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Abstra
t

In this dissertation, sparse pro
essing of signals for dire
tions-of-arrival (DoAs)
estimation is addressed in the framework of Compressive Sensing (CS). In par-

ti
ular, DoAs estimation problem for di�erent types of sour
es, systems, and

appli
ations are formulated in the CS paradigm. In addition, the fundamen-

tal 
onditions related to the �Sparsity� and �Linearity� are 
arefully exploited in

order to apply 
on�dently the CS−based methodologies. Moreover, innovative

strategies for various systems and appli
ations are developed, validated numer-

i
ally, and analyzed extensively for di�erent s
enarios in
luding signal to noise

ratio (SNR), mutual 
oupling, and polarization loss. The more realisti
 data

from ele
tromagneti
 (EM) simulators are often 
onsidered for various analy-

sis to validate the potentialities of the proposed approa
hes. The performan
es

of the proposed estimators are analyzed in terms of standard root-mean-square

error (RMSE) with respe
t to di�erent degrees-of-freedom (DoFs) of DoAs es-
timation problem in
luding number of elements, number of signals, and signal

properties. The out
omes reported in this thesis suggest that the proposed esti-

mators are 
omputationally e�
ient (i.e., appropriate for real time estimations),

robust (i.e., appropriate for di�erent heterogeneous s
enarios), and versatile (i.e.,

easily adaptable for di�erent systems).
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Chapter 1

Introdu
tion

In this Chapter, the main motivations of 
hoosing this topi
 are brie�y de-

s
ribed. Moreover, the main obje
tives and 
ontributions of this thesis are also

listed.

1



1.1. MOTIVATIONS

1.1 Motivations

The proliferation of wireless servi
es, the Internet of things, and the next-generation


ellular networks are boosting the di�usion of wireless devi
es. In this regard, the

estimation of the dire
tions-of- arrivals (DoAs) of signals impinging on a dire
-

tion �nding system is a key problem for the evolution of future wireless systems.

Moreover, the knowledge of the DoAs enhan
es the 
apability to re
on�gure the
transmitting/re
eiving systems and to pro
ess the signals despite impairments

in the 
ommuni
ation systems.

Re
ently, the sparse pro
essing of signals for DoAs estimation in the frame-

work of Compressive Sensing (CS) has re
eived great attention as it provides

a

urate and real time estimation with no a-prior knowledge of number of in-


oming signals. In addition, the voltages 
olle
ted at the sensors are dire
tly

used to estimate the DoA without the need to 
ompute the 
omplex 
orrelation

matrix.
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CHAPTER 1. INTRODUCTION

1.2 Obje
tives

The main obje
tives of this thesis are listed as follows:

1. study and development of CS-based innovative strategies for DoAs esti-

mation purpose;

2. adapt and apply the developed approa
hes to:

• di�erent spe
i�
 appli
ations: real-time appli
ations, 
ognitive radars,

and 5G;

• di�erent 
hara
teristi
s of the sour
es: narrow band, wide band, and


lutters;

• di�erent systems: linear array, planar array, and sub-arrayed array;

3. extensive analysis of the performan
es of the developed methods for di�er-

ent DoFs, EM s
enarios, and 
onditions:

• varying the number of elements of the array;

• varying number of signals;

• varying noise levels;

• real antenna element with mutual 
oupling and polarization loss.
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1.3. CONTRIBUTIONS

1.3 Contributions

The main 
ontributions of this thesis are listed as follows:

1. theoreti
al - formulations of DoAs estimation problem for di�erent signals

and systems;

2. methodologi
al - development of di�erent CS−based strategies for DoAs
estimation;

3. resour
e - implementation of the developed strategies;

4. analyti
al - extensive numeri
al analysis of the behaviour of the proposed

approa
hes.

4



CHAPTER 1. INTRODUCTION

1.4 Outline

The outline of this thesis is listed as follows:

• Chapter 2 - the state-of-the-art DoAs estimation problem is reviewed in

details;

• Chapter 3 - the general DoAs estimation problem is formulated mathe-

mati
ally and reformulated in the state-of-the-art CS framework;

• Chapter 4 - an improved version of the state-of-the-art ST −BCS method


alled IMSA−BCS is proposed, validated, and analyzed extensively;

• Chapter 5 - an improved version of the state-of-the-artMT−BCS method


alled MF −BCS is proposed, validated, and analyzed extensively;

• Chapter 6 - the state-of-the-art ST −BCS and MT − BCS methods are

analyzed for the di�erent linear and planar sub-array geometries;

• Chapter 7 - the state-of-the-art TV − CS approa
h is vigorously adapted

and applied for estimating 
losely spa
ed sour
es or 
lutters;

• Chapter 8 - some 
on
luding remarks are summarized and some s
opes of

future resear
h are listed.
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Chapter 2

A Brief Literature Review

In this Chapter, the state-of-the-art literature of dire
tions-of-arrival (DoAs) es-
timation is reviewed fo
using on the methodologi
al advan
ement in the 
ontext

of di�erent innovative systems and appli
ations.
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Dire
tions-of-arrival (DoAs) estimation has been a known area of resear
h

for long time. It has been studied extensively in various dis
iplines and applied

fruitfully in many �elds of engineering in
luding radar, sonar, navigation, smart

antennas, geophysi
al and seismi
 sensing. A plethora of methods for �nding

DoAs have been proposed in the state-of-the-art literature of DoAs estimation.

Many dedi
ated books [1℄-[7℄ addressing only DoAs estimation problem are pub-

lished by well known resear
her all over the world.

Although it is a matured topi
, it be
omes a resear
h of great interest nowa-

days whi
h is evident from the in
reased number of publi
ations and the number

of PhD [8℄-[16℄ from renowned institutions. The re
ent highly in
reasing devel-

opment of the wireless te
hnologies and the advan
ements of the various 
lassi
al

and modern estimation algorithms are opening doors of huge potentialities for

many innovative appli
ations in next generation 
ellular/wireless 
ommuni
a-

tions, internet-of-things (IoTs), vehi
ular te
hnology, unmanned aerial vehi
les

(UAVs) and so on.

The knowledge of the DoAs of signals arriving on an antenna system is 
on-

sidered as an advantage in many �elds of engineering. For example, in wireless


ommuni
ation, it allows to enable adaptive beam-forming, whi
h enhan
es the

sensitivity of the system towards desired dire
tions suppressing at the same time

the undesired interferen
e. In a
ousti
, it is often required to �nd the dire
tions

where the sound sour
es are lo
ated or the dire
tion of re�e
ted sound signals

(e.g., SONAR). In radar, DoAs estimation is useful for target a
quisition and

for air tra�
 
ontrol. In spa
e exploration, the knowledge of DoAs helps as-

tronomer to look at the 
ertain lo
ation in the sky. In surveillan
e, DoAs 
ould
help the system to fo
us along the desired regions of interest. Therefore, many

attra
tive appli
ations are possible for the re
ent te
hnologi
al ra
e of wireless

devi
es. As a matter of fa
t, the dramati
ally in
reased wireless servi
es are

boosting the development of an e�
ient and robust advan
esDoA estimation

te
hnique for the future evolution of wireless systems. The immense interest in

both a
ademi
 and industrial 
ommunities for reliable and e�e
tive methods are

evident from the re
ently published number of books, journals, pro
eedings, and

seminars. As a matter of fa
t, the advan
es on DoAs estimation have been re-

viewed almost every year sin
e last de
ade [17℄-[29℄. Methodology based review

is 
overed by most of the review papers while only few reviews based on the

spe
i�
 appli
ations and systems.

The 
lassi
al DoAs estimators are essentially based on the sub-spa
e based

estimation approa
hes. In this 
ategory of estimator, the 
ommon and widely

used estimators are multiple signal 
lassi�
ation (MUSIC) [30℄ and its di�er-

ent improved versions[31℄-[37℄, the signal estimation parameters via rotational

in-varian
e te
hnique (ESPRIT ) [38℄ and its di�erent versions [39℄-[43℄, and

the maximum likelihood (ML) DoA estimator [44℄-[46℄ and others [47, 49, 50℄.

However, the two main drawba
ks of the sub-spa
e based estimator are - (I)

8
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they often need to know a-priory number of in
oming signals, whi
h is quite

prohibitive nowadays and (II) they need to 
ompute 
omplex 
o-varian
e matrix

whi
h slows the DoAs estimation and requires an hardware implementation of

the re
eiver too 
omplex for most mobile systems and devi
es.

On the other hand, the aforementioned 
onstraints of 
lassi
al DoAs esti-

mators are not a limiting fa
tor for the modern estimators based on ma
hine

learning theories. For instan
e, learning-by-example (LBE) approa
hes based
on radial-basis fun
tions (RBF s) [51℄, neural networks (NNs) [52℄, or support

ve
tor ma
hines (SVMs) [53℄-[55℄ have been also proposed where the DoA esti-

mation problem has been re
ast to a probabilisti
 framework. Although e�
ient

for some appli
ations, they need to be trained by means of a pre-de�ned set of the

known input-output examples for all possible 
ombination of prospe
tive in
om-

ing DoAs. Therefore, ma
hine learning based modern estimators are appli
ation

spe
i�
 and 
an not be used as a general purpose.

However, all the aforesaid 
lassi
al and modern estimators also need adequate

number of snapshots data in order to have a reliable estimation. As a result, the

are not suitable for the appli
ations where the estimation must be in real time

although LBE-based methods have proved to be promising solutions also for

real-time lo
alizations [52℄[53℄[54℄.

Sparse pro
essing [56℄-[62℄ for signal re
onstru
tions has re
ieved great atten-

tion sin
e last two de
ades. In this framework, strategies based on the 
ompres-

sive sensing (CS) theory [59℄-[61℄ have re
ently been introdu
es thanks to their

e�e
tiveness, �exibility, and 
omputional e�
ien
y to deal with 
omplex engi-

neering problems in ele
tromagneti
s [63℄-[68℄ in
luding antenna array synthesis

[69℄-[70℄ and imaging [71℄-[75℄.

Exploiting the key observation that the impinging DoAs on the antenna ar-

ray are intrinsi
ally sparse in the spatial domain, CS based deterministi
 solvers

have been proposed for DoAs estimations where the sparsity 
onstraints have

been imposed through a lp-norm minimization [57℄,[76℄-[77℄. However, the 
on-

dition of restri
ted isometry property (RIP ) must be satis�ed by the 'sampling

matrix' in order to guarantee reliable estimations. Unfortunately, be
ause of

the 
omputational burden RIP 
annot be easily veri�ed [59℄. As an alterna-

tive, methods based on the Bayesian 
ompressive sensing (BCS) [61℄ have been
proposed where the original deterministi
 problem is reformulated in the proba-

bilisti
 framework and then e�
iently solved with the relevan
e ve
tor ma
hine

(RVM) [56℄.

The BCS-based strategies have been e�e
tively applied for DoAs estimation

for di�erent purposes [78℄-[84℄. In [78℄, theDoA estimation problem is formulated

within the BCS framework thus avoiding 
onstraints on the sampling (or obser-

vation) matrix, whi
h dire
tly links the measurements (i.e., voltages/
urrents)

at the output of the array elements to the unknown signal dire
tions. Two

BCS-based DoAsestimation strategies named single-task BCS (ST − BCS)
and multi-task BCS (MT − BCS) have been proposed in [78℄. The former is

9




on
erned with single time-instant measurements (i.e., single snapshot) to en-

able the real-time estimation, while the latter is aimed at giving high-resolution

estimations, thanks to the pro
essing over multiple snapshots, still avoiding any

a-priori information on the number and the intensity of the unknown impinging

signals.

This thesis work aims at addressing the following issues of DoAs estimation

in CS framework:

1. developing innovative strategies in order to improve the performan
e of the

ST −BCS approa
h;

2. developing innovative strategies in order to improve the performan
e of the

MT −BCS approa
h;

3. extensive analysis of state-of-the-art ST −BCS and MT −BCS methods

for sub-arrayed geometries;

4. develop CS based strategies for innovative appli
ations.

All the aforementioned issues are addressed su

essfully in this thesis. The out-


omes have already been published [29℄,[81℄-[84℄ in the state-of-the-art literature

and some are in under review pro
ess.

10



Chapter 3

Mathemati
al Formulations

In this Chapter, the general DoA estimation problem is de�ned mathemati
ally

in
luding the polarization loss and mutual 
oupling. Then the problem in hand

is reformulated in Compressive Sensing (CS) framework. After satisfying the

fundamental requirements of CS, the state-of-the-art CS strategies for DoAs
estimation are des
ribed in details. In addition, the DoA estimation problem is

addressed through Bayesian Compressive Sensing (BCS) based approa
hes like

single-task BCS (ST − BCS) and multi-task BCS (MT − BCS).

11



3.1. DEFINITION OF SIGNAL MODEL

3.1 De�nition of Signal Model

Based on the sour
es positions (e.g., distan
e) relative to the referen
e point of

the sensors, the DoA estimation problem 
an be broadly 
ategorized into:

1. Far-�eld DoA estimation.

2. Near-�eld DoA estimation.

Although the general idea of estimating far-�eld and near-�eld DoA are same,

their signal model is di�erent. The fundamental di�eren
e between two signals

models are the assumption of the in
oming signals 
hara
teristi
s. For instan
e,

in far-�eld 
ondition (i.e., the distan
e between sour
e and sensors referen
e

point, r > 2D2/λ, D being antenna aperture and λ being wavelength at working

frequen
y), the in
oming signals impinging on the sensors are assumed to be a

plane wave. However, in near-�eld 
ondition (i.e., sour
es are 
lose to the sensors,

r < 2D2/λ), the assumption of the plane wavefront 
an no longer hold [15℄.

Instead, the in
oming signals impinging on the sensors in the 
ase of near-�eld


ondition are spheri
al waves. Therefore, the estimation problem in near-�eld


ase be
omes the estimationDoAs and also ranges (i.e., distan
es of the sour
es).
The details of the near-�eld DoA estimation problem is beyond the s
ope of this

thesis. In order to know more in details about the near-�eld DoA estimation

problem, formulation of signal model, and the potential appli
ations, interested

readers may go through the referen
es [15, 125, 126℄.

The far-�eld DoA estimation problem is addressed in this thesis. Therefore,

all the dis
ussions hereinafter are based on the far-�eld approximation of the

signal model. As a matter of fa
t, the in
oming signals on the sensors array

are assumed to be a plane wave. The mathemati
al formulation of the plane

wave in the 
ontext of DoA estimation is des
ribed in details in Se
t. 3.2. The

interested readers may �nd out the details of the properties of the plane wave in

[127℄. Plane wave is the simplest solution of the Maxwell equation in va
uum.

Therefore, it plays an important role in the development of ele
tromagneti
.

Moreover, a representative example of the plane wave is shown in Fig. 3.1 and

some of its 
hara
teristi
s are short-listed as follows:

• it de�nes a plane along its dire
tion of propagation where the �eld strength

is uniform everywhere of that plane at any instant of time;

• it is a 
onstant frequen
y wave whose wavefronts (surfa
es of 
onstant

phase) are in�nite parallel plane of 
onstant amplitude normal to the phase

velo
ity ve
tor;

• its wavefronts are equally spa
ed by one wavelength λ;

• its wavefront propagate at speed of light;

12
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• no ele
tri
 and magneti
 �eld are in the dire
tion of propagation (dire
tion

of the poynting ve
tor), where the ele
tri
 and magneti
 �eld are perpen-

di
ular to ea
h other;

• the value of the magneti
 �eld is equal to the value of the ele
tri
 �eld

divided by impedan
e of the medium (i.e., in free spa
e, the impedan
e is

∼ 377 [ohm℄);

• any operator applied to the plane wave yields a plane;

• any linear 
ombinations of the plane waves yields a plane wave.

E
&

H
&

wavefront

O

Direction�of

propagation

Figure 3.1: Plane Wave - The wavefronts of the plane wave.
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3.2. DEFINITION OF DOA ESTIMATION PROBLEM

3.2 De�nition of DoA Estimation Problem

Consider a set of L narrow-band ele
tromagneti
 plane waves, sl (r), l = 1, ..., L,
impinging on a linear array of M parallel dipoles from dire
tions (θl, φl), l =
1, ..., L and with arbitrary linear polarization ûl, l = 1, ..., L [Fig. 3.2℄. The l-th
plane wave is expressed as sl (r) = Einc

l e−jβr̂l·rûl where β = 2π
λ
is the wave number

with λ the free-spa
e wavelength of the 
arrier frequen
y, Einc
l the amplitude of

the l-th wave and the r̂l · r is de�ned as

r̂l · r = (x sin θl cosφl + y sin θl sinφl + z cos θl) . (3.1)

The dipoles are y-dire
ted, of length h and radius ς (being ς ≪ h), 
onne
ted
at the 
enter, and separated by a distan
e d = ∆x along the x-axis.

θ1

θ2

M1 m

d

z

x

s2

s1

Figure 3.2: Sket
h of the referen
e s
enario - impinging plane waves on the linear

adaptive antenna array.

The 
urrent Im (y) indu
ed on the m-th dipole, supposed thin (i.e., ς ≪ λ),
from the in
ident waves is 
omputed by inverting the following integral equation

[86℄, [87℄

j

ωǫ0

(
β2 +

∂2

∂y

)∫ h
2

−h
2

e−jβd

4πd
Im (y′) dy′ = Einc

y (y) (3.2)

through the Method of Moments (MoM) [88℄ and using the Galerkin approa
h

[89℄. In (3.2), the distan
e d =
√

(y + y′)2 + ς2 is never zero, y ∈
[
−h

2
; h

2

]
,

ω = 2πc
λ

is the angular frequen
y with c the speed of light in va
uum, and ǫ0 the
diele
tri
 permittivity. Moreover,

Einc
y (r) =

L∑

l=1

sl (r) · ŷ (3.3)

14
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the y-
omponent of the total in
ident �eld, being ŷ the unit ve
tor along the y-
dire
tion. In theMoM , G pie
ewise sinusoidal basis fun
tions Bg (y), g = 1, ..., G
(with G odd) [90℄ are used for representing the 
urrent on the m-th dipole as

Im (y) =

G∑

g=1

Im,gBg (y) . (3.4)

The voltages, in
luding the self and mutual 
oupling e�e
ts, are then 
omputed

as

vm = vm,g|g=N+1
2

=

M∑

p=1

G∑

q=1

Ym,g;p,qIm,g , m = 1, ...,M (3.5)

where Ym,g;p,q is the impedan
e term that de�nes the voltage at the g-th segment

of the m-th dipole due to a unitary 
urrent in the q-th segment of the p-th dipole
when the 
urrent in all other segments is zero [88℄. For interested reader, the

voltage equation without mutual 
oupling 
an de�ned as[78℄:

vm =

L∑

l=1

Einc
l ŷ ·Hejβxm sin θl cosφl , m = 1, ...,M (3.6)

where H is the antenna e�e
tive length supposed identi
al for all elements.

