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Abstract

In this dissertation, sparse processing of signals for directions-of-arrival (DoAs)
estimation is addressed in the framework of Compressive Sensing (C'S). In par-
ticular, DoAs estimation problem for different types of sources, systems, and
applications are formulated in the CS paradigm. In addition, the fundamen-
tal conditions related to the “Sparsity” and “Linearity” are carefully exploited in
order to apply confidently the C'S—based methodologies. Moreover, innovative
strategies for various systems and applications are developed, validated numer-
ically, and analyzed extensively for different scenarios including signal to noise
ratio (SN R), mutual coupling, and polarization loss. The more realistic data
from electromagnetic (EM) simulators are often considered for various analy-
sis to validate the potentialities of the proposed approaches. The performances
of the proposed estimators are analyzed in terms of standard root-mean-square
error (RMSE) with respect to different degrees-of-freedom (DoF's) of DoAs es-
timation problem including number of elements, number of signals, and signal
properties. The outcomes reported in this thesis suggest that the proposed esti-
mators are computationally efficient (i.e., appropriate for real time estimations),
robust (i.e., appropriate for different heterogeneous scenarios), and versatile (i.e.,
easily adaptable for different systems).

Keywords

Direction of arrival (DoA) estimation, real-time DoA estimation, narrowband
DoA, wideband DoA, closely spaced DoA, widely spaced DoA, clutter estima-
tion, linear array, planar array, clustered arrays, sub-array, Compressive Sensing
(CS), Bayesian Compressive Sensing (BCS), single-task BCS (ST-BCS), iter-
ative multi-scaling (IMSA-BCS), multi-task BCS (MT-BCS), multi-frequency
BCS (MF-BCS), total-variation CS (TV-CS).
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Chapter 1

Introduction

In this Chapter, the main motivations of choosing this topic are briefly de-
scribed. Moreover, the main objectives and contributions of this thesis are also

listed.



1.1. MOTIVATIONS

1.1 Motivations

The proliferation of wireless services, the Internet of things, and the next-generation
cellular networks are boosting the diffusion of wireless devices. In this regard, the
estimation of the directions-of- arrivals (DoAs) of signals impinging on a direc-
tion finding system is a key problem for the evolution of future wireless systems.
Moreover, the knowledge of the DoAs enhances the capability to reconfigure the
transmitting/receiving systems and to process the signals despite impairments
in the communication systems.

Recently, the sparse processing of signals for DoAs estimation in the frame-
work of Compressive Sensing (C'S) has received great attention as it provides
accurate and real time estimation with no a-prior knowledge of number of in-
coming signals. In addition, the voltages collected at the sensors are directly
used to estimate the DoA without the need to compute the complex correlation
matrix.
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1.2 Objectives

The main objectives of this thesis are listed as follows:

1. study and development of C'S-based innovative strategies for DoAs esti-
mation purpose;

2. adapt and apply the developed approaches to:

e different specific applications: real-time applications, cognitive radars,
and G,

e different characteristics of the sources: narrow band, wide band, and
clutters;

e different systems: linear array, planar array, and sub-arrayed array;

3. extensive analysis of the performances of the developed methods for differ-
ent DoF's, M scenarios, and conditions:

varying the number of elements of the array;
e varying number of signals;

e varying noise levels;

real antenna element with mutual coupling and polarization loss.



1.3. CONTRIBUTIONS

1.3 Contributions
The main contributions of this thesis are listed as follows:

1. theoretical - formulations of DoAs estimation problem for different signals
and systems;

2. methodological - development of different C'S—based strategies for DoAs
estimation;

3. resource - implementation of the developed strategies;

4. analytical - extensive numerical analysis of the behaviour of the proposed
approaches.
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1.4 Outline

The outline of this thesis is listed as follows:

e Chapter 2 - the state-of-the-art DoAs estimation problem is reviewed in
details;

e Chapter 3 - the general DoAs estimation problem is formulated mathe-
matically and reformulated in the state-of-the-art C'S framework;

e Chapter 4 - an improved version of the state-of-the-art ST — BC'S method
called IMSA — BC'S is proposed, validated, and analyzed extensively;

e Chapter 5 - an improved version of the state-of-the-art MT — BC'S method
called M F — BCS is proposed, validated, and analyzed extensively;

e Chapter 6 - the state-of-the-art ST — BCS and MT — BCS methods are
analyzed for the different linear and planar sub-array geometries;

e Chapter 7 - the state-of-the-art TV — C'S approach is vigorously adapted
and applied for estimating closely spaced sources or clutters;

e Chapter 8 - some concluding remarks are summarized and some scopes of
future research are listed.
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Chapter 2

A Brief Literature Review

In this Chapter, the state-of-the-art literature of directions-of-arrival (DoAs) es-
timation is reviewed focusing on the methodological advancement in the context
of different innovative systems and applications.



Directions-of-arrival (DoAs) estimation has been a known area of research
for long time. It has been studied extensively in various disciplines and applied
fruitfully in many fields of engineering including radar, sonar, navigation, smart
antennas, geophysical and seismic sensing. A plethora of methods for finding
DoAs have been proposed in the state-of-the-art literature of DoAs estimation.
Many dedicated books [1]-[7] addressing only DoAs estimation problem are pub-
lished by well known researcher all over the world.

Although it is a matured topic, it becomes a research of great interest nowa-
days which is evident from the increased number of publications and the number
of PhD [8]-[16] from renowned institutions. The recent highly increasing devel-
opment of the wireless technologies and the advancements of the various classical
and modern estimation algorithms are opening doors of huge potentialities for
many innovative applications in next generation cellular/wireless communica-
tions, internet-of-things (IoTs), vehicular technology, unmanned aerial vehicles
(UAVs) and so on.

The knowledge of the DoAs of signals arriving on an antenna system is con-
sidered as an advantage in many fields of engineering. For example, in wireless
communication, it allows to enable adaptive beam-forming, which enhances the
sensitivity of the system towards desired directions suppressing at the same time
the undesired interference. In acoustic, it is often required to find the directions
where the sound sources are located or the direction of reflected sound signals
(e.g., SONAR). In radar, DoAs estimation is useful for target acquisition and
for air traffic control. In space exploration, the knowledge of DoAs helps as-
tronomer to look at the certain location in the sky. In surveillance, DoAs could
help the system to focus along the desired regions of interest. Therefore, many
attractive applications are possible for the recent technological race of wireless
devices. As a matter of fact, the dramatically increased wireless services are
boosting the development of an efficient and robust advancesDoA estimation
technique for the future evolution of wireless systems. The immense interest in
both academic and industrial communities for reliable and effective methods are
evident from the recently published number of books, journals, proceedings, and
seminars. As a matter of fact, the advances on DoAs estimation have been re-
viewed almost every year since last decade [17]-[29]. Methodology based review
is covered by most of the review papers while only few reviews based on the
specific applications and systems.

The classical DoAs estimators are essentially based on the sub-space based
estimation approaches. In this category of estimator, the common and widely
used estimators are multiple signal classification (MUSIC) [30] and its differ-
ent improved versions|31]-[37], the signal estimation parameters via rotational
in-variance technique (ESPRIT) [38] and its different versions [39]-[43], and
the maximum likelihood (ML) DoA estimator [44]-[46] and others [47, 49, 50].
However, the two main drawbacks of the sub-space based estimator are - (I)
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they often need to know a-priory number of incoming signals, which is quite
prohibitive nowadays and (IT) they need to compute complex co-variance matrix
which slows the DoAs estimation and requires an hardware implementation of
the receiver too complex for most mobile systems and devices.

On the other hand, the aforementioned constraints of classical DoAs esti-
mators are not a limiting factor for the modern estimators based on machine
learning theories. For instance, learning-by-example (LBE) approaches based
on radial-basis functions (RBF's) [51], neural networks (NNs) [52], or support
vector machines (SV Ms) [53|-[55] have been also proposed where the DoA esti-
mation problem has been recast to a probabilistic framework. Although efficient
for some applications, they need to be trained by means of a pre-defined set of the
known input-output examples for all possible combination of prospective incom-
ing DoAs. Therefore, machine learning based modern estimators are application
specific and can not be used as a general purpose.

However, all the aforesaid classical and modern estimators also need adequate
number of snapshots data in order to have a reliable estimation. As a result, the
are not suitable for the applications where the estimation must be in real time
although LBFE-based methods have proved to be promising solutions also for
real-time localizations [52][53][54].

Sparse processing [56]-[62| for signal reconstructions has recieved great atten-
tion since last two decades. In this framework, strategies based on the compres-
sive sensing (C'S) theory [59]-[61] have recently been introduces thanks to their
effectiveness, flexibility, and computional efficiency to deal with complex engi-
neering problems in electromagnetics [63]-[68| including antenna array synthesis
[69]-]70] and imaging [71]-[75].

Exploiting the key observation that the impinging DoAs on the antenna ar-
ray are intrinsically sparse in the spatial domain, C'S based deterministic solvers
have been proposed for DoAs estimations where the sparsity constraints have
been imposed through a /,-norm minimization [57],[76]-[77]. However, the con-
dition of restricted isometry property (RIP) must be satisfied by the 'sampling
matrix’ in order to guarantee reliable estimations. Unfortunately, because of
the computational burden RIP cannot be easily verified [59]. As an alterna-
tive, methods based on the Bayesian compressive sensing (BC'S) [61] have been
proposed where the original deterministic problem is reformulated in the proba-
bilistic framework and then efficiently solved with the relevance vector machine
(RVM) [56].

The BC'S-based strategies have been effectively applied for DoAs estimation
for different purposes [78]-[84]. In 78], the DoA estimation problem is formulated
within the BC'S framework thus avoiding constraints on the sampling (or obser-
vation) matrix, which directly links the measurements (i.e., voltages/currents)
at the output of the array elements to the unknown signal directions. Two
BC'S-based DoAsestimation strategies named single-task BC'S (ST — BC'S)
and multi-task BC'S (MT — BCS) have been proposed in [78]. The former is

9



concerned with single time-instant measurements (i.e., single snapshot) to en-
able the real-time estimation, while the latter is aimed at giving high-resolution
estimations, thanks to the processing over multiple snapshots, still avoiding any
a-priori information on the number and the intensity of the unknown impinging
signals.

This thesis work aims at addressing the following issues of DoAs estimation
in C'S framework:

1. developing innovative strategies in order to improve the performance of the
ST — BC'S approach;

2. developing innovative strategies in order to improve the performance of the
MT — BC'S approach;

3. extensive analysis of state-of-the-art ST — BC'S and MT — BC'S methods
for sub-arrayed geometries;

4. develop CS based strategies for innovative applications.
All the aforementioned issues are addressed successfully in this thesis. The out-

comes have already been published [29],[81]-[84] in the state-of-the-art literature
and some are in under review process.
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Chapter 3

Mathematical Formulations

In this Chapter, the general DoA estimation problem is defined mathematically
including the polarization loss and mutual coupling. Then the problem in hand
is reformulated in Compressive Sensing (C'S) framework. After satisfying the
fundamental requirements of C'S, the state-of-the-art C'S strategies for DoAs
estimation are described in details. In addition, the DoA estimation problem is
addressed through Bayesian Compressive Sensing (BC'S) based approaches like
single-task BC'S (ST — BC'S) and multi-task BC'S (MT — BCS).
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3.1. DEFINITION OF SIGNAL MODEL

3.1 Definition of Signal Model

Based on the sources positions (e.g., distance) relative to the reference point of
the sensors, the DoA estimation problem can be broadly categorized into:

1. Far-field DoA estimation.

2. Near-field DoA estimation.

Although the general idea of estimating far-field and near-field DoA are same,
their signal model is different. The fundamental difference between two signals
models are the assumption of the incoming signals characteristics. For instance,
in far-field condition (i.e., the distance between source and sensors reference
point, 7 > 2D?/\, D being antenna aperture and A being wavelength at working
frequency), the incoming signals impinging on the sensors are assumed to be a
plane wave. However, in near-field condition (i.e., sources are close to the sensors,
r < 2D?/)), the assumption of the plane wavefront can no longer hold [15].
Instead, the incoming signals impinging on the sensors in the case of near-field
condition are spherical waves. Therefore, the estimation problem in near-field
case becomes the estimation DoAs and also ranges (i.e., distances of the sources).
The details of the near-field DoA estimation problem is beyond the scope of this
thesis. In order to know more in details about the near-field DoA estimation
problem, formulation of signal model, and the potential applications, interested
readers may go through the references [15, 125, 126].

The far-field DoA estimation problem is addressed in this thesis. Therefore,
all the discussions hereinafter are based on the far-field approximation of the
signal model. As a matter of fact, the incoming signals on the sensors array
are assumed to be a plane wave. The mathematical formulation of the plane
wave in the context of DoA estimation is described in details in Sect. 3.2. The
interested readers may find out the details of the properties of the plane wave in
[127]. Plane wave is the simplest solution of the Maxwell equation in vacuum.
Therefore, it plays an important role in the development of electromagnetic.
Moreover, a representative example of the plane wave is shown in Fig. 3.1 and
some of its characteristics are short-listed as follows:

e it defines a plane along its direction of propagation where the field strength
is uniform everywhere of that plane at any instant of time;

e it is a constant frequency wave whose wavefronts (surfaces of constant
phase) are infinite parallel plane of constant amplitude normal to the phase
velocity vector;

e its wavefronts are equally spaced by one wavelength A;

e its wavefront propagate at speed of light;
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no electric and magnetic field are in the direction of propagation (direction
of the poynting vector), where the electric and magnetic field are perpen-
dicular to each other;

the value of the magnetic field is equal to the value of the electric field

divided by impedance of the medium (i.e., in free space, the impedance is
~ 377 [ohm]);

any operator applied to the plane wave yields a plane;

any linear combinations of the plane waves yields a plane wave.

b- wavefront

ction of
agation

Figure 3.1: Plane Wave - The wavefronts of the plane wave.
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3.2 Definition of DoA Estimation Problem

Consider a set of L narrow-band electromagnetic plane waves, s; (r), [ =1, ..., L,
impinging on a linear array of M parallel dipoles from directions (6;,¢;), | =
1,..., L and with arbitrary linear polarization u;, I = 1, ..., L [Fig. 3.2|. The I-th
plane wave is expressed as s; (r) = Ej"e /%"l where § = 2% is the wave number
with A the free-space wavelength of the carrier frequency, Ei" the amplitude of

the [-th wave and the 1 - r is defined as

¥, -r = (z sinf,cos ¢, + y sinf;sin ¢ + z cos b)) . (3.1)

The dipoles are y-directed, of length h and radius ¢ (being ¢ < h), connected
at the center, and separated by a distance d = Az along the x-axis.

z S9o
S1
0y
N
S NS "N S S— \S— ——_—_—
1 m M

Figure 3.2: Sketch of the reference scenario - impinging plane waves on the linear
adaptive antenna array.

