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Abstract:  A  new  plume  rise  scheme  for  the  Lagrangian  stochastic  model
SPRAYWEB is developed and tested. The plume rise scheme is based on a
stochastic  differential  equation  for  the  potential  temperature  fluctuations
coupled with the equations for the wind velocity fluctuation components. The
new approach is tested against measured data from a water tank experiment
(Weil et al., 2002). The results are discussed in term of statistical indices and
scatter  plots.  For  the  sake  of  comparison,  the  new scheme  performance  is
compared  with  the  algorithm  used  in  SPRAYWEB  formerly  proposed  by
Anfossi et al. (1993) which doesn’t account for the temperature fluctuations.
The  results  obtained  with  the  novel  plume  rise  scheme  are  generally
satisfactory.  A better  agreement  is  found for  the vertical  standard deviation
with respect to the results given by the Anfossi et al. (1993) scheme.
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1 Introduction

Emissions  from many natural  and  anthropogenic  sources  are  hot  compared  with  the
surrounding  ambient  air.  These  buoyancy  effects  cause  the  emitted  plume  to  rise,
increasing the effective source height and significantly decreasing the maximum ground-
level concentrations. A significant difference between buoyant and passive dispersion is
the buoyant fluid particles ability in creating their own turbulence. Hence, the exchange
processes between the plume and its environment need to be accounted for. Models of
buoyant plumes originated with the work of Morton et al. (1956). These models describe
the mean flow of the plume but do not explicitly take into account for the fluctuations in
the velocity and buoyancy that occur within the plume (except through entrainment). In
most realistic dispersion models that are used for operational purposes, as the Lagrangian
stochastic models (LSMs), the Lagrangian particles move independently of each other
through  the  flow field.  There  is  then  an  inherent  difficulty  in  modelling  a  coherent
process such as buoyant plume rise using single-particle LSMs: the motion of individual
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particles or fluid elements depends on the buoyancy of all the fluid elements. Moreover,
there  is  nothing to  constrain  two neighboring model  particles  to  move upwards with
similar velocities. Starting from the pioneering work of Briggs (1975), several authors
have  attempted  to  model  buoyant  plume  rise  using  a  Lagrangian  approach.  Three
different  “hybrid”  techniques  (i.e.,  that  consider  together  Lagrangian  and  Eulerian
properties)  have  been  proposed  (Webster  and  Thomson,  2002;  Anfossi  and  Physick,
2005): particles emission occurs at the final plume height computed by analytical models
(such as the Briggs 1975 ones), an integral plume rise model is used at each time step for
each particle and the derived velocities are added to the Lagrangian stochastic particles
velocities  (see,  for  instance,  Anfossi  et  al.,  1993)  and  a  set  of  differential  equations
describing the time and space evolution of bulk plume quantities are solved at each time
step (Webster  and Thomson, 2002; Anfossi  et  al.,  2010).  An interesting  method was
proposed by van Dop (1992) in which a Langevin equation for the particle temperature is
solved and the buoyancy of the particle  is  included in the Langevin equation for  the
particle velocity evolution. Alessandrini et al. 2013 and Ferrero et al. 2017 introduced a
fictitious  scalar  transported  by  the  particles,  the  temperature  difference  between  the
plume portions and the environment air temperature.  In this work, the hybrid Lagrangian
stochastic  algorithm  for  buoyant  plume  rise  from  an  isolated  source  described  by
Bisignano  and  Devenish  (2015)  is  introduced  into  the  Lagrangian  dispersion  model
SPRAYWEB (Tinarelli et al, 1994, Alessandrini et al. 2013, Bisignano et al., 2017). In
this  approach,  each  particle  carries  its  own  potential  temperature,  which  evolves
according to a stochastic differential equation similar to Van Dop (1992). The buoyancy
is calculated from the particle temperature and is directly included in the equation for the
evolution of the velocity through a coupling term. We compare the concentration field
simulated by the model with the results of a water tank experiment (Weil et al. 2002) and
with  a  SPRAYWEB  simulation  carried  out  with  Anfossi  et  al.  (1993)  plume  rise
formulation instead of Bisignano and Devenish (2015) one. In Section 2 the methodology
is  described,  while  results  are  shown  and  discussed  in  Section  3.  Conclusions  are
presented in Section 4.