1

Finally, the open-
ir
uit voltage (OCV ) at the output of the m-th array element

in a single time-instant (single snapshot) and used for the DoA estimation is

equal to

Vm = vm + ηm , m = 1, ...,M (3.7)

where η = {ηm : m = 1, ...,M} is the additive noise data ve
tor whose entries

are samples of a statisti
ally-distributed Gaussian fun
tion with zero mean and

varian
e equal to the noise power. Be
ause of the linear arrangement of the array

elements, the DoA estimation is limited to the θ angle (i.e., φ = 0 [deg]). The

DoA estimation problem is de�ned as the estimation of unknown dire
tions θl,
l = 1, ..., L, from the OCV of Vm, l = 1, ..., L. In matrix form, eq. (3.7) 
an be

rewritten as follows

V = A (θ) s+ η (3.8)

where V = [V1, ... , VM ]T is a 
olumn ve
tor of M 
omplex entries (V ∈
CM×1

), T indi
ates the transpose, θ = [θ1, ..., θL], A (θ) = [a (θ1) , ... , a (θL)] ∈
C

M×L
is the matrix of the steering ve
tors whose l-th 
olumn is given by a (θl) =[

ejβx1sinθl, ... , ejβxMsinθl
]T
∈ C

M×1
, l = 1, ... , L, s = [Einc

1 , ... , Einc
L ]

T
∈ C

L×1
,

and η = [η1, ... , ηM ]T ∈ C
M×1

. It is worth noti
ing that the problem at hand is

non-linear with respe
t to the unknowns, θl, l = 1, ... , L, whi
h are present in

the exponential terms of the elements of the matrix A.

1

Without loss of generality, isotropi
 elements are assumed (i.e., H = 1).
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3.3 Problem Formulation in CS Framework

The two fundamental 
onditions that must be satis�ed in order to apply Com-

pressive Sensing (CS) are (I) the signals to be re
overed must be sparse, and (II)

the problem to be solved must be linear. First of all, 
learly the unknown is not

sparse in the original s
enario. Se
ondly, the problem at hand is non-linear with

respe
t to the unknowns, θl, l = 1, ... , L, whi
h are present in the exponential

terms of the elements of the matrix A. In order to address the �rst 
ondition,

the following hypothesis is adopted:

A signal F(r) =

N∑

n=1

xnψn(r) is S−sparse with respe
t to ψ if x = [x1, ..., xN ]

has at-most S ≪ N non-nul 
oe�
ient:

F(ri) =

N∑

n=1

xnψn(ri) (3.9)

where x ∈ CN
, x = {xn; n = 1, ..., N} are the signal 
oe�
ients and ψ ∈

CN×N
, ψ = {ψni = ψn(ri); n = 1, ..., N ; i = 1, ..., I} are the signal basis.

θ2
θ1

1 m M

x

z

d

θ̃k

θ̃0 θ̃K

s1

s2

Figure 3.3: Sket
h of the sparse s
enario - angular domain dis
retization.

Therefore, sparsity is not an absolute 
on
ept but a relative one. Here the

sparsity is exploited in the angular domain by dis
retizing the in
iden
e �eld

of view θ ∈ [−90 : 90] [deg] into K ≫ L angular samples (Fig. 3.3) su
h that

A
(
θ̃
)
∈ CM×K

in (3.8) and the DoAs of the in
oming signals are assumed to

belong to the set of the K dire
tions Γ =
{
θ̂k; k = 1, ..., K

}
. Therefore, the


andidate s
enario is sparse in spatial domain and the 
andidate dire
tions θ̂k
are dire
tly aso
iated with the 
andidate signal ve
tors s̃k, k = 1, ..., K . As a

result, the problem be
omes linear with respe
t to the unknown signal ve
tor s̃.
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3.4 CS-Based Methods

In order to have a reliable estimation, a ne
essary 
ondition to be addressed

when applying CS is the fa
t that the so-
alled 'sampling matrix' must satis�es

the restri
ted isometry property (RIP ). This property essentially deals with

the ill-posedness of the CS problems. Unfortunately, su
h a 
ondition 
annot

easily veri�ed sin
e it needs to evaluate the determinant of hugenumber of sub-

matri
es depending on number of elements and sparsity levels. As a matter of

fa
t, verifying RIP 
ondition are 
omputationally demanding [59℄. Therefore,

the performan
es of the deterministi
 CS methods are greatly 
ompromised as

most of the 
ases the RIP 
ondition 
an not be veri�ed.

Alternatively, approa
hes based on the Bayesian Compressive Sensing (BCS)
[61℄ have been proposed where verifying the RIP 
ondition is no more the lim-

iting fa
tor of the solutions stability.

3.4.1 Single-Task Bayesian Compressive Sensing (ST−BCS)

In order to deal with the 
omplex data, the guidelines in [69℄,[81℄ is adopted.

First of all, eq. (3.8) is rewritten to yield a real-valued problem suitable for

BCS as

[
ℜ{V}
ℑ {V}

]
=


 ℜ

{
A
(
θ̃
)}

−ℑ
{
A
(
θ̃
)}

ℑ
{
A
(
θ̃
)}

ℜ
{
A
(
θ̃
)}



[
ℜ{s̃}
ℑ {s̃}

]
+

+

[
ℜ{η}
ℑ {η}

]
,

(3.10)

where V = {Vm; m = 1, ...,M}, Â = {âk; k = 1, ..., K} is the steering matrix

whose k-th entry is âk =
{
ejβxm sin θ̂k ; m = 1, ...,M

}
, and ŝ = {ŝk; k = 1, ..., K}

is the signal ve
tor on Γ with entries ŝk = Einc
k δkl, k = 1, ..., K, being δkl = 1 if

θ̂k = θl and δkl = 0 otherwise. Moreover, ℜ{·} and ℑ{·} are the real and the

imaginary part respe
tively.

The sparse signal ve
tor ŝST−BCS is retrieved [78℄ by looking for the maximum

of the a-posteriori probability fun
tion

Pr
([
ŝ, σ2, p

]
|V
)

(3.11)

given by its mean value

ŝST−BCS =
1

σ2

(
Â ÂT

σ2
+ diag (p)

)−1

ÂTV (3.12)

be
ause of the multi-dimensional Gaussian nature [61℄ of (3.11). In (3.12), the

varian
e σ2
and the hyper-parameter ve
tor p, whi
h for
es the sparseness of the
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signal ve
tor ŝ [56℄, are determined through the maximization of the likelihood

fun
tion

L
(
σ2,p

)
= −

1

2

[
(2K) log 2π + log |Ξ|+ yTΞ−1V

]
(3.13)

by means of the relevan
e ve
tor ma
hine (RVM) [69℄. In (3.13), Ξ , σ2I +
Â diag (p)−1

ÂT
, T being the transpose operation.

3.4.2 Multiple-Task Bayesian Compressive Sensing (MT −
BCS)

The MT − BCS approa
h [61℄ 
orrelates the DoAs estimation over multiple

snapshots in order to avoid the strong dependen
e of the estimation performan
e

on the noise level of the measured voltages. The multiple-snapshots version of

(3.8) 
an be written as

Vw = A (θ) sw + ηw, w = 1, ...,W, (3.14)

where W is the number of snapshots. The sparse signal ve
tor ŝMT−BCS is

determined as follows

ŝMT−BCS =
1

W

W∑

w=1

{
arg

[
max
ŝw

Pr ( [̂sw, p]|Vw)

]}
(3.15)

where ŝw, w = 1, ...,W , are statisti
ally-
orrelated through a hyperparame-

ter ve
tor whi
h 
orrelates the di�erent snapshots. The optimal value of p,

pMT−BCS, is 
omputed as pMT−BCS = argmaxp
{
LMT−BCS (p)

}
through the

RVM a

ording to the guidelines in [69℄, being

LMT−BCS (p) = −1
2

∑W

w=1 {log (|CMT−BCS|)+
(K + 2ϕ1) log

[
VT

w (CMT−BCS)Vw + 2ϕ2

]}
(3.16)

where CMT−BCS , I + Â
(
θ̃
)
diag (p)−1 Â

(
θ̃
)T

and ϕ1, ϕ2 are user-de�ned pa-

rameters [61℄. The knowledge/estimation of the varian
e σ2
of the noise samples

is not required in the MT − BCS based method [69℄, unlike the ST − BCS
approa
h. The MT − BCS solution turns out equal to

ŝMT−BCS =

∑W

w=1

{[
Â
(
θ̃
)T

Â
(
θ̃
)
+ diag (p)

]−1

Â
(
θ̃
)T

Vw

}

W
. (3.17)
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3.4.3 Estimation of DoA from BCS Solutions

As we have seen, the BCS methods are not applied dire
tly to estimate the

dire
tions θ̃ but the signals ve
tor ŝ. On
e the signals ve
tor are estimated by

STBCS e.g., ŝST−BCS or by MTBCS e.g., ŝMT−BCS , an energeti
 thresholding

[78℄ is applied in order to remove the low-energy �artifa
ts� 
aused by the en-

vironmental noise and/or the measurement un
ertainties. More spe
i�
ally, the

values ŝk, k = 1, ..., K are �rstly ranked a

ording to their energy 
ontent (i.e.,

ŝ1 = arg
{
maxk=1,...,K |ŝk|

2}
and ŝK = arg

{
mink=1,...,K |ŝk|

2}
). Su

essively, the

last

(
K − L̃+ 1

)
ones are �ltered out [i.e., ŝBCS

k = 0, k =
(
K − L̃+ 1

)
, ..., K℄,

L̃ being the BCS-estimated number of signals satisfying the following 
ondition

L̃∑

l=1

|ŝl|
2 ≤ τ ×

(
K∑

k=1

|ŝk|
2

)
(3.18)

where µ is a user-de�ned threshold [78℄. Finally, the estimated DoA ve
tor,

θ̂BCS =
{
θ̂l : l = 1, ..., L̂

}
is determined by sele
ting the angles θ̂BCS of the

steering ve
tors âk, k = 1, ..., K asso
iated to the non-trivial terms of the thresh-

olded ŝBCS ve
tor.
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Chapter 4

Performan
e Improvement of

ST-BCS

In this Chapter, an improved version of ST − BCS estimation method 
alled

IMSA−BCS is proposed. It exploits the information on the degree of reliability

obtained by ST − BCS to improve the e�
ien
y of the estimation. Moreover,

the proposed method 
an be applied in real time appli
ations. In addition, the

estimation is not 
on�ned to any prede�ned grid as it re�nes grid at ea
h IMSA
step. Therefore, it is essentially a grid-less DoAs estimator. Finally, the main

out
omes of this work are essentially summarized in [29℄,[81℄.
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4.1. INTRODUCTION

4.1 Introdu
tion

A system is usually designed to estimate dire
tion as a �nal obje
tive (e.g., ded-

i
ated system for DoA estimation) or as a primary obje
tive (i.e., estimate DoA

as a prior knowledge to be utilized for other purposes). In both 
ases, most of the

appli
ations demand a

urate and real-time estimation, although a

ura
y and

time are 
onsidered as trade-o� in reality. Therefore, the study of DoA estima-

tion problem is fo
used nowadays on �nding optimal a

ura
y of estimation in

any instant of time. However, the resear
h addressing the aforementioned prob-

lem 
an hardly be seen in the literature be
ause most of the 
lassi
al and modern

estimators are based upon the 
omputationally intensive strategies i.e., needed

multiple snapshots data and eigen-de
omposition of 
omplex 
o-varian
es and so

on. For example, the real-time DoAs estimator proposed in [43℄ is essentially

based on the widely used subspa
e based strategy named the signal estimation

parameter via rotational in-varian
e te
hnique (ESPRIT ) [38℄. The a

ura
y

of the estimation in [43℄ is highly 
ompromised although it 
onsidered multiple

snapshot data. Kim et. al. [48℄ developed a fast DoA estimation algorithm 
alled

the pseudo-
ovarian
e matrix te
hnique, whi
h estimated fast varying signals in

two steps (i.e., the rough estimation using bearing response and then exa
t es-

timation by 
ombing the bearing response and the dire
tional spe
trum). As a

matter of fa
t, it requires the solution of a nonlinear-generalized- eigenvalue equa-

tion of a pseudo-
ovarian
e matrix, resulting a high 
omputational burden even

for the single snapshot data. Huang in [49℄ proposed a fast estimation method

based on [48℄ where the nonlinear-generalized-eigenvalue equation is rewritten as

a linear-matrix equation formed by forward- ba
kward data matrix. This is done

by 
onverting of re
eived data ve
tor into overlapping sub-arrays of mu
h higher

data samples than the original re
eived data. Again, this is subje
t to post-

pro
essing of re
eived data ve
tor whi
h be
omes 
omputationally expensive with

the in
rease of number of elements. In order to avoid inherent 
omplexity of the

estimator based on 
lassi
al methods, Lin et. al. [50℄ proposed a real-time DoA

estimation te
hnique by simply 
omparing the re
eived signal strength among

the di�erent ports of the Rotman lens. Although it is fast, the performan
e is

a�e
ted severely by di�erent noisy s
enario. Re
ently, sparse pro
essing thanks

to their 
omputational e�
ien
y has re
eived great attention in ele
tromagneti


[67, 78℄ and antenna array synthesis, analysis, and pro
essing [26℄. In this frame-

work, Compressive Sensing (CS) based orthogonal mat
hing pursuit (OMP) and

sparse Bayesian learning (SBL) approa
hes have been proposed in [116℄. How-

ever, although it is fast, it used multi-temporal data to build 
ovarian
e matrix

whi
h is not appropriate for real-time estimation. In order to avoid 
omputing


ovarian
e matrix, Bayesian Compressive Sensing (BCS) [78℄ is proposed whi
h


an be applied dire
tly on the re
eived data ve
tors without 
omputing 
omplex


ovarian
e matrix. However, although [78℄ outperforms with respe
t to 
lassi
al

[30, 38, 44℄ and modern estimator [55℄, it also needs multi-snapshot data in order
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to have robust estimation. In this Chapter, the methods in [78℄ is extended by

exploiting the inherent properties of the BCS in order to address the problem

of �nding optimal a

ura
y of estimation in real-time (with single snapshot data

and with insigni�
ant 
omputational burden). In parti
ular, the ST −BCS [78℄

is extended as IMSA−BCS [81℄ to retrieve narrowband DoAs.

This 
hapter deals with the re
overy of the signal DoA from data 
olle
ted at a

single time instant (single-snapshot) through a dipole antenna array, when 
on-

sidering mutual 
oupling e�e
ts and polarization losses. The estimation method,

preliminary presented in [80℄ for the ideal array 
ase (i.e., isotropi
 elements

without mutual 
oupling) and avoiding the 
omputation of the 
ovarian
e ma-

trix, is based on the integration of the DoA-based BCS with a grid re�nement

strategy. The BCS, su

essfully applied in a wide number of ele
tromagneti


appli
ations [69℄-[67℄, provides not only an estimation of the DoA [78℄, [79℄ but

also of the degree of reliability of the estimates [70℄. The multi-resolution angular

grid re�nement is instead exploited to e�e
tively 
ope with the problem of the

o�-grid signals (i.e., signals whose a
tual DoA do not belong to the dis
retization

of the spatial-angular domain) and to iteratively improve the angular resolution

a

ura
y and reliability of the DoA estimation, while using the same data [55℄,

[57℄.

As 
ompared to the existing state-of-the-art literature, the following method-

ologi
al advan
es are here present:

1. the exploitation, for the �rst time to best of the authors' knowledge, of the

information on the degree of reliability obtained by the BCS to improve

the e�
a
y of the bearing estimation;

2. the introdu
tion of a �
on�den
e level index�, de�ned as a fun
tion of the

reliability values, used to 
ompute the angular regions in whi
h to perform

the DoA estimation at the next zooming step;

3. the implementation of a multi-s
aling strategy aimed at qui
kly/slowly in-


reasing the dis
retization resolution of the angular regions in 
ase high/low


on�den
e level values are obtained at the previous step.
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4.2 The BCS Multi-S
aling Strategy

In Se
t. 3.4.1, the problem in hand (3.8) is solved by ST −BCS by maximizing

the a-posteriori probability fun
tion of (3.11) in order to retrieve the sparsest

solution of signal ve
tor ŝST−BCS using the mean value as de�ned in (3.12). As

ST−BCS uses only a single snapshot data for re
onstru
tion, the performan
e is

not reliable and robust [78℄. In order to improve the performan
e of ST −BCS,
the noise varian
e σ2

BCS of (3.12) is exploited as an extra degree of freedom.

θ̃
(0)
k = [θmin, ..., θmax]

θ̃
(r)
k = θ̃

(r−1)
k

New Grid Definition

Initialization, r = 1

s̃(r) = [̃s1, ..., s̃K ]

θ̃
(r)
k = [θmin(new), ..., θmax(new)]

Data, V

Start

Endr ≤ R

r = r + 1

BCS

Confidence Level, ξ(r)

Y es No

Figure 4.1: Working Prin
iple - IMSA−BCS �ow 
hart.

The varian
e σ2
BCS of the posterior probability fun
tion (3.11) is an index in-

versely proportional to the degree-of-reliability of the BCS -estimate of the a
tual

signal ve
tor ŝ [70℄ (i.e., a small varian
e value σ2
k,BCS means a high probability of


orre
t estimation of the 
orresponding signal 
oe�
ient ŝk, while larger values

orrespond to low probabilities/high-un
ertainties of faithful signal dete
tions).

This information is exploited to improve the a

ura
y and the 
ertainty of the
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DoA retrieval pro
ess. Towards this end and for the �rst time to the best of

the authors' knowledge, the BCS-based estimator is integrated with an iterative

multi-s
aling (IMSA) s
heme. The �ow 
hart of IMSA−BCS method is shown

in Fig. 4.1. More spe
i�
ally, the IMSA− BCS method works as follows (Fig.

4.2):

θ̂
(r)
l,max

......

sl

xMx1 xm

s1

y-oriented dipole

sL

z

x

∆x

θ̂
(r)
l,min

ARoI
(r)
l

ARoI
(r)

L̂

ARoI
(r)
1

(a)

sl

sL

s1 θ̂
(r)
l,k

θ̂
(r)
1,k

θ̂
(r)

L̂,k

z

x

(b)

Figure 4.2: BCS-based Approa
h - Graphi
al sket
hes illustrating the IMSA−
BCS retrieval pro
ess: (a) dis
retization of the angular domain and ARoIs
de�nition and (b) sampling grid re�nement.