The current I, (y) induced on the m-th dipole, supposed thin (i.e., ¢ < \),
from the incident waves is computed by inverting the following integral equation
[86], [87]

NNy EEC RN
weg Ay _%47rdmy y=5 W '
through the Method of Moments (MoM) [88] and using the Galerkin approach
[89]. In (3.2), the distance d = \/(y +¥')° + <2 is never zero, y € [—%; 4],
w = % is the angular frequency with ¢ the speed of light in vacuum, and ¢, the
dielectric permittivity. Moreover,

()= si(0)-5 (33)
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the y-component of the total incident field, being y the unit vector along the y-
direction. In the MoM, G piecewise sinusoidal basis functions B, (y), g = 1,...,G
(with G odd) [90] are used for representing the current on the m-th dipole as

G
I (y) = Z ImgBy (y) - (3.4)

The voltages, including the self and mutual coupling effects, are then computed
as

M q
Um = Vmglynon =D Y Yogpalmg, m=1,..,M (3.5)
p=1 g=1
where Y, ;., ; is the impedance term that defines the voltage at the g-th segment
of the m-th dipole due to a unitary current in the ¢-th segment of the p-th dipole
when the current in all other segments is zero [88]. For interested reader, the
voltage equation without mutual coupling can defined as|[78|:

L
Vi =y By - HePrmsinticoso Ly — 1M (3.6)
=1

where H is the antenna effective length supposed identical for all elements."
Finally, the open-circuit voltage (OCV') at the output of the m-th array element
in a single time-instant (single snapshot) and used for the DoA estimation is

equal to
Vin =Um + 0, m=1,...,. M (3.7)

where n = {n,, : m=1,..., M} is the additive noise data vector whose entries
are samples of a statistically-distributed Gaussian function with zero mean and
variance equal to the noise power. Because of the linear arrangement of the array
elements, the DoA estimation is limited to the € angle (i.e., ¢ = 0[deg]). The
DoA estimation problem is defined as the estimation of unknown directions 6;,
[ =1,.., L, from the OCV of V,,, | = 1,..., L. In matrix form, eq. (3.7) can be
rewritten as follows

V=A0)s+n (3.8)

where V. = [V4, ..., Vis]" is a column vector of M complex entries (V &
CM>1) T indicates the transpose, 8 = [0y, ..., 01], A(0) = [a(0,), ...,a(0.)] €
CM*L ig the matrix of the steering vectors whose [-th column is given by a (6;) =
[eipmsinds _ eibosingl )T ¢ CMX1 | =1, L, s = [Einc, .. BT e CBX,
and n = [, ..., ny]" € CM*1. Tt is worth noticing that the problem at hand is
non-linear with respect to the unknowns, #;, [ = 1, ..., L, which are present in
the exponential terms of the elements of the matrix A.

'Without loss of generality, isotropic elements are assumed (i.e., = 1).
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3.3 Problem Formulation in CS Framework

The two fundamental conditions that must be satisfied in order to apply Com-
pressive Sensing (C'S) are (I) the signals to be recovered must be sparse, and (II)
the problem to be solved must be linear. First of all, clearly the unknown is not
sparse in the original scenario. Secondly, the problem at hand is non-linear with
respect to the unknowns, #;, [ = 1, ..., L, which are present in the exponential
terms of the elements of the matrix A. In order to address the first condition,
the following hypothesis is adopted:
N

A signal F(r) = Z Ty (r) is S — sparse with respect to ¢ if x = [zq, ..., 2 n]
-1

n—=
has at-most S < N non-nul coefficient:

Fr) = anthn(r;) (3.9)

where v € CV, v = {x,; n=1,..., N} are the signal coefficients and ) €
CNN o = {thys = ¥y (r5); n=1,...,N;i=1,.... I} are the signal basis.

Figure 3.3: Sketch of the sparse scenario - angular domain discretization.

Therefore, sparsity is not an absolute concept but a relative one. Here the
sparsity is exploited in the angular domain by discretizing the incidence field
of view 6 € [—90 : 90] [deg] into K > L angular samples (Fig. 3.3) such that

A <§> € CM*K in (3.8) and the DoAs of the incoming signals are assumed to
belong to the set of the K directions I' = {ém k=1, ...,K}. Therefore, the

candidate scenario is sparse in spatial domain and the candidate directions 6y
are directly asociated with the candidate signal vectors s, k = 1,..., K . As a
result, the problem becomes linear with respect to the unknown signal vector S.

16



CHAPTER 3. MATHEMATICAL FORMULATIONS

3.4 (CS-Based Methods

In order to have a reliable estimation, a necessary condition to be addressed
when applying C'S' is the fact that the so-called ’sampling matrix’ must satisfies
the restricted isometry property (RIP). This property essentially deals with
the ill-posedness of the C'S problems. Unfortunately, such a condition cannot
easily verified since it needs to evaluate the determinant of hugenumber of sub-
matrices depending on number of elements and sparsity levels. As a matter of
fact, verifying RIP condition are computationally demanding [59]. Therefore,
the performances of the deterministic C'S methods are greatly compromised as
most of the cases the RIP condition can not be verified.

Alternatively, approaches based on the Bayesian Compressive Sensing (BC'S)
[61] have been proposed where verifying the RI P condition is no more the lim-
iting factor of the solutions stability.

3.4.1 Single-Task Bayesian Compressive Sensing (ST —BC'S)

In order to deal with the complex data, the guidelines in [69],[81] is adopted.
First of all, eq. (3.8) is rewritten to yield a real-valued problem suitable for
BCS as

S
|

&
—

BN
/N

)
N——"
——

RBYIRINY

[ s{a(e)} w{a(e)}

5]

3 {s}

+{§R{n}}’

(3.10)

S{n}

where V. = {V,,; m=1,..., M}, A= {ag; k=1,..., K} is the steering matrix
whose k-th entry is &, = {ejﬁxmsm@k; m =1, ...,M}, and § = {3;; k=1,..., K}
is the signal vector on T' with entries 8, = Ei"°0y;, k = 1,..., K, being 6y = 1 if
0 = 0, and d; = 0 otherwise. Moreover, R {-} and I {-} are the real and the
imaginary part respectively.

The sparse signal vector Ssr_pcg is retrieved [78] by looking for the maximum
of the a-posteriori probability function

Pr([s, o® p| | V) (3.11)

given by its mean value

< -1
~ 1 [AAT » «
Sst-pos = —3 ( S T diag (p)) ATV (3.12)

because of the multi-dimensional Gaussian nature [61] of (3.11). In (3.12), the
variance o and the hyper-parameter vector p, which forces the sparseness of the
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signal vector § [56|, are determined through the maximization of the likelihood
function

L(o%p) = —% [(2K)log2m + log |E| + y 27" V] (3.13)

by means of the relevance vector machine (RV M) [69]. In (3.13), E £ ol +
A diag (p)_1 AT T being the transpose operation.

3.4.2 Multiple-Task Bayesian Compressive Sensing (M7 —
BC'S)

The MT — BCS approach [61] correlates the DoAs estimation over multiple
snapshots in order to avoid the strong dependence of the estimation performance
on the noise level of the measured voltages. The multiple-snapshots version of
(3.8) can be written as

Vu=A(0)sy + My, w=1,...W, (3.14)

where W is the number of snapshots. The sparse signal vector Sy;r_pcs is
determined as follows

w

~ 1 5

SMT-BCS = W wZ:l {arg [Héix Pr ([Sw, Pl| Vw)] } (3.15)
where 8, w = 1,...,WW, are statistically-correlated through a hyperparame-

ter vector which correlates the different snapshots. The optimal value of p,
PuT—BCs, 18 computed as pyr_pes = argmaxy { LMT-BC9 (p)} through the
RV M according to the guidelines in [69], being

EMT_BCS (p) — —% Zlmu/zl {lOg (|CMTfBCS|) + (316)
(K 4 2¢1)log [VE (Cur—pes) Vu + 23] }

Py AT
where Cyr_pos =1+ A (0) diag (p)f1 A <0> and 1, o are user-defined pa-

rameters [61]. The knowledge/estimation of the variance o2 of the noise samples
is not required in the MT — BCS based method [69], unlike the ST — BC'S
approach. The MT — BC'S solution turns out equal to

22 {[3(0) 3(6) + s )] 3(9)" v,

SMT-BCS = W : (3.17)
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3.4.3 Estimation of DoA from BCS Solutions

As we have seen, the BCS methods are not applied directly to estimate the
directions @ but the signals vector 8. Once the signals vector are estimated by
STBCS e.g., sst_pcs or by MTBCS e.g., Syr—pcs, an energetic thresholding
[78] is applied in order to remove the low-energy “artifacts” caused by the en-
vironmental noise and/or the measurement uncertainties. More specifically, the
values 8, k = 1,..., K are firstly ranked according to their energy content (i.e.,

.........

last (K — L+ 1) ones are filtered out [i.e., $7¢5 =0, k = (K — L+ 1) y e K,
L being the BC'S-estimated number of signals satisfying the following condition

Sl < orx <Z|§k|2> (3.18)

k=1

where p is a user-defined threshold [78|. Finally, the estimated DoA vector,
Opcs = {él = 1,...,[3} is determined by selecting the angles Opcs of the
steering vectors ai, k = 1, ..., K associated to the non-trivial terms of the thresh-
olded Spcg vector.
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Chapter 4

Performance Improvement of

ST-BCS

In this Chapter, an improved version of ST — BC'S estimation method called
IMSA— BCS is proposed. It exploits the information on the degree of reliability
obtained by ST — BC'S to improve the efficiency of the estimation. Moreover,
the proposed method can be applied in real time applications. In addition, the
estimation is not confined to any predefined grid as it refines grid at each IMSA
step. Therefore, it is essentially a grid-less DoAs estimator. Finally, the main
outcomes of this work are essentially summarized in [29],[81].
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4.1 Introduction

A system is usually designed to estimate direction as a final objective (e.g., ded-
icated system for DoA estimation) or as a primary objective (i.e., estimate DoA
as a prior knowledge to be utilized for other purposes). In both cases, most of the
applications demand accurate and real-time estimation, although accuracy and
time are considered as trade-off in reality. Therefore, the study of DoA estima-
tion problem is focused nowadays on finding optimal accuracy of estimation in
any instant of time. However, the research addressing the aforementioned prob-
lem can hardly be seen in the literature because most of the classical and modern
estimators are based upon the computationally intensive strategies i.e., needed
multiple snapshots data and eigen-decomposition of complex co-variances and so
on. For example, the real-time DoAs estimator proposed in [43] is essentially
based on the widely used subspace based strategy named the signal estimation
parameter via rotational in-variance technique (ESPRIT) [38]. The accuracy
of the estimation in [43] is highly compromised although it considered multiple
snapshot data. Kim et. al. [48] developed a fast DoA estimation algorithm called
the pseudo-covariance matrix technique, which estimated fast varying signals in
two steps (i.e., the rough estimation using bearing response and then exact es-
timation by combing the bearing response and the directional spectrum). As a
matter of fact, it requires the solution of a nonlinear-generalized- eigenvalue equa-
tion of a pseudo-covariance matrix, resulting a high computational burden even
for the single snapshot data. Huang in [49] proposed a fast estimation method
based on [48] where the nonlinear-generalized-eigenvalue equation is rewritten as
a linear-matrix equation formed by forward- backward data matrix. This is done
by converting of received data vector into overlapping sub-arrays of much higher
data samples than the original received data. Again, this is subject to post-
processing of received data vector which becomes computationally expensive with
the increase of number of elements. In order to avoid inherent complexity of the
estimator based on classical methods, Lin et. al. [50] proposed a real-time DoA
estimation technique by simply comparing the received signal strength among
the different ports of the Rotman lens. Although it is fast, the performance is
affected severely by different noisy scenario. Recently, sparse processing thanks
to their computational efficiency has received great attention in electromagnetic
[67, 78] and antenna array synthesis, analysis, and processing [26]. In this frame-
work, Compressive Sensing (CS) based orthogonal matching pursuit (OMP) and
sparse Bayesian learning (SBL) approaches have been proposed in [116]. How-
ever, although it is fast, it used multi-temporal data to build covariance matrix
which is not appropriate for real-time estimation. In order to avoid computing
covariance matrix, Bayesian Compressive Sensing (BCS) [78] is proposed which
can be applied directly on the received data vectors without computing complex
covariance matrix. However, although [78] outperforms with respect to classical
[30, 38, 44] and modern estimator [55], it also needs multi-snapshot data in order
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

to have robust estimation. In this Chapter, the methods in [78] is extended by
exploiting the inherent properties of the BC'S in order to address the problem
of finding optimal accuracy of estimation in real-time (with single snapshot data
and with insignificant computational burden). In particular, the ST — BC'S 78]
is extended as IMSA — BCS [81] to retrieve narrowband DoAs.

This chapter deals with the recovery of the signal DoA from data collected at a
single time instant (single-snapshot) through a dipole antenna array, when con-
sidering mutual coupling effects and polarization losses. The estimation method,
preliminary presented in [80] for the ideal array case (i.e., isotropic elements
without mutual coupling) and avoiding the computation of the covariance ma-
trix, is based on the integration of the DoA-based BC'S with a grid refinement
strategy. The BC'S, successfully applied in a wide number of electromagnetic
applications [69]-[67], provides not only an estimation of the DoA [78], [79] but
also of the degree of reliability of the estimates [70]. The multi-resolution angular
grid refinement is instead exploited to effectively cope with the problem of the
off-grid signals (i.e., signals whose actual DoA do not belong to the discretization
of the spatial-angular domain) and to iteratively improve the angular resolution
accuracy and reliability of the DoA estimation, while using the same data [55],
[57].