2 Methodology

Here we consider a hybrid model introduced by Webster and Thomson (2002) in which
the  mean  flow  is  calculated  from  a  simple  plume  model  and  the  fluctuations  are
calculated using a Lagrangian stochastic model (LSM). Webster and Thomson (2002)
only considered fluctuations in the velocity and not the temperature; here we treat both
fluctuations of the velocity and temperature as in Bisignano and Devenish (2015). The
governing equations for potential temperature and vertical velocity are derived from the
Briggs  (1984)  plume  equations.  Then  we  separate  the  average  and  the  turbulent
fluctuating  parts  of  the  two  variables  through  the  application  of  the  Reynolds
decomposition. The final expressions of the stochastic differential equations (SDEs) for
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turbulent vertical velocity and potential temperature of the plume are obtained by adding
terms of the form of Thomson (1987) to the turbulent fluctuating parts in order to satisfy
the well-mixed condition. Accounting for the fluctuations in temperature means that the
Lagrangian particles carry their own potential temperature, which evolves according to an
SDE, as in Van Dop (1992). The effect of temperature fluctuations is directly included in
the equation for the evolution of the velocity through a coupling term. To our knowledge,
an expression for the temporal Lagrangian structure function for a passive scalar is not
prescribed in literature.  Hence, a completely satisfying approach for setting turbulence
parameters for the temperature SDE based on Lagrangian description is not yet available.
The constants required in the temperature SDE are set following the values commonly
found in literature from both measurements and large eddy simulations (Devenish et al.,
2010).  The  above-described  temperature  SDE  (Bisignano  and  Devenish,  2015)  is
introduced  for  the  first  time  into  the  LSM  SPRAYWEB  (Tinarelli  et  al,  1994,
Alessandrini et al. 2013, Bisignano et al., 2017) that, in its standard form, describes the
plume rise by using the Anfossi et al. (1993) algorithm. We validate the model against
the  water  tank  experiment  of  Weil  et  al.  (2002)  characterized  by  a  strong  capping
inversion at the top of a convective boundary layer (CBL).  We also compared our plume
rise  approach  with  that  of  Anfossi  et  al.  (1993).  The  focus  of  Weil  et  al.  (2002)
experiment is on highly buoyant plumes that loft near or become trapped in the CBL
capping inversion and resist downward mixing. The scaling factors used for calculating
the simulation parameters are chosen to be the same as Ferrero et al. (2017).

2.1 The plume rise model

The equations governing the rise of a buoyant plume in a uniform crossflow U [m/s] are
given by Briggs (1984):

                                    

d
ds

(π vb2
)=E

(1+k v)
d
ds

(π vwb2
)=πb2 g '

d
ds

(π v g ' b2
)=−N2

πb2 w

                            (1)

where  v=(U2+w2)1/2  [m/s] is the velocity component along the plume axis,  s  [m] is the
distance along the plume axis, E [m2/s] is the entrainment rate (to be defined), w [m/s] is
the vertical  velocity  of  the plume,  b  [m] is the plume radius,  N  [1/s]  is  the ambient
buoyancy frequency and  g’=  g(θ(zz)-θa(z))/θ0  [m/s2] is the reduced gravity in which  θ(z)
[K] is the potential temperature of the plume at height  z  [m],  θa(z) [K] is the ambient
potential temperature at height z and θ0 [k] is a reference temperature. The parameter kv is
the  added-mass  coefficient  that  accounts  for  the  momentum  of  the  ambient  fluid
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displaced by the plume as  the plume rises  (here  we considered  a value of  kv=1.3 as
suggested  by  Briggs,  1984).  Equations  (1)  respectively  describe  the  evolution  of  the
volume flux V [m3/s], momentum flux (per unit density) M [m4/s2] and the buoyancy flux
F [m4/s3] . They are collectively known as the plume equations. 
We use the plume equations (1) as a starting for point re-expressing them in terms of w,
b, θ and time. First, we expand the left-hand side of equation (1) by applying the product
rule  for  derivatives.  Then  we  express  the  plume  equations  in  term  of  w,  b,  and  θ,
obtaining the expressions for the spatial derivatives of the three quantities. We re-write
the derivatives of w, b, and θ with respect to s as derivative with respect to t=∫ds/v. Once
the time derivatives of  w,  b, and  θ,  making use of  N2=g/θ0 dθa/dz =g/(zθ0w) dθa/dt  and
after some algebra, we get:

                      

dw
dt

=
g (θ−θa)