• Step 0 - Angular Grid Initialization (r = 1). Dis
retize the angular
region of interest (ARoI), θ ∈

[
−π

2
, π

2

]
, in a uniform sampling grid, Γ(r) ={

θ̂
(r)
k = −π

2
+ (k − 1) δθ(r); k = 1, ..., K

}
, δθ(r) = π

K−1
being the angular

step [Fig. 4.2(a)℄;

• Step 1 - Bare BCS DoA Estimation (r = 1). Apply the BCS-

estimator and estimate at the r = 1 resolution level the DoA, θ̂
(r)
BCS ={

θ̂
(r)
l : l = 1, ..., L̂(r)

}
, a

ording to the �bare� BCS te
hnique des
ribed

above. Then, update the resolution index r (r ← r + 1) and go to Step 2;
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4.2. THE BCS MULTI-SCALING STRATEGY

• Step 2 - IMSA−BCS Loop (r = 2, ..., R). Sele
t the maximum number

of zooming steps, R, and apply the following iterative zooming strategy:

� Step 2.1 - Con�den
e Level Computation. Given the varian
es

σ2
l,BCS

∣∣(r−1)
, l = 1, ..., L̂(r−1)

asso
iated to θ̂
(r−1)
l , l = 1, ..., L̂(r−1)

, the

normalized �
on�den
e level index� of the estimated DoA is 
omputed

as

ξ
(r−1)
l =

(
σ2
l,BCS

∣∣(r−1)
)−1

∑L̂(r−1)

i=1

(
σ2
i,BCS

∣∣(r−1)
)−1 , l = 1, ..., L̂(r−1); (4.1)

� Step 2.2 - ARoIs De�nition. Set Ω(r) = π
2r−1 as the maximum

angular extension of the angular regions-of-interest (ARoIs), where
the signals are supposed to impinge, at the r-th zooming step. For

ea
h l-th (l = 1, ..., L̂(r−1)
) DoA estimated at the (r − 1)-th step,

asso
iate an ARoI [Fig. 4.2(a)℄ of angular width

ARoI
(r)
l =

{
θ : θ̂

(r−1)
l −

Ω
(r)
l

2
≤ θ ≤ θ̂

(r−1)
l +

Ω
(r)
l

2

}
(4.2)

where Ω
(r)
l = Ω(r)

ξ
(r−1)
l

;

� Step 2.3 - Sampling Grid Update. Set K(r) =
⌈

K

L̂(r−1)

⌉
, ⌈·⌉ being

the 
eiling fun
tion, and dis
retize ea
h ARoI
(r)
l , l = 1, ..., L̂(r−1)

with

a uniform grid of step δθ
(r)
l =

(
θ̂
(r)
l,max−θ̂

(r)
l,min

)

K(r)−1
[Fig. 1(b)℄ su
h that the

new angular samples are

θ̂
(r)
l,k = θ̂

(r)
l,min + (k − 1) δθ

(r)
l , k = 1, ..., K(r). (4.3)

A

ordingly, the updated sampling grid is 
omposed by the union of

the dis
retized ARoIs, i.e., Γ(r) =
{
θ̂
(r)
l,k : l = 1, .., L̂(r−1); k = 1, .., K(r)

}
;

� Step 2.4 - IMSA − BCS DoA Estimation. Dis
retize Â(r)
and

ŝ(r) with referen
e to the sampling grid Γ(r)
. Then, apply the BCS-

estimator through (3.12) and the su

essive energy thresholding to

give the r-th level estimate of theDoA, θ̂
(r)
BCS =

{
θ̂
(r)
l : l = 1, ..., L̂(r)

}
.

Su

essively, if r < R then go Step 2.1, else go to Step 3;

• Step 3 - IMSA − BCS Output. The DoA estimated at the end (r =
R) of the multi-zooming pro
ess are assumed as the IMSA-BCS output:

θ̂
(R)
BCS = θ̂BCS =

{
θ̂l,BCS : l = 1, ..., L̂BCS

}
.

It is worth noti
ing that, sin
e the number of angular samples K(r)
is kept �xed

for ea
h ARoI, the IMSA − BCS enables a �ner dis
retization (i.e., a faster
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zooming) in the ARoIs in whi
h the DoA have been estimated at the previous

step with higher probability, while a 
oarse grid (i.e., a slower zooming) is applied

otherwise. This key-feature allows one to enhan
e the robustness of the DoA-

estimation pro
ess and to avoid premature 
onverge to angular regions where the

presen
e of impinging signals is more un
ertain.
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4.3 Numeri
al Analysis

This se
tion is devoted to the numeri
al analysis and validation of the IMSA−
BCS method. First, the behavior of the proposed approa
h is step-by-step

illustrated with a representative example. Then, the performan
e of the IMSA−
BCS is extensively assessed versus the number and DoA of the signals, the

signal-to-noise ratio (SNR) de�ned as

SNR = 10 log

[∑M

m=1 |vm|
2

Nσ2
N

]
(4.4)

where σ2
N is the varian
e of the additive Gaussian noise, as well as the polarization

mismat
h between the in
ident waves and the re
eiving dipoles. In (4.4), the

voltages Vm, m = 1, ...,M are 
omputed by assuming perfe
t polarization mat
h

(i.e., polarization loss fa
tor PLF = |ûl · ŷ|
2 = 1.0 [90℄) in order to maintain the

same noise 
onditions whatever the PLF .
Finally, 
omparisons with state-of-the-art methods on representative ben
h-

mark examples are 
arried out. In all tests, the DoA estimation a

ura
y is

evaluated in terms of the root-mean-square-error (RMSE), 
omputed in degrees

as [78℄

RMSE(r) =





√{∑L̂(r)

l=1

∣∣∣θl−θ̂
(r)
l

∣∣∣
2
+|L−L̂(r)|(∆θmax)

2

}

L

if L̂(r) ≤ L√{∑L

l=1

∣∣∣θl−θ̂
(r)
l

∣∣∣
2
+
∑L̂(r)

j=L+1

∣∣∣θ̂(r)l
−θ

(r)
j

∣∣∣
2
}

L

if L̂(r) > L

(4.5)

r = 1, ..., R, ∆θmax being a penalty term equal to the maximum lo
alization

error (i.e., ∆θmax = 180 [deg]) when the number of impinging signals is under-

estimated, while θ
(r)

j = arg
{
minφl, l∈[1,L]

∣∣∣ θl − θ̂(r)l

∣∣∣
}
. In (5.15), the value θ̂

(r)
l

(l = 1, ..., L; r = 1, ..., R) 
orresponds to the DoA estimated at the r-th zoom-

ing step whi
h is 
losest to the l-th (l = 1, ..., L) a
tual DoA. Moreover, the

artifa
ts-�ltering threshold (3.18) has been set to τ = 0.95 as suggested in [78℄

and G = 7 basis fun
tions are used for dis
retizing the 
urrents of the dipoles in

the MoM .
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4.3.1 Method Validation

Let us 
onsider a set of L = 3 binary phase-shift keying (BPSK) signals

(Einc
l = ±1) impinging on a linear array of M = 10 equally-spa
ed (d = λ

2
)

half-wavelength dipoles (h = λ
2
). The measured voltages ym, m = 1, ...,M are


orrupted by a noise level equivalent to a SNR = 10 dB. When applying the

IMSA-BCS, the angular range θ ∈ [−90; 90] [deg] has been partitioned at the be-
ginning (r = 1) with a uniform grid of K = 37 samples su
h that ∆θ(1) = 5 [deg].
For validation purposes, the more 
omplex 
ase of an o�-grid 
on�guration of

the L = 3 signals has been 
onsidered. A

ordingly, the DoA have been set to

θ = {−22, −3, 8} [deg]. Moreover, PLF = 1.0 is assumed.
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Figure 4.3: Method Validation (M = 10, d = 0.5λ; L = 3, SNR = 10 dB;
K = 37, R = 1) - A
tual and estimatedDoA and values of the 
on�den
e level for

the 
ase of o�-grid signals impinging from the dire
tions θ = {−22, −3, 8} [deg].

Figure 4.3 shows the IMSA-BCS estimates at the �rst step (r = 1) before (Bare -
4.3 ) and after (Estimated - Real Dipole - 4.3 ) the energy threshold (3.18). As it


an be observed, the number of impinging signals is not 
orre
tly predi
ted, also

after energy thresholding, and it turns out to be L̂(1) = 5. The signal lo
alization
error amounts to RMSE(1) = 3.16 (Tab. 4.1 - r = 1). The results of the DoA
estimation obtained by means of the same approa
h when 
onsidering an array

of dipoles not a�e
ted by mutual 
oupling (Estimated - Ideal Dipole - 4.3) and

an array of ideal isotropi
 sensors (Estimated - Isotropi
 - 4.3) are reported, as

well. Although the ideality of these arrays, it is possible to observe that there is

still an over-estimation of the number of signals and that the a
tual dire
tions

are not a

urately retrieved.
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Figure 4.4: Method Validation (M = 10, d = 0.5λ; L = 3, SNR = 10 dB;
K = 37, R = 3) - A
tual and estimated DoA, values of the 
on�den
e level,

and ARoIs for the 
ase of o�-grid signals impinging from the dire
tions (θ =
{−22, −3, 8} [deg]) at the (a) �rst r = 1, (b) se
ond r = 2, and (
) third

r = R = 3 multi-resolution step.

When applying the IMSA strategy, the angular resolution has been in
reased

taking into a

ount the degree of reliability (i.e., the 
on�den
e level, ξ̂
(1)
l , l =
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Table 4.1: Method Validation (M = 10, d = 0.5λ; L = 3, SNR = 10 dB; K = 37,
R = 3) - A
tual and estimated DoA, total ARoI, and RMSE value for the 
ase

of o�-grid signals impinging from the dire
tions θ = {−22, −3, 8} [deg].

r Angular Range EstimatedDoAs : θ̂BCS

1 180 [deg] {−25, −20, −5, 5, 10}

2 52.49 [deg] {−21.97, −3.47, 7.72}

3 40.92 [deg] {−22, −3, 8}

r ConfidenceLevel RMSE

1 {0.21, 0.18, 0.24, 0.13, 0.19} 3.16

2 {0.36, 0.31, 0.32} 0.32

3 {0.19, 0.08, 0.14} 0.00

1, ..., L̂(1)
) of the estimates at the previous step, r = 1 (Tab. 4.1). The ARoI

(2)
l ,

l = 1, ..., L̂(1)
[Fig. 4.4(a)℄ and the sampling grid Γ(2)

[Fig. 4.4(b)℄ have been

set a

ording to (4.2) and (4.3). The result of the su

essive appli
ation of

the BCS -based estimator, as shown in Fig. 4.4(b), 
orresponds to a signi�
ant

redu
tion of the RMSE from RMSE(1) = 3.16 down to RMSE(2) = 0.32 (Tab.

4.1). After another step, that is at the last step of the IMSA pro
ess (r =
R = 3), the unknown DoA of the impinging signals are faithfully predi
ted [Fig.

4.4(
); RMSE(3) = 0.0 - Tab. 4.1℄. The solutions a
hieved for the ideal array


on�gurations are analogous and reported in Fig. 4.4, as well.
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Figure 4.5: Method Validation (M = 10, d = 0.5λ; L = 3, SNR = 10 dB; R = 1)
- A
tual and estimated DoA with single-snapshot approa
h of [78℄ with K = 499
equally-spa
ed angular samples (∆θ = ∆θmin = 0.42 [deg]).
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As a further 
omparative test, the solution in Fig. 4.4(
) has been 
ompared with

the one yielded by the single-resolutionBCS -based approa
h when uniformly par-

titioning the angular domain with the �nest resolution, ∆θmin ≃ 0.42 [deg] (K =

428), of the IMSA-BCS at the 
onvergen
e (i.e., ∆φmin , minl=1,...,L̂(R) ∆φ
(R)
l ).

The result in Fig. 4.5 presents a higher RMSE value (RMSE = 0.64 vs.

RMSE(3) = 0.0) despite the denser angular grid (K = 428 vs. K(3) = 37).
Con
erning the 
omputational time, the DoA predi
tion in Fig. 4.5 has been


arried out in 0.62 [sec], while the R = 3 IMSA steps have been performed in

0.47 [sec]. In all 
ases, a standard laptop with 2.4GHz CPU and 2GB of RAM

has been used.
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4.3.2 Performan
e Analysis

In the next example, the performan
e of the IMSA−BCS is assessed versus the

number of impinging BPSK signals. With referen
e to an M = 20 dipole array
with d = λ

2
and h = λ

2
, three di�erent signal 
on�gurations with L = {2, 4, 6}

have been 
onsidered. More in detail, the a
tualDoA have been 
hosen as follows:

θ = {2.5, 22.5} [deg] (L = 2), θ = {−32.5, 2.5, 22.5, 47.5} [deg] (L = 4), and
θ = {−57.5, −32.5, 2.5, 22.5, 47.5, 62.5} [deg] (L = 6).
A set of T = 100 simulations, with a di�erent noise realization with SNR =
20 dB for ea
h trial, has been run to draw statisti
ally reliable out
omes. Con-


erning the IMSA-BCS parameters, the ARoI s have been dis
retized at ea
h

r-th step in K = 37 samples and the zooming pro
ess has been stopped after

R = 5 iterations. The behaviours of the RMSE values for PLF = 1.0 are

shown in Fig. 4.6 (�rst 
ollumn) and the 
orresponding statisti
s are reported

in Tab. 4.2. As expe
ted, the advantages of the multi-zooming strategy are

non-negligible. Indeed, the RMSE(r)
monotoni
ally de
reases with the iteration

index r whatever L (Fig. 4.6) and its average value (Tab. 4.2) redu
es - also in

the most 
omplex 
ase (L = 6) - of at least 13 times between the �rst (r = 1)
and the last (r = R = 5) zooming step (Tab. 4.2) with a �nal error equal

to RMSE
(5)
avg

∣∣∣
L=6

= 0.23. Moreover, the worst result at the 
onvergen
e step


orresponds to RMSE
(5)
max

∣∣∣
L=6

= 0.32.

Table 4.2: Performan
e Analysis (M = 20, d = 0.5λ; L = {2, 4, 6}, SNR =
20 dB; K = 37, R = 5) - Statisti
s of the RMSE values among a set of T = 100
realizations of the random noise generation pro
ess.

L 2 4 6

r min max avg s− dev min max avg s− dev min max avg s− dev

1 3.54 3.56 3.54 0.05 3.31 3.54 3.49 0.09 2.89 3.39 3.16 0.13

2 0.16 2.46 0.63 0.66 0.41 1.73 1.16 0.47 0.39 1.20 0.83 0.23

3 0.16 0.54 0.36 0.13 0.13 0.63 0.36 0.13 0.32 0.69 0.47 0.13

4 0.10 0.44 0.28 0.13 0.12 0.33 0.22 0.07 0.19 0.43 0.29 0.07

5 0.09 0.22 0.16 0.04 0.12 0.24 0.18 0.04 0.16 0.32 0.23 0.04

As a representative result, the DoA estimated at ea
h step of the IMSA−BCS
for the worst solution among the T = 100 simulations with L = 6 signals are

shown in Fig. 4.7. Thanks to the zooming of the ARoIs around the a
tual

DoA, as shown by the samples of the angular grid in Fig. 4.7, the number of

signals, over-estimated at the �rst step (L̂(1) = 10), is 
orre
tly retrieved at the

last step (L̂(5) = L̂BCS = 6). Moreover, the proposed approa
h provides a pre
ise

predi
tion of the DoA (RMSE
(5)
max

∣∣∣
L=6

= 0.32).
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Figure 4.6: Performan
e Analysis (M = 20, d = 0.5λ; L = {2, 4, 6}, SNR =
20 dB; K = 37, R = 5) - Best, worst, and average RMSE values among T = 100
simulations with (a)(d) L = 2, (b)(e) L = 4, and (
)(f ) L = 6 signals, (a)(b)(
)
without and (d)(e)(f ) with polarization loss.
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Figure 4.7: Performan
e Analysis (M = 20, d = 0.5λ; L = 6, SNR = 20 dB;
K = 37, R = 5) - A
tual/estimated DoA at the multi-resolution step: (a)

r = 1, (b) r = 2, (
) r = 3, (d) r = 4, and (e) r = R = 5 when θ =
{−57.5, −32.5, 2.5, 22.5, 47.5, 62.5} [deg].

Further analyses are aimed at evaluating the impa
t of the polarization mis-

mat
h between the in
ident waves and the re
eiving dipoles. A

ordingly, two

statisti
al analyses have been 
arried out when 
onsidering PLF ∈ [0.6 : 1.0]

35



4.3. NUMERICAL ANALYSIS

and PLF ∈ [0.2 : 0.6]. The same signal and noise 
on�gurations of the previous

example have been taken into a

ount. Again, the behavior of the maximum,

minimum, and average RMSE values are shown in Fig. 4.6 (se
ond line). A
-


urate estimations (RMSE
(5)
max

∣∣∣
L=6

< 0.37) have been a
hieved for limited po-

larization loss (i.e., PLF ≥ 0.6). The proposed IMSA − BCS also allows to

obtain reliable results for PLF ∈ [0.2 : 0.6] and L = 2 (RMSE
(5)
max

∣∣∣
L=2

< 0.27)

and L = 4 (RMSE
(5)
max

∣∣∣
L=4

< 0.39). Di�erently, higher average RMSE values

have been a
hieved for L = 6 as shown in Fig. 4.6(f ).
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Figure 4.8: Performan
e Analysis (M = 20, d = 0.5λ; L = 4, SNR ∈
[−5 : 30] dB; K = 37, R ∈ [1 : 5]) - Average RMSE values among T = 100
simulations versus SNR for di�erent values of R.

The analysis of the impa
t of the measurement noise (i.e., SNR levels) and the

number of zooming steps, R, has been 
arried out, as well. Figure 4.8 gives

the average RMSE when 
onsidering L = 4 BPSK signals and PLF ∈ [0.6 :
1.0] versus R and for di�erent values of the SNR. As it 
an be observed, the

multi-resolution pro
ess does not provide signi�
ant advantages in heavy noisy


onditions (SNR ≤ 0 dB) be
ause of the low reliability of the single-snapshot

data. Di�erently, the average RMSE qui
kly de
reases with the zooming steps

for higher SNRs.
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

4.3.3 Comparative Assessment

In order to demonstrate the validity of the IMSA-BCS approa
h, two re
ently

proposed methods [78℄, [94℄, not requiring any data pre-pro
essing before the

DoA predi
tion, and two well-established state-of-the-art approa
hes, namely

the ROOT −MUSIC [31℄ and ESPRIT [39℄ that need as input the 
ovarian
e

matrix, have been taken into a

ount for a �nal 
omparative assessment. Towards

this aim, the same hypotheses 
onsidered in [78℄, [94℄ (i.e., use of linear arrays of

ideal isotropi
 sensors without mutual-
oupling) have been taken into a

ount.

More spe
i�
ally, the �rst ben
hmark [78℄ 
onsiders an M = 20-element d =
0.5λ-spa
ed array in an ele
tromagneti
 s
enario 
hara
terized by a noise level

of SNR = 10 dB and L = 4 signals impinging from the angular dire
tions

φ = {−89, −71, −50, −41} [deg]. The following setup has been used when

running the IMSA− BCS 
ode: K = 37 and R = 5. In [78℄, K = 181 samples

has been 
hosen that implies an on-grid 
ase (i.e., the a
tual DoA belong to the

set of angular grid samples).

Table 4.3: Comparative Assessment (Ben
hmarks [78℄, ROOT −MUSIC [31℄,

ESPRIT [39℄, and [94℄) - RMSE values.