As compared to the existing state-of-the-art literature, the following method-
ological advances are here present:

1. the exploitation, for the first time to best of the authors’ knowledge, of the
information on the degree of reliability obtained by the BC'S to improve
the efficacy of the bearing estimation;

2. the introduction of a “confidence level index”, defined as a function of the
reliability values, used to compute the angular regions in which to perform
the DoA estimation at the next zooming step;

3. the implementation of a multi-scaling strategy aimed at quickly/slowly in-
creasing the discretization resolution of the angular regions in case high /low
confidence level values are obtained at the previous step.
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4.2 The BCS Multi-Scaling Strategy

In Sect. 3.4.1, the problem in hand (3.8) is solved by ST — BC'S by maximizing
the a-posteriori probability function of (3.11) in order to retrieve the sparsest
solution of signal vector Sgr_pcs using the mean value as defined in (3.12). As
ST — BC'S uses only a single snapshot data for reconstruction, the performance is
not reliable and robust [78]. In order to improve the performance of ST — BC'S,
the noise variance o34 of (3.12) is exploited as an extra degree of freedom.

Initialization, r =1
9](60) = [emirm ceey emam}

;l

|50 = By, 5] |

| Confidence Level, £

New Grid Definition

91(:) = Omin(new): - Omaz(new)]

Figure 4.1: Working Principle - IMSA — BC'S flow chart.

The variance 0%, of the posterior probability function (3.11) is an index in-
versely proportional to the degree-of-reliability of the BC'S-estimate of the actual
signal vector 8 [70] (i.e., a small variance value 0}, g means a high probability of
correct estimation of the corresponding signal coefficient §;, while larger values
correspond to low probabilities/high-uncertainties of faithful signal detections).
This information is exploited to improve the accuracy and the certainty of the
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DoA retrieval process. Towards this end and for the first time to the best of
the authors’ knowledge, the BC'S-based estimator is integrated with an iterative
multi-scaling (/M SA) scheme. The flow chart of /M SA—BCS method is shown
in Fig. 4.1. More specifically, the IMSA — BC'S method works as follows (Fig.
4.2):

T e Tm, \ e XM

Figure 4.2: BC'S-based Approach - Graphical sketches illustrating the IMSA —
BC'S retrieval process: (a) discretization of the angular domain and ARols
definition and (b) sampling grid refinement.

e Step 0 - Angular Grid Initialization (r = 1). Discretize the angular
region of interest (ARol), 0 € [—g, g], in a uniform sampling grid, I'") =
é,gr) e (e 100" k=1, ...,K}, 50 = 7 being the angular

step [Fig. 4.2(a)];

e Step 1 - Bare BCS DoA Estimation (r = 1). Apply the BCS-
estimator and estimate at the » = 1 resolution level the DoA, Hg)cs =

{él(r) =1, ...,ﬁ(”}, according to the “bare” BC'S technique described
above. Then, update the resolution index r (r <— r + 1) and go to Step 2;
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e Step 2- IMSA—BCS Loop (r =2, ..., R). Select the maximum number
of zooming steps, R, and apply the following iterative zooming strategy:

— Step 2.1 - Confidence Level Computation. Given the variances
aﬁBcs}(rfl), [ =1,.., LY associated to 957171), l=1,..,LUY the
normalized “confidence level index” of the estimated DoA is computed
as

1
2
(UZ,BCS} ) .
g = — S l=1,., L0 (40)
Lir—1) (r—1)
Z@':1 <‘7ch5‘ )

— Step 2.2 - ARols Definition. Set Q") = 5= as the maximum
angular extension of the angular regions-of-interest (ARols), where
the signals are supposed to impinge, at the r-th zooming step. For
each I-th (I = 1,..,LUY) DoA estimated at the (r — 1)-th step,

associate an ARol [Flg 4.2(a)] of angular width

o Q(T) o Q(T)
ARol{" = {9 OV o< (4.2)

(r)
where Q ;&—1);

— Step 2.3 - Sampling Grid Update. Set K" = [LL-‘ [-] being

(r—1) |»

the ceiling function, and discretize each AROIZ(T), [=1,.., L) with

. . I L
a uniform grid of step 66, = ~— ==~ [Fig. 1(b)] such that the
new angular samples are
0" =0 4+ (k—1)660", k=1,.,K" (4.3)
L,k = Ylmin . > — Ly . .

Accordingly, the updated sampling grid is composed by the union of
the discretized ARols, i.e., (") = {é}j‘g =1, L0 k=1, K >};

— Step 2.4 - IMSA — BCS DoA Estimation. Discretize A and
8" with reference to the sampling grid I'"). Then, apply the BC'S-
estimator through (3.12) and the successive energy thresholding to

give the r-th level estimate of the DoA, ég();S = {él(r) l=1,.., ﬁ(”}.
Successively, if r < R then go Step 2.1, else go to Step 3;

e Step 3 - IMSA — BCS Output. The DoA estimated at the end (r =
R) of the multi-zooming process are assumed as the IMSA-BCS output:

éngc)vs = Opcs = {él,BCS =1, ---,ﬁBcs}-

It is worth noticing that, since the number of angular samples K is kept fixed
for each ARol, the IMSA — BC'S enables a finer discretization (i.e., a faster
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zooming) in the ARols in which the DoA have been estimated at the previous
step with higher probability, while a coarse grid (i.e., a slower zooming) is applied
otherwise. This key-feature allows one to enhance the robustness of the DoA-
estimation process and to avoid premature converge to angular regions where the
presence of impinging signals is more uncertain.
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4.3 Numerical Analysis

This section is devoted to the numerical analysis and validation of the IMSA —
BCS method. First, the behavior of the proposed approach is step-by-step
illustrated with a representative example. Then, the performance of the IMSA—
BCS is extensively assessed versus the number and DoA of the signals, the
signal-to-noise ratio (SN R) defined as

M 2
SNR =10 log [M] (4.4)
No%

where 0% is the variance of the additive Gaussian noise, as well as the polarization
mismatch between the incident waves and the receiving dipoles. In (4.4), the
voltages V,,,, m = 1,..., M are computed by assuming perfect polarization match
(i.e., polarization loss factor PLF = [t; - §|> = 1.0 [90]) in order to maintain the
same noise conditions whatever the PLF'.

Finally, comparisons with state-of-the-art methods on representative bench-
mark examples are carried out. In all tests, the DoA estimation accuracy is
evaluated in terms of the root-mean-square-error (RMSE), computed in degrees

as 78]
RUCHER
L
if L) <L
\/{ZlL_l ‘el_él(r) 2+255L)+1
I
\ if L) > L
r=1,..,R, Af,. being a penalty term equal to the maximum localization
error (i.e., Ab,q.; = 180 [deg]) when the number of impinging signals is under-
estimated, while 8 — arg {min, icq. ) ‘ 0 — é}”‘}. In (5.15), the value 6"
(l=1,...,L; r =1,..., R) corresponds to the DoA estimated at the r-th zoom-
ing step which is closest to the I-th (I = 1,..., L) actual DoA. Moreover, the
artifacts-filtering threshold (3.18) has been set to 7 = 0.95 as suggested in [78]

and GG = 7 basis functions are used for discretizing the currents of the dipoles in
the MoM.

2+|L7[2(r) | (Aemaz)2}

)

RMSE" = (4.5)

5(r) _p(r)
91 _91
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4.3.1 Method Validation

Let us consider a set of L = 3 binary phase-shift keying (BPSK) signals
(Ej™ = +1) impinging on a linear array of M = 10 equally-spaced (d = )

half-wavelength dipoles (h = %) The measured voltages v,,, m = 1,..., M are
corrupted by a noise level equivalent to a SNR = 10dB. When applying the
IMSA-BCS, the angular range 6 € [—90; 90| [deg] has been partitioned at the be-
ginning (r = 1) with a uniform grid of K = 37 samples such that A9 = 5 [deg].
For validation purposes, the more complex case of an off-grid configuration of
the L = 3 signals has been considered. Accordingly, the DoA have been set to

0 = {—22, -3, 8} [deg]. Moreover, PLF = 1.0 is assumed.

Off-Grid Signal
2 T T T T T T T T T T T — 1

1 0.8

=
13
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-
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+ o+ +
4 04
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El o$+
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Angular Direction, 8, [deg]

o

Bare Signal O Estimated - Ideal Dipole [
Actual Signal  + Estimated - Real Dipole
Estimated - Isotropic X Confidence Level ~——+—

Figure 4.3: Method Validation (M = 10, d = 0.5\; L = 3, SNR = 10dB;
K =37, R =1) - Actual and estimated DoA and values of the confidence level for
the case of off-grid signals impinging from the directions @ = {—22, —3, 8} [deg].

Figure 4.3 shows the IMSA-BCS estimates at the first step (r = 1) before (Bare -
4.3 ) and after (Estimated - Real Dipole - 4.3 ) the energy threshold (3.18). As it
can be observed, the number of impinging signals is not correctly predicted, also
after energy thresholding, and it turns out to be L® = 5. The signal localization
error amounts to RMSE™ = 3.16 (Tab. 4.1 - r = 1). The results of the DoA
estimation obtained by means of the same approach when considering an array
of dipoles not affected by mutual coupling (Estimated - Ideal Dipole - 4.3) and
an array of ideal isotropic sensors (Estimated - Isotropic - 4.3) are reported, as
well. Although the ideality of these arrays, it is possible to observe that there is
still an over-estimation of the number of signals and that the actual directions
are not accurately retrieved.
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Figure 4.4: Method Validation (M = 10, d = 0.5\; L = 3, SNR = 10dB;
K = 37, R = 3) - Actual and estimated DoA, values of the confidence level,
and ARols for the case of off-grid signals impinging from the directions (8 =
{—22, -3, 8} [deg]) at the (a) first r = 1, (b) second r = 2, and (¢) third
r = R = 3 multi-resolution step.

When applying the IMSA strategy, the angular resolution has been increased
taking into account the degree of reliability (i.e., the confidence level, fl(l), [ =
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Table 4.1: Method Validation (M = 10,d = 0.5\; L =3, SNR =10dB; K = 37,
R = 3) - Actual and estimated DoA, total ARol, and RM SE value for the case
of off-grid signals impinging from the directions 8 = {—22, —3, 8} [deg].

‘ r ‘ Angular Range ‘ Estimated DoAs : 6pcsg ‘
1 180 [deg] {-25, —20, —5, 5,10}
2 52.49 [deg] {—21.97, —3.47, 7.72}
3 40.92 [deg] {—22, -3, 8}
‘ r ‘ Confidence Level RMSE
1 | {0.21, 0.18, 0.24, 0.13, 0.19} 3.16
2 {0.36, 0.31, 0.32} 0.32
3 {0.19, 0.08, 0.14} 0.00

1,..., i(l)) of the estimates at the previous step, r = 1 (Tab. 4.1). The ARO[l@),
I =1,..,LY [Fig. 4.4(a)] and the sampling grid I'® [Fig. 4.4(b)] have been
set according to (4.2) and (4.3). The result of the successive application of
the BCS-based estimator, as shown in Fig. 4.4(b), corresponds to a significant
reduction of the RMSE from RMSE" = 3.16 down to RMSE® = 0.32 (Tab.
4.1). After another step, that is at the last step of the IMSA process (r =
R = 3), the unknown DoA of the impinging signals are faithfully predicted [Fig.
4.4(c); RMSE® = 0.0 - Tab. 4.1]. The solutions achieved for the ideal array
configurations are analogous and reported in Fig. 4.4, as well.

Without IMSA
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Estimated - Isotropic X

Figure 4.5: Method Validation (M = 10,d = 0.5\; L =3, SNR=10dB; R = 1)
- Actual and estimated DoA with single-snapshot approach of [78] with K = 499
equally-spaced angular samples (A0 = Ab,,;, = 0.42 [deg]).
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4.3. NUMERICAL ANALYSIS

As a further comparative test, the solution in Fig. 4.4(¢) has been compared with
the one yielded by the single-resolution BCS-based approach when uniformly par-
titioning the angular domain with the finest resolution, Af,,;, ~ 0.42 [deg] (K =
The result in Fig. 4.5 presents a higher RMSE value (RMSE = 0.64 vs.
RMSE® = 0.0) despite the denser angular grid (K = 428 vs. K® = 37).
Concerning the computational time, the DoA prediction in Fig. 4.5 has been
carried out in 0.62 [sec|, while the R = 3 IMSA steps have been performed in
0.47 [sec]. In all cases, a standard laptop with 2.4 GHz CPU and 2 GB of RAM
has been used.
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

4.3.2 Performance Analysis

In the next example, the performance of the IMSA— BC'S is assessed versus the
number of impinging BPSK signals. With reference to an M = 20 dipole array
with d = % and h = %, three different signal configurations with L = {2, 4, 6}
have been considered. More in detail, the actual DoA have been chosen as follows:
0 = {2.5, 22,5} [deg] (L = 2), 8 = {—32.5, 2.5, 22.5, 47.5} [deg] (L = 4), and
0 = {-57.5, —32.5, 2.5, 22.5, 47.5, 62.5} [deg] (L = 6).

A set of T" = 100 simulations, with a different noise realization with SNR =
20 dB for each trial, has been run to draw statistically reliable outcomes. Con-
cerning the IMSA-BCS parameters, the ARols have been discretized at each
r-th step in K = 37 samples and the zooming process has been stopped after
R = 5 iterations. The behaviours of the RMSFE values for PLF = 1.0 are
shown in Fig. 4.6 (first collumn) and the corresponding statistics are reported
in Tab. 4.2. As expected, the advantages of the multi-zooming strategy are
non-negligible. Indeed, the RM SE() monotonically decreases with the iteration
index r whatever L (Fig. 4.6) and its average value (Tab. 4.2) reduces - also in
the most complex case (L = 6) - of at least 13 times between the first (r = 1)
and the last (r = R = 5) zooming step (Tab. 4.2) with a final error equal

to RMSE&?,L = 0.23. Moreover, the worst result at the convergence step

corresponds to RMSER), = 0.32.

Table 4.2: Performance Analysis (M = 20, d = 0.5)\; L = {2, 4, 6}, SNR =
20dB; K = 37, R = 5) - Statistics of the RM SE values among a set of "= 100
realizations of the random noise generation process.