θ0
−E

w
b2

db
dt

=
E

2πb
−

bw
2(1+k v)v2

g (θ−θa)

θ0
+

Ew2

2πb v2

d θ

dt
=

−E (θ−θa)

b2

                    (2)

The equations (2) reduce to those of a vertically rising plume as v→w and to a bent-over
plume  as  w→0.  These  equations  are  now  used  to  calculate  the  mean  velocity  and
temperature  (which  will  be  denoted  by  an  overbar).  The  fluctuating  velocity  and
temperature  are  denoted  by  a  prime  and  will  be  calculated  from  SDEs.  These  are
constructed from analogous equations to (2) and coupled with LSMs for w′ and θ′. Let us
show the application of a Reynolds decomposition to the equations for w and θ. Because
equations (2) are linear in  w and  θ there are no second-order quantities and there is no
feedback on the mean quantities by the fluctuating quantities. Let us assume, first, that
b′=0 and hence that is evaluated in terms of the mean quantities alone and, second, that
E=E(zw;v;U).  Since we assume also that  there are no fluctuations in  θa,  the Reynolds
decompositions for w and θ are:

                  

d
dt

(w ' +w)=g
(θ−θa)

θ0
+g

θ '
θ0

−E
w
b2−E

w '
b2

d
dt

(θ+θ ' )=−E
(θ−θa)

b2 −E
θ '
b2

            (3)

Then the SDEs for w′ [m/s] and θ′ [K] are completed by adding respectively the LSM of
Thomson (1987) for inhomogeneous turbulence and an LSM (in which for simplicity we
assume that the temperature statistics are homogeneous) similar to that considered by van
Dop (1992):
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w
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            (4)

where TL [s] and Tθ [s] are the time scales on which w’ and  θ’ decorrelates respectively, ε
[m2/s2] and εθ  [K2] are the mean kinetic energy and scalar dissipation rates respectively,
Cθ=1.6  is  the  Obukhov-Corrsin  constant,  σw [m/s]  is  the  vertical-velocity  standard
deviation  and  C0 is  the  constant  of  proportionality  in  the  second-order  Lagrangian
velocity structure function which typically has a value in the range 5-7 in homogeneous
isotropic  turbulence.  This  range  for C0 is  commonly  found experimentally  and  from
direct  numerical  simulations of  homogeneous isotropic turbulence.  We choose  C0=5
because it gives the best agreement with the data. The value is smaller than C0=6 used in
Bisignano  and  Devenish  (2015).  The  small  difference  can  be  due  to  the  different
Reynolds-number flows that characterizethe two case studies. The third term of RHS of
equation (4) for  θ’ arises from the time derivative of mean temperature that implicitly
contains fluctuations of velocity. This term and the first term of RHS together ensure that
θ is conserved following a particle, in both equations (4) the term involving E and the
fluctuating quantities represent the effect of the entrainment on the turbulence, whereas
the terms involving the time scales represent the internal turbulence of the plume. We
neglect the covariance σwθ  [m/s K] that may exist in reality.
The  definition  of  entrainment,  as  in  Bisignano  and  Devensih  (2015),  includes  two
additive entrainment mechanisms in a crosswind, one due to velocity differences parallel
to the plume axis and the other due to velocity differences normal to the plume axis and
that the two mechanisms are additive. Devenish et al. (2010) suggested that this additive
entrainment assumption be an lm-norm.

                     E=2πb[α (|w|
|w|

v )
m

+β(|w|
U
v )

m

]
1/m

     (5)

We have assumed that the difference between the horizontal component of the plume
velocity and  U is small relative to  U   and that this is valid from the source. Note that
entrainment is proportional to the absolute velocity difference in order to avoid spurious
detrainment after the plume reaches its maximum rise height (Bisgnano and Devenish
2015).  The  constant  coefficients  α and  β are  associated  with  the  two  entrainment
mechanisms:  α with velocity differences parallel to the plume axis and  β with velocity
differences normal to the plume axis. We take α=0.1 and β=0.5 which are consistent with
previous studies (Devenish et al.,  2010).  m>1 is a tunable parameter.  The effect  of a
crossflow on a buoyant plume can be characterized by the dimensionless parameter Ũ=
U/(zFbN )1/4 where Fb is the source buoyancy flux. In the weak-wind limit, Ũ<<1, the first
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term on the right-hand side of equation (5) dominates. When Ũ>>1, the plume becomes
bent-over and the second term on the right-hand side of equation (5) dominates. Devenish
et al. (2010) found that m=3/2 gave the best agreement with the LES of buoyant plumes
in  a  crosswind  and  field  observations.  We use  this  value  throughout  this  study.  The
turbulence parameters σw, σθ, TL  and Tθ  have been chosen to be related to the appropriate
mean quantities in the problem. Also, it is necessary to limit the turbulence parameters in
order to avoid numerical overflow in the oscillating region. We set:

                      

σw=α max(|w|,w*
)

T L=
b

max (|w|,w*
)

σθ=γ max (|θ−θa|,θ*
)

T θ=T L

with
w*

=2−5/8
π

−1 /4
(6/5α)

−1
(9 /10α)

1 /2 F0
1 /4 N1 /4

θ
*
=2−5 /4

π
−1 /4

(5/8α)
1/2

θ0 g−1 F0
1 /4 N5 /4

b*
=(23 /4

−23/8
)π

−1/4
(9 /10α)

−1/2 F0
1/4 N−3/4

         (6)

where  α and  γ are tunable constants whose values are chosen equal to 0.1, and  F0 the
initial buoyancy flux. The initialization of w, b and g′ (denoted with a subscript 0) for a
pure plume whose initial buoyancy flux is known is not straightforward. We estimate w0

by equating the initial radius b0 =2z so that w0=(b0 g′0)1/2. Since the initial buoyancy flux is
F0=πbb2

0 g′0 v0 we obtain a cubic polynomial for either w0 or g′0 for given b0, whose roots
can be inferred by analyzing the discriminant ∆. Any of the three cases (∆>0, ∆=0, ∆<0)
will produce a physical solution. In the case that there are three real roots (∆ > 0), shows
that  two  of  these  roots  will  be  negative,  and  can  thus  be  discarded  (Bisignano  and
Devenish (2015) for further details).

2.2 The case study

We considered the Weil et al. (2002) experiment which investigates the plume dispersion 
in the convective boundary layer (CBL) using a convection tank. The focus is on highly 
buoyant plumes that become trapped in the CBL capping inversion and resist downward 
mixing.  Such plumes are defined by a dimensionless buoyancy flux F*>0.1. F*  is defined
as:

F*=
Fb

U w*
2 zi

   with   Fb=w s rs
2 g

ρs−ρa
ρa

=ws rs
2 g

T a−T s

T s

             (9)
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where  Fb is the stack buoyancy flux,  U is the mean wind speed, w∗ is the convective

velocity scale, zi is the CBL depth, ρ the density, T the temperature, r is the source radius,

w the plume velocity at the source, and  g the gravity acceleration (“s” stands for stack
values and “a” for ambient air values). In particular, the experiment is characterized by
four different values of the normalized stack buoyancy flux (F∗=0, F∗=0.1, F∗=0.2, and
F∗=0.4).   We tested  the  plume-rise  models  of  Anfossi  (1993)  and of  Bisignano and
Devenish (2015) against the observations  as a function  of  F  ∗  and of the dimensionless
downwind distance

                                          X=
xU
w* zi

                    (10)

We underline that in the experiment there was no mean flow and, hence, no environment
mechanical turbulence. This condition may lead to an underestimation of the entrainment
in the experiment when compared to both the real atmosphere and our simulations. Our
turbulence  parametrizations  assume  the  presence  of  mechanical  turbulence.
Consequently, a slight  underestimation of the plume rise may occur in our simulations,
when compared to that observed in the water tank. Ferrero et al. (2017) estimated the
absence of the mechanical turbulence to influence the observed final plume rise by much
less than 20%. The experiment  reproduces allthe components of the lateral and vertical
dispersion parameters (rms meander, relative dispersion, total dispersion), mean and root-
mean-square concentration fields as a function of F∗ for continuous buoyant releases. 