Methods r Test Case 1 [78℄ Test Case 2 [94℄

IMSA-BCS

1
2
3
4
5

67.20

4.78

3.66

2.65

2.44

73.50

73.49

1.26

1.13

0.82

ST-BCS 1 58.87 73.53

ST-BCS* 1 4.02 28.28

[31℄ 1 3.00 8.04

[39℄ 1 3.69 7.54

[94℄ 1 - 5.67

MT-BCS 1 0.50 0.41

MT-BCS* 1 0.08 0.24

Figure 4.9 shows the DoA estimated by the proposed approa
h and by the

ST − BCS (a single-snapshot te
hnique) and the MT − BCS (a multiple-

snapshots te
hnique) methods presented in [78℄. For 
ompleteness, the 
orre-

sponding RMSE values are given in Tab. 4.3. As it 
an be observed from

the plots in Fig. 4.9 as well as inferred from the error values in Tab. 4.3, the

ST − BCS and the �rst step (r = 1) of the IMSA − BCS do not provide a
-


urate predi
tions. Thanks to the zooming, the IMSA − BCS is instead able

to drasti
ally redu
e the estimation error by more than 14 times after one step
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4.3. NUMERICAL ANALYSIS

(r = 2) and to yield a �nal error at r = R = 5 equal to RMSE(5) = 2.44. This
result is more than 24 times better than the ST −BCS one. Moreover, it is bet-

ter than the estimations of the ROOT −MUSIC (RMSEROOT−MUSIC = 3.00)
and ESPRIT (RMSEESPRIT = 3.69) and mu
h 
loser to the MT −BCS pre-

di
tion (RMSE = 0.50) albeit these latter approa
hes exploit 25 
onse
utive

a
quisitions. It is also important to point out that the DoA obtained with

ROOT −MUSIC and ESPRIT are plotted in Fig. 4.9 with verti
al lines sin
e

these methods do not provide any estimation of the signals amplitude and/or

phase unlike CS-based approa
hes.
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Figure 4.9: Comparative Assessment (M = 20, d = 0.5λ; L = 4, SNR = 10 dB;
K = 37, R = 5) - A
tual and estimated DoA predi
ted by single (IMSA−BCS
and ST−BCS [78℄) and multiple snapshots (MT−BCS [78℄, ROOT−MUSIC
[31℄, and ESPRIT [39℄) methods when θ = {−89, −71, −50, −41} [deg].

For 
ompleteness, the performan
e of the ST − BCS (i.e., the single-snapshot

single-step BCS method) has been also evaluated when adopting a uniform grid

(K = 783) with an angular resolution equal to that rea
hed by the IMSA−BCS
at the last zoom (i.e., δφmin ≃ 0.23 [deg]). Despite the a

ura
y improvement of

this oversampled version (denoted by ST −BCS∗ in the following) as 
ompared

to the original one with K = 181 (

RMSEST−BCS

RMSEST−BCS∗

≈ 14.6) at the 
ost of a greater


omputational 
ost (K = 783 vs. K = 181), its a

ura
y (RMSEST−BCS∗ =
4.02) is still worse than that of the IMSA − BCS method (RMSE(5) = 2.44)
as indi
ated in Tab. 4.3 and pi
torially highlighted in Fig. . 4.9. On the other

hand and as expe
ted, the exploitation of the multi-snapshots information of the

MT − BCS together with the angular overgridding (MT − BCS∗) guarantees
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

a 
lose-to-ideal result (RMSE = 0.08).
The se
ond 
omparison is 
on
erned with the test 
ase reported in [94℄ and


hara
terized by the following des
riptive parameters: M = 10, d = 0.5λ, L = 6
(θ = {−78, −17, 7, 18, 32, 65} [deg]), SNR = 10 dB, and K = 23. Analogously
to the MT −BCS [78℄, the method in [94℄ used multiple snapshots and the data

were a
quired at 10 
onse
utive time instants.

Figure 4.10 shows the results predi
ted by the single and multiple-snapshots

methods and the values of the lo
alization index are given in Tab. 4.3. As it


an be noti
ed and also expe
ted, the RMSE at the �rst zooming steps of the

IMSA−BCS is not satisfa
tory. Then, the estimation a

ura
y highly improves

through the fo
using pro
ess until the 
onvergen
e value of RMSE(5) = 0.82,
that is almost 7 times better than that from the multi-snapshots te
hnique in

[94℄. To 
omplete the 
omparative analysis, the unknown DoA have been also

predi
ted with the ST − BCS and the MT − BCS [78℄ when 
onsidering the

same number of angular samples of (K = 181) or the uniform oversampling

with the angular step δφmin ≃ 0.27 [deg] (K = 671) obtained at the 
onvergen
e

iteration of the IMSA−BCS. Moreover, the ROOT −MUSIC and ESPRIT
estimators have been used, as well.
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Figure 4.10: Comparative Assessment (M = 10, d = 0.5λ; L = 6, SNR =
10 dB; K = 23, R = 5) - A
tual and estimated DoA retrieved by single

(IMSA − BCS and ST − BCS [78℄) and multiple snapshots (MT − BCS
[78℄, ROOT − MUSIC [31℄, ESPRIT [39℄, and [94℄-method) methods when

θ = {−78, −17, 7, 18, 32, 65} [deg].

The RMSE values in Tab. 4.3 indi
ate that, in both 
ases, the ST − BCS
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method provides unsatisfa
tory results (RMSE > 28.28) and worse ( RMSEST−BCS

RMSEIMSA−BCS
≈

90 and

RMSEST−BCS∗

RMSEIMSA−BCS
≈ 34) than the MT − BCS (RMSEMT−BCS = 0.41 and

RMSEMT−BCS∗ = 0.24) that turns out to be the most a

urate predi
tor (Tab.

4.3 - Fig. 4.10). As for the MT − BCS, it is worth reminding that it needs 10
snapshots, while the IMSA−BCS provides similar a

ura
ies (

RMSEMT−BCS

RMSEIMSA−BCS
≈

0.5 and RMSEMT−BCS∗

RMSEIMSA−BCS
≈ 0.3) but with a single time a
quisition. Di�erently, the

performan
es of ROOT −MUSIC (RMSEROOT−MUSIC = 8.04) and ESPRIT
(RMSEESPRIT = 7.54) are not satisfa
tory and worse than that a
hieved in

the previous example be
ause of the smaller number of available snapshots for


omputing the 
ovarian
e matrix and the larger number of signals. Con
erning

the 
omputational time of the BCS-based DoA estimations on
e the data are

available for pro
essing (i.e., after waiting 10 time instants for the MT −BCS),
the ST − BCS and MT − BCS [78℄ required 0.38 [sec] (K = 181), 0.69 [sec]
(K = 671) and 0.48 [sec] (K = 181), 0.86 [sec] (K = 671), respe
tively. Di�er-

ently, the IMSA−BCS ended in 0.59 [sec].
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Chapter 5

Performan
e Improvement of

MT-BCS

In this Chapter, the performan
e of state-of-the-artMT−BCS method has been

improved signi�
antly with the proposed multi-frequen
y BCS (MF − BCS)
strategy, where the inherent properties (e.g., frequen
ies) of signals have been

exploited in order to 
orrelate the BCS solutions over di�erent frequen
y sam-

ples. By exploiting frequen
ies as extra degrees-of-freedom, two methods have

been proposed namely MFSS − BCS (multi-frequen
y single-snapshot BCS)
andMFMS−BCS (multi-frequen
y multi-snapshotsBCS). TheMFSS−BCS
is developed for real-time DoA estimator while MFMS − BCS is for improve

the robustness of the estimation. In addition, the main out
ome of this work is

published in [29, 82, 83℄
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5.1. INTRODUCTION

5.1 Introdu
tion

Several methods for wide band DoAs estimation have been proposed in the

state-of-the-art literature. Notably, most of them are the 
ustomized version

extended from the narrow band estimators, exploiting the de
omposition of a

wide band signal into multiple frequen
y 
omponents (i.e., frequen
y bins) and

then apply aforementioned narrow band DoAs estimator either separately or

jointly. Based on the separate or joint pro
essing of frequen
y bins, the wide

band DoA estimation te
hniques are broadly 
lassi�ed into two groups, namely

in
oherent and 
oherent estimation.

In in
oherent method, the frequen
y bins are pro
essed independently and

then average the estimated DoAs over all the bins [95, 96℄. The implementation

of in
oherent pro
essing is simple and provides good estimation in 
ase of high

SNRs and widely spa
ed DoAs. The averaging over all independent solutions

worsens the performan
e of estimation for 
losely spa
edDoAs. The performan
e

of in
oherent method is signi�
antly improved with TOPS [97℄ by integrating

the information for all frequen
y bins before estimating the DoAs. Although it

does not pro
ess the bins independently, it is essentially an in
oherent method

despite disagreements among resear
hers.

On the other hand, the 
oherent pro
essing aligns signal subspa
es among all

frequen
y bins by a transformation of the 
o-varian
e matri
es that are asso
i-

ated with ea
h bin. Therefore, the signal and noise subspa
es be
omes 
oherent

and then one 
an apply subspa
e based estimators in the 
omposite 
o-varian
e

matrix. Based on the 
hoi
e of alignment strategies, many 
oherent estimators

have been proposed in the literature. Some of them are the 
oherent signal sub-

spa
e method CSSM [98℄, fo
using matri
es for CSSM [98, 99, 100℄, robust

auto-fo
using [101℄, extended ESPRIT [102℄, maximum-likelihood (ML) [104℄,
and weighted average of signal subspa
es WAVES [105℄. The overall perfor-

man
e of the 
oheren
e estimators is strongly depend on the fo
using matri
es.

Although TOPS [97℄, robust auto-fo
using [101℄, and interpolated virtual array

[103℄ are 
laimed to be the superior, they all share the same bottlene
k.

Sparse pro
essing [56℄-[62℄ for signal re
onstru
tions has re
eived great atten-

tion sin
e last two de
ades. In this framework, strategies based on the 
ompres-

sive sensing (CS) theory [59℄-[61℄ have re
ently been introdu
es thanks to their

e�e
tiveness, �exibility, and 
omputational e�
ien
y to deal with 
omplex engi-

neering problems in ele
tromagneti
 [63℄-[68℄ in
luding antenna array synthesis

[69℄-[70℄ and imaging [71℄-[75℄.

The BCS-based strategies have been e�e
tively applied for DoAs estimation

for di�erent purposes [78℄-[84℄. In this 
hapter, frequen
ies of the signal has been


onsidered as an extra degree-of-freedom and two strategies are proposed namely

MFSS − BCS [82℄ and MFMS −BCS [83℄.
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CHAPTER 5. PERFORMANCE IMPROVEMENT OF MT-BCS

5.2 Wideband DoA Model

Let us assume a re
eiving antenna system 
onsists of a linear antenna array ofM
elements oriented along x-axis with the inter-element spa
ing of d and operates

in the frequen
y range of [fmin : fmax]. The system is assumed to 
olle
t the

data with respe
t to N samples at frequen
ies, fn = fmin +∇f (2n− 1) /N , n =
1, ..., N , where ∇f = (fmax − fmin)/2. A

ording to [2℄, the measured voltages

at the terminal of the array at any instant of time t are generally expressed as

v (t) =

∫ fmax

fmin

Vm (fn) e
j2π(fn−fc)dfn, m = 1, ...,M, n = 1, ..., N (5.1)

where fn and fc are the n−th frequen
y and the 
enter frequen
y respe
tively,

and Vm (fn) is the re
eived voltages as a fun
tion of frequen
ies and the lo
ations

of the array elements. In addition, the strength of the re
eived voltages Vm (fn)
are subje
t to the noise, polarization mismat
h and array e�e
tive length as well.
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Figure 5.1: MF−BCS-based Approa
h - (a) referen
e s
enario (b) dis
retization

of the angular domain.

Therefore, for a set of L (fn) ele
tromagneti
 plane waves 
hara
terized by the

bandwidth of BWl , l = 1, ..., L (Fig. 5.1) 
oming from unknown bearings θl ,
l = 1, ..., L (fn) , the well a

epted model for the re
eived voltages at time tw is

as follows

Vm (fn, tw) =

L∑

l=1

sl (fn) ŷ.Hej
2πfn

c
xm sin θl + ηm (fn, tw) ,

m = 1, ...,M, n = 1, ...., N

(5.2)

43



5.3. PROBLEM FORMULATION IN BCS FRAMEWORK

whereH is the antenna e�e
tive length, ηm (fn, tw) is the additive white Gaussian
noise having zero mean and varian
e equal to the noise power, xm is the sensors

positions, and s (fn) is magnitude of the signal whi
h 
reates the ele
tromagneti


plane wave.

The y − polarized ele
tromagneti
 plane wave is modeled as

s (r) = s (fn) e
j2 2πfn

c
(x sin θ+z cos θ)ŷ. (5.3)

For simpli
ity, equation (5.2) 
an be written as matrix form as follows

V (fn, tw) = A (fn) s (fn) + η (fn, tw) , n = 1, ...., N
(5.4)

where for ea
h snapshot tw, V (fn, tw) ∈ CM×1
is the open 
ir
uit voltages mea-

sured at fn and η (fn, tw) ∈ CM×1
are the additive white Gaussian noises gener-

ated at fn. In addition, s (fn) ∈ CL×1
are the original in
oming signals 
onsidered

at fn and A (fn) ∈ C
M×L

is the time independent steering matrix at fn. For M
elements and L signals, the steering matrix at frequen
y fn is de�ned as

A (fn) =



ej

2πfn
c

x1 sin θ1 · · · ej
2πfn

c
x1 sin θL

.

.

.

.

.

.

.

.

.

ej
2πfn

c
xM sin θ1 · · · ej

2πfn
c

xM sin θL


 . (5.5)

The obje
tive is to �nd out the angular dire
tions θl, l = 1, ..., L from the mea-

sured voltages in (5.2) whi
h is 
learly a non-linear fun
tion.

5.3 Problem Formulation in BCS Framework

In order to determine the a
tual dire
tions θl, l = 1, ..., L, the angular domain

θ ∈ [−90 : 90]deg is dis
retized into a large set of K ≫ L (Fig. 5.1) 
andidate

angular dire
tions. A

ordingly, the steering matrix in (5.5) be
omes a matrix

of 
omplex [M ×K] entries (i.e., A (fn) ∈ C
M×K

) at fn as

A (fn) =




ej
2πfn

c
x1 sin θ1 · · · ej

2πfn
c

x1 sin θk · · · ej
2πfn

c
x1 sin θK

.

.

.

.

.

.

.

.

.

ej
2πfn

c
xm sin θ1 · · · ej

2πfn
c

xm sin θk · · · ej
2πfn

c
xm sin θK

.

.

.

.

.

.

.

.

.

ej
2πfn

c
xM sin θ1 · · · ej

2πfn
c

xM sin θk · · · ej
2πfn

c
xM sin θK



. (5.6)

Therefore, the problem in hand is now linear with respe
t to unknown 
andidate

signal ve
tor ŝ (fn) ∈ C
K×1

whi
h is also sparse as K ≫ L.

44



CHAPTER 5. PERFORMANCE IMPROVEMENT OF MT-BCS

A

ording to [78℄, the BCS looks for the solution of the sparse signal ve
tor

ŝ (fn) instead of dire
tly estimating the dire
tions. The MT − BCS approa
h

is proposed in the state-of-art literature in order to in
rease robustness against

noise. In general, for example in [78℄,MT−BCS is used to 
orrelate the solutions

among di�erent snapshots. Di�erently, the MT − BCS used in this approa
h

to 
orrelate among di�erent time and frequen
y samples. Based on this time-

frequen
y 
on�guration, the BCS for wideband DoAs estimation is 
ategorized

into two methods: (I) multi-frequen
y single-snapshot BCS (MFSS − BCS)
and (II) multi-frequen
y multi-snapshots BCS (MFMS −BCS).
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5.3.1 Multi-Frequen
y Single-Snapshots BCS (MFSS−BCS)

This te
hnique 
onsiders single snapshot (W = 1) data. Therefore, it only 
or-

relates the solutions among di�erent frequen
ies. Following the guideline of [78℄,

the unknown signal ve
tor ŝMFSS−BCS is determined as follows

ŝMFSS−BCS = 1
N

N∑

n=1

arg
{
maxŝ(fn) Pr [(ŝ (fn) ,p) | V (fn)]

}
, n = 1, ..., N

(5.7)

where ŝ (fn), n = 1, ..., N , is statisti
ally 
orrelated among di�erent frequen
y

samples through a proper optimization of hyper parameter ve
tor p whi
h is

shared among solutions. The optimal value of p is obtained through RVM [56℄

LMFSS−BCS (p) = − 1
2

N∑

n=1

{
log (|C|) + (K + 2ϕ1) log

[
V (fn)

T
CV (fn) + 2ϕ2

]}
, (5.8)

where C = I + Â (fn) diag (p)
−1

Â (fn)
T
and ϕ1 and ϕ2 are user-de�ned param-

eters [61℄. Finally, the MFSS − BCS solution turns out to be

ŝ = 1
N

N∑

n=1

{[
Â (fn)

T
Â (fn) + diag (p)

]
−1

Â (fn)V (fn)

}
, n = 1, ..., N . (5.9)

In order to estimate the bandwidth of the impinging signals, the (5.9) 
an

also be written over the N independent frequen
y samples. The solution at fn
is obtained as follows :

ŝMFSS−BCS (fn) =
[
Â (fn)

T
Â (fn) + diag (p)

]
−1

Â (fn)V (fn) , n = 1, ..., N . (5.10)
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5.3.2 Multi-Frequen
y Multi-Snapshots BCS (MFMS−BCS)

This te
hnique 
onsiders multiple snapshot (w = 1, ...,W ) data. Therefore, it


orrelates the solutions among di�erent time and frequen
y samples as shown in

Fig 5.2.

t1 tw tW

f1

fn

fN

fmax

fmin

Frequency

Snapshot

v(fn, tw) = v(n,w)

Figure 5.2: MFMS − BCS-based Approa
h - representation of time-frequen
y

data.

Similar to the Se
t. 5.3.1, the unknown signal ve
tor ŝMFMS−BCS is deter-

mined by:

ŝMFMS−BCS =
1

WN

W∑

w=1

N∑

n=1

{
arg

[
max
ŝ(n,w)

Pr
([
ŝ(n,w), p

]∣∣V(n,w)
)]}

(5.11)

L (p) = −
1

2

W∑

w=1

N∑

n=1

{
log (|C|) + (K + 2ϕ1) log

[
V(n,w)TCV(n,w) + 2ϕ2

]}
(5.12)

ŝMFMS−BCS =
W∑

w=1

N∑

n=1

{[
Â(n)T Â(n) + diag (p)

]−1

Â(n)TV(n,w)

}

WN
(5.13)

ŝ
(n)
MFMS−BCS =

W∑

w=1

{[
Â(n)T Â(n) + diag (p)

]−1

Â(n)TV(n,w)

}

W
(5.14)

47



5.3. PROBLEM FORMULATION IN BCS FRAMEWORK

5.3.3 DoA and BW Estimation Pro
edure

On
e ŝ is estimated by (5.9), the number of estimated signals L̂ are determined

by 
ounting number of non-zero entries in the retrieved signal ve
tor ŝ by (5.9).

In pra
ti
e, many elements of ŝ are 
lose but not equal to zero. This low energy

signals 
alled artifa
ts are due to the noise and must be �ltered out as they

do not 
orrespond to any a
tual signals. Therefore, the energeti
 thresholding

te
hnique introdu
ed in [78℄ has been applied to �lter out the artifa
ts (ŝk ≈ 0)
from the solution. Finally, the non-zero thresholded signals are 
onsidered as the

a
tual impinging signals. The dire
tions-of-arrivals (DoAs) are then estimated

by asso
iating ea
h non-zero thresholded signal with respe
t to the 
andidate

angles [78℄. The estimation pro
edure is des
ribed as follows

f1 fn fN

Angle

Frequency

sth = 0

sth 6= 0
θK

θk

θ2

θ1

Figure 5.3: MFMS−BCS-based Approa
h - representation of thresholded signal
ve
tor with respe
t to 
andidate angular dire
tions.

