463	1440
19	Fiat	Tipo	1.45 P	109,294	1450
20	Renault	Megane	1.9 DCI Scenic	107,323	1620
...	\ldots	\ldots	\ldots	\ldots	\ldots
115	Honda	Jazz	1.2I DSI	20,314	1530
	-	-	TOTAL	9,154,262	\ldots

Table 4. Driver's eye height h_{1} adopted in some countries.

Country	Driver Eye Height [m]	
	Passenger Car	Truck
Australia	1.15	1.80
Austria	1.00	-
France	1.00	-
Germany	1.00	2.50
Greece	1.10	-
Japan	1.20	1.50
South Africa	1.05	1.80
Sweden	1.10	-
Switzerland	1.00	2.50
United Kingdom	1.05	-

Minimum Values of R_{v}

Figure 6 shows R_{v} values according to the Equations (17) and (28) obtained for $h_{1}=1.10 \mathrm{~m}$ and $h_{2(15)}=1.39 \mathrm{~m}$. Similarly, Figure 7 shows R_{v} values according to the Equations (17) and (28) obtained
for $h_{1}=1.10 \mathrm{~m}$ and $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$. In both cases, each curve $R_{v}(\Delta i)$ reaches a maximum value $R_{v}{ }^{*}$ for $\Delta i=\Delta i^{*}$; instead, for $\Delta i>\Delta i^{*}$, it results in $R_{v}=R_{v}{ }^{*}$. As can be observed from Figure 8, the differences ΔR_{v} between R_{v} values calculated in the two scenarios $\left(h_{2(15)}=1.39 \mathrm{~m}\right.$ and $\left.h_{2(\mathrm{~m})}=1.48 \mathrm{~m}\right)$ increase with increasing PSD. Finally, Figures 9 and 10 show the differences (ΔR_{v}) between the vertical radii calculated with the Italian model ($h_{2}=1.10 \mathrm{~m}$) and the values obtained, respectively, for $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $h_{2(15)}=1.39 \mathrm{~m}$. It should be noted that the deviations are up to 12%.

Figure 6. R_{v} values $\left(h_{1}=1.10 \mathrm{~m}\right.$ and $\left.\mathrm{h}_{2(15)}=1.39 \mathrm{~m}\right)$.

Figure 7. R_{v} values $\left(\mathrm{h}_{1}=1.10 \mathrm{~m}\right.$ and $\left.\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}\right)$.

Figure 8. ΔR_{v} between R_{v} values calculated for $h_{2(15)}=1.39 \mathrm{~m}$ and $h_{2(m)}=1.48 \mathrm{~m}$.

Figure 9. $\Delta \mathrm{R}_{\mathrm{v}}$ between R_{v} values calculated for $\mathrm{h}_{2}=1.10 \mathrm{~m}[10]$ and $\mathrm{h}_{2(15)}=1.39$.

Figure 10. ΔR_{v} between R_{v} values calculated for $h_{2}=1.10 \mathrm{~m}[10]$ and $h_{2(m)}=1.48 \mathrm{~m}$.

5. Visible Vehicle Body Height in Function of Time

In this section, the relationship between the design speed v, the time t of vehicles traveling along a crest curve in opposing lanes, and the visible vehicle body height H_{v} is deduced (Figure 11). H_{v} value increases as the vehicles approach each other.

Figure 11. Visible vehicle body height H_{v}.
To obtain the function $\mathrm{H}_{\mathrm{v}}=\mathrm{H}_{\mathrm{v}}(\mathrm{t})$, consider Figure 11.
At the time instant $t=0$, the driver's eye has coordinates $(0 ; 1.10)$ and is able to see, at a distance D equal to PSD, the roof top of the vehicle traveling in the opposite direction. The driver's line of sight (cfr. Figure 4) is tangent to the parabola and intersects the moving obstacle (opposing vehicle) at a height h_{2}.

At time $t=0$, the visible vehicle body height is $H_{v}=0$. After a time interval Δt, the overtaking vehicle covers a highway segment $\Delta x=v \cdot \Delta t$ long, as did the vehicle traveling in the opposite direction. Then, the visible vehicle body height is $\mathrm{H}_{\mathrm{v}}>0$.