We perform our simulations only for the cases  F∗=0.1 and  F∗=0.2  (hereinafter named
case A and case B). In fact,  we are not interested in non-buoyant emission (F∗=0) and,
for  the  case  F∗=0.4,  the  experimental  data  for  vertical  profiles  of  dimensionless
crosswind-integrated  concentration  are  not  available.  To  perform the  simulations,  we
rescaled the experiments to typical atmospheric dimensions as in Ferrero et al. (2017).
The main  experimental  parameters  are  listed  in  the  first  column of  Table  1  and  the
rescaled simulation parameters in the second column. In Table 1 N=0.5s-1 is the Brunt-
Vaisala  frequency  of  the  inversion  layer  above  the  mixing  height,  N*=Nzi/w* its
dimensionless  value,  Fm=ws

2rs
2ρs/ρa the  stack  momentum  flux,  Fm*=Fm/(zuzi

2w*) its
dimensionless value, Fb* and Fb correspond to eq. 9 and g’=gΔ is the reduced gravity and

Δ is the relative density.  The turbulence parameters have been determined following the

same scheme as Ferrero et al. (2017) and they are listed in Table 2. Here, σu(z), σv(z) and
σw(z) are the three components of the wind standard deviation;  TLu(zz)=TLv(zz)=TLw(zz) are
the Lagrangian time scale along the three directions; <w3> is third order moment of the
vertical velocity perturbations. The dimensions of variables involved in this section are
reported in Table 1 and Table 2.
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3 Results

We  focus  on  the  plume  characteristics  and  on  the  vertical  profiles  of  dimensionless
crosswind-integrated concentration as a function of dimensionless downwind distance for
two F  ∗ values (F∗=0.1, case A and F∗=0.2, case B). We compare the measured and the
simulated results, both with Anfossi et al. (1993) plume rise and Bisignano and Devenish
(2015) plume rise. Figures 1–2 (that refers to the cases A and B respectively) show that
the model plume characteristics agree well with the data plume characteristics for both
the values of normalized buoyancy flux. Thus, the model is able to correctly reproduce
the basic behavior of the plume rise phenomenon in convective conditions. In particular,
we considered the following plume dispersion parameters: mean height, horizontal and
vertical standard deviations; all are normalized by the inversion height zi and plotted as a
function of dimensionless distance  X. The model shows a little overestimation both for
the vertical and lateral standard deviation and an underestimation in the mean height. We
found that the vertical spread, evaluated with the above-described plume rise, matches the
data  slightly  better  than  that  evaluated  with  the  Anfossi  et  al.  (1993)  plume  rise,
characterized by the  absence  of  temperature  fluctuations.  There  is  no  significant
difference between the two plume rise algorithms for lateral standard deviation, as both
the method affect only the vertical component of the motion of the particles. Regarding
the mean height, on the contrary,  the better  agreement  with the data results has been
obtained by Anfossi et al. (1993) plume rise algorithm. Similar considerations can be
drawn looking at Figures 3-4, where scatter diagrams report the same data, but where the
simulations results are evaluated at the same dimensionless distance of the measurements.
Again, the scatter plots show that the overall agreement between measure and simulation
results is  good for both the values of normalized buoyancy flux and all the points are
within the factor two curves (except for a pint in the mean height scatter). Also Figures 3-
4 further confirm that both the models underestimate the mean height, overestimate the
standard deviations and the Bisignano and Devenish (2015) plume rise better agrees with
the data that the Anfossi et al. (1993) one. 

Figures 5–6 (that refers to the cases A and B respectively) show the comparison between
the  measured  (Weil  et  al.  2002)  and  simulated  (both  with  Anfossi  et  al.,  1993  and
Bisignano and Devenish, 2015 plume rise methods) vertical  profiles of dimensionless
crosswind-integrated concentration as a function of dimensionless downwind distance.
The non-dimensionalization of concentration has been made by use of the experimental
parameters  (Weil  et  al.  2002)  and  it  takes  the form  CyUzi/Q, where  Q is  the  source
strength and Cy is the crosswind-integrated concentration, i.e.:

C y=∫C(x , y , z )dy       (11)           