Step 0 - the estimated signal ve
tors ŝ
(n)
MFSS−BCS or ŝ

(n)
MFMS−BCS are thresh-

olded as s
(n)
th =

{
ŝ
(n)
MFSS−BCS

0
or s

(n)
th =

{
ŝ
(n)
MFMS−BCS

0
by applying energeti


thresholding des
ribed in [78℄;

Step 1- after thresholding, the thresholded values s
(n)
th asso
iated with ea
h


andidate angles θk, k = 1, ..., K are lined-up with respe
t to ea
h frequen
y

samples fn, n = 1, ..., N as sket
hed in Fig. 5.3;

Step 2 - for ea
h frequen
y, the number of non-zero thresholded value is the

number of estimated DoAs L̂ (e.g., L̂ = 2 for f1 in Fig. 5.3) and the 
andidate

angles having the non-zero thresholded values are 
onsidered as the estimated

dire
tion-of-arrivals (e.g., the estimated dire
tions for f1 are θ2 and θk);

Step 3 - the minimum and maximum frequen
y of ea
h estimated DoAs (
om-
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puted in step 2) are 
omputed by f
(θ̂l)
min = min

{
f
(θ̂l)
n

}
and f

(θ̂l)
max = max

{
f
(θ̂l)
n

}

respe
tively (e.g., fmin = f1 and fmax = fN for θ2 in Fig. 5.3);

Step 4 - then the bandwidth is 
omputed for ea
h estimated angles asBW (θ̂l) =

[f
(θ̂l)
min : f

(θ̂l)
max], l = 1, ..., L̂. If 
omputed BW in
ludes any frequen
y that is not

estimated at step 2, will be 
onsidered an estimation error and then added in

the RMSE de�nition in 5.15. For example, the estimated BW for both θ2 and
θk in Fig. 5.3 are BW = [f1 : fN ] even there is no estimation of θk at fn. In su
h


ase, RMSE for ea
h frequen
y will be summed up.
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5.4 Performan
e of MFSS −BCS

In order to assess the performan
e of MFSS − BCS, an extensive analysis has

been done by varying the number of frequen
y samples, number of signals, num-

ber of sensors, and di�erent signal-to-noise ratio (SNR). The SNR is de�ned

in (4.4). The performan
e is measured in terms of the root-mean-square-error

(RMSE) [78℄, whi
h is de�ned for ea
h frequen
y of solution as follows

RMSE (fn) =





√{∑L̂(fn)

l=1
|θl(fn)−θ̂l(fn)|

2
+|L(fn)−L̂(fn)|(∆θmax)

2
}

L(fn)
if L̂ (fn) ≤ L (fn)√{∑L(fn)

l=1
|θl(fn)−θ̂l(fn)|

2
+
∑L̂(fn)

j=L+1
|θ̂l(fn)−θj(fn)|

2
}

L(fn)
if L̂ (fn) > L (fn)

(5.15)

where, L (fn) and L̂ (fn) are the number of a
tual and estimated signals respe
-

tively at fn, n = 1, ..., N , ∆θmax being maximum lo
alization error (i.e., ∆θmax =
180 [deg]) applied when the estimated number of signals L̂ (fn) are less than a
-

tual number of the signals L (fn) and θj (fn) = arg
{
minθl, l∈[1,L]

∣∣∣ θl (fn)− θ̂l (fn)
∣∣∣
}
.

In (5.15), the value θ̂l (fn) (l = 1, ..., L̂ (fn); n = 1, ..., N) 
orresponds to the DoA
estimated at the n-th frequen
y whi
h is 
losest to the l-th (l = 1, ..., L (fn)) a
-
tual DoA. The average RMSE at ea
h noise realization t = 1, ..., T is then


omputed as follows

RMSE(t) = 1
N

N∑

n=1

RMSE(t) t = 1, ..., T ; n = 1, ..., N . (5.16)

First of all, the behaviour of the proposed method MFSS − BCS is analyzed

by 
omparing it with MT − BCS for single snapshot data. This is be
ause

to understand the e�e
t of repla
ing the multiple snapshots 
on
ept with the

multiple frequen
y 
omponents. As it is obvious in [78℄, with the in
rease of

number of snapshots the performan
e in
reases. Therefore, the obje
tive is to

verify the improvement of the estimation performan
e as a fun
tion of the number

of frequen
y samples. In order to do that, 
onsider a test s
enario from [78℄

(reported in [78℄(Fig.5)) where L = 4 binary phase-shift keying (BPSK) signals

(sl = ±1) are impinging on a linear array ofM = 20 equally-spa
ed (d = λ
2
at f =

0.5 [GHz℄) isotropi
 sensors and the voltages Vm, m = 1, ...,M 
olle
ted at single

snapshot (W = 1) are 
orrupted by a noise level equivalent to a SNR = 10 dB.
Among the 5 di�erent sets of DoAs in [78℄ (Fig. 5), the two sets namely the best

set ([78℄ in Fig. 5(a), θ = {−79, −59, −41, 10} [deg]), and worst set ([78℄ in Fig.
5(e), θ = {−77, −31, 16, 87} [deg]), are sele
ted to show the behaviour of the

proposed approa
h for both best and worst set. Similar to [78℄, the angular range

θ ∈ [−90; 90] [deg] has been partitioned with a uniform grid of K = 181 samples

su
h that ∆θ = 1 [deg]. In order to apply MFSS − BCS, all L = 4 DoAs
are 
onsidered as a wideband signals having equal bandwidth of BW = 0.5
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[GHz℄ in the range f = [0.25 : 0.75] [GHz℄ and the voltages are 
olle
ted at

di�erent uniformly spa
ed frequen
y samples (i.e., f = 0.5 [GHz℄ when N = 1,
fn = {f1, f2, f3} = {0.3, 0.5, 0.7} [GHz℄ when N = 3, fn = {f1, f2, f3, f4, f5} =
{0.3, 0.4, 0.5, 0.6, 0.7} [GHz℄ when N = 5, and fn = {f1, f2, ..., f10, f11} =
{0.3, 0.34, ..., 0.66, 0.7} [GHz℄ when N = 11).
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Figure 5.4: Method Validation (N = {1, 3, 5, 11}; M = 20, d = 0.5λ0; L = 4,
BW = 0.5 [GHz], SNR = 10 dB; K = 181, T = 10, and W = 1) - Best average
DoAs estimation for [78℄ (Fig. 5) : (a) DoAs, θ = {−79, −59, −41, 10} [deg]
and (b) DoAs, θ = {−77, −31, 16, 87} [deg].

Figure 5.4 shows the best (among T = 100 noise realizations) average estima-

tion overN = {1, 3, 5, 11} frequen
y samples forDoAs θ = {−79, −59, −41, 10}
[deg] [Fig. 5.4(a)℄ and for DoAs θ = {−77, −31, 16, 87} [deg] [Fig. 5.4(b)℄.

Clearly, the performan
e of estimation is in
reased with the in
rease of N . In

details, all signals are 
orre
tly estimated for all N ex
ept N = 1 as shown in
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Fig. 5.4(a), where RMSE is 0.5 [deg℄ as one signal is in
orre
tly estimated. For

DoAs θ = {−77, −31, 16, 87} [deg], only three signals are estimated at N = 1
as shown in Fig. 5.4(b), among whi
h one signal is in
orre
t (−81 [deg]) whi
h
results RMSE = 90.02 [deg℄ .

Table 5.1: Method Validation (N = {1, 3, 5, 11}; M = 20, d = 0.5λ0; L = 4,
BW = 0.5 [GHz], SNR = 10 dB; K = 181, T = 10, and W = 1) - Estimated

DoAs for DoAs, θ = {−79, −59, −41, 10} [deg] and θ = {−77, −31, 16, 87}
[deg]

θ = {−79, −59, −41, 10} [deg]

N θ̃ [deg] RMSE [deg]
1 {−80, −59, −41, 10} 0.50
3 {−79, −59, −41, 10} 0.00
5 {−79, −59, −41, 10} 0.00
11 {−79, −59, −41, 10} 0.00

θ = {−77, −31, 16, 87} [deg]

N θ̃ [deg] RMSE [deg]
1 {−80, −31, 16} 90.01
3 {−78, −31, 16, 90} 1.58
5 {−77, −31, 16, 85} 1.00
11 {−77, −31, 16, 86} 0.50

Tab. 5.1 shows the estimated angles and asso
iated RMSE for ea
h N . In

the 
ase of more than one frequen
y samples, all four signals are estimated among

whi
h three of them are equal to the a
tual DoAs. Although one signal is not

exa
t, the performan
e in terms of RMSE is signi�
antly improved with the

in
rease of number of in
oming signals as reported in Tab. 5.1.
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Figure 5.5: Performan
e Analysis ( L = 4, BW = 0.5 [GHz], SNR = [−10 :
30] dB; N = 5, f =[0.25 : 0.75] [GHz], fn ={0.3, 0.4, 0.5, 0.6, 0.7} [GHz];
M = 20, d = 0.5λ0; K = 181, and W = 1) - Minimum, maximum, and average

RMSE values among T = 100 simulations.
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Table 5.2: Performan
e Analysis ( L = 4, BW = 0.5 [GHz], SNR = [−10 :
30] dB; N = 5, f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5λ0; K = 181, and
W = 1) - Minimum, maximum, and average RMSE values among T = 100
simulations

SNR[dB] Min[deg] Max[deg] Mean[deg]

−10 50.59 62.63 53.69
−5 39.66 51.70 46.82
0 9.49 29.54 22.27
5 0.50 0.54 0.52
10 0.00 0.50 0.27
15 0.00 0.00 0.00
20 0.00 0.00 0.00
25 0.00 0.00 0.00
30 0.00 0.00 0.00

In order to analyze the behaviour of the MF − BCS for di�erent noisy


onditions, the same test s
enario for DoAs θ = {−79, −59, −41, 10} [deg] has
been 
onsidered to be analyzed with respe
t to di�erent SNRs for �xed number

of frequen
y samples, N = 5. The out
ome is graphi
ally presented in Fig. 5.5,

where it 
an be observed that the minimum required SNR is equal to SNR = 15
[dB℄ to estimates the exa
t DoAs without any error. However, the RMSE is

the order of magnitude for heavy noisy 
onditions SNR ≤ 0 [dB℄, although

RMSE < 1 [deg℄ when SNR = 5 [dB℄ and SNR = 10 [dB℄ as reported in Tab.

5.2.

Sin
e the performan
e depends on number of frequen
y samples (as in Fig.

5.4), SNRs (as in Fig. 5.5), and also the number of in
oming signals (as it

a�e
ts the sparsity 
onditions), an analysis is done for L = {2, 3, 4}, N =
{1, 3, 5, 7, 9, 11}, and SNR = 0 [dB℄ and the results are presented in Fig. 5.6.

There is at-least one exa
t estimation among T = 100 noise realizations for L = 2
when N = 3 and for L = 3 when N = 11, although there is no 
orre
t estimation

for L = 4 as shown in Fig 5.6. The 
urve for average estimation of L = 2 signals
shows that only N = 5 frequen
y samples data is su�
ient to estimate the exa
t

DoAs even at SNR = 0 [dB℄. The RMSE of average estimation for L > 2 signals
is high at SNR = 0 [dB℄.

More in details, example of best estimation of DoAs is graphi
ally plotted

in Fig. 5.7 [Fig. 5.7(a) for L = 2 and Fig. 5.7(b) for L = 3℄ and the estimated

DoAs are reported in Tab. 5.3. As it 
an be shown that the estimated number of

signals are higher than the a
tual number for N = 1 whi
h results high RMSE
as reported in Tab. 5.3. Overall, the performan
e is signi�
antly improved with

the in
rease of number of frequen
y samples. It 
an be noti
ed in Tab. 5.3 that
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Figure 5.6: Performan
e Analysis ( L = {2, 3, 4}, BW = 0.5 [GHz], SNR =
0 dB; N = [1, : 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5λ0; K = 181,
and W = 1) - Minimum, maximum, and average RMSE values among T = 100
simulations.

the RMSE for N = 5 is 6.58 [deg℄ even though the average estimation is exa
t.

This is be
ause the estimated DoAs are the averaged DoAs, but the RMSE is


omputed in
luding the estimation at di�erent frequen
y samples as well. There

are 
lose but not exa
t estimation at f3, f4, and f5 whi
h makes the estimation

with non-zero RMSE even the average estimation of DoAs are exa
t.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 |s

k|
2

Angular Direction, θk [deg]

Actual

Estimated (N=1)

Estimated (N=3)

Estimated (N=5)

Estimated (N=11)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 |s

k|
2

Angular Direction, θk [deg]

Actual

Estimated (N=1)

Estimated (N=3)

Estimated (N=5)

Estimated (N=11)

(a) (b)

Figure 5.7: Performan
e Analysis ( L = {2, 3}, BW = 0.5 [GHz], SNR =
0 dB;N = [1, : 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5λ0; K = 181,
T = 100, and W = 1) - Best average DoAs estimation for : (a) DoAs, θ =
{−41, 10} [deg] and (b) DoAs, θ = {−79, −41, 10} [deg].
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Table 5.3: Performan
e Analysis ( L = {2, 3}, BW = 0.5 [GHz], SNR = 0 dB;
N = [1, : 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5λ0; K = 181, T = 100,
and W = 1) - Best average DoAs estimation.

DoAs, θ = {−41, 10} [deg] DoAs, θ = {−79, −41, 10} [deg]

N θ̃ [deg] RMSE [deg] θ̃ [deg] RMSE [deg]

1
{−41, −30

−10, 34, 53}
35.68

{−78, −41, −38, −30,

−24, −2, 10, 34, 53}
31.57

3 {−41, 10} 0.00 {−79, −78, −56, −41, 10, 33} 17.57

5 {−41, 10} 0.00 {−79, −41, 10} 6.58

11 {−41, 10} 0.00 {−79, −41, 10} 0.00
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Figure 5.8: Performan
e Analysis (M = [8 : 24], d = 0.5λ0; f =[0.25 : 0.75]
[GHz], N = {5, 11}; L = 4, θ = {−79, −59, −41, 10} [deg], BW = 0.5 [GHz],
SNR = {0, 5, 10} dB; K = 181, and W = 1) - Best, worst, and average RMSE
values among T = 100 simulations: (a) SNR = 0 dB, (b) SNR = 5 dB, and (
)

SNR = 10 dB.
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Nc1

n = 1

fmaxfmin

n = 5 = N

Figure 5.9: Performan
e Analysis - Non-uniform frequen
y sampling pro
edure.

To analyze the e�e
t of number of elements, an analysis is done 
onsidering

the same s
enario for di�erent N = {5, 11} and di�erent noisy 
onditions i.e.,

SNR = {0, 5, 10} [dB℄ and the result is presented in Fig. 5.8 [Fig. 5.8(a) for

SNR = 0 [dB℄, Fig. 5.8(b) for SNR = 5 [dB℄ and Fig. 5.8(
) for SNR = 10
[dB℄℄. Although there is no substantial improvement of performan
e for SNR = 0
[dB℄ [Fig. 5.8(a)℄, overall the RMSE is de
reased as number of elements are

in
reased for SNRs higher than 0[dB℄ as shown in Fig. 5.8(b) for SNR = 5
[dB℄ and Fig. 5.8(
) for SNR = 10 [dB℄. This indi
ates that the performan
e

of MFSS − BCS is 
ompromised in 
ase of highly noisy 
onditions SNR ≤ 0
[dB℄.

Unlike the uniform frequen
y sampling analyzed above, the next example

deals with the analysis for non-uniform sampling. Figure 5.9 des
ribes the pro-


edure of non-uniform sampling. First of all, the available BW is dis
retized into

Nc number of 
andidate uniform samples. Then the number of required samples

N is randomly sele
ted from 
andidate Nc samples.

The test s
enario 
onsidered in Fig. 5.4(a) for uniform sampling has been


onsidered in this example to show the performan
e in 
omparative fashion.

Here the available BW is dis
retized into Nc = 11 
andidate samples (e.g.,

fcn = {fc1, ..., fc11} = {0.30, ... , 0.7} [GHz℄) and N = 5 samples is then se-

le
ted fn = {f1, f2, f3, f4, f5} = {0.3, 0.42, 0.5, 0.58, 0.7} [GHz℄. Figure 5.10

shows the best estimation at individual frequen
ies among T = 100 noise re-

alization for both uniform and non-uniform samples. The DoAs estimated by

both sampling strategies are exa
tly equal to the a
tual DoAs, although signal's

energy is higher in uniform frequen
y samples as shown in Fig. 5.10. Overall,

the average performan
e of uniform sampling is higher (e.g., RMSEmean = 0.28
[deg℄) than the non-uniform sampling (e.g., RMSEmean = 0.42 [deg℄), although

the minimum and maximum RMSE is exa
tly same.
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Figure 5.10: Performan
e Analysis (N = 5, L = 4, SNR = 10 dB; M = 20,
d = 0.5λ0; K = 181, W = 1, BW = 0.5 [GHz], fUniform

n ={0.3, ..., 0.7} [GHz],
fNon−Uniform
n ={0.30, 0.42, 0.50, 0.58, 0.70} [GHz]; ) - Best DoAs estimation

among T = 100 simulations for di�erent frequen
y samples: (a) f1, (b) f2, (
)
f3, (d) f4, and (e) f5.

In order to guarantee the reliability of the estimation, an analysis has been

done with the more realisti
 data 
olle
ted by the EM simulator. To do so,

an array of M = 20 equally-spa
ed by half-wavelength (d = λ
2
at f = 0.5

[GHz℄) y−oriented dipoles are pla
ed along x−axis as shown in Fig. 5.11. Ea
h

of the dipoles are 
onsidered as a series load with series resistan
e Rs = 72
[ohm℄, 
apa
itan
e Cs = 0 [F℄, and indu
tan
e Ls = 0 [H℄. L = 3 wide band

(f = [0.25 : 0.75] [GHz℄) plane waves with magnitude of 1 [V/m℄ are pla
ed in

z−axis in su
h a way that the dire
tions from the array referen
e points areDoAs
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Figure 5.11: Performan
e Analysis - Sket
h of the model implemented in EM

simulator

θ = {−45, −21, 10} [deg]. The simulated data (measured voltages) 
olle
ted at

ea
h N = 5 frequen
y samples are normalized with respe
t to the maximum of

the absolute value and then ampli�ed in order to have the su�
ient signal energy

so that the useful signals are not a�e
ted by energy thresholding strategy. These

ampli�ed voltages are then dire
tly fed to the MFSS − BCS solver

The performan
e of the proposed approa
h for K = 181 angular dire
tions is
presented in Fig. 5.12, where the DoAs estimated at ea
h individual frequen
ies

and also average estimated DoAs are plotted with respe
t to angular dire
tions.

The MFSS −BCS 
orre
tly estimates all DoAs without any error as shown in

Fig. 5.12. As expe
ted, although the estimated signals energy are di�erent for

ea
h frequen
y, the average estimated energy is 
lose to the a
tual 
onsidered

energy. The over estimated signal's energy is due to the e�e
ts of mutual 
oupling

among antennas.