2] 2 H ! H ¢ |

T ‘ min ‘ max ‘ avg ‘ s — dev H min ‘ max ‘ avg ‘ s — dev H min ‘ max ‘ avg ‘ s — dev ‘

3.54 | 3.56 | 3.54 0.05 3.31 | 3.54 | 3.49 0.09 2.89 | 3.39 | 3.16 0.13

0.16 | 2.46 | 0.63 0.66 041 | 1.73 | 1.16 0.47 0.39 | 1.20 | 0.83 0.23

0.16 | 0.54 | 0.36 0.13 0.13 | 0.63 | 0.36 0.13 0.32 | 0.69 | 0.47 0.13

0.10 | 0.44 | 0.28 0.13 0.12 | 0.33 | 0.22 0.07 0.19 | 0.43 | 0.29 0.07

U | W || =

0.09 | 0.22 | 0.16 0.04 0.12 | 0.24 | 0.18 0.04 0.16 | 0.32 | 0.23 0.04

As a representative result, the DoA estimated at each step of the IMSA— BCS
for the worst solution among the 7" = 100 simulations with L = 6 signals are
shown in Fig. 4.7. Thanks to the zooming of the ARols around the actual
DoA, as shown by the samples of the angular grid in Fig. 4.7, the number of
signals, over-estimated at the first step (i(l) = 10), is correctly retrieved at the
last step (ﬁ@ = Lpcs = 6). Moreover, the proposed approach provides a precise

prediction of the DoA (RMSES.|  =0.32).
6
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Figure 4.6: Performance Analysis (M = 20, d = 0.5\; L = {2, 4, 6}, SNR =
20dB; K = 37, R = 5) - Best, worst, and average RM SE values among T = 100
simulations with (a)(d) L =2, (b)(e) L =4, and (¢)(f) L = 6 signals, (a)(b)(c)
without and (d)(e)(f) with polarization loss.
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Figure 4.7: Performance Analysis (M = 20, d = 0.5\; L = 6, SNR = 20dB,
K = 37, R = 5) - Actual/estimated DoA at the multi-resolution step: (a)
r=1(0b)r =2, (c)r =3,(d) r =4, and (¢) r = R = 5 when 0 =
{—57.5, —32.5, 2.5, 22.5, 47.5, 62.5} [deg].

Further analyses are aimed at evaluating the impact of the polarization mis-
match between the incident waves and the receiving dipoles. Accordingly, two
statistical analyses have been carried out when considering PLF € [0.6 : 1.0]

35



4.3. NUMERICAL ANALYSIS

and PLF € [0.2: 0.6]. The same signal and noise configurations of the previous
example have been taken into account. Again, the behavior of the maximum,
minimum, and average RM SE values are shown in Fig. 4.6 (second line). Ac-

curate estimations (RMSEr(,i)H) < 0.37) have been achieved for limited po-
L=6
larization loss (i.e., PLF > 0.6). The proposed IMSA — BCS also allows to

obtain reliable results for PLF € [0.2: 0.6] and L =2 (RMSES).| < 0.27)
2

and L =4 (RM SES), < 0.39). Differently, higher average RMSE values
=4
have been achieved for L = 6 as shown in Fig. 4.6(f).

L=4

r=1

Figure 4.8: Performance Analysis (M = 20, d = 0.5\; L = 4, SNR €
[—5:30] dB; K = 37, R € [1: 5]) - Average RMSE values among 7" = 100
simulations versus SN R for different values of R.

The analysis of the impact of the measurement noise (i.e., SN R levels) and the
number of zooming steps, R, has been carried out, as well. Figure 4.8 gives
the average RMSE when considering L. = 4 BPSK signals and PLF € [0.6 :
1.0] versus R and for different values of the SNR. As it can be observed, the
multi-resolution process does not provide significant advantages in heavy noisy
conditions (SNR < 0dB) because of the low reliability of the single-snapshot
data. Differently, the average RMSFE quickly decreases with the zooming steps
for higher SN Rs.
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

4.3.3 Comparative Assessment

In order to demonstrate the validity of the IMSA-BCS approach, two recently
proposed methods [78], [94], not requiring any data pre-processing before the
DoA prediction, and two well-established state-of-the-art approaches, namely
the ROOT — MUSIC [31] and ESPRIT [39] that need as input the covariance
matrix, have been taken into account for a final comparative assessment. Towards
this aim, the same hypotheses considered in [78], [94] (i.e., use of linear arrays of
ideal isotropic sensors without mutual-coupling) have been taken into account.
More specifically, the first benchmark [78] considers an M = 20-element d =
0.5A-spaced array in an electromagnetic scenario characterized by a noise level
of SNR = 10dB and L = 4 signals impinging from the angular directions
¢ = {-89, =71, =50, —41} [deg]. The following setup has been used when
running the IMSA — BCS code: K =37 and R =5. In [78], K = 181 samples
has been chosen that implies an on-grid case (i.e., the actual DoA belong to the
set of angular grid samples).

Table 4.3: Comparative Assessment (Benchmarks [78|, ROOT — MUSIC' [31],
ESPRIT [39], and [94]) - RMSE values.

‘ Methods ‘ r ‘ Test Case 1 [78] ‘ Test Case 2 [94] ‘
1 67.20 73.50
2 4.78 73.49
IMSA-BCS | 3 3.66 1.26
4 2.65 1.13
) 2.44 0.82
ST-BCS 1 58.87 73.53
ST-BCS* 1 4.02 28.28
I31] 1 3.00 8.04
39] 1 3.69 7.54
194] 1 - 5.67
MT-BCS 1 0.50 0.41
MT-BCS* 1 0.08 0.24

Figure 4.9 shows the DoA estimated by the proposed approach and by the
ST — BCS (a single-snapshot technique) and the MT — BCS (a multiple-
snapshots technique) methods presented in [78]. For completeness, the corre-
sponding RMSE values are given in Tab. 4.3. As it can be observed from
the plots in Fig. 4.9 as well as inferred from the error values in Tab. 4.3, the
ST — BCS and the first step (r = 1) of the IMSA — BC'S do not provide ac-
curate predictions. Thanks to the zooming, the IMSA — BC'S is instead able
to drastically reduce the estimation error by more than 14 times after one step
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4.3. NUMERICAL ANALYSIS

(r = 2) and to yield a final error at 7 = R = 5 equal to RMSE®) = 2.44. This
result is more than 24 times better than the ST — BC'S one. Moreover, it is bet-
ter than the estimations of the ROOT — MUSIC (RMSFEgroor—music = 3.00)
and ESPRIT (RMSEgsprir = 3.69) and much closer to the MT — BC'S pre-
diction (RMSE = 0.50) albeit these latter approaches exploit 25 consecutive
acquisitions. It is also important to point out that the DoA obtained with
ROOT — MUSIC and ESPRIT are plotted in Fig. 4.9 with vertical lines since
these methods do not provide any estimation of the signals amplitude and/or
phase unlike C'S-based approaches.

L=4, M=20, SNR=10 dB, R=5
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Figure 4.9: Comparative Assessment (M = 20, d = 0.5\; L =4, SNR = 10dB;
K =37, R =5) - Actual and estimated DoA predicted by single (IMSA— BCS
and ST — BC'S [78]) and multiple snapshots (MT — BCS 78], ROOT —MUSIC
[31], and ESPRIT [39]) methods when 6 = {—89, —71, —50, —41} [deg].

For completeness, the performance of the ST — BCS (i.e., the single-snapshot
single-step BC'S method) has been also evaluated when adopting a uniform grid
(K = 783) with an angular resolution equal to that reached by the IMSA—BC'S
at the last zoom (i.e., d¢m =~ 0.23 [deg]). Despite the accuracy improvement of
this oversampled version (denoted by ST — BC'Sx in the following) as compared

to the original one with K = 181 (%% ~~ 14.6) at the cost of a greater

computational cost (K = 783 vs. K = 181), its accuracy (RMSEgsr_pcss =
4.02) is still worse than that of the IMSA — BC'S method (RMSE® = 2.44)
as indicated in Tab. 4.3 and pictorially highlighted in Fig. . 4.9. On the other
hand and as expected, the exploitation of the multi-snapshots information of the
MT — BCS together with the angular overgridding (MT — BC'Sx) guarantees
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CHAPTER 4. PERFORMANCE IMPROVEMENT OF ST-BCS

a close-to-ideal result (RMSE = 0.08).

The second comparison is concerned with the test case reported in [94] and
characterized by the following descriptive parameters: M = 10, d = 0.5\, L =6
(@ ={-78, =17, 7, 18, 32, 65} [deg]), SNR = 10dB, and K = 23. Analogously
to the MT — BCS [78], the method in [94] used multiple snapshots and the data
were acquired at 10 consecutive time instants.

Figure 4.10 shows the results predicted by the single and multiple-snapshots
methods and the values of the localization index are given in Tab. 4.3. As it
can be noticed and also expected, the RMSE at the first zooming steps of the
IMSA—BCS is not satisfactory. Then, the estimation accuracy highly improves
through the focusing process until the convergence value of RMSE®) = 0.82,
that is almost 7 times better than that from the multi-snapshots technique in
[94]. To complete the comparative analysis, the unknown DoA have been also
predicted with the ST — BC'S and the MT — BCS [78| when considering the
same number of angular samples of (K = 181) or the uniform oversampling
with the angular step d@m:, ~ 0.27 [deg] (K = 671) obtained at the convergence
iteration of the IMSA — BC'S. Moreover, the ROOT — MUSIC and ESPRIT
estimators have been used, as well.
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Figure 4.10: Comparative Assessment (M = 10, d = 0.5\; L = 6, SNR =
10dB; K = 23, R = 5) - Actual and estimated DoA retrieved by single
(IMSA — BCS and ST — BCS [78]) and multiple snapshots (MT — BCS
[78], ROOT — MUSIC [31], ESPRIT [39], and [94]-method) methods when
0 ={-78, —17, 7, 18, 32, 65} [deg].

The RMSE values in Tab. 4.3 indicate that, in both cases, the ST — BCS
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method provides unsatisfactory results (RMSE > 28.28) and worse (%

90 and i ST=ECS: ~ 34) than the MT — BC'S (RMSEyr_pcs = 041 and

RMSEyNr-_pess = 0.24) that turns out to be the most accurate predictor (Tab.
4.3 - Fig. 4.10). As for the MT — BC'S, it is worth reminding that it needs 10

i . . . MSEy_
snapshots, while the IMSA— BC'S provides similar accuracies (M
’ RMSErvmsa-Bes

RMSEyT_BCS. . : i . i
0.5 and m ~ 0.3) but with a single time acquisition. Differently, the

performances of ROOT — MUSIC (RMSEroor-muvsic = 8.04) and ESPRIT
(RMSFEgsprir = 7.54) are not satisfactory and worse than that achieved in
the previous example because of the smaller number of available snapshots for
computing the covariance matrix and the larger number of signals. Concerning
the computational time of the BC'S-based DoA estimations once the data are
available for processing (i.e., after waiting 10 time instants for the MT — BC'S),
the ST — BCS and MT — BCS [78| required 0.38 [sec] (K = 181), 0.69 [sec]
(K = 671) and 0.48 [sec] (K = 181), 0.86 [sec] (K = 671), respectively. Differ-
ently, the IMSA — BCS ended in 0.59 [sec].

~

~
~
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Chapter 5

Performance Improvement of
MT-BCS

In this Chapter, the performance of state-of-the-art MT'— BC'S method has been
improved significantly with the proposed multi-frequency BC'S (MF — BCS)
strategy, where the inherent properties (e.g., frequencies) of signals have been
exploited in order to correlate the BC'S solutions over different frequency sam-
ples. By exploiting frequencies as extra degrees-of-freedom, two methods have
been proposed namely M FSS — BCS (multi-frequency single-snapshot BC'S)
and M FMS—BCS (multi-frequency multi-snapshots BC'S). The MFSS—BCS
is developed for real-time DoA estimator while M FMS — BC'S is for improve
the robustness of the estimation. In addition, the main outcome of this work is
published in [29, 82, 83]
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5.1 Introduction

Several methods for wide band DoAs estimation have been proposed in the
state-of-the-art literature. Notably, most of them are the customized version
extended from the narrow band estimators, exploiting the decomposition of a
wide band signal into multiple frequency components (i.e., frequency bins) and
then apply aforementioned narrow band DoAs estimator either separately or
jointly. Based on the separate or joint processing of frequency bins, the wide
band DoA estimation techniques are broadly classified into two groups, namely
incoherent and coherent estimation.

In incoherent method, the frequency bins are processed independently and
then average the estimated DoAs over all the bins [95, 96]. The implementation
of incoherent processing is simple and provides good estimation in case of high
SN Rs and widely spaced DoAs. The averaging over all independent solutions
worsens the performance of estimation for closely spaced DoAs. The performance
of incoherent method is significantly improved with TOPS [97] by integrating
the information for all frequency bins before estimating the DoAs. Although it
does not process the bins independently, it is essentially an incoherent method
despite disagreements among researchers.

On the other hand, the coherent processing aligns signal subspaces among all
frequency bins by a transformation of the co-variance matrices that are associ-
ated with each bin. Therefore, the signal and noise subspaces becomes coherent
and then one can apply subspace based estimators in the composite co-variance
matrix. Based on the choice of alignment strategies, many coherent estimators
have been proposed in the literature. Some of them are the coherent signal sub-
space method C'SSM [98], focusing matrices for C'SSM [98, 99, 100], robust
auto-focusing [101], extended ESPRIT [102], maximum-likelihood (ML) [104],
and weighted average of signal subspaces WAV ES [105]. The overall perfor-
mance of the coherence estimators is strongly depend on the focusing matrices.
Although TOPS [97], robust auto-focusing [101], and interpolated virtual array
[103] are claimed to be the superior, they all share the same bottleneck.

Sparse processing [56]-[62| for signal reconstructions has received great atten-
tion since last two decades. In this framework, strategies based on the compres-
sive sensing (C'S) theory [59]-[61] have recently been introduces thanks to their
effectiveness, flexibility, and computational efficiency to deal with complex engi-
neering problems in electromagnetic [63]-[68] including antenna array synthesis
[69]-]70] and imaging [71]-[75].