Assuming once again that the vertical curve follows a parabolic shape, we can easily infer the function $\mathrm{H}_{\mathrm{v}}=\mathrm{H}_{\mathrm{v}}(\mathrm{t})$:

$$
\begin{equation*}
y_{p}=b x-a x^{2} \tag{29}
\end{equation*}
$$

in which:

$$
\begin{gathered}
\mathrm{b}=\mathrm{i}_{1} \\
\mathrm{a}=\frac{\Delta \mathrm{i}}{2 \mathrm{~L}}
\end{gathered}
$$

therefore:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{p}}=\mathrm{i}_{1} \mathrm{x}-\frac{\Delta_{\mathrm{i}}}{2 \mathrm{~L}} \mathrm{x}^{2} \tag{30}
\end{equation*}
$$

the driver's line of sight equation is:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{r}}=\mathrm{mx}+\mathrm{n} \tag{31}
\end{equation*}
$$

Imposing the condition $y_{p}=y_{r}$, we get:

$$
\begin{gather*}
\mathrm{y}_{\mathrm{r}}=\mathrm{y}_{\mathrm{p}} \Rightarrow \mathrm{i}_{1} \mathrm{x}-\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{x}^{2}=\mathrm{mx}+\mathrm{n} \tag{32}\\
\left(\mathrm{i}_{1}-\mathrm{m}\right) \mathrm{x}-\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{x}^{2}-\mathrm{n} \Rightarrow \frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{x}^{2}-\left(\mathrm{i}_{1}-\mathrm{m}\right) \mathrm{x}+\mathrm{n}=0 \tag{33}
\end{gather*}
$$

Since the driver's line of sight must be tangent to the crest curve, the following condition must be imposed:

$$
\begin{gather*}
\Delta=\mathrm{b}^{2}-4 \mathrm{ac} \Rightarrow\left(\mathrm{i}_{1}-\mathrm{m}\right)^{2}-4 \frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{n}=0 \tag{34}\\
\left(\mathrm{i}_{1}-\mathrm{m}^{2}\right)=\frac{4 \Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{n} \tag{35}\\
\mathrm{i}_{1}-\mathrm{m}=\sqrt{\frac{4 \Delta \mathrm{i}}{2 \mathrm{~L}}} \mathrm{n} \Rightarrow \mathrm{~m}=\mathrm{i}_{1}-\sqrt{\frac{4 \Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{n}} \tag{36}
\end{gather*}
$$

For the abscissa $\mathrm{x}, \mathrm{y}_{\mathrm{r}}$ is

$$
\begin{gather*}
y_{r}=A B+B C \tag{37}\\
y_{r}=\left(i_{1}-\sqrt{\frac{4 \Delta i}{2 L}} n\right) x+n=\left(i_{1} x-\frac{\Delta i}{2 L} x^{2}\right)+h_{1} \tag{38}
\end{gather*}
$$

with

$$
\begin{gather*}
A B=\left(\mathrm{i}_{1} \mathrm{x}-\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{x}^{2}\right) \tag{39}\\
\mathrm{BC}=\mathrm{h}_{1} \tag{40}\\
\mathrm{x}=\mathrm{v} \cdot \Delta \mathrm{t} \tag{41}\\
\left(\mathrm{i}_{1}-\sqrt{\frac{4 \Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{n}}\right) \cdot \mathrm{v} \cdot \Delta \mathrm{t}+\mathrm{n}-\mathrm{i}_{1} \cdot \mathrm{v} \cdot \Delta \mathrm{t}+\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \cdot \mathrm{v}^{2} \cdot \Delta \mathrm{t}^{2}-\mathrm{h}_{1}=0 \tag{42}\\
\mathrm{n}-\sqrt{\frac{4 \Delta \mathrm{i}}{2 \mathrm{~L}} \mathrm{n}} \cdot(\mathrm{v} \cdot \Delta \mathrm{t})+\frac{\Delta \mathrm{i}}{2 \mathrm{~L}} \cdot \mathrm{v}^{2} \cdot \Delta \mathrm{t}^{2}-\mathrm{h}_{1}=0 \tag{43}
\end{gather*}
$$

Then, we found n and y_{r}.
In conclusion, H_{v} (Figure 11) can be determined using the following Equation (44):

$$
\begin{equation*}
\mathrm{H}_{\mathrm{v}}=\mathrm{BC}=\mathrm{AC}-\mathrm{AB}=\mathrm{h}_{2}-\left(\mathrm{y}_{\mathrm{r}}-\mathrm{y}_{\mathrm{p}}\right) \tag{44}
\end{equation*}
$$

With Equation (44), the values of H_{v} were then calculated considering $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $h_{2(15)}=1.39 \mathrm{~m}$, respectively. By way of example, in Figure 12, the visible vehicle body height H_{v} values are given in function of time t, for a design speed $V=100 \mathrm{~km} / \mathrm{h}$, road grade $\dot{i}_{1}=1 \%$, and total
grade variation $\Delta \mathrm{i}=0.02 \%$. Using Equation (2) for $\mathrm{V}=100 \mathrm{~km} / \mathrm{m}$, we have $\mathrm{PSD}=5.5 \mathrm{~V}=550 \mathrm{~m}$. By Equation (17), it results in:

- $\quad R_{v}=30,400 \mathrm{~m}$ for $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$;
- $\quad R_{v}=29,500 \mathrm{~m}$ for $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$.