Moreover, the performan
e of the MFSS − BCS has been 
ompared with

[107℄ (i.e., deterministi
 CS, subspa
e-based estimators like MUSIC and its dif-

ferent versions). With referring to [107℄, L = 2 a
ousti
 signals from DoAs
θ = {−60, 30} [deg] dire
tions are impinging on a linear array ofM = 6 elements

separated by d = λ
2
at 550 [Hz℄. The voltages measured at the terminal of ea
h

elements at ea
h frequen
ies fn = {f1, f2, f3, f4} = {300, 500, 600, 800}[Hz℄ are
subje
t to the noise level of SNR = 0 [dB℄ and the number of snapshots 
on-

sidered in MFSS − BCS and [107℄ are 1 and 256 respe
tively. The voltages

are 
olle
ted with and without polarization loss for MF − BCS only to show

the behaviour of MFSS −BCS for di�erent values of polarization mismat
h as

well. Figure 5.13 plots the a
tual and estimated DoAs for proposed approa
h
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Figure 5.12: Performan
e Analysis ( L = 3, BW = 0.5 [GHz], DoAs, θ =
{−45, −21, 10} [deg]; N = 5, f =[0.25 : 0.75] [GHz], fn ={0.3, ..., 0.7} [GHz];
M = 20, d = 0.5λ0; K = 181, and W = 1) - DoAs estimation from EM data.
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Figure 5.13: Performan
e Comparison (M = 6, d = 0.5λ0; f =[300 : 800]
[Hz], N = 4, fn ={300, 500, 600, 800} [Hz]; L = 2, θ = {−60, 30} [deg],
SNR = 0 dB; K = 181, T = 30) - Best average DoAs estimation.
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Table 5.4: Performan
e Comparison (M = 6, d = 0.5λ0; f =[300 : 800] [Hz],
N = 4, fn ={300, 500, 600, 800} [Hz]; L = 2, θ = {−60, 30} [deg], SNR =
0 dB; K = 181, T = 30) - Best average DoAs estimation

Algorithm θ [deg] θ̃ [deg] RMSE[deg]

T −MUSIC {−60, 30} {−64, 27.5} 3.34
CS −MUSIC {−60, 30} {−64, 45.5} 11.32
CS −DDoA {−60, 30} {−58.5, 30.5} 1.18

MFSS −BCS [PLF = 1.0] {−60, 30} {−61.5, 29} 1.27
MFSS − BCS [PLF = 0.5 : 1.0] {−60, 30} {−64, 30} 2.82

(e.g., without the loss of polarization where PLF = 1.0 and with the loss of

polarization where PLF = [0.5 : 1.0]), deterministi
 CS [107℄ (e.g.,CS-DDoA),

and MSUIC reported in [107℄ (e.g., T-MUSIC, CS-MUSIC). The a
tual and es-

timated DoAs for the mentioned approa
hes have also been reported in Tab.

5.4. Overall, the performan
e of 
ompressive sensing based method is higher

than the subspa
e-based estimator like T-MUSIC and/or CS-MUSIC. Although

the performan
e of CS-DDoA and MFSS − BCS are approximately equal in

terms of RMSE, the MFSS−BCS 
onsidered only single-snapshot data while

W = 256 snapshots 
onsidered in [107℄.

In addition, the performan
e of MFSS−BCS has also been 
ompared with

[77℄, where L = 2 wide band signals having bandwidth of BW = 40 [Hz℄ (in the

range f = [80 : 120] [Hz℄) 
oming from dire
tions DoAs θ = {−10, 20} [deg]
are impinging on a linear array of M = 16 elements separated by d = λ

2
at 120

[Hz℄. The measured signals at ea
h element are subje
t to di�erent noise level of

SNR = [−15 : 15] [dB℄. Figure 5.14 shows the estimated average RMSE for T =
100 noise realizations as a 
omparative fashion. Although, the performan
e of

WP and WOP [77℄ is slightly higher in extremely noisy 
onditions (e.g., SNR =
[−15 : −5] [dB℄), the MFSS − BCS (without polarization loss) outperforms

when SNR = [−5 : 15] [dB℄.
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Figure 5.14: Performan
e Comparison (M = 16, d = 0.5λ0; f =[80 : 120]
[Hz], N = 5, fn ={80, 90, 100, 110, 120} [Hz]; L = 2, θ = {−10, 20} [deg],
SNR = [−15 : 15] dB; K = 37, T = 100) - Best average DoAs estimation.
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5.5 Performan
e of MFMS − BCS

Let us 
onsider L = 2 binary phase-shift keying (BPSK) signals (Einc
l = ±1)

with equal bandwidth set to BW1 = BW2 = 0.5 [GHz℄ in the range f = [0.25 :
0.75] [GHz℄ that are impinging on a linear array of M = 20 equally-spa
ed (d =
λ0

2
, where λ0 = 0.5 [GHz℄) isotropi
 sensors (i.e., H = 1) where the measured

voltages are 
orrupted by a noise level equal to SNR = 0 dB. The voltages

are 
olle
ted for W = [1 : 15] snapshots and for ea
h snapshot the data are


onsidered over N = {1, 5} frequen
y samples. More pre
isely, the sele
ted

frequen
ies for N = 5 are f1 = 0.3 [GHz℄, f2 = 0.4 [GHz℄, f3 = f0 = 0.5 [GHz℄,

f4 = 0.6 [GHz℄, and f5 = 0.7 [GHz℄. When applying theMFMS-BCS , the angular

range θ ∈ [−90; 90] [deg] has been partitioned with K = 181 samples to obtain a

uniform grid of step δθ = 1 [deg]. For validation purposes, two di�erent s
enarios
with L = 2 signals having 
losely spa
ed and widely spa
ed DoAs have been


onsidered. The 
losely spa
ed DoAs have been set to θ = {−70, −64} [deg]
and the widely spa
ed DoAs to θ = {−75, 30} [deg].
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Figure 5.15: Method Validation (W = [1 : 15]; M = 20, d = 0.5λ0; f =[0.25 :
0.75] [GHz], N = {1, 5}, L = 2, 
lose spa
ed DoAs, θ = {−70, −64} [deg], wide
spa
ed DoAs, θ = {−75, 30} [deg], SNR = 0 dB; K = 181) - Average RMSEs
values among T = 100 simulations

Figure 5.15 represents the statisti
s of the RMSE values in order to show

the e�e
tiveness of exploiting both time and frequen
y data. As expe
ted, the

performan
e is higher for the widely spa
ed DoAs, although adding only time

domain data (for N = 1) is not enough when SNR = 0 dB as shown in Fig. 5.15

(red 
urves). However, the addition of frequen
y sampled (N = 5) data signif-

i
antly improves the performan
e and the estimation errors are monotoni
ally

de
reased with the in
rease of number of time domain data as in Fig. 5.15 for

both 
lose and wide spa
ed DoAs.
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In order to extensively analyze the e�e
tiveness and the reliability of the

proposed approa
h, I = 100 sets of L = 2 random DoAs have been generated.

Two 
onstraints have been 
onsidered in the generation of random DoAs that
are the angular range set equal to θ ∈ [−80; 80] [deg] and the minimum angular

separation between theDoAs 
hosen as∆θmin = 5 [deg]. All other parameters are

kept the same of the previous example. The minimum, maximum, and average

RMSE values among T = 50 noise realizations for ea
h 
on�guration of the

L = 2 random DoAs have been graphi
ally presented in Fig. 5.16 ([Fig. 5.16(a)℄

for W = 1, [Fig. 5.16(b)℄ for W = 5, and [Fig. 5.16(
)℄ for W = 15). As it

is evident that the average RMSE with W = 15 snapshot is zero for higher

number of random DoA sets than W = 1. Therefore, the time and frequen
y

pro
essing is robust even in the extremely noisy 
ondition SNR = 0 [dB℄.
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Figure 5.16: Performan
e Analysis (W = {1, 5, 15}; M = 20, d = 0.5λ0;
f =[0.25 : 0.75] [GHz], N = 5; L = 2, BW = 0.5 [GHz], SNR = 0 dB;
K = 181, T = 100) - Best, worst, and average RMSE values among T = 100
simulations for I = 100 random sets of DoAs: (a) W = 1, (b) W = 5, and (
)

W = 15 snapshots.
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Figure 5.17: Performan
e Analysis (W = {1, 5, 15}; M = 20, d = 0.5λ0;
f =[0.25 : 0.75] [GHz], N = 5; L = 4, θ = {−79, −59, −41, 10} [deg],
BW = 0.5 [GHz], SNR = [−10 : 20] dB; K = 181) - Best, worst, and av-

erage RMSE values among T = 100 simulations.
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Figure 5.18: Performan
e Analysis (W = {1, 5, 15}; M = {8, 12, 16, 20, 24},
d = 0.5λ0; f =[0.25 : 0.75] [GHz], N = 5; L = 4, θ =
{−79, −59, −41, 10} [deg], BW = 0.5 [GHz], SNR = 5 dB; K = 181) - Best,
worst, and average RMSE values among T = 100 simulations.

To investigate the e�e
t of the noise level, an analysis for a set of L = 4 �xed
DoAs equal to θ = {−79, −59, −41, 10} [deg] has been 
arried out by varying

the signal-to-noise ratio in the range SNR = [−10 : 20] dB. The obtained

results are plotted in Fig. 5.17. By observing the behavior of the minimum

RMSE 
urves, it is evident that low RMSE values are a
hieved with W = 5
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and W = 15 snapshots even for SNR = 5 dB while about SNR = 10 dB are

needed to a
hieve similar estimation performan
e with W = 1. Overall, the

statisti
al performan
e improve, whatever W , with the in
rement of the SNR
as shown in Fig. 5.17. As for the average RMSE values, it be
omes equal to

zero at SNR = 8 dB for W = 15 while at least SNR = 13 dB are required for

W = 1 and W = 5.
S
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Figure 5.19: Performan
e Analysis -Signals and bandwidth 
on�gurations for

the estimation of signals having di�erent bandwidth.
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Figure 5.20: Performan
e Analysis (W = [1, 5, 10, 15]; M = 20, d = 0.5λ0;
f =[0.25 : 0.75] [GHz], N = 5; L = 4, θ = {−79, −59, −41, 10} [deg], SNR =
[−10 : 20] dB; K = 181) - Best, worst, and average RMSE values among

T = 100 simulations..

The analysis versus the number of elementsM for SNR = 5 dB has been also

65



5.5. PERFORMANCE OF MFMS − BCS


arried out and the obtained results are represented in Fig. 5.18. It is possible to

observe that the 
apa
ity of exa
t estimation improves for higher values ofM . In

addition, the 
ondition RMSE = 0 [deg℄ is a
hieved for all M when W = 5 and
W = 15 (indeed the minimum RMSE 
urves are not appearing in the graph)

while more than M = 22 elements are required in 
ase of single snapshot data.
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Figure 5.21: Performan
e Analysis (W = {1, 5, 15}; M = 20, d = 0.5λ0;
f =[0.25 : 0.75] [GHz], N = 5, fn ={0.3, 0.4, 0.5, 0.6, 0.7} [GHz]; L = 4,
θ = {−79, −59, −41, 10} [deg], SNR = 5 dB; K = 181, T = 100) - DoAs
estimation at individual frequen
ies.

In order to 
onsider a s
enario 
hara
terized by signals having di�erent band-

width, the a
tual signals and frequen
y 
on�guration shown in Fig. 5.19 have

been taken into a

ount. In details, the �rst signal θ1 = −79 [deg] exists only at
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f2 and f3, the se
ond signal θ2 = −59 [deg] at f2, f3, f4, and f5, the third signal

θ3 = −41 [deg] at all frequen
ies, and the fourth signal θ4 = 10 [deg] only at

f2, f3, and f4. In order to investigate the potentialities of the proposed MFMS-

BCS method for the joint DoAs and BW estimation of signals having di�erent

bandwidths of Fig. 5.19, the results of the analysis when varying the SNR (Fig.

5.20) for di�erent number of snapshots W have been reported.

Similar to the 
ase of signals having equal bandwidth (Fig. 5.17), the 
ondition

RMSE = 0 [deg℄ is a
hieved for SNR = 5 [dB℄ for allW ex
eptW = 1 as shown
in Fig. 5.20. Although the average RMSE values for W = 1 and for W = 5 are
not zero, the performan
e improve with the SNR.
Finally, in order to show the 
orre
t estimation of both the signals bearing and

bandwidth, Fig. 5.21 reports the a
tual and the best estimated DoAs at ea
h
frequen
y sample for di�erent number of snapshots when 
onsidering the same

test 
ase with SNR = 5 dB. It is 
learly evident that the a
tual DoAs are


orre
tly estimated (i.e., with RMSE = 0 [deg]) for all frequen
ies when W = 5
andW = 15, whi
h in turns means a perfe
t signal BW estimation. On the other

hand, the DoAs are not 
orre
t for W = 1 at f2 and f3, where the estimation is

θ̃ = {−80, −59, −41, 10} [deg].
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Figure 5.22: Comparison (W = 64; M = 16, d = 0.5λ0; f =[80 : 120] [Hz],
N = 5, fn ={80, 90, 100, 110, 120} [Hz]; L = 2, θ = {−10, 20} [deg], SNR =
[−15 : 15] dB; K = 181, T = 100) - RMSE at di�erent SNRs.

Moreover, the MFMS −BCS has also been 
ompared with [77℄, where two

wideband signals (θ = {−10, 20} [deg]) having equal bandwidth of 40 Hz (f =
[80 : 120] Hz) are impinging on a linear array of 16 elements spa
ed by half

wavelength with respe
t to the maximum frequen
y of fmax =120 [Hz]. Ea
h

element 
olle
ts 64 time domain samples with the noise level of SNR = [−15 :
15] dB. The estimated average RMSE for 100 noise realizations are plotted

as 
omparative fashion in Fig. 5.22. The MFMS − BCS outperforms when
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5.5. PERFORMANCE OF MFMS − BCS

SNR = [−5 : 15] dB, although the estimated RMSE by WOP and WP [77℄ are

slightly less in extreme noise level (e.g., SNR = [−15 : −5] dB).
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Chapter 6

DoA Estimation in Cost E�e
tive

System

In this 
hapter, the DoA estimation problem for di�erent sub-arrayed array is

addressed with the state-of-the-art BCS approa
h. More spe
i�
ally, ST −BCS
is applied for linear array in order to �nd out a optimum sub-array 
on�gurations

in whi
h the performan
e of estimation is 
omparable with fully populated array.

For planar 
ase, both ST − BCS and MT − BCS is applied. In addition, the

main out
ome of this work is published in [84℄.
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6.1. INTRODUCTION

6.1 Introdu
tion

Dire
tion-of-arrival (DoA) estimation is a part and par
el of modern radar and


ommuni
ation appli
ations. Nowadays, antenna arrays often adopt a sub-

arrayed ar
hite
ture [120℄ in order to redu
e the 
omplexity and 
ost of the

feeding network. However, the sub-arrayed ar
hite
ture brings additional 
hal-

lenges as the array features are greatly 
ompromised with respe
t to the fully

populated arrays. Therefore, it is essential to analyze the performan
e of the

DoA estimation in sub-arrayed ar
hite
ture, but only few works have previously

addressed this problem. For example, approa
hes exploiting nested arrays [121℄

and 
o-prime arrays [122℄ have been proposed in whi
h the DoAs estimation has

been 
arried out by means of the 
lassi
al subspa
e-based estimators MUSIC
and ESPRIT . However, these te
hniques have their own theoreti
al limitations.

For instan
e, they need (i) to a-priory know the number of in
oming signals, (ii)

to 
ompute the 
omplex 
o-varian
e matrix whi
h is 
omputationally demand-

ing, and (iii) to a
quire the data over multiple snapshots in order to provide a

reliable estimation, not suitable for real time appli
ation.

Sparse pro
essing [56℄-[62℄ for signal re
onstru
tions has re
eived great atten-

tion sin
e last two de
ades. In this framework, strategies based on the 
ompres-

sive sensing (CS) theory [59℄-[61℄ have re
ently been introdu
es thanks to their

e�e
tiveness, �exibility, and 
omputational e�
ien
y to deal with 
omplex engi-

neering problems in ele
tromagneti
 [63℄-[68℄ in
luding antenna array synthesis

[69℄-[70℄ and imaging [71℄-[75℄.

The BCS-based strategies have been e�e
tively applied for DoAs estimation

for di�erent purposes [78℄-[84℄. In this framework, strategies based on the BCS
are introdu
ed in whi
h the data measured at the output of the sub-array ports

and at a single or multiple time instant/snapshot are dire
tly pro
essed to esti-

mate the signal DoAs. The impa
t on the estimation performan
e for di�erent

uniform and non-uniform sub-array 
on�gurations of linear and planar array are

analyzed in a 
omparative fashion.
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6.2 Mathemati
al Formulations

Let us 
onsider a set of L ele
tromagneti
 plane waves arriving from unknown

dire
tions θl, l = 1, ..., L, on a linear array of M elements pla
ed along x-axis

at positions xm, M = 1, ...,M , with uniform inter-element spa
ing d. The M
array elements are grouped into Q sub-arrays, ea
h 
ontaining Nq, q = 1, ..., Q
elements (Fig. 6.1). The membership of ea
h array element to a sub-array is

identi�ed by Cm, m = 1, ...,M where Cm ∈ [1 : Q]. The data 
olle
ted at the

output terminal of the q−th sub-array are mathemati
ally expressed as:

Yq =

M∑

m=1

VmδCmq ; δCmq =

{
1;
0;

Cm = q
otherwise

(6.1)

where Vm are the OCV equivalent to fully populated array (5.2). Substituting

Vm of (5.2) into (6.1) turns out to be:

Yq =

M∑

m=1

(
L∑

l=1

slŷ ·Hejβxm sin θl + ηm

)
δCmq, q = 1, ..., Q. (6.2)

Equation (6.2) 
an be written in matrix form as:

[Y] = [δ] [A (θ)] [s] + [δ] [η] (6.3)

where [Y] = [Y1, Y2, ..., YQ]
T ∈ CQ×1

is the ve
tor of sub-array data; [s] =

[s1, s2, ..., sL]
T ∈ CL×1

is the signal ve
tor; [η] = [η1, η2, ..., ηM ]T ∈ CM×1
is the

noise ve
tor, [A (θ)] = [a (θ1) , a (θ2) , ..., a (θL)] ∈ C
M×L

is the steering matrix of

fully populated array, and [δ] =∈ RQ×M
is the sub-array transformation matrix

de�ned as

[δ] =



δC11 · · · δCM1
.

.

.

.

.

.

.

.

.

δC1Q · · · δC1Q


 . (6.4)

Equation (6.3) 
an be further simpli�ed as:

[Y] =
[
Asub (θ)

]
[s] +

[
ηsub

]
(6.5)

where

[
Asub (θ)

]
= [δ] [A (θ)] ∈ CQ×L

is the transformed sub-arrayed steering

matrix. Then the pro
edures des
ribed in Se
t. 3.3 (sub. 3.4.1) are employed in

order to apply ST − BCS strategies.
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6.2. MATHEMATICAL FORMULATIONS

(a)

(b)

Figure 6.1: Sket
h of the array geometries - (a) without sub-array and (b) with


ontiguous uniform sub-array of N = 2 elements per 
luster.