The BC'S-based strategies have been effectively applied for DoAs estimation
for different purposes [78]-[84]. In this chapter, frequencies of the signal has been
considered as an extra degree-of-freedom and two strategies are proposed namely
MFSS — BCS [82] and MFMS — BCS [83].
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5.2 Wideband DoA Model

Let us assume a receiving antenna system consists of a linear antenna array of M
elements oriented along x-axis with the inter-element spacing of d and operates
in the frequency range of [fiin : fimaz]- The system is assumed to collect the
data with respect to N samples at frequencies, f, = foin +Vf(2n—1) /N, n =
1,.... N, where Vf = (finaz — [min)/2. According to [2|, the measured voltages
at the terminal of the array at any instant of time ¢ are generally expressed as

fmaw .

v(t) = / Vi (fn) €2 Un=dgf - m=1,...M, n=1,...N (5.1)
f’min

where f,, and f. are the n—th frequency and the center frequency respectively,

and V,,, (f,) is the received voltages as a function of frequencies and the locations

of the array elements. In addition, the strength of the received voltages V,,, (f)

are subject to the noise, polarization mismatch and array effective length as well.

inc inc
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z 8% z &%

E'inc %$'\
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Figure 5.1: M F — BCS-based Approach - (a) reference scenario (b) discretization
of the angular domain.

Therefore, for a set of L (f,) electromagnetic plane waves characterized by the
bandwidth of BW, , [ = 1,..., L (Fig. 5.1) coming from unknown bearings 6, ,
l=1,...,L(f.) , the well accepted model for the received voltages at time ¢, is
as follows

L

_] zmsm9

i (fas tw) Z L (fa) 5 HE Lot (fao t) (5.2)
m=1,...M, n=1,....N
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where H is the antenna effective length, n,, (f,, t.,) is the additive white Gaussian
noise having zero mean and variance equal to the noise power, x,, is the sensors
positions, and s (f,,) is magnitude of the signal which creates the electromagnetic
plane wave.

The y — polarized electromagnetic plane wave is modeled as

S (’f‘) —g (fn) ejQQLCM(xsine-i-zcosG)g. (53)

For simplicity, equation (5.2) can be written as matrix form as follows

V (fo,tw) =A(fn)s(fu) +0(fu,tw), n=1....,N (5.4)

where for each snapshot ¢, V (fn,t,) € CM*! is the open circuit voltages mea-
sured at f, and 1 (f,,t,) € CM*! are the additive white Gaussian noises gener-
ated at f,. In addition, s (f,,) € CE*! are the original incoming signals considered
at f, and A (f,) € CM*L is the time independent steering matrix at f,. For M
elements and L signals, the steering matrix at frequency f, is defined as

ejQﬂccﬂxl sin 01 L. ejLﬂ'le‘l sinfp,
A(fn) = : : : (5.5)
ej%cf":vM sin 61 ej%cf":vM sinér,

The objective is to find out the angular directions ¢;, [ = 1, ..., L from the mea-
sured voltages in (5.2) which is clearly a non-linear function.

5.3 Problem Formulation in BCS Framework

In order to determine the actual directions 6;, [ = 1,..., L, the angular domain
0 € [—90 : 90]deg is discretized into a large set of K > L (Fig. 5.1) candidate
angular directions. Accordingly, the steering matrix in (5.5) becomes a matrix
of complex [M x K| entries (i.e., A (f,) € CM*K) at f, as

[ 6‘7 Qchn 1 sin91 oo 6‘7 27:5” z1 Sinek e_] QWCfn T Sin@K T
27 fn, . 227 fn . .27 fn .
A (fn) = el ¢ Tmsinby el Tmsinby . el Ty Sin O ) (56)
eJQTrCf" Tz sin 6 el QWCf" xprsinby . ejQ"Cf" s sin O

Therefore, the problem in hand is now linear with respect to unknown candidate
signal vector § (f,) € C¥*! which is also sparse as K > L.
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According to [78], the BCS looks for the solution of the sparse signal vector
S (f,) instead of directly estimating the directions. The MT — BC'S approach
is proposed in the state-of-art literature in order to increase robustness against
noise. In general, for example in [78], MT—BC'S is used to correlate the solutions
among different snapshots. Differently, the MT — BC'S used in this approach
to correlate among different time and frequency samples. Based on this time-
frequency configuration, the BC'S for wideband DoAs estimation is categorized
into two methods: (I) multi-frequency single-snapshot BC'S (M FSS — BCS)
and (IT) multi-frequency multi-snapshots BC'S (M FMS — BCS).
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5.3.1 Multi-Frequency Single-Snapshots BC'S (M FSS—BCS)

This technique considers single snapshot (W = 1) data. Therefore, it only cor-
relates the solutions among different frequencies. Following the guideline of [78|,
the unknown signal vector Sy;rss_pcs is determined as follows

N
SMFSS—BCS = %Z arg {maX§(fn) Pr((§(f.),p) |V (fn)]} , n=1..,N

n=1
(5.7)
where S (f,), n = 1,..., N, is statistically correlated among different frequency
samples through a proper optimization of hyper parameter vector p which is
shared among solutions. The optimal value of p is obtained through RVM [56]

N
Larrss—pes (p :féz {lo (IC1) + (K + 201108 [V (1) " CV (£) + 2]}, (5:8)

where C = I+ A (f,) diag (p) " A (f,)" and ¢, and @, are user-defined param-
eters [61]. Finally, the M FSS — BCS solution turns out to be

N
A%Z{[A fa)" A (f2) + diag ()] A(fn)V(fn)}, n=1,..N. (59

In order to estimate the bandwidth of the impinging signals, the (5.9) can
also be written over the NV independent frequency samples. The solution at f,
is obtained as follows :

Snpss—pes (fa) = [A(F0)T A (fu) +diag(0)]  A(f)V(fa), n=1,.,N . (5.10)
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5.3.2 Multi-Frequency Multi-Snapshots BC'S (M FMS—BCS)

This technique considers multiple snapshot (w = 1,...,W) data. Therefore, it
correlates the solutions among different time and frequency samples as shown in
Fig 5.2.

Frequency

fmaa:

I

In

Snapshot

fnnn

Figure 5.2: MFMS — BCS-based Approach - representation of time-frequency
data.

Similar to the Sect. 5.3.1, the unknown signal vector Sy;rirs_pos is deter-
mined by:

SuMFMS_BOS = ﬁ i f: {a [max Pr ([, p VWW)] } (5.11)

w=1 n=1

W N
1 n,w n,w
~3 Z Z {log (|CJ) + (K + 2¢1) log [V( T oy e 4 202]} (5.12)
w=1n=1
woN { [ AMTAM L diag (p)] - A(n)TV(n,m}
Surms—pes = 3 ) (5.13)
w=1n=1 VVPJ
w { [ AMTA®M L diag (p)] T AMTY w)}
/S\E\TJL)FMSfBCS = Z W (5.14)

g
Il
—_
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5.3.3 DoA and BW Estimation Procedure

Once $§ is estimated by (5.9), the number of estimated signals L are determined
by counting number of non-zero entries in the retrieved signal vector § by (5.9).
In practice, many elements of § are close but not equal to zero. This low energy
signals called artifacts are due to the noise and must be filtered out as they
do not correspond to any actual signals. Therefore, the energetic thresholding
technique introduced in 78] has been applied to filter out the artifacts (S, ~ 0)
from the solution. Finally, the non-zero thresholded signals are considered as the
actual impinging signals. The directions-of-arrivals (DoAs) are then estimated
by associating each non-zero thresholded signal with respect to the candidate
angles [78]. The estimation procedure is described as follows

Angle
.Sth =0
i [ Istn #0

L1

o
L

|
Ox -Il-

0k|:|

02 H -
L

Ll
L
Ll
-
L2
fl fn fN

1 Jubudul
1 Subudnl 2

Frequency

Figure 5.3: M FMS—BCS-based Approach - representation of thresholded signal
vector with respect to candidate angular directions.

<)

Step 0 - the estimated signal vectors Sy, gg_pog OF /S\E(/})FMS_BCS are thresh-

(n) <(n)
olded as sgz) = { SMFSS BCS or 5(2) = { SMFMOS*BCS by applying energetic
thresholding described in [78];

Step 1- after thresholding, the thresholded values sﬁz) associated with each
candidate angles 0, k = 1,..., K are lined-up with respect to each frequency
samples f,, n =1,..., N as sketched in Fig. 5.3;

Step 2 - for each frequency, the number of non-zero thresholded value is the
number of estimated DoAs L (e.g., L = 2 for f, in Fig. 5.3) and the candidate
angles having the non-zero thresholded values are considered as the estimated
direction-of-arrivals (e.g., the estimated directions for f; are 6y and 6y);

Step 3 - the minimum and maximum frequency of each estimated DoAs (com-
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puted in step 2) are computed by ff,f;}z = min{ 7(;9”} and f}ff& = maaz{ 7291)}
respectively (e.g., fuin = f1 and fiae = fn for 65 in Fig. 5.3);

Step 4 - then the bandwidth is computed for each estimated angles as BWO) =
[fr(f;,)z : ,Sffl)z], | =1,...,L. If computed BW includes any frequency that is not
estimated at step 2, will be considered an estimation error and then added in
the RMSE definition in 5.15. For example, the estimated BW for both 65 and
0y in Fig. 5.3 are BW = [f; : fn] even there is no estimation of ) at f,. In such

case, RMSFE for each frequency will be summed up.
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5.4 Performance of MFSS — BCS

In order to assess the performance of M F'SS — BC'S, an extensive analysis has
been done by varying the number of frequency samples, number of signals, num-
ber of sensors, and different signal-to-noise ratio (SNR). The SNR is defined
n (4.4). The performance is measured in terms of the root-mean-square-error
(RMSE) 78], which is defined for each frequency of solution as follows

{ZE o)+ 2m) - L0 (A}

f L <
RMSE (f,) = = |>(f)| F}ZfLMJ_LUM
S LR 0, (£0)—01( SEUR) 160(£2) =05 (fn) o
\/ l l n) - : Zf L (fn) > L (fn)
(5.15)

where, L (f,) and L (f,) are the number of actual and estimated signals respec-
tively at f,, n =1,..., N, Af,,., being maximum localizatiAon error (i.e., Abper =
180 [deg]) applied when the estimated number of signals L (f,,) are less than ac-

tual number of the signals L (f,,) and 6, (f,,) = arg {mingl,le[LL] ’ 0, (f) — 0, (f)

In (5.15), the value 6, (f,) (I =1,...,L(f,); n = 1, ..., N) corresponds to the DoA
estimated at the n-th frequency Wthh is closest to the I-th (I=1,...,L(f,)) ac-
tual DoA. The average RMSE at each noise realization ¢ = 1,...,T is then
computed as follows

3

N
RMSE® = 1> RMSEY t=1,..T; n=1,.,N . (5.16)

n=1

First of all, the behaviour of the proposed method M FSS — BCS is analyzed
by comparing it with MT — BCS for single snapshot data. This is because
to understand the effect of replacing the multiple snapshots concept with the
multiple frequency components. As it is obvious in [78|, with the increase of
number of snapshots the performance increases. Therefore, the objective is to
verify the improvement of the estimation performance as a function of the number
of frequency samples. In order to do that, consider a test scenario from [78]
(reported in [78|(Fig.5)) where L = 4 binary phase-shift keying (BPSK) signals
(s; = £1) are impinging on a linear array of M = 20 equally-spaced (d = % at f =
0.5 [GHz|) isotropic sensors and the voltages V;,, m = 1, ..., M collected at single
snapshot (W = 1) are corrupted by a noise level equivalent to a SNR = 10dB.
Among the 5 different sets of DoAs in 78] (Fig. 5), the two sets namely the best
set (|78] in Fig. 5(a), @ = {79, —59, —41, 10} [deg]), and worst set ([78] in Fig.
5(e), @ = {—77, =31, 16, 87} [deg]), are selected to show the behaviour of the
proposed approach for both best and worst set. Similar to [78], the angular range
6 € [—90; 90] [deg] has been partitioned with a uniform grid of K = 181 samples
such that A = 1][deg]. In order to apply MFSS — BCS, all L = 4 DoAs
are considered as a wideband signals having equal bandwidth of BW = 0.5
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[GHz| in the range f = [0.25 : 0.75] [GHz| and the voltages are collected at
different uniformly spaced frequency samples (i.e., f = 0.5 [GHz| when N =1,
fo=A{f1, fo, 3} ={0.3,0.5, 0.7} [GHz| when N = 3, f,, = {f1, f2, f3, fa, f5} =
10.3, 0.4, 0.5, 0.6, 0.7} [GHz] when N = 5, and fu = {fi, fos s fr0; f1} =
{0.3, 0.34, ..., 0.66, 0.7} [GHz| when N = 11).

1.4 7 7 7 7
| | | |
12+ | | |
o | | | |
@ 1+ + $ +
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S o8|
@ | X A
@ o0s | X '
- : | | | |
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> 04rF | | |
n | | | |
0.2 | | | |
| | | |
T L1 ‘ L1 ‘ ‘ ‘ ‘ ‘
90 -75 60 -45 -30 -15 0 15 30 45 60 75 90
Angular Direction, 6, [deg]
Actual + Estimated (N=5) <
Estimated (N=1) X Estimated (N=11) A
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-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
Angular Direction, 8, [deg]

Actual + Estimated (N=5) <
Estimated (N=1) X Estimated (N=11) A
Estimated (N=3)

(b)

Figure 5.4: Method Validation (N = {1, 3,5, 11}; M = 20, d = 0.5)\y; L = 4,
BW =0.5 [GHz], SNR=10dB; K =181, T = 10, and W = 1) - Best average
DoAs estimation for 78] (Fig. 5) : (a) DoAs, 8 = {—79, —59, —41, 10} [deg]
and (b) DoAs, 8 = {—77, —31, 16, 87} [dey].

Figure 5.4 shows the best (among 7" = 100 noise realizations) average estima-
tion over N = {1, 3, 5, 11} frequency samples for DoAs @ = {—79, —59, —41, 10}
[deg] |Fig. 5.4(a)] and for DoAs @ = {—77, =31, 16, 87} [deg] [Fig. 5.4(b)].
Clearly, the performance of estimation is increased with the increase of N. In
details, all signals are correctly estimated for all N except N = 1 as shown in
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Fig. 5.4(a), where RMSE is 0.5 [deg| as one signal is incorrectly estimated. For
DoAs 8 = {—77, =31, 16, 87} [deg], only three signals are estimated at N = 1
as shown in Fig. 5.4(b), among which one signal is incorrect (—81 [deg]) which
results RMSE = 90.02 [deg] .