Despite this significant difference in the values of the radius, it is immediate to note that the differences $\Delta \mathrm{H}_{\mathrm{v}}$ between the values of the visible vehicle body height $\mathrm{H}_{\mathrm{v}}=\mathrm{H}_{\mathrm{v}}(\mathrm{t})$ calculated using $h_{2(15)}=1.39 \mathrm{~m}$ and $\mathrm{h}_{2(\mathrm{~m})}=1.48 \mathrm{~m}$, respectively, are modest for each instant of time t . As a matter of fact, $\Delta \mathrm{H}_{\mathrm{V}}$ reaches 4.0 cm at time instant $\mathrm{t}=2 \mathrm{~s}$. In light of these considerations, the value $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ could be adopted in the design phase of crest curves in order to reduce the highways construction costs and the correlated environmental impacts [34-40].

It is worth underlining that, for the sake of safety [41,42], it could be used a vehicle height of $1.38 \mathrm{~m}\left(\mathrm{~h}_{2}=1.38 \mathrm{~m}\right)$, which represents the average of vehicle heights in the current passenger car population $\left(h_{2(m)}=1.48\right)$, less an allowance of 100 mm , which represents a near-maximum value for the portion of the vehicle height that needs to be visible for another driver to recognize a vehicle as such $[33,43]$. Anyhow, the vehicle height $h_{2}=1.10 \mathrm{~m}$ is too conservative compared to car population real values.

Figure 12. Visible vehicle body height H_{v} in function of time t (design speed $V=100 \mathrm{~km} / \mathrm{h}$).

6. Conclusions

The passing sight distance PSD can be evaluated with several overtaking models. These models give rise to dissimilar results due to the different values assigned to parameters, such as vehicles kinematic parameters (accelerations, speeds, etc.) and behavior parameters of the users involved in the overtaking maneuver. PSD affects both the safety and level of service (LOS) of two-lane highways. For this reason, PSD is of fundamental importance in highways design and traffic engineering.

In particular, safe operation on crest vertical curves depends on ample sight distance; therefore, the stopping sight distance (SSD) must always be ensured. With the aim to guarantee acceptable LOS, wherever technically feasible, passing sight distance PSD should also be provided on two-lane highways.

As it is well known, the crest vertical curve radius R_{v} is a function of passing sight distance (PSD), driver eye height h_{1}, object height (i.e., opposing vehicle) h_{2}, and total grade change Δi.

The Italian Guidelines for the Design of Road Infrastructures and Intersections prescribe $\mathrm{h}_{2}=1.10 \mathrm{~m}$, which is too conservative a value in comparison to the average height of the vehicles $\mathrm{h}_{2(\mathrm{~m})}$ and the 15th percentile of the height distribution $\mathrm{h}_{2(15)}$ of the car population in Italy. In fact, the research proved that $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$ and $\mathrm{h}_{2(15)}=1.39 \mathrm{~m}$. Using these object height values, the crest curves radii R_{v} have been calculated, and they have next been compared with those prescribed by the Italian guidelines. Reductions up to 12% were found. Moreover, the relationship between the design speed V, the time t of vehicles traveling along a crest curve in opposing lanes, and the visible vehicle body height H_{V} has been deduced. It was thus possible to ascertain that, by adopting $h_{2(\mathrm{~m})}=1.48 \mathrm{~m}$
and $h_{2(15)}=1.39 \mathrm{~m}$, the differences in the H_{v} values are very limited and never exceed 4 cm within 2 s starting from an initial instant corresponding to a reciprocal position among the vehicles equal to the PSD.

In conclusion, it is believed that the value $h_{2}=1.10 \mathrm{~m}$ is too conservative and leads to oversizing of the vertical convex curves. From this point of view, it would be necessary to make an appropriate choice of h_{2} value to take into account the current heights of passenger cars.