Then a

ording to the guideline of single-task BCS des
ribe in Se
t. 3.4.1,

the sparse signal ve
tor is determined by maximizing the following a-posteriori

probability:

[̂s]ST−BCS = arg
{
max

[
Pr
(
ŝ, σ2, p |Y

)]}
(6.6)

where σ2
and p is the varian
e of the Gaussian noise and the BCS hyper-

parameter respe
tively. For multi-snapshots data, the 6.5 
an be written as

[Vw] =
[
Asub (θ)

]
[sw] + [ηw] , w = 1, ...,W (6.7)

where W is the number of snapshots. Similarly the pro
edures des
ribed in Se
t.

3.3 (sub. 3.4.2) are employed in order to apply MT − BCS strategies. Then

a

ording to the guideline of single-task BCS des
ribed in Se
t. 3.4.2, the sparse

signal ve
tor is determined by maximizing the following a-posteriori probability:

ŝMT−BCS =
1

W

W∑

w=1

{
arg

[
max
ŝw

Pr ( [̂sw, p]|Yw)

]}
(6.8)
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CHAPTER 6. DOA ESTIMATION IN COST EFFECTIVE SYSTEM

where ŝw, w = 1, ...,W , are statisti
ally-
orrelated through a hyperparameter

ve
tor p whi
h 
orrelates the di�erent snapshots.
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6.3. ST −BCS FOR LINEAR SUB-ARRAYED ARRAY

6.3 ST − BCS for Linear Sub-Arrayed Array

In order to analyze the performan
e of BCS − based estimator, the error metri


de�ned in [78℄ is 
onsidered. The �rst test 
ase is devoted to analyze the perfor-

man
e of the estimator for signals without and with modulations. Let us 
onsider

L = 2 ele
tromagneti
 plane waves are impinging from dire
tions θ = {30 , 60}
[deg℄ on a linear array of M = {8, 16, 24} elements elements with spa
ing equal

to half of wavelength. As for the preliminary analysis, two sub-array 
on�gura-

tions shown in Fig. 6.1 [Fig. 6.1(a) for without sub array and Fig. 6.1(b) for

with sub array of Nq = 2℄ are 
onsidered to be analyzed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 |s

k|
2

Angular Direction, θk [deg]

Actual
Angular Samples

M=8 (Einc=[+1,+1])
M=8 (Einc=[+1,-1])

M=16 (Einc=[+1,+1])
M=16 (Einc=[+1,-1])
M=24 (Einc=[+1,+1])
M=24 (Einc=[+1,-1])

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-90 -75 -60 -45 -30 -15  0  15  30  45  60  75  90

S
ig

na
l E

ne
rg

y,
 |s

k|
2

Angular Direction, θk [deg]

Actual
Angular Samples

M=8 (Einc=[+1,+1])
M=8 (Einc=[+1,-1])

M=16 (Einc=[+1,+1])
M=16 (Einc=[+1,-1])
M=24 (Einc=[+1,+1])
M=24 (Einc=[+1,-1])

(b)

Figure 6.2: DoAs Estimation - Impa
ts of signal modulation on the es-

timation (M = {8, 16, 24}, N = {1, 2}, d = 0.5λ, L = 2, Einc =
{(+1, +1) , (+1, −1)}[V℄, SNR = Noiseless [dB℄, and K = 181) - for (a) with-
out sub-array (i.e., N = 1 elements) and (b) with 
ontiguous uniform sub-array

of N = 2 elements.
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Table 6.1: DoAs Estimation - Impa
ts of signal modulation on the esti-

mation (M = {8, 16, 24}, N = {1, 2}, d = 0.5λ, L = 2, Einc =
{(+1, +1) , (+1, −1)}[V℄, SNR = Noiseless [dB℄, and K = 181).

Einc = {+1, +1} Einc = {+1, −1}

M θ [deg] θ̃ [deg] RMSE [deg] θ̃ [deg] RMSE [deg]
8 {30, 60} {30} 127.28 {−30} 134.16
16 {30, 60} {−30} 134.16 {30} 127.28
24 {30, 60} {30, 60} 0.00 {30, 60} 0.00

First of all, the impa
ts of modulation are analyzed. For two di�erent sets of

signal magnitude (i.e., without modulation Einc = {+1, +1}[V℄ and with BPSK

modulation Einc = {+1, −1}[V℄), the estimated DoAs for Noiseless s
enario

are shown in Fig. 6.2. In parti
ular, Fig. 6.2 (a) plots the estimated DoAs

for the fully populated array [Fig. 6.1(a)℄ and Fig. 6.2 (b) plots the estimated

DoAs for the sub-array of Nq = 2 [Fig. 6.1(b)℄. It is evident that the signal

modulation has an impa
t on sub-array DoA estimation. For example, in fully

populated 
ase [Fig. 6.1(a)℄, the estimator perfe
tly retrieved the DoAs for all
M while it is unable to estimate all DoAs for M = 8 and M = 16 with the

sub-array geometry. However, it perfe
tly estimates the unknown DoAs with

the sub-arrayed array geometry forM = 24 as shown in Fig. 6.2 (b) also in Tab.

6.1.

In order to extensively analyze the performan
e of the proposed estimator,

100 randomly generatedDoA sets with randomBPSK modulations are analyzed

for noiseless 
ase. In this 
ase, the results are plotted in order to show that the

per
entage of number of DoA set belongs to any of the �ve RMSE ranges. The

ranges of RMSE is de�ned as follows:

• Ex
ellent - RMSE = [0 : 0] [deg℄;

• Very Good - RMSE = [0 : 1] [deg℄;

• Good - RMSE = [1 : 10] [deg℄;

• Bad - RMSE = [10 : 100] [deg℄;

• Worse - RMSE = [100 : 1000] [deg℄.

Figure 6.3 shows the per
entage of number DoA sets belonging to ea
h of the

de�ned 
ategory of RMSE ranges among 100 Monte-Carlo simulations (i.e.,

100 randomly generated BPSK signals). It is evident that the average RMSE
among 100 simulations belonging to the �Ex
ellent� 
ategory (exa
t estimation)

is estimated for 90 per
ent and 50 per
ent of the random DoA sets for N = 1
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6.3. ST −BCS FOR LINEAR SUB-ARRAYED ARRAY

Table 6.2: Performan
e Analysis - Per
entage of random DoA sets belonging to

ea
h range of RMSEs (M = 24, N = {1, 2}, d = 0.5λ, L = 2, SNR = Noiseless
[dB℄, K = 181, and S = 100 random DoA Sets) - for T = 100 random BPSK
signals.

RMSE [deg℄ Minimum Average Maximum

N = 1 N = 2 N = 1 N = 2 N = 1 N = 2
0 97 66 87 46 87 46

0− 1 0 1 4 0 0 0
1− 10 1 4 6 8 10 2
10− 100 0 1 1 16 0 14
100− 180 2 28 2 30 3 38

Total 100 100 100 100 100 100

(no sub-arraying) and for N = 2 (with sub-arraying) respe
tively as shown in

Fig. 6.3. The details of results for di�erent 
ategories are also tabulated in Tab.

6.1.
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Figure 6.3: Performan
e Analysis - Per
entage of random DoA sets belonging to

ea
h range of RMSEs (M = 24, N = {1, 2}, d = 0.5λ, L = 2, SNR = Noiseless
[dB℄, K = 181, and S = 100 random DoA Sets) - for T = 100 random BPSK
signals.

This is worth pointing out that the sub-arraying degrades the performan
e

of the DoAs estimation. In order to further verify the impa
ts of 
ontiguous

uniform sub-arraying for noiseless 
ase, an analysis is done for di�erent number

of elements in ea
h sub-array i.e., N = [1 : 4] and 100 random DoA sets of L = 3
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signals. The per
entage of the number of DoA sets belonging to ea
h 
ategory

is plotted in Fig. 6.4 [ Fig. 6.4(b) for minimum, Fig. 6.4(b) for average, and

Fig. 6.4(
) for maximum RMSE among 100 Monte-Carlo simulations℄. From

Fig. 6.4, it is evident that the performan
e of the estimation de
reases as the

number of elements for ea
h sub-array in
reases. From the analysis of minimum

RMSE of Fig. 6.4 (a), there are two DoA sets for whi
h the minimum RMSE
is zero for all N . The two DoA sets are identi�ed and they are named as �DoA

Set 1� (θ = {−10, 5, 13} [deg℄) and �DoA Set 2� (θ = {−61, 34, 47} [deg℄).
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Figure 6.4: Performan
e Analysis - Per
entage of random DoA sets belonging to

ea
h range of RMSEs - (M = 24, N = {1, 2, 3, 4}, d = 0.5λ, L = 3, SNR =
Noiseless [dB℄, K = 181 and S = 100 random DoA Sets) - for (a) minimum,

(b) average, and (
) maximum RMSEs among T = 100 random BPSK signals.

In order to verify the impa
ts of sub-arraying for di�erent noisy 
onditions,

the following analysis are done for �DoA Set 1� (θ = {−10, 5, 13} [deg℄) and
�DoA Set 2� (θ = {−61, 34, 47} [deg℄). The performan
e of the estimation in

terms of minimum, average, and maximum RMSE for di�erent noisy 
ases are

shown in Fig. 6.5. It is evident that the results for two DoA sets vary with respe
t

to di�erent N and also SNRs. It is worth pointing out that the performan
e
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6.3. ST −BCS FOR LINEAR SUB-ARRAYED ARRAY

of the estimation for N = 3 is better than both N = 2 and N = 4. This is an
interesting result sin
e it is indi
ating that the performan
e of the estimation


ould be improved by analyzing di�erent sub-array 
on�gurations.
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Figure 6.5: Performan
e Analysis - SNRs versus RMSEs - (M = 24, N =
{1, 2, 3, 4}, d = 0.5λ, L = 3, SNR = {−20, ..., Noiseless} [dB℄, K = 181 and

S = 2 sele
ted DoA Sets) - for (a) minimum, (b) average, and (
) maximum

RMSEs among T = 100 random BPSK signals.

So far, the analysis is done with the 
ontiguous uniform sub-array. In or-

der to analyze the performan
e for di�erent sub-array 
on�gurations, the non-


ontiguous sub-array of Fig. 6.6 (an example is shown for N = 2) is 
onsidered
to be analyzed for N = {2, 3, 4}. The results in terms of average RMSE among

100 trials is shown in Fig. 6.7 and 
ompared with 
ontiguous sub-array. The

non-
ontiguous sub-array of N = 2 outperforms as shown in Fig. 6.7.

Up to now, the analysis have been done for uniform 
ontiguous and uniform

non-
ontiguous sub-arrays. The next analysis is devoted to analyze the perfor-

man
e of the proposed method with non-uniform sub arrays. In order to do this,

6 non-uniform 
ontiguous (NUC) sub-arrays as shown in Fig. 6.8 are analyzed.
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Figure 6.6: Performan
e Analysis - Sket
h of the non-
ontiguous uniform sub-

array of N = 2 elements per 
luster.
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Figure 6.7: Performan
e Analysis - Contiguous versus Non-
ontiguous sub-array

- (M = 24, N = {2, 3, 4}, d = 0.5λ, L = 3, SNR = {−20, ..., Noiseless} [dB℄,
and K = 181) - average RMSEs among T = 100 random BPSK signals.
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Figure 6.8: Performan
e Analysis - Manually de�ned six 
ontiguous non-uniform

sub-array 
on�gurations (M = 24, N = {1, 2, 3, 4}, and NUC = [1 : 6]).
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The performan
e of the di�erent non-uniform 
ontiguous sub-arrays shown in

Fig. 6.8 are analyzed in Fig. 6.9 for di�erent noisy 
onditions and 
ompared with

the uniform 
ontiguous sub-arrays of N = {1, 2, 3}. It is worth pointing out that
the non-uniform 
ontiguous sub-array of NUC = 3 outperforms than all other


onsidered sub-array 
on�gurations. Moreover, the performan
e of NUC = 3
sub-array 
on�guration has the similar performan
e as the fully populated array

in Fig. 6.8 for di�erent noisy 
onditions.
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Figure 6.9: Performan
e Analysis - Contiguous uniform versus 
ontiguous non-

uniform sub-array - (M = 24, N = {1, 2, 3, 4}, d = 0.5λ, L = 3, SNR =
{−20, ..., Noiseless} [dB℄, and K = 181) - average RMSEs among T = 100
random BPSK signals.

Figure 6.10: Performan
e Analysis - Sket
h of the sele
ted �ve 
on�gurations.
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CHAPTER 6. DOA ESTIMATION IN COST EFFECTIVE SYSTEM

From the above analysis, it is evident that the estimation performan
e de-

pends on di�erent sub array 
on�gurations. Therefore, in order to have an ex-

tensive analysis for 100 sets of random DoAs, the best 5 sub-array 
on�gurations
are sele
ted based on the performan
e reported so far. The sele
ted 
on�gura-

tions are sket
hed in Fig. 6.11, where the 
on�gurations are indi
ated by the

indexes of C. It in
ludes fully populated array (C=1), 
ontiguous uniform array

of N = 2 (C=2), non-
ontiguous uniform array of N = 3 (C=3), 
ontiguous

non-uniform array of Q = 9 (C=4), and �nally 
ontiguous non-uniform array of

Q = 12 (C=5).
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Figure 6.11: Performan
e Analysis - Per
entage of random DoA sets belonging

to ea
h range of RMSEs - (M = 24, N = {1, 2, 3, 4}, d = 0.5λ, L = 3, K = 181
and S = 100 random DoA Sets) - average RMSEs among T = 100 random

BPSK signals for (a) SNR = 0 [dB℄, (b) SNR = 10 [dB℄, (
) SNR = 20 [dB℄,

and (d) SNR = Noiseless [dB℄.

Figure 6.11 shows the per
entage of number DoA sets belonging to ea
h of de-

�ned 
ategory ofRMSE range among 100Monte-Carlo simulations (i.e., 100 ran-
domly generated BPSK signals) for di�erent SNRs, SNR = {0, 10, 20, Noiseless}
[dB℄. It is 
learly evident that the estimation for all the 
on�gurations are �Bad�
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Figure 6.12: Performan
e Analysis - Performan
e analysis with analyti
 and

simulated data for 3 best sele
ted 
on�gurations - (M = 24, N = {1, 2, 3},
d = 0.5λ, L = 3, θ = {−10, 5, 13} [deg℄ SNR = {−20, .., 0, .., Noiseless} [dB℄,
and K = 181) - average RMSEs among W = 100 Noise realizations.

(in the range, RMSE = [10 − 100] [deg℄) when SNR = 0 [dB℄ as shown in Fig.

6.11 (a). It is worth pointing out that the exa
t estimation for the number of

per
entage of DoA sets are in
reased with the in
rease of SNRs as shown in Fig.

6.11 (b)-(d). Although, the performan
e of fully populated array is higher for all

the SNRs, the 
on�gurations C=3 and C=5 are promising.

Finally, the performan
e of the proposed method for the promising 
on�gura-

tions found in previous analysis namely C=1, C=3, and C=5 are analyzed with

the data 
olle
ted from a 
ommer
ially available EM simulator and 
ompared

with the numeri
ally generated data. Figure 6.12 shows the average RMSE
among 100 Monte-Carlo simulations for di�erent SNRs. It is worth pointing

out that the results with the analyti
 and EM simulators data are approximately

equal for ea
h 
on�guration. Another important observation is that the 
on�g-

uration C=5 outperforms for θ = {−10, 5, 13} [deg℄.
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CHAPTER 6. DOA ESTIMATION IN COST EFFECTIVE SYSTEM

6.4 Analysis With Planar Sub-Arrayed Array

As for the preliminary analysis, both ST −BCS and MT −BCS are applied in

planar sub-arrayed array. In order to analyze the performan
e of BCS − based
estimator, the error metri
 de�ned in [79℄ is 
onsidered. Let us assume a planar

array 
onsists ofM ×N = 36 elements with d = dx = dy = 0.5λ as shown in Fig.

6.13. For the purpose of sub-arraying, let the M ×N elements are grouped into

Q subarrays where the number of elements Pq for ea
h sub-array is the same in

the 
ase of uniform sub-arraying and Pq is not equal for non-uniform 
ase.
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Figure 6.13: Sket
h Planar Array - Sket
h of the planar sub-arrayed array with

N = 1.

In order to estimate the performan
e of BCS based methods, let us 
on-

sider L = {1, 2, 3} signals are impinging on a planar array of di�erent sub-array


on�gurations as shown in Fig. 6.14 from the dire
tions (θl, φl) = {(20, 40)}
[deg℄ when L = 1, (θl, φl) = {(20, 40) , (45, 150)} [deg℄ when L = 2, and
(θl, φl) = {(20, 40) , (45, 150) , (60, 240)} [deg℄ when L = 3. The sub-array 
on-
�gurations in Fig. 6.14 are 
reated manually in order to analyze the behaviour

of the proposed methods. The impinging signals are randomly generated BPSK
signals and 
hara
terized by SNR = {0, 10, ..., Noiseless} [dB℄.
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Figure 6.14: Sub-Array Con�gurations - Considered planar sub-arrayed array


on�gurations.
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The average RMSE among 100 Monte-Carlo simulations for di�erent noisy

s
enarios are plotted in Fig. 6.15.
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Figure 6.15: Performan
e Analysis - Performan
e analysis of ST − BCS
(left 
ollumn ) and MT − BCS (left 
ollumn ) - (M × N = 36, SNR =
{0, 10, ..., Noiseless} [dB℄ L = {1, 2, 3}, W = 1 (ST − BCS) and W = 10
(MT − BCS)) - Average RMSE among T = 100 Monte-Carlo simulations.
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6.4. ANALYSIS WITH PLANAR SUB-ARRAYED ARRAY

The performan
e in-terms of average RMSE for di�erent sub-arrays are 
on-


luded as follows:

• as expe
ted, MT − BCS outperforms ST − BCS;

• overall, the 
on�guration C = 8 outperforms irrespe
tive of methods, num-

ber of signals, and SNRs;

• when L = 2, the 
on�guration C = 6 seems promising;

• the performan
e of BCS for all the non-uniform 
ases are better than all


ontiguous uniform 
ases.

Sin
e the 
on�gurations C = 6 and C = 8 are promising, the performan
e of

C = 6 and C = 8 is 
ompared with the fully populated array in Fig. 6.16.
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Figure 6.16: Performan
e Comparison - Fully populated versus sub-arrayed array

of C = 6 and C = 8 (M × N = 36, SNR = {0, 10, ..., Noiseless} [dB℄ L = 3,
W = 1 (ST − BCS) and W = 10 (MT − BCS)) - Average RMSE among

T = 100 Monte-Carlo simulations.
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Chapter 7

TVCS in DoA Estimation

In this 
hapter, an innovative appli
ations of DoAs estimation is addressed in

the CS framework. More spe
i�
ally, the estimation of 
losely-spa
ed DoAs or

lutter is addressed using the deterministi
 version CS named total-variation

CS (TV − CS), where the sparsity of the unknown is exploited in the gradient

domain.

87



7.1. INTRODUCTION

7.1 Introdu
tion

The knowledge of the dire
tions of the in
oming signals or 
lutters is always

advantageous for many appli
ations as it allows the system to fo
us towards the

dire
tions of interest in order to enhan
e the system's sensitivity and to suppress

the interferen
e. In many 
lassi
al and modern radars, the 
hara
terization of the


lutter in
luding its dire
tion and size is a major fun
tional requirement [111℄.