Table 5.1: Method Validation (N = {1, 3,5, 11}; M = 20, d = 0.5\o; L = 4,
BW = 0.5 [GHz], SNR = 10dB; K = 181, T = 10, and W = 1) - Estimated
DoAs for DoAs, 8 = {—79, —59, —41, 10} [deg] and 6 = {-77, —31, 16, 87}
[deg]

6 = {—79, —59, —41, 10} [deg]

0 = {77, —31, 16, 87} [deg]

N 0 [deg] RMSE [deg] | N 0 [deg] RMSE [deg]
1 | {80, =59, —41, 10} 0.50 1| {=80, —31, 16} 90.01
3 [ {—79, —59, —41, 10} 0.00 3 | {78, —3L, 16, 90} 1.58
5 | {=79, =59, —41, 10} 0.00 5 | {77, =31, 16, 85} 1.00
11| {—79, —59, —41, 10} 0.00 11| {—77, —31, 16, 86} 0.50

Tab. 5.1 shows the estimated angles and associated RMSE for each N. In
the case of more than one frequency samples, all four signals are estimated among
which three of them are equal to the actual DoAs. Although one signal is not
exact, the performance in terms of RMSFE is significantly improved with the
increase of number of incoming signals as reported in Tab. 5.1.
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Figure 5.5: Performance Analysis ( L = 4, BW = 0.5 [GHz], SNR = [-10 :
30]dB; N = 5, f =[0.25 : 0.75] [GH2], f, ={0.3,0.4, 0.5, 0.6, 0.7} [GHz];
M =20, d=0.5)\; K =181, and W = 1) - Minimum, maximum, and average
RMSFE values among T" = 100 simulations.
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Table 5.2: Performance Analysis ( L = 4, BW = 0.5 [GHz], SNR = [-10 :
30]dB; N =5, f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5)\g; K = 181, and
W = 1) - Minimum, maximum, and average RMSE values among T = 100
simulations

| SNR[dB] | Min[deg] | Max[deg] | Mean|deg] |

—10 50.99 62.63 23.69
-5 39.66 51.70 46.82
0 9.49 29.54 22.27
) 0.50 0.54 0.52
10 0.00 0.50 0.27
15 0.00 0.00 0.00
20 0.00 0.00 0.00
25 0.00 0.00 0.00
30 0.00 0.00 0.00

In order to analyze the behaviour of the MF — BCS for different noisy
conditions, the same test scenario for DoAs @ = {—79, —59, —41, 10} [deg] has
been considered to be analyzed with respect to different SN Rs for fixed number
of frequency samples, N = 5. The outcome is graphically presented in Fig. 5.5,
where it can be observed that the minimum required SN R is equal to SNR = 15
[dB] to estimates the exact DoAs without any error. However, the RMSE is
the order of magnitude for heavy noisy conditions SNR < 0 [dB], although
RMSE < 1 |deg| when SNR =5 [dB] and SNR = 10 |dB| as reported in Tab.
5.2.

Since the performance depends on number of frequency samples (as in Fig.
5.4), SNRs (as in Fig. 5.5), and also the number of incoming signals (as it
affects the sparsity conditions), an analysis is done for L = {2, 3,4}, N =
{1,3,5,7,9,11}, and SNR = 0 [dB] and the results are presented in Fig. 5.6.
There is at-least one exact estimation among 7" = 100 noise realizations for L = 2
when N = 3 and for L = 3 when N = 11, although there is no correct estimation
for L = 4 as shown in Fig 5.6. The curve for average estimation of L = 2 signals
shows that only N =5 frequency samples data is sufficient to estimate the exact
DoAs even at SNR = 0 [dB|. The RMSE of average estimation for L > 2 signals
is high at SNR = 0 [dB|.

More in details, example of best estimation of DoAs is graphically plotted
in Fig. 5.7 [Fig. 5.7(a) for L = 2 and Fig. 5.7(b) for L = 3] and the estimated
DoAs are reported in Tab. 5.3. As it can be shown that the estimated number of
signals are higher than the actual number for N = 1 which results high RMSFE
as reported in Tab. 5.3. Overall, the performance is significantly improved with
the increase of number of frequency samples. It can be noticed in Tab. 5.3 that
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RMSE [deg]

Number of Frequencies, N

Min (L=2) —— Avg(L=2) === Max (L=2) -- -~
Min (L=3) —— Avg(L=8) ———=  Max (L=3) -- --
Min (L=4) ——  Avg (L=4) = —— Max (L=4) -- --

Figure 5.6: Performance Analysis ( L = {2, 3,4}, BW = 0.5 [GHz], SNR =
0dB; N = [1,: 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5)\g; K = 181,
and W = 1) - Minimum, maximum, and average RM SE values among T = 100
simulations.

the RMSE for N =5 is 6.58 |deg| even though the average estimation is exact.
This is because the estimated DoAs are the averaged DoAs, but the RMSFE is
computed including the estimation at different frequency samples as well. There
are close but not exact estimation at f3, f;, and f5; which makes the estimation
with non-zero RMSFE even the average estimation of DoAs are exact.
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Figure 5.7: Performance Analysis ( L = {2, 3}, BW = 0.5 [GHz], SNR =
0dB;N = [1,: 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5)y; K = 181,
T = 100, and W = 1) - Best average DoAs estimation for : (a) DoAs, 8 =
{—41, 10} [deg] and (b) DoAs, 8 = {—79, —41, 10} [deg].
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Table 5.3: Performance Analysis ( L = {2, 3}, BW = 0.5 [GHz], SNR = 0dB;
N =11,: 11], f =[0.25 : 0.75] [GHz]; M = 20, d = 0.5)\y; K = 181, T = 100,
and W = 1) - Best average DoAs estimation.

| DoAs, @ = {41, 10} [deg]

| DoAs, 8 = {79, —41, 10} [deg] |

RMSE [deg]

Figure 5.8: Performance Analysis (M

N 0 [deg] RMSE [deg] 0 [deg| RMSE [deg]
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1 . 1.
10, 34, 53} 35.08 —24, 2,10, 34, 53} 31.57
3 (—41, 10} 0.00 (=79, —78, —56, —41, 10, 33} 17.57
) {-41, 10} 0.00 {=79, —41, 10} 6.58
11|  {—41, 10} 0.00 (=79, —41, 10} 0.00
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24], d = 0.5M0; f =[0.25 : 0.75]

[GHz|, N ={5,11}; L =4, 8 = {79, =59, —41, 10} [deg], BW = 0.5 [GH z],
SNR = {0, 5, 10} dB; K = 181, and W = 1) - Best, worst, and average RMSFE
values among 7' = 100 simulations: (a) SNR =0dB, (b) SNR =5dB, and (c)
SNR =10dB.
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Figure 5.9: Performance Analysis - Non-uniform frequency sampling procedure.

To analyze the effect of number of elements, an analysis is done considering
the same scenario for different N = {5, 11} and different noisy conditions i.e.,
SNR = {0, 5, 10} [dB] and the result is presented in Fig. 5.8 [Fig. 5.8(a) for
SNR = 0 |dB|, Fig. 5.8(b) for SNR = 5 [dB] and Fig. 5.8(¢) for SNR = 10
[dB]|. Although there is no substantial improvement of performance for SNR = 0
[dB] [Fig. 5.8(a)], overall the RMSE is decreased as number of elements are
increased for SN Rs higher than 0[dB| as shown in Fig. 5.8(b) for SNR = 5
[dB| and Fig. 5.8(¢) for SNR = 10 [dB|. This indicates that the performance
of MFSS — BCS is compromised in case of highly noisy conditions SNR < 0
[dB].

Unlike the uniform frequency sampling analyzed above, the next example
deals with the analysis for non-uniform sampling. Figure 5.9 describes the pro-
cedure of non-uniform sampling. First of all, the available BW is discretized into
N, number of candidate uniform samples. Then the number of required samples
N is randomly selected from candidate N, samples.

The test scenario considered in Fig. 5.4(a) for uniform sampling has been
considered in this example to show the performance in comparative fashion.
Here the available BW is discretized into N, = 11 candidate samples (e.g.,
fen = {fe1s s fe1} = {0.30, ..., 0.7} [GHz]) and N = 5 samples is then se-
lected f, = {f1, f2, f3, f1, f5} = {0.3,0.42, 0.5, 0.58, 0.7} [GHz|. Figure 5.10
shows the best estimation at individual frequencies among 7" = 100 noise re-
alization for both uniform and non-uniform samples. The DoAs estimated by
both sampling strategies are exactly equal to the actual DoAs, although signal’s
energy is higher in uniform frequency samples as shown in Fig. 5.10. Overall,
the average performance of uniform sampling is higher (e.g., RMSE,,cqn = 0.28
[deg]) than the non-uniform sampling (e.g., RM S FE,ean = 0.42 [deg|), although
the minimum and maximum RMSFE is exactly same.
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Figure 5.10: Performance Analysis (N = 5, L = 4, SNR = 10dB; M = 20,
d=0.5\; K =181, W = 1, BW = 0.5 [GHz|, fUriferm ={0.3, ..., 0.7} [GH?z],
fNon—Uniform {030, 0.42, 0.50, 0.58, 0.70} [GHz]; ) - Best DoAs estimation
among T = 100 simulations for different frequency samples: (a) fi, (b) fo, (¢)

f3, (d) f1, and (e) f5.

In order to guarantee the reliability of the estimation, an analysis has been
done with the more realistic data collected by the EM simulator. To do so,
an array of M = 20 equally-spaced by half-wavelength (d = % at f = 0.5
|GHz|) y—oriented dipoles are placed along x—axis as shown in Fig. 5.11. Each
of the dipoles are considered as a series load with series resistance R, = 72
[ohm], capacitance Cs = 0 [F], and inductance Ly = 0 [H]. L = 3 wide band
(f =10.25 : 0.75] |[GHz|) plane waves with magnitude of 1 [V/m]| are placed in

z—axis in such a way that the directions from the array reference points are DoAs
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Figure 5.11: Performance Analysis - Sketch of the model implemented in EM
simulator

0 = {—45, —21, 10} [deg]. The simulated data (measured voltages) collected at
each N = 5 frequency samples are normalized with respect to the maximum of
the absolute value and then amplified in order to have the sufficient signal energy
so that the useful signals are not affected by energy thresholding strategy. These
amplified voltages are then directly fed to the M F'SS — BC'S solver

The performance of the proposed approach for K = 181 angular directions is
presented in Fig. 5.12, where the DoAs estimated at each individual frequencies
and also average estimated DoAs are plotted with respect to angular directions.
The MFSS — BC'S correctly estimates all DoAs without any error as shown in
Fig. 5.12. As expected, although the estimated signals energy are different for
each frequency, the average estimated energy is close to the actual considered
energy. The over estimated signal’s energy is due to the effects of mutual coupling
among antennas.

Moreover, the performance of the MFSS — BCS has been compared with
[107] (i.e., deterministic CS, subspace-based estimators like MUSIC and its dif-
ferent versions). With referring to [107], L = 2 acoustic signals from DoAs
0 = {60, 30} [deg] directions are impinging on a linear array of M = 6 elements
separated by d = 4 at 550 [Hz|. The voltages measured at the terminal of each
elements at each frequencies f,, = {f1, fo, f3, f1} = {300, 500, 600, 800}|Hz| are
subject to the noise level of SNR = 0 [dB] and the number of snapshots con-
sidered in MFSS — BCS and [107] are 1 and 256 respectively. The voltages
are collected with and without polarization loss for M F' — BC'S only to show
the behaviour of M FSS — BC'S for different values of polarization mismatch as
well. Figure 5.13 plots the actual and estimated DoAs for proposed approach
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Figure 5.12: Performance Analysis ( L = 3, BW = 0.5 [GHz|, DoAs, 6 =
(45, —21, 10} [deg]; N = 5, f =[0.25 : 0.75] [GHZ], f, ={0.3, ..., 0.7} [GH];
M =20, d=0.5\; K =181, and W = 1) - DoAs estimation from EM data.
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Figure 5.13: Performance Comparison (M = 6, d = 0.5\; f =[300 : 800]
[Hz], N = 4, f, ={300, 500, 600, 800} [Hz]: L = 2, 6 = {—60, 30} [deg],
SNR =0dB; K =181, T = 30) - Best average DoAs estimation.
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Table 5.4: Performance Comparison (M = 6, d = 0.5\; f =[300 : 800] [Hz],
N = 4, f, ={300, 500, 600, 800} [Hz]: L = 2, @ = {—60, 30} [deg], SNR =
0dB; K =181, T'= 30) - Best average DoAs estimation

‘ Algorithm ‘ 0 [deg| ‘ 0 [deg| ‘ RMSE]deg] ‘
T - MUSIC 1-60,30] | {64,275} 3.34
CS — MUSIC (760,30} | {64,455 11.32
CS — DDoA 160,30} | {—58.5,30.5] 1.18
MFSS — BCS[PLF =1.0] | {—60,30} | {—6L5,29} 1.27
MFSS — BOS[PLF =05:1.0] | {—60,30} | {—64,30] 2.82

(e.g., without the loss of polarization where PLF = 1.0 and with the loss of
polarization where PLF = [0.5 : 1.0]), deterministic CS [107] (e.g.,CS-DDoA),
and MSUIC reported in [107] (e.g., T-MUSIC, CS-MUSIC). The actual and es-
timated DoAs for the mentioned approaches have also been reported in Tab.
5.4. Overall, the performance of compressive sensing based method is higher
than the subspace-based estimator like T-MUSIC and/or CS-MUSIC. Although
the performance of CS-DDoA and MFSS — BCS are approximately equal in
terms of RMSFE, the MFSS — BCS considered only single-snapshot data while
W = 256 snapshots considered in [107].