The agreement is satisfactory at all dimensionless downwind distance. We considered the
profiles within a normalized distance X=2 as the ambient-plume temperature difference is
not significant at larger distances from the source acting as a source of buoyancy. This
allows  also  to  avoid  possible  numerical  overflows  with  the  Bisignano  and  Devenish
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(2015)  plume  rise  method,  which  is  very  sensitive  to  ambient-plume  temperature
difference.  In  the  F∗=0.1 case,  the  agreement  between  the  height  of  the  peaks of
concentration  evaluated  by  the  models  and  those  measured  by  Weil  et  all.  (2002)
deteriorate  as  the  downwind  distance  increases.  This  discrepancies  for  increasing
distances are also notable near the ground, where the two models underestimate the data
concentration  profiles.  The  last  statement  seems  to  hold true  for  Figure  6  as  well.
Conversely,  with the stronger buoyancy flux (F*=0.2), we observe a better agreement
between  the  simulated  (with  both  the  models)  and  measured  peaks  locations,  at  all
dimensionless downwind distance. Furthermore, in this case,  comparison of Bisignano
and  Devenish  (2015)  method  with  Anfossi  et  al.  (1993)  formulation,  i.e.  with  no
temperature fluctuations, shows that the first one had a greater vertical spread than the
first  one  results.  This  is  much  more  noticeable  than  in  Case  A,  as  the  temperature
fluctuations  evaluated  by  Bisignano  and  Devenish  (2015)  algorithm  increase  as  the
buoyancy flux become larger. For sake of comparison, in Figures 7-8 we show the scatter
diagrams  of  the  measurements  against the  simulations  for  dimensionless  crosswind-
integrated  concentration,  for  the  case  A and B respectively.  Here,  all  the  considered
downwind distances (X=0.5, X=1, X=1.5, and X=2) are plotted together. The scatterplots
lead to the same conclusions that we made for Figures 5-6. We notice that there is a
noticeable number of points outside the factor two curves. Most of them (in the low part
of the diagrams) represent a model underestimation of the data (for both the two models).
These points refer to the lower part of the vertical profiles where both the models are not
able to capture the values of data concentrations. A small number of points outside the
two-factor curves  are  located  in  the  upper  part  of  the  scatter  diagrams  for  which,
therefore, the models overestimate the data. These points refer to the upper levels of the
profiles  where  the  overestimation  is  due  to  the  above-mentioned  shift  of  the  peak
locations.  In  Table  3,  the  statistical  analysis  is  presented  for  crosswind-integrated
concentration. In particular,  the correlation (Corr),  the normalized mean squared error
(NMSE) and fractional bias (FB) are evaluated. For both the models, all the three indexes
are more satisfactory for the higher value of buoyancy flux (Corr increases, NMSE and
the absolute value of FB decrease). We detect that the absolute value of FB (which is the
only index that  estimates only systematic errors which lead to always underestimate or
overestimate the measured values) is lower for Anfossi et al. (2003) in the Case A, on the
contrary it is lower for Bisignano and Devenish (2015) in Case B. 

4 Conclusions

The hybrid model of buoyant plume rise combines coupled SDEs for vertical velocity
and temperature  with a  classical  plume model  of  a  buoyant  rise in  a  crossflow.  The
novelty lies in adding a stochastic differential equation (SDE) and a w′-θ′ coupling term
to  the  SPRAYWEB  model.  With  these  equations,the  model  can  account  for the
turbulence generated by the plume itself. The model can reproduce the basic behavior of
the plume rise phenomenon in convective conditions. In fact,  there is a good agreement
with Weil et al. (2002, Boundary-Layer Meteorol.) water tank experiment in terms of the
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dispersion  parameters.  In  particular,  the  model  shows  a  little  overestimation  for  the
vertical standard deviation, a little underestimation of the mean height and of the vertical
concentration profiles near the ground. Some discrepancies were observed in the heights
of the peak of the concentration for the low-buoyancy case, but the agreement improves
for the high-buoyancy case. The comparison of the Bisignano and Devenish (2015) with
the Anfossi et al. (1993) formulation shows that the  former produces a  larger vertical
spread  of  the  particles  than  the  latter.  The simulations with Bisignano and Devenish
(2015)  plume  rise  algorithm  lead  to  a  better  agreement  with  the  vertical  standard
deviation data than those carried out with of Anfossi et  al.  (1993) formulation  which
doesn’t account for the temperature fluctuations.
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Experiments Simulations