Funding: This research received no external funding.
Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

```
a acceleration rate
dic
d deceleration rate of passing vehicle abortion
D available sight distance
\Deltac
G}\mp@subsup{G}{1}{}\mathrm{ distance between the rear bumper of the passing vehicle and the front bumper of the
impeding vehicle at the end of a completed pass
h headway
\mp@subsup{h}{1}{}}\quad\mathrm{ driver's eye height
h}\mp@subsup{h}{2}{}\quad\mathrm{ opposing vehicle height
h2(m) average vehicle heights of the passenger car population in Italy
h}\mp@subsup{h}{2(15)}{}\quad15\mathrm{ th percentile of the height distribution of the passenger car population in Italy
Hv
i
i i2 right-hand side road grade
i total grade change
k traffic density
L crest vertical curve length
Lp
Li
m}=\Deltav\quad\mathrm{ difference in speed between passing and impeding vehicles
PSD passing sight distance
q traffic flow rate
R
SSD stopping sight distance
t time
v design speed in m/s
V design speed in km/h
vs mean space speed
```


References

1. Wang, Z.; Liu, C. Critique on the Highway Vertical Curve Design Specifications in China. In Proceedings of the ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable, Beijing, China, 4-8 August 2010; pp. 3564-3571. [CrossRef]
2. Mohammed, A.A.; Ambak, K.; Mosa, A.M.; Syamsunur, D. A review of the traffic accidents and related practices worldwide. Open Transp. J. 2019, 13, 65-83. [CrossRef]
3. Bhandari, S.B.; Nalmpantis, D. Application of various multiple criteria analysis methods for the evaluation of rural road projects. Open Transp. J. 2018, 12, 57-76. [CrossRef]
4. Mansouri, M.; Kargar, M.J. Analysis and monitoring of the traffic suburban road accidents using data mining techniques; a case study of Isfahan Province in Iran. Open Transp. J. 2014, 8, 39-49. [CrossRef]
5. Royal-Dawson, F.G. Vartical Curves for Roads; E. \& F.N. Spon, Limited: London, UK, 1946.
6. Lamm, R. Highway Design and Traffic Safety Engineering Handbook; McGraw-Hill Education: New York, NY, USA, 1999.
7. Guerrieri, M.; Ticali, D. Sustainable mobility in park areas: The potential offered by guided transport systems. In ICSDC 2011: Integrating Sustainability Practices in the Construction Industry; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 661-668. [CrossRef]
8. Bonnett, C.F. Practical Railway Engineering; Imperial College Press: London, UK, 2005.
9. Rogers, M.; Enright, B. Highway Engineering; Wiley: New Delhi, India, 2017.
10. Italian Guidelines for the Design of Road Infrastructures (D.M. 5/11/2001): Italy. 2001. Available online: https://www.mit.gov.it/mit/mop_all.php?p_id=1983 (accessed on 3 November 2020).
11. Italian Guidelines for the Design of Road Intersections (D.M. 19/04/2006): Italy. 2006. Available online: https://www.mit.gov.it/mit/mop_all.php?p_id=13799 (accessed on 3 November 2020).
12. Llorca, C.; Tsui Moreno, A.; Garcia, A. Modelling vehicles acceleration during overtaking manoeuvres. IET Intell. Transp. Syst. 2016, 10, 206-215. [CrossRef]
13. Ivan, J.N.; Wang, C.; Bernardo, N.R. Explaining two-lane highway crash rates using land use and hourly exposure. Accid. Anal. Prev. 2000, 32, 787-795. [CrossRef]
14. Road Accidents in Italy (Years 2000-2006). Available online: www.istat.it (accessed on 1 June 2020).
15. Campbell, J.L. Human Factors Guidelines for Road Systems, 2nd ed.; TRB: Washington, DC, USA, 2012; Volume 600.
16. Guerrieri, M.; Corriere, F.; Parla, G.; Ticali, D. Estimation of pollutant emissions from road traffic by image processing techniques: A case study in a suburban area. ARPN J. Eng. Appl. Sci. 2013, 8, 668-676.
17. Mauro, R. Traffic and Random Processes: An Introduction; Springer: Cham, Switzerland, 2015.
18. Guerrieri, M.; Mauro, R. Capacity and safety analysis of hard-shoulder running (HSR). A motorway case study. Transp. Res. Part A Policy Pract. 2016, 92, 162-183. [CrossRef]
19. Mauro, R.; Branco, F.; Guerrieri, M. Contribution to the platoon distribution analysis in steady-state traffic conditions. Period. Polytech. Civ. Eng. 2014, 58, 217-227. [CrossRef]