In addition, the performance of M FSS — BC'S has also been compared with
[77], where L = 2 wide band signals having bandwidth of BW = 40 [Hz| (in the
range [ = [80 : 120] [Hz|) coming from directions DoAs 8 = {—10, 20} [deg]
are impinging on a linear array of M = 16 elements separated by d = % at 120
[Hz|. The measured signals at each element are subject to different noise level of
SNR = [—15: 15] [dB|. Figure 5.14 shows the estimated average RMSE for T =
100 noise realizations as a comparative fashion. Although, the performance of
WP and WOP [77] is slightly higher in extremely noisy conditions (e.g., SNR =
[—15 : =5] [dB]), the MFSS — BCS (without polarization loss) outperforms

when SNR = [-5 : 15] [dB].
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Figure 5.14: Performance Comparison (M = 16, d = 0.5X\s; f =[80 : 120]
[Hz], N = 5, f, ={80, 90, 100, 110, 120} [Hz]; L = 2, @ = {—10, 20} [deg],
SNR =[-15:15]dB; K = 37, T = 100) - Best average DoAs estimation.
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5.5 Performance of MFMS — BCS

Let us consider L = 2 binary phase-shift keying (BPSK) signals (Ej™ = +1)
with equal bandwidth set to BW; = BW; = 0.5 [GHz| in the range f = [0.25 :
0.75] [GHz| that are impinging on a linear array of M = 20 equally-spaced (d =
20 where A\g = 0.5 [GHz]) isotropic sensors (i.e., H = 1) where the measured
voltages are corrupted by a noise level equal to SNR = 0dB. The voltages
are collected for W = [1 : 15] snapshots and for each snapshot the data are
considered over N = {1, 5} frequency samples. More precisely, the selected
frequencies for N = 5 are f; = 0.3 [GHz|, fo = 0.4 [GHz|, f5 = fo = 0.5 [GHz],
fs = 0.6 |GHz|, and f5 = 0.7 [GHz|. When applying the MFMS-BCS, the angular
range 6 € [—90; 90] [deg] has been partitioned with K = 181 samples to obtain a
uniform grid of step 6 = 1 [deg|. For validation purposes, two different scenarios
with L = 2 signals having closely spaced and widely spaced DoAs have been
considered. The closely spaced DoAs have been set to @ = {—70, —64} [deg]
and the widely spaced DoAs to 8 = {—75, 30} [deg].

3
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=
3
ke ~
w 10° S~a
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S
S, S~
10 S~
w02 T
10-3 L L L L L
1 3 5 7 9 11 13 15

Number of Snapshots, W

Close Spaced DoA : N=1 Wide Spaced DoA : N=1 — = —
Close Spaced DoA : N=5 ——— Wide Spaced DoA : N=5 — — —

Figure 5.15: Method Validation (W = [1 : 15]; M = 20, d = 0.5); f =[0.25 :
0.75] [GHz], N = {1, 5}, L = 2, close spaced DoAs, @ = {—70, —64} [deg], wide
spaced DoAs, 8 = {—75, 30} [deg], SNR = 0dB; K = 181) - Average RM SFEs
values among 7" = 100 simulations

Figure 5.15 represents the statistics of the RMSE values in order to show
the effectiveness of exploiting both time and frequency data. As expected, the
performance is higher for the widely spaced DoAs, although adding only time
domain data (for N = 1) is not enough when SNR = 0dB as shown in Fig. 5.15
(red curves). However, the addition of frequency sampled (N = 5) data signif-
icantly improves the performance and the estimation errors are monotonically
decreased with the increase of number of time domain data as in Fig. 5.15 for
both close and wide spaced DoAs.
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In order to extensively analyze the effectiveness and the reliability of the
proposed approach, I = 100 sets of L = 2 random DoAs have been generated.
Two constraints have been considered in the generation of random DoAs that
are the angular range set equal to 6 € [—80; 80| [deg] and the minimum angular
separation between the DoAs chosen as Af,,;, = 5[deg]. All other parameters are
kept the same of the previous example. The minimum, maximum, and average
RMSE values among T" = 50 noise realizations for each configuration of the
L = 2 random DoAs have been graphically presented in Fig. 5.16 (|[Fig. 5.16(a)]
for W =1, [Fig. 5.16(b)] for W = 5, and [Fig. 5.16(c)] for W = 15). As it
is evident that the average RMSE with W = 15 snapshot is zero for higher
number of random DoA sets than W = 1. Therefore, the time and frequency
processing is robust even in the extremely noisy condition SNR = 0 [dB|.
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Figure 5.16: Performance Analysis (W = {1,5, 15}; M = 20, d = 0.5\;
f =[0.25 : 0.75] [GHz], N =5, L = 2, BW = 0.5 [GHz], SNR = 0dB,
K = 181, T = 100) - Best, worst, and average RMSE values among T = 100
simulations for I = 100 random sets of DoAs: (a) W =1, (b) W =5, and (¢)
W = 15 snapshots.
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Figure 5.17: Performance Analysis (W = {1,5, 15}; M = 20, d = 0.5\;
f =025 : 0.75] [GHz], N = 5; L = 4, 8 = {-79, =59, —41, 10} [dey],
BW = 0.5 [GHz|], SNR = [-10 : 20]dB; K = 181) - Best, worst, and av-
erage RM SFE values among 7' = 100 simulations.
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Figure 5.18: Performance Analysis (W = {1, 5, 15}; M = {8, 12, 16, 20, 24},
d = 05\; f =[025 : 075 [GHz], N = 5 L = 4, 6 =
{=79, =59, —41, 10} [deg], BW = 0.5 [GHz], SNR = 5dB; K = 181) - Best,
worst, and average RM SFE values among 7' = 100 simulations.

To investigate the effect of the noise level, an analysis for a set of L = 4 fixed
DoAs equal to @ = {—79, —59, —41, 10} [deg] has been carried out by varying
the signal-to-noise ratio in the range SNR = [—10 : 20]dB. The obtained
results are plotted in Fig. 5.17. By observing the behavior of the minimum
RMSE curves, it is evident that low RMSFE values are achieved with W =5
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and W = 15 snapshots even for SNR = 5 dB while about SNR = 10 dB are
needed to achieve similar estimation performance with W = 1. Overall, the
statistical performance improve, whatever W, with the increment of the SNR
as shown in Fig. 5.17. As for the average RMSFE values, it becomes equal to
zero at SNR = 8 dB for W = 15 while at least SNR = 13 dB are required for
W =1and W =5.

Signal Index, s

Frequency Index, f,

Figure 5.19: Performance Analysis -Signals and bandwidth configurations for
the estimation of signals having different bandwidth.

RMSE [deg]

SNR [dB]
Min (W=1) =——  Max (W=1) = —~— Avg (W=1) = = = -
Min (W=5) ——  Max (W=5) ——— Avg (W=5) - - - -
Min (W=15) —— Max (W=15) === Avg (W=15) = - - -

Figure 5.20: Performance Analysis (W = [1, 5, 10, 15]; M = 20, d = 0.5\;
F=[0.25: 0.75] [GHz], N =5; L = 4, 8 = {—79, —59, —41, 10} [deg], SNR =
[—10 : 20]dB; K = 181) - Best, worst, and average RMSE values among
T = 100 simulations..

The analysis versus the number of elements M for SN R = 5 dB has been also
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carried out and the obtained results are represented in Fig. 5.18. It is possible to
observe that the capacity of exact estimation improves for higher values of M. In
addition, the condition RMSE = 0 |deg| is achieved for all M when W =5 and
W = 15 (indeed the minimum RMSFE curves are not appearing in the graph)
while more than M = 22 elements are required in case of single snapshot data.
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Figure 5.21: Performance Analysis (W = {1,5, 15}; M = 20, d = 0.5\;
f =025 : 0.75] [GHz], N = 5, f, ={0.3, 0.4, 0.5, 0.6, 0.7} [GHz]; L = 4,
0 = {-79, =59, —41, 10} [deg], SNR = 5dB; K = 181, T = 100) - DoAs

estimation at individual frequencies.

In order to consider a scenario characterized by signals having different band-
width, the actual signals and frequency configuration shown in Fig. 5.19 have
been taken into account. In details, the first signal 6; = —79 [deg| exists only at
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fo and f3, the second signal 8, = —59 [deg| at fs, f3, f1, and f5, the third signal
0; = —41[deg| at all frequencies, and the fourth signal 8, = 10 [deg] only at
fa, f3, and f4. In order to investigate the potentialities of the proposed MFMS-
BCS method for the joint DoAs and BW estimation of signals having different
bandwidths of Fig. 5.19, the results of the analysis when varying the SNR (Fig.
5.20) for different number of snapshots W have been reported.

Similar to the case of signals having equal bandwidth (Fig. 5.17), the condition
RMSE = 0 |deg| is achieved for SNR = 5 [dB]| for all W except W = 1 as shown
in Fig. 5.20. Although the average RMSE values for W =1 and for W =5 are
not zero, the performance improve with the SN R.

Finally, in order to show the correct estimation of both the signals bearing and
bandwidth, Fig. 5.21 reports the actual and the best estimated DoAs at each
frequency sample for different number of snapshots when considering the same
test case with SNR = 5dB. It is clearly evident that the actual DoAs are
correctly estimated (i.e., with RMSE = 0 [deg]) for all frequencies when W =5
and W = 15, which in turns means a perfect signal BW estimation. On the other
hand, the DoAs are not correct for W =1 at f, and f3, where the estimation is
6 = {—80, —59, —41, 10} [deg].
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Figure 5.22: Comparison (W = 64; M = 16, d = 0.5)y; f =[80 : 120] [Hz],
N =5, f, ={80, 90, 100, 110, 120} [Hz]; L = 2, @ = {10, 20} [deg], SNR =
[—15:15]dB; K =181, T = 100) - RMSE at different SNRs.

Moreover, the MFMS — BC'S has also been compared with [77], where two
wideband signals (6 = {—10, 20} [deg]) having equal bandwidth of 40 Hz (f =
[80 : 120] Hz) are impinging on a linear array of 16 elements spaced by half
wavelength with respect to the maximum frequency of f,... =120 [Hz]. Each
element collects 64 time domain samples with the noise level of SNR = [—15 :
15]dB. The estimated average RMSE for 100 noise realizations are plotted
as comparative fashion in Fig. 5.22. The MFMS — BCS outperforms when
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SNR = [-5: 15]dB, although the estimated RMSE by WOP and WP [77] are
slightly less in extreme noise level (e.g., SNR = [—15: —5] dB).
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Chapter 6

DoA Estimation in Cost Effective
System

In this chapter, the DoA estimation problem for different sub-arrayed array is
addressed with the state-of-the-art BC'S approach. More specifically, ST — BC'S
is applied for linear array in order to find out a optimum sub-array configurations
in which the performance of estimation is comparable with fully populated array.
For planar case, both ST — BCS and MT — BCS is applied. In addition, the
main outcome of this work is published in [84].
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6.1 Introduction

Direction-of-arrival (DoA) estimation is a part and parcel of modern radar and
communication applications. Nowadays, antenna arrays often adopt a sub-
arrayed architecture [120] in order to reduce the complexity and cost of the
feeding network. However, the sub-arrayed architecture brings additional chal-
lenges as the array features are greatly compromised with respect to the fully
populated arrays. Therefore, it is essential to analyze the performance of the
DoA estimation in sub-arrayed architecture, but only few works have previously
addressed this problem. For example, approaches exploiting nested arrays [121]
and co-prime arrays [122| have been proposed in which the DoAs estimation has
been carried out by means of the classical subspace-based estimators MUSIC
and ESPRIT. However, these techniques have their own theoretical limitations.
For instance, they need (i) to a-priory know the number of incoming signals, (ii)
to compute the complex co-variance matrix which is computationally demand-
ing, and (iii) to acquire the data over multiple snapshots in order to provide a
reliable estimation, not suitable for real time application.

Sparse processing [56]-[62| for signal reconstructions has received great atten-
tion since last two decades. In this framework, strategies based on the compres-
sive sensing (C'S) theory [59]-[61] have recently been introduces thanks to their
effectiveness, flexibility, and computational efficiency to deal with complex engi-
neering problems in electromagnetic [63]-[68] including antenna array synthesis
[69]-[70] and imaging [71]-[75].

The BC'S-based strategies have been effectively applied for DoAs estimation
for different purposes [78]-[84]. In this framework, strategies based on the BC'S
are introduced in which the data measured at the output of the sub-array ports
and at a single or multiple time instant/snapshot are directly processed to esti-
mate the signal DoAs. The impact on the estimation performance for different
uniform and non-uniform sub-array configurations of linear and planar array are
analyzed in a comparative fashion.
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6.2 Mathematical Formulations

Let us consider a set of L electromagnetic plane waves arriving from unknown
directions #;, [ = 1,..., L, on a linear array of M elements placed along x-axis
at positions z,,, M = 1,..., M, with uniform inter-element spacing d. The M
array elements are grouped into () sub-arrays, each containing Ny, ¢ = 1,...,Q
elements (Fig. 6.1). The membership of each array element to a sub-array is
identified by C,,, m = 1,..., M where C,, € [1 : Q]. The data collected at the
output terminal of the g—th sub-array are mathematically expressed as:

M
Vo= Vabeng i by =4 b Cm=d (6.1)
7 ~ mCma > CC0ma 0; otherwise

where V,,, are the OC'V equivalent to fully populated array (5.2). Substituting
Vi of (5.2) into (6.1) turns out to be:

M L
Y, = Z (Z 1y - HedOrmsmor | 77m> Sy =1,...,Q. (6.2)
m=1 1

=

Equation (6.2) can be written in matrix form as:

[Y] = [0][A (0)][s] + [0] [n] (6.3)

where [Y] = [V1,Y5, ..., Yo" € C9%! is the vector of sub-array data; [s] =
[s1,82,...,50]" € CL¥1is the signal vector; 9] = [11, 72, ..., nu]” € CM*1 is the
noise vector, [A (0)] = [a(61),a(6,),...,a(0)] € C¥*L is the steering matrix of
fully populated array, and [§] =€ R@*M is the sub-array transformation matrix
defined as

5011 e 50]”1
[0] = SR : (6.4)
dcvg 0 0ciQ

Equation (6.3) can be further simplified as:

[Y] = [A"(0)] [s] + [n°**] (6.5)

where [A* (0)] = [8] [A (0)] € C9*L is the transformed sub-arrayed steering

matrix. Then the procedures described in Sect. 3.3 (sub. 3.4.1) are employed in
order to apply ST — BC'S strategies.
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Figure 6.1: Sketch of the array geometries - (a) without sub-array and (b) with
contiguous uniform sub-array of N = 2 elements per cluster.