CASE A

zi 200 mm 1000 m

rs 1.59  mm 7.95  m

zs 30  mm 150  m

ws 99.4  mm s-1 19.88 m s-1

w* 7.4  mm s-1 1.48  m s-1

u 20.7  mm s-1 4.14 m s-1

N 0.5  s-1 0.002 s-1

∂θa/∂z aloft 0.007725  K mm-1 1.55 10-3   K m-1

Fm 25121.52  mm4 s-2 25121.52    m4 s-2

Fm* 4.1 10-3 4.1 10-3

N* 13.51 13.51

Fb* 0.1 0.1

Fb 22670.64 mm4 s-3 906.8   m4 s-3

g’ 90.22 mm s-2 0.72  m s-2

 9.20 10-3 9.20 10-3                          

ρ ss 0.986 Kg m-3 0.922 Kg m-3 

ρ ssρa 0.9908 0.9264

Ts 306.0 K 327.2  K

CASE B
zi 200 mm 1000 m

rs 1.59  mm 7.95  m

zs 30  mm 150  m

ws 99.4  mm s-1 19.88 m s-1

w* 7.4  mm s-1 1.48  m s-1

u 20.7  mm s-1 4.14 m s-1

N 0.5  s-1 0.002 s-1

∂θa/∂z aloft 0.007725  K mm-1 1.55 10-3   K m-1

Fm 25121.52  mm4 s-2 25121.52    m4 s-2

Fm* 4.1 10-3 4.1 10-3

N* 13.51 13.51

Fb* 0.2 0.2

Fb 45341.29 mm4 s-3 1813.651  m4 s-3

g’ 180.4319 mm s-2 1.443455   m s-2

 1.84 10-2 1.84 10-2                         

ρ ss 0.977 Kg m-3 0.849 Kg m-3

ρ ssρa 0.982 0.853

Ts 308.8 K 355.5 K

Table 1: Values of the parameters for the experiments and simulations s
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Height 0<z<zi (0<z<800m)

Note: as suggested by Weil et al. (2002)

σu=σv 0.6w*=1.48  0.6 = 0.888 ms⋅ 0.6 = 0.888 ms -1

σw 0.6w*=1.48  0.6 = 0.888 ms⋅ 0.6 = 0.888 ms -1

TLu(z)=TLv(z)=TLw(z) 0.6 zi w* = 405.4 s

<w3> 0.8 σw
3  m3s−3

Height 1.2zi <z<1.71zi (1200m<z<1710m)

Note : all the parameters were set at their minimum

σu=σv 0.1 ms-1

σw 0.05 ms-1

TLu(z)=TLv(z)=TLw(z) 4000 s

<w3> 0.8 σw
3  m3s−3

Height 0.8zi <z<1.2zi (800m<z<1200m)

Note: all the parameters were linearly interpolated between the value at  z=0.8z i 
and their minimum values.

Table 2: Turbulence parameters
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Figure 1.  Comparison of the measured (Weil et al. 2002 – W02 in the legend) and simulated (both 
with plume rise methods of Anfossi et al., 1993 – A93 in the legend and Bisignano and Devenish, 
2015 – BD15 in the legend) mean height, horizontal and vertical standard deviations for  F∗=0.1.

Figure 2.  As in Figure 1, but for  F∗=0.2
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Figure  3.  Scatterplots of the measurements (Weil et al. 2002 – W02 in the legend) against the
simulations  (both  with  plume  rise  methods  of  Anfossi  et  al.,  1993  –  A93  in  the  legend  and
Bisignano and Devenish, 2015 – BD15 in the legend) for  mean height, horizontal and vertical
standard deviations in the case F∗=0.1. The green line represents the perfect agreement, while the
black dashed lines are the factor 2 range.

Figure 4.  As in Figure 3, but for  F∗=0.2
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Figure 5. Comparison of the measured (Weil et al. 2002 – W02 in the legend) and simulated (both
with plume rise methods of Anfossi et al., 1993 – A93 in the legend and Bisignano and Devenish,
2015 – BD15 in the legend) vertical profiles of dimensionless crosswind-integrated concentration
as a function of the dimensionless downwind distance for  F∗=0.1.

Figure 6.  As in Figure 5, but for  F∗=0.2
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Figure  7.  Scatterplots of the measurements (Weil et al. 2002 – W02 in the legend) against the
simulations  (both  with  plume  rise  methods  of  Anfossi  et  al.,  1993  –  A93  in  the  legend  and
Bisignano  and  Devenish,  2015  –  BD15  in  the  legend)  for  dimensionless  crosswind-integrated
concentration in the case F∗=0.1. The green line represents the perfect agreement, while the black
dashed lines are the factor 2 range.

Figure 8.  As in Figure 7, but for  F∗=0.2
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Plume rise method Quantity F* Corr NMSE FB

A93 CyUzi/Q 0.1 0.81 0.23 0.18

BD15 CyUzi/Q 0.1 0.76 0.27 0.23

A93 CyUzi/Q 0.2 0.90 0.10 -0.048

BD15 CyUzi/Q 0.2 0.85 0.13 -0.015

Table 3: Statistical indexes for the non-dimensional crosswind integrated concentration