20. Transportation Research Board. Highway Capacity Manual (HCM2016), 6th ed.; TRB: Washington, DC, USA, 2016.
21. Yang, L.; Li, X.; Guan, W.; Zhang, H.M.; Fan, L. Effect of traffic density on drivers' lane change and overtaking maneuvers in freeway situation-A driving simulator-based study. Traffic Inj. Prev. 2018, 19, 594-600. [CrossRef] [PubMed]
22. Esposito, T.; Mauro, R. Fondamenti di Infrastrutture Viarie; Hevelius: Benevento, Italy, 2003.
23. Swiss Association of Road Specialists (VSS). Design, Fundamentals, Sight Distances; Swiss Norm SN 640 090/640 090a; Swiss Association of Road Specialists: Zurigo, Switzerland, 1996.
24. SETRA. Ministere de l'Equipement, Direction Des Routes (1994), Amenagement des Routes Principales; SETRA: Paris, France, 1994.
25. Lieberman, E.B. Model for calculating safe passing sight distances on two-lane rural roads. Transp. Res. Rec. 1982, 869, 70-76.
26. Glennon, J.C. New and improved model of passing sight distance on two-lane highways. Transp. Res. Rec. 1988, 1195, 132-137.
27. Hassan, Y.; Easa, S.M.; Abd El Halim, A.O. Passing sight distance on two-lane highways: Review and revision. Transp. Res. Part A Policy Pract. 1996, 30, 453-467. [CrossRef]
28. Van Valkenberg, G.W.; Michael, H.L. Criteria for no-passing zones. Highw. Res. Rec. 1971, 366, 1-9.
29. Rilett, L.R.; Hutchinson, B.G.; Whitney, M. Mechanics of the Passing Maneuver and the Impact of Large Trucks. Transp. Res. Part A 1990, 24, 121-128. [CrossRef]
30. American Association of State Highway and Transportation Officials. A Policy on Geometric Design of Highways and Streets; AASHTO: Washington, DC, USA, 1994.
31. Findley, D.J.; Schroeder, B.; Cunningham, C.; Brown, T. Highway Engineering: Planning, Design, and Operations; Butterworth-Heinemann: Oxford, UK, 2015.
32. Italian Car Population. 2006. Available online: http://www.aci.it/ (accessed on 20 June 2020).
33. AASHTO. A Policy on Geometric Design of Highways and Streets; AASHTO: Washington, DC, USA, 2001.
34. Guerrieri, M.; Corriere, F.; Rizzo, G.; Lo Casto, B.; Scaccianoce, G. Improving the sustainability of transportation: Environmental and functional benefits of right turn by-pass lanes at roundabouts. Sustainability 2015, 7, 5838-5856. [CrossRef]
35. Eriksson, E.; Blinge, M.; Lövgren, G. Life cycle assessment of the road transport sector. Sci. Total Environ. 1996, 189, 69-76. [CrossRef]
36. Maheshwari, P.; Khaddar, R.; Kachroo, P.; Paz, A. Dynamic Modeling of Performance Indices for Planning of Sustainable Transportation Systems. Netw. Spat. Econ. 2016, 16, 371-393. [CrossRef]
37. AASHTO. Policy on Geometric Design of Highways and Streets 2011; AASHTO—American Association of State Highway and Transportation Officials: Washington, DC, USA, 2011.
38. Mauro, R.; Guerrieri, M. Comparative life-cycle assessment of conventional (double lane) and non-conventional (turbo and flower) roundabout intersections. Transp. Res. Part D Transp. Environ. 2016, 48, 96-111. [CrossRef]
39. Corriere, F.; Guerrieri, M.; Ticali, D.; Messineo, A. Estimation of air pollutant emissions in flower roundabouts and in conventional roundabouts. Arch. Civ. Eng. 2013, 59, 229-246. [CrossRef]
40. Azeez, O.S.; Pradhan, B.; Shafri, H.Z.M.; Shukla, N.; Lee, C.-W.; Rizeei, H.M. Modeling of CO emissions from traffic vehicles using artificial neural networks. Appl. Sci. 2019, 9, 313. [CrossRef]
41. Thomas, N.E.; Hafeez, B.; Evans, A. Revised design parameters for vertical curves. J. Transp. Eng. 1998, 124, 326-334. [CrossRef]
42. Pu, Z.; Li, Z.; Ke, R.; Hua, X.; Wang, Y. Evaluating the Nonlinear Correlation between Vertical Curve Features and Crash Frequency on Highways Using Random Forests. J. Transp. Eng. Part A Syst. 2020, 146, 04020115. [CrossRef]
43. Harwood, G.W.; Mason, J.M.; Brydia, R.E.; Pietrucha, M.T.; Gittings, G.L. Intersection Sight Distance; Report 383; TRB: Washington, DC, USA, 1996.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