In 
ommuni
ation, identi�
ation of 
lutter is ne
essary to suppress multi-path

propagation and it is also sometimes used to mitigate the impa
ts of 
lutter itself

[112, 113℄.

In general, the estimation of dire
tion of 
lutter (DoC) is often asso
iated as

an estimation of 
losely spa
ed dire
tion of arrivals (DoAs) in the sense that the


lutter itself is the 
ombination of many 
losely spa
ed sour
es. This point of

reasoning is often adopted in order to estimate the 
lutter or 
losely separated

DoAs with the 
lassi
al estimators. However, the resolution of the 
lassi
al

estimators for 
losely spa
ed DoAs are limited by the physi
s of the problem: a

massive number of antennas are required to have a very narrow beam width in

order to separate the signals having narrower angular separation.

The estimation of 
losely spa
ed DoAs is 
hallenging and most of the tradi-

tional estimators failed miserably due to the physi
al 
onstraint of the problem

itself. Liu et al. [114℄ adopted a modi�edMUSIC-like subspa
e based estimator

to address the problem in hand. The performan
es of other subspa
e-based esti-

mators are 
ompared in [115℄. It is worth pointing out that the performan
e of

subspa
e based estimators are generally limited as it is 
omputationally demand-

ing (i.e., required many snapshots data) and not suitable nowadays for many

appli
ations. In this 
ontext, the modern estimators based on the CS frame-

work plays an important role: less 
omputational burden yet robust [81, 117℄.

Be
ause of its 
omputational e�
ien
y and the robustness in the a

ura
y, CS

based methodologies have been su

essfully applied in many applied ele
tro-

magneti
 (EM) �elds of engineering [67℄ in
luding EM s
attering [72℄, medi
al

imaging [73℄, ground penetrating radar imaging [74℄, and antenna array synthesis

[118℄.

In this 
ontext, Total-Variation (TV ) approa
h is the most potential method

[119℄. However, [119℄ is based on L1-SVD and is still subje
t to the multiple

snapshot data in order to have a reliable estimation. In this 
ase, the 
lutter or


losely spa
ed DoAs 
an be 
onsidered as a pie
e-wise 
onstant and the sparsity

is exploited in the gradient domain. Finally, TV − CS is adopted to e�
iently

estimates the 
losely spa
ed DoAs with single snapshot data.
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CHAPTER 7. TVCS IN DOA ESTIMATION

7.2 Mathemati
al Formulations

Let us 
onsider a 
lutter o

upied δ spa
e and its 
enter is lo
ated at ψ [deg℄

in the far-�eld of a linear array of M elements uniformly separated of spa
ing

d along x-axis at positions xm as shown in Fig. 7.1 (a). In order to simplify

problem, assume that the 
lutter itself is a sour
e of L 
losely spa
ed signals with

inter-sour
e spa
ing of ∆θ [deg℄. Sin
e the 
lutter is in the far-�eld, the sour
es

are impinging as a plane wave from θl, l = 1, ..., L dire
tions. Therefore, the

open-
ir
uit voltages measured at the terminal of ea
h element is mathemati
ally

de�ned in (3.8). With referring to (3.8), the dimension of ea
h parameter is

therefore:

• data ve
tor, v = [v1, v2, ..., vM ]T ∈ CM×1
;

• signal ve
tor, s = [s1, s2, ..., sL]
T ∈ CL×1

;

• steering ve
tor, a (θl) =
[
ejβx1sinθl, ejβx2sinθl, ..., ejβxMsinθl

]T
∈ CM×1

;

• steering matrix, A (θ) = [a (θ1) , a (θ2) , ..., a (θL)] ∈ CM×L
;

• noise ve
tor, η = [η1, η2, ..., ηM ]T ∈ CM×1
.

To apply the BCS approa
h, the visible angular range is dis
retized with K ≫ L

samples as shown in Fig. 7.1 (b) su
h that A
(
θ̃
)
∈ CM×K

in and the DoAs

of the in
oming signals are assumed to belong to the set of the K dire
tions

θ̃k, k = 1, ..., K. Now, the estimation problem turns out to be that of re
over-

ing the sparse signal ve
tor s̃ ∈ C
K×1

in 
orresponden
e with the user-de�ned

K-sampling of the angular range, θ̃ =
[
θ̃1, .., θ̃K

]
. The dimension of of ea
h

parameter is therefore:

• data ve
tor, v = [v1, v2, ..., vM ]T ∈ CM×1
;

• signal ve
tor, s = [s1, s2, ..., sL]
T ∈ CL×1

;

• steering ve
tor, a
(
θ̃l

)
=
[
ejβx1sinθ̃l, ejβx2sinθ̃l, ..., ejβxMsinθ̃l

]T
∈ CM×1

;

• steering matrix, A
(
θ̃
)
=
[
a
(
θ̃1

)
, a
(
θ̃2

)
, ..., a

(
θ̃K

)]
∈ CM×K

• noise ve
tor, η = [η1, η2, ..., ηM ]T ∈ C
M×1

.

However, be
ause of the nature of the problem, the referen
e problem [Fig. 7.1

(a)℄ itself is not sparse. It is worth pointing out that, the unknown signal ve
tor

s̃ ∈ CK×1
is a pie
e-wise 
onstant fun
tion in the gradient domain and the

gradient of the s̃ is de�ned as:
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Figure 7.1: Sket
h of the S
enario - Clutter as many 
losely spa
ed DoAs and
linear array arrangement.

∇s̃ = {∇s̃k = s̃k−1 − s̃k; k = 1, ... , K} (7.1)

turns out to be non-zero only for the indexes k that belongs to the a
tual

sour
es o

upying the 
lutter. The ve
tor ∇s̃ is thus a sparse ve
tor whi
h

enables the use of TV − CS strategy for �nding the problem solution.

Therefore, the estimation problem of (3.8) 
an be reformulated in TV − CS
framework as

sTV−CS = arg
[
min
s̃

(
‖∇s̃‖p +

µ

2
‖As̃−V‖2

)]
s.t. s̃ ≥ 0 (7.2)

where | . |p is the ℓ2−norm (p = 2) operator. The �rst term of (7.2) is

the TV − CS regularization term and in our 
ase, it is isotropi
. The isotropi


regularization is often adopted for the signals whi
h have sharp dis
ontinuity

(e.g., fewer zig-zag obje
t boundaries in the 
ase of image). In addition, the

se
ond term is 
ommonly referred to as the �delity term where µ > 0 is the

penalty parameter.
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In order to solve (7.2), guidelines given in [72, 118℄ are adopted. First, (7.1)

is written in equivalent problem with the auxiliary variable χ as follows:

χ̃ = min
χ
‖∇χ‖p subject to χ = ∇s̃ and V = As̃ (7.3)

where χ = {χk, k = 1, ... , K}. Then the following augmented Lagrangian

fun
tion is minimized with respe
t to s̃, χ̃, ρ, γ

‖χ̃‖p − ρT (∇s̃− χ̃)− γT (As̃−V) +
β

2
‖∇s̃− χ̃‖2p +

µ

2
‖As̃−V‖2p (7.4)

where ρ and γ are the Lagrangian multiplier ve
tors and β and µ are the

penalty terms. The two penalty terms must be 
alibrated 
arefully in order to

have reliable estimation.
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7.3. CALIBRATION OF PENALTY PARAMETERS

7.3 Calibration of Penalty Parameters

The 
alibration of these two parameters must be done in
luding all possible

s
enarios of a parti
ular problem. For the problem in hand, these two parameters

are optimized for the following s
enarios:

• varying the number of se
tors, S = {1, 2, 3};

• varying the se
tors width, δ = {11, 21, 31, 41, 51} [deg℄;

• varying the SNRs, SNR = {Noiseless, 20, 10, 5} [dB℄.

For ea
h of the above s
enario, the following parameters are �xed:

Fixed Parameters Value

Variable Symbol Value Unit

Number of elements M 20
Inter-element spa
ing d 0.5λ [m℄

Inter-sour
e spa
ing ∆θ 1 [deg℄

Number of angular samples K 181
Number of snapshots W 1
Number of Trials T 100

The root mean square errors RMSEs of all test s
enarios are then averaged

for ea
h 
ombination of β and µ. The 
omputed average RMSE for ea
h 
om-

bination of β and µ are shown in Fig. 7.2. The minimum �Average RMSE� is

omputed for η = 2 (x = 1) and β = 64 (y = 6) as shown in Fig 7.2 (indi
ated

by the bla
k square box).

Figure 7.2: TV-CS Calibration - Calibration of penalty parameters η and β.
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In order to show the impa
ts of η and β on the performan
e of estimation,

the average RMSE over all the test 
ases are shown in Fig. 7.3 (a) for di�erent

η and Fig. 7.3 (b) for di�erent β. It is evident that the RMSE for SNR = 10
[dB℄ dominates in the minimum �Average RMSE�.
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Figure 7.3: Performan
e Analysis - Impa
ts of penalty parameters on the esti-

mation of DoA - (a) impa
ts of η for �xed β and (b) impa
ts of β for �xed η.
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7.4 Numeri
al Validation

In order to validate the performan
e of TV −CS, three di�erent types o� 
lutters

have been 
onsidered for analysis with ST −BCS and TV −CS. The �rst 
ase

onsiders S = 1 
lutter whi
h 
onsists of δ = 11 [deg℄ 
lutter width with ∆θ = 1
[deg℄ (i.e., L = 11) and is 
oming from Ψ = 15 [deg℄. The se
ond 
ase 
onsiders

S = 1 
lutter whi
h 
onsists of δ = 41 [deg℄ 
lutter width with ∆θ = 1 [deg℄

(i.e., L = 41) and is 
oming from Ψ = 0 [deg℄. The third 
ase 
onsiders S = 2

lutters whi
h 
onsists of δ = 11 [deg℄ 
lutter width with ∆θ = 1 [deg℄ for ea
h


lutter (i.e., L = 22) and is 
oming from Ψ = {27, 35} [deg℄.
Figure 7.4 shows the best estimated DoAs among T = 100 Monte-Carlo

simulations for M = 20, d = 0.5λ, SNR = Noiseless [dB℄), and K = 181. It

is evident that the TV − CS outperforms ST − BCS for all the three 
ases.

However, as expe
ted, ST −BCS is unable to estimate the 
losely spa
ed DoAs.
The estimated DoAs are and the average RMSE for ea
h of the test 
ase are

reported in Tab. 7.1. The statisti
s of the performan
e of TV − CS for 
losely

spa
ed DoAs among T = 100 Monte-Carlo simulations verify that the TV −CS
is the promising method.

Table 7.1: Numeri
al Validation - Best estimated dire
tion of 
lutter (M = 20,
d = 0.5λ, SNR = Noiseless [dB℄, and K = 181) among T = 100 trials.

Fig. 7.4 θ [deg℄ θ̃ST−BCS
[deg℄ RMSE [deg℄

( a) [10 : 20] {12, 15, 18, 22} 157.99
(b) [10 : 20] [10 : 20] 0.00
( 
) [−20 : 20] {−19,−12, −11, −6, 1, 7, 18} 167.95
(d) [−20 : 20] [−21 : 20] 0.618
(e) [−32 : −22] ∪ [30 : 40] {−28, −26, −19} ∪ {26, 31, 36} 162.74
(f) [−32 : −22] ∪ [30 : 40] [−32 : −22] ∪ [30 : 40] 0.00
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Figure 7.4: Numeri
al Validation - Best estimated dire
tion of 
lutter (M = 20,
d = 0.5λ, SNR = Noiseless [dB℄, and K = 181) among T = 100 trials -

(a)(
)(e)ST − BCS (b)(d)(f) versus TV − CS.
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7.5 Performan
e Analysis

An extensive analysis is done in order to further verify the potentialities of the

TV −CS method for estimating 
losely spa
ed DoAs or 
lutter. First of all, the
impa
t of the positions of the 
lutter (�xed width of δ = 11 [deg℄) is analyzed

where the 
lutters are 
oming from Broadside (e.g., Ψ = 0 [deg℄), Intermediate

(e.g., Ψ = 45 [deg℄), and End-�re (e.g., Ψ = 85[deg℄) dire
tions. The data

re
eived at M = 20 elements with equal spa
ing of d = 0.5λ are 
hara
terized

by SNR = [10 : Noiseless] [dB℄.
The statisti
s of the performan
e in-terms of minimum, maximum, and av-

erage RMSE among T = 100 trials are shown in Fig. 7.5. It is evident that

the performan
e of TV − CS for any positions ex
ept end-�re is approximately

equal. In addition, the DoAs are perfe
tly re
onstru
ted (average RMSE = 0
[deg℄) for the broadside and the intermediate 
ase when SNR = 20 [dB℄.
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Figure 7.5: Performan
e analysis - Impa
ts of position of the 
lutter for di�erent

noisy 
onditions (M = 20, d = 0.5λ, S = 1, δ = 11 [deg℄, Ψ = {0, 45, 85}[deg℄
,SNR = [10 : Noiseless] [dB℄, K = 181, and T = 100). ,

The impa
ts of 
lutter width is analyzed next for �xed 
lutter positionΨ = 45
[deg℄ and noise 
hara
teristi
s SNR = 10 [dB℄. The statisti
s of the performan
e


learly indi
ate that the minimum, maximum, and average RMSE are in
reased

as the width of the 
lutter in
reased as shown in Fig. 7.6.

The impa
ts of the number of 
lutters for �xed δ = 11 [deg℄ and SNR = 10
[dB℄ is shown in Fig. 7.7. The statisti
s of the performan
e 
learly indi
ate that

the minimum, maximum, and average RMSE are in
reased as the width of the


lutter in
reased as shown in Fig. 7.7. By analyzing Fig. 7.6 and Fig. 7.7, the

impa
ts of the number of 
lutters are relatively higher than the width of the
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lutter. This is expe
ted be
ause the number sparsity level is de
reased when

number of 
lutters in
reased.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  15  20  25  30  35  40  45  50

R
M

S
E

 [d
eg

]

δ [deg]

Min

Max

Avg

Figure 7.6: Performan
e analysis - Impa
ts of the 
lutter widths (M = 20,
d = 0.5λ, S = 1, δ = [10 : 50] [deg℄, Ψ = 45 [deg℄ ,SNR = 10 [dB℄, K = 181,
and T = 100).
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Figure 7.7: Performan
e analysis - Impa
ts of the number of 
lutters (M = 20,
d = 0.5λ, S = [1 , : 4], δ = 11 [deg℄, Ψ = {−45, −20, 30, 55} [deg℄ ,SNR = 10
[dB℄, K = 181, and T = 100).

Finally, the impa
ts of the number of elements for di�erent noisy 
onditions
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are analyzed. It is worth pointing out that the performan
e of the estimations

are improved as the number of elements in
reased as shown in Fig. 7.8.
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Figure 7.8: Performan
e analysis - Impa
ts of the number of elements (M =
{12, 16, 20}, d = 0.5λ, S = 1, δ = 11 [deg℄, Ψ = 45 [deg℄ ,SNR = 10 [dB℄,

K = 181, and T = 100).
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Chapter 8

Con
lusions and Final Remarks

In this 
hapter, the important observations about the proposed methods and

their performan
es for various appli
ations have been 
on
luded. In addition of


on
luding remarks, a s
ope of future resear
h has been listed.
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In this thesis, sparse pro
essing of signals for DoAs estimation has exten-

sively analyzed in the framework of Compressive Sensing (CS). In parti
ular,

DoA estimation problem for di�erent sour
es, systems, and appli
ations have

been formulated in the CS paradigm. In addition, the fundamental 
onditions

related to the �Sparsity� and �Linearity� have been 
arefully exploited in order

to apply 
on�dently the CS−based methodologies. Moreover, innovative strate-

gies based on the CS estimator for various systems and appli
ations have been

developed, validated numeri
ally, and analyzed extensively for di�erent s
enar-

ios 
onsidered in the literature of DoA estimation problem in
luding signal to

noise ratio, mutual 
oupling, polarization loss and so on. In order to analyze the

performan
e of the proposed estimators, a standard metri
 
alled root-mean-

square error (RMSE) has been de�ned. The more realisti
 data from EM
simulators have also been 
onsidered to validate the potentialities of the pro-

posed approa
hes. In order to guarantee the reliability of the estimators, the

performan
e in terms of RMSE have been analyzed with respe
t to di�erent

degrees-of-freedom (DoFs) of DoA estimation problem in
luding number of el-

ements, number of signals, and randomly generated signals. In nutshell, the


ontribution of this thesis is the development of 
omputationally e�
ient, reli-

able, and robust CS−based estimators. Therefore, the proposed methods 
an

be applied in systems having di�erent geometries, in real time appli
ations, and

for narrow-band or wideband signals. The out
omes of this thesis are 
on
luded

as follows:

• Chapter 2 - the state-of-the-art DoAs estimation problem has been re-

viewed;

• Chapter 3 - the general DoAs estimation problem is formulated in
luding

ele
tromagneti
 properties like mutual 
oupling and polarization loss. Then

the state-of-the-art CS formulation for solving DoAs estimation problem

have been des
ribed;

• Chapter 4 - the performan
e of state-of-the-art ST − BCS method has

been improved signi�
antly with the proposed IMSA − BCS strategy,

where the inherent parameter of BCS related to noise varian
es have been

smartly exploited in order to re�ne the ARoI and then iterative estimates

the DoAs. The method has been validated with the data 
olle
ted from

EM simulator and also 
ompared with the SoA methods. It has been

shown that the IMSA − BCS outperformed the 
lassi
al estimator even

with a single snapshot data and thus appropriate for real time appli
ations;

• Chapter 5 - the performan
e of state-of-the-art MT − BCS method has

been improved signi�
antly with the proposed MF −BCS strategy, where

the signal's inherent properties (e.g., frequen
ies) have been exploited in or-

der to 
orrelate the BCS solutions over di�erent frequen
y samples. Based

on the time-frequen
y 
on�gurations, two MF − BCS methods named
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CHAPTER 8. CONCLUSIONS AND FINAL REMARKS

MFSS − BCS and MFMS − BCS have been proposed. It has been

shown that these methods are able to estimate also the bandwidth of the

in
oming signals thus appropriate for 
ognitive radar;

• Chapter 6 - the state-of-the-art ST − BCS and MT − BCS methods

have been analyzed for di�erent linear and planar sub-array geometries.

It has been shown that some sub-array geometries performed same as the

fully populated array. This interesting out
ome opened a s
ope for future

resear
h in the 
ost e�e
tive system design for DoAs estimation;

• Chapter 7 - the state-of-the-art TV − CS approa
h has been adapted for

an innovative appli
ation. The TV CS penalty parameters are optimized

for di�erent EM s
enarios. It has been shown that the proposed approa
h

is able to 
orre
tly estimate the 
onsidered 
lutters when for a reasonable

SNRs.

The future resear
h 
an be listed as follows:

• analysis of the performan
e of the proposed methods for un
onventional

arrays like 
on-formal array;

• analysis of the performan
e of the proposed methods for sparse arrays like

random array and 
o-prime array;

• resear
h on optimizing the best sub-array 
on�gurations for maximizing

the performan
e of estimation;

• resear
h on di�erential DoA estimation method.
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