Then according to the guideline of single-task BCS describe in Sect. 3.4.1,
the sparse signal vector is determined by maximizing the following a-posteriori
probability:

Slsr-pes = arg {max [Pr (8, o*, p| Y)]} (6.6)

where o? and p is the variance of the Gaussian noise and the BCS hyper-
parameter respectively. For multi-snapshots data, the 6.5 can be written as

[Vw] = [A*(0)] [su] + 0], w=1,.. . W (6.7)

where W is the number of snapshots. Similarly the procedures described in Sect.
3.3 (sub. 3.4.2) are employed in order to apply MT — BCS strategies. Then
according to the guideline of single-task BC'S described in Sect. 3.4.2, the sparse
signal vector is determined by maximizing the following a-posteriori probability:

Sur-scs = g 3 fors [max e (w1 Y] (69

w=1
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where s, w = 1, ..., W, are statistically-correlated through a hyperparameter
vector p which correlates the different snapshots.
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6.3 ST — BCS for Linear Sub-Arrayed Array

In order to analyze the performance of BCS — based estimator, the error metric
defined in 78] is considered. The first test case is devoted to analyze the perfor-
mance of the estimator for signals without and with modulations. Let us consider
L = 2 electromagnetic plane waves are impinging from directions 6 = {30, 60}
[deg| on a linear array of M = {8, 16, 24} elements elements with spacing equal
to half of wavelength. As for the preliminary analysis, two sub-array configura-
tions shown in Fig. 6.1 [Fig. 6.1(a) for without sub array and Fig. 6.1(b) for
with sub array of N, = 2| are considered to be analyzed.
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Figure 6.2: DoAs FEstimation - Impacts of signal modulation on the es-
timation (M = {8,16,24}, N = {1,2}, d = 05\, L = 2, E" =
{(+1, +1), (+1, —=1)}[V], SNR = Noiseless [dB|, and K = 181) - for (a) with-
out sub-array (i.e., N = 1 elements) and (b) with contiguous uniform sub-array
of N = 2 elements.
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Table 6.1: DoAs FEstimation - Impacts of signal modulation on the esti-
mation (M = {8,16,24}, N = {1,2}, d = 05\, L = 2, E"™ =
{(+1, +1), (+1, =1)}[V], SNR = Noiseless [dB], and K = 181).
| | Eme={+1,+1} | Em™={+1,-1} |

M| O[deg] | O@ldeg] | RMSE [deg] | 0|deg] | RMSE [deg]

8 | {30, 60} {30} 127.28 {—30} 134.16

16 | {30, 60} | {—30} 134.16 {30} 127.28

24 | {30, 60} | {30, 60} 0.00 {30, 60} 0.00

First of all, the impacts of modulation are analyzed. For two different sets of
signal magnitude (i.e., without modulation E™¢ = {+1, +1}|V] and with BPSK
modulation E¢ = {+1, —1}[V]), the estimated DoAs for Noiseless scenario
are shown in Fig. 6.2. In particular, Fig. 6.2 (a) plots the estimated DoAs
for the fully populated array [Fig. 6.1(a)] and Fig. 6.2 (b) plots the estimated
DoAs for the sub-array of N, = 2 [Fig. 6.1(b)]. It is evident that the signal
modulation has an impact on sub-array DoA estimation. For example, in fully
populated case [Fig. 6.1(a)], the estimator perfectly retrieved the DoAs for all
M while it is unable to estimate all DoAs for M = 8 and M = 16 with the
sub-array geometry. However, it perfectly estimates the unknown DoAs with
the sub-arrayed array geometry for M = 24 as shown in Fig. 6.2 (b) also in Tab.
6.1.

In order to extensively analyze the performance of the proposed estimator,
100 randomly generated DoA sets with random BPSK modulations are analyzed
for noiseless case. In this case, the results are plotted in order to show that the
percentage of number of DoA set belongs to any of the five RMSFE ranges. The
ranges of RMSFE is defined as follows:

e Excellent - RMSE = [0 : 0] [deg];
e Very Good - RMSE = [0 : 1] [deg];
e Good - RMSE =1 : 10] [deg];

o Bad - RMSE = [10 : 100] [deg];

e Worse - RMSE = [100 : 1000] [deg].

Figure 6.3 shows the percentage of number DoA sets belonging to each of the
defined category of RMSE ranges among 100 Monte-Carlo simulations (i.e.,
100 randomly generated BPSK signals). Tt is evident that the average RMSE
among 100 simulations belonging to the “Excellent” category (exact estimation)
is estimated for 90 percent and 50 percent of the random DoA sets for N = 1
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Table 6.2: Performance Analysis - Percentage of random DoA sets belonging to
each range of RMSEs (M =24, N = {1, 2}, d = 0.5\, L =2, SNR = Noiseless
[dB], K = 181, and S = 100 random DoA Sets) - for " = 100 random BPSK
signals.

| RMSE [deg] | Minimum || Average | Maximum |
N=1[|N=2[N=1[N=2[N=1[N=2

0 97 66 87 46 87 46

0—1 0 1 4 0 0 0
1-10 1 4 6 8 10 2

10 — 100 0 1 1 16 0 14
100 — 180 2 28 2 30 3 38

| Total | 100 | 100 [ 100 | 100 [ 100 | 100

(no sub-arraying) and for N = 2 (with sub-arraying) respectively as shown in
Fig. 6.3. The details of results for different categories are also tabulated in Tab.

6.1.

Statistics of RMSE for 100 Random DoA Sets

Min :

2 N=1
1% Min : N=2 —¢—
< Avg:N=1 =- ¥-
Qa Avg:N=2 = El-
S Max : N=1
S Max : N=2

= A — =it
1-10 10-100 100-1000
Range : RMSE [deg]

Figure 6.3: Performance Analysis - Percentage of random DoA sets belonging to
each range of RMSEs (M =24, N = {1, 2}, d = 0.5\, L =2, SNR = Noiseless
[dB], K = 181, and S = 100 random DoA Sets) - for " = 100 random BPSK
signals.

This is worth pointing out that the sub-arraying degrades the performance
of the DoAs estimation. In order to further verify the impacts of contiguous
uniform sub-arraying for noiseless case, an analysis is done for different number
of elements in each sub-array i.e., N = [1 : 4] and 100 random DoA sets of L = 3
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signals. The percentage of the number of DoA sets belonging to each category
is plotted in Fig. 6.4 | Fig. 6.4(b) for minimum, Fig. 6.4(b) for average, and
Fig. 6.4(c) for maximum RMSE among 100 Monte-Carlo simulations|. From
Fig. 6.4, it is evident that the performance of the estimation decreases as the
number of elements for each sub-array increases. From the analysis of minimum
RMSE of Fig. 6.4 (a), there are two DoA sets for which the minimum RMSFE
is zero for all N. The two DoA sets are identified and they are named as “DoA
Set 17 (6 = {—10, 5, 13} [deg]) and “DoA Set 2” (0 = {—61, 34, 47} |deg]).

Statistics of RMSE for 100 Random DoA Sets Statistics of RMSE for 100 Random DoA Sets
100 100
0 80 [ 0
3 3
< 60y <
a a
- 40 + -
o o
S S
20
0
N=1 N=2 N=3 N=4 N=1 N=2 N=3 N=4
Number of Elements per Cluster, N Number of Elements per Cluster, N
0 o 1-10 == 100-1000 0 o 1-10 s 100-1000
0-1 mm 10-100 0-1 mm 10-100

(a) (b)

Statistics of RMSE for 100 Random DoA Sets

100

% of DoA Sets

N=1 N=2 N=3 N=4
Number of Elements per Cluster, N

0 m— 1-10 =mmmm  100-1000
0-1 s 10-100

(c)

Figure 6.4: Performance Analysis - Percentage of random DoA sets belonging to
each range of RMSEs - (M =24, N = {1, 2, 3,4}, d = 0.5\, L =3, SNR =
Noiseless [dB|, K = 181 and S = 100 random DoA Sets) - for (a) minimum,
(b) average, and (¢) maximum RMSEs among 7' = 100 random BPSK signals.

In order to verify the impacts of sub-arraying for different noisy conditions,
the following analysis are done for “DoA Set 1”7 (0 = {-10, 5, 13} [deg]) and
“DoA Set 2” (0 = {—61, 34, 47} |[deg|). The performance of the estimation in
terms of minimum, average, and maximum RMSFE for different noisy cases are
shown in Fig. 6.5. It is evident that the results for two DoA sets vary with respect
to different N and also SN Rs. It is worth pointing out that the performance
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of the estimation for N = 3 is better than both N = 2 and N = 4. This is an
interesting result since it is indicating that the performance of the estimation
could be improved by analyzing different sub-array configurations.

10° 10°
102 102 et ]
D 10! Fo T ool b N — 1
(0] == Q
2 100 S 100
L 1 w -1
2 10 g 107 ¢
& 107 = 102}
1073 108 ¢
10 . . . . 10 . . . . L
- 20 30 40 50Noiseless -20 -10 0 10 20 30 40 50Noiseless
SNRs [dB] SNRs [dB]
DoA Set 1: N=1 —— DoA Set2:N=1 ----- DoA Set 1: N=1 —— DoA Set2:N=1 -----
DoA Set 1: N=2 —— DoA Set2: N=2 - ---- DoA Set 1: N=2 —— DoA Set2: N=2 - ----
DoA Set 1: N=3 —— DoA Set2: N=3 ----- DoA Set 1: N=3 —— DoA Set2: N=3 -----
DoA Set 1: N=4 —— DoA Set2: N=4 ----- DoA Set 1: N=4 —— DoA Set2: N=4 -----

20 -10 O 10 20 30 40 50Noiseless

SNRs [dB]
DoA Set 1: N=1 —— DoA Set2:N=1 -----
DoA Set 1: N=2 —— DoA Set2: N=2 -----
DoA Set 1: N=3 —— DoA Set2: N=3 -----
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Figure 6.5: Performance Analysis - SNRs versus RMSEs - (M = 24, N =
{1,2,3,4},d =05\, L =3, SNR = {-20, ..., Noiseless} |dB|, K = 181 and
S = 2 selected DoA Sets) - for (a) minimum, (b) average, and (¢) maximum
RMSEs among 7" = 100 random BPSK signals.

So far, the analysis is done with the contiguous uniform sub-array. In or-
der to analyze the performance for different sub-array configurations, the non-
contiguous sub-array of Fig. 6.6 (an example is shown for N = 2) is considered
to be analyzed for N = {2, 3, 4}. The results in terms of average RM SFE among
100 trials is shown in Fig. 6.7 and compared with contiguous sub-array. The
non-contiguous sub-array of N = 2 outperforms as shown in Fig. 6.7.

Up to now, the analysis have been done for uniform contiguous and uniform
non-contiguous sub-arrays. The next analysis is devoted to analyze the perfor-
mance of the proposed method with non-uniform sub arrays. In order to do this,
6 non-uniform contiguous (NUC') sub-arrays as shown in Fig. 6.8 are analyzed.
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csce VJV

Figure 6.6: Performance Analysis - Sketch of the non-contiguous uniform sub-
array of N = 2 elements per cluster.
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Figure 6.7: Performance Analysis - Contiguous versus Non-contiguous sub-array
-(M =24, N ={2,3,4}, d=0.5\, L =3, SNR = {-20, ..., Noiseless} |dB|,
and K = 181) - average RMSEs among T = 100 random BPSK signals.
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Figure 6.8: Performance Analysis - Manually defined six contiguous non-uniform
sub-array configurations (M = 24, N = {1, 2, 3, 4}, and NUC = [1 : 6]).
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The performance of the different non-uniform contiguous sub-arrays shown in
Fig. 6.8 are analyzed in Fig. 6.9 for different noisy conditions and compared with
the uniform contiguous sub-arrays of N = {1, 2, 3}. It is worth pointing out that
the non-uniform contiguous sub-array of NUC = 3 outperforms than all other
considered sub-array configurations. Moreover, the performance of NUC = 3
sub-array configuration has the similar performance as the fully populated array
in Fig. 6.8 for different noisy conditions.
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3 100t
B ol
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Uni. (N=3) —— NUC=3 NUC=6 ----

Figure 6.9: Performance Analysis - Contiguous uniform versus contiguous non-
uniform sub-array - (M = 24, N = {1,2,3,4}, d = 0.5\, L = 3, SNR =
{=20, ..., Noiseless} [dB], and K = 181) - average RMSFEs among T = 100
random BPSK signals.

Cc=4

Figure 6.10: Performance Analysis - Sketch of the selected five configurations.
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From the above analysis, it is evident that the estimation performance de-
pends on different sub array configurations. Therefore, in order to have an ex-
tensive analysis for 100 sets of random DoAs, the best 5 sub-array configurations
are selected based on the performance reported so far. The selected configura-
tions are sketched in Fig. 6.11, where the configurations are indicated by the
indexes of C. It includes fully populated array (C=1), contiguous uniform array
of N = 2 (C=2), non-contiguous uniform array of N = 3 (C=3), contiguous
non-uniform array of @ =9 (C—=4), and finally contiguous non-uniform array of

Q =12 (C=5).
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Figure 6.11: Performance Analysis - Percentage of random DoA sets belonging
to each range of RMSEs - (M =24, N ={1,2, 3,4}, d=0.5\, L=3, K =181
and S = 100 random DoA Sets) - average RMSEs among 7" = 100 random
BPSK signals for (a) SNR =0 [dB], (b) SNR =10 [dB|, (¢c) SNR = 20 [dB],
and (d) SNR = Noiseless |dB|.

Figure 6.11 shows the percentage of number DoA sets belonging to each of de-
fined category of RM S E range among 100 Monte-Carlo simulations (i.e., 100 ran-
domly generated BPSK signals) for different SNRs, SNR = {0, 10, 20, Noiseless}
[dB]. It is clearly evident that the estimation for all the configurations are “Bad”
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Figure 6.12: Performance Analysis - Performance analysis with analytic and
simulated data for 3 best selected configurations - (M = 24, N = {1, 2, 3},
d=0.5\L=3,60={-10,5, 13} [deg] SNR = {-20, .., 0, .., Noiseless} [dB],
and K = 181) - average RMSEs among W = 100 Noise realizations.

(in the range, RMSE = [10 — 100] [deg|]) when SNR = 0 [dB] as shown in Fig.
6.11 (a). It is worth pointing out that the exact estimation for the number of
percentage of DoA sets are increased with the increase of SN Rs as shown in Fig.
6.11 (b)-(d). Although, the performance of fully populated array is higher for all
the SN Rs, the configurations C=3 and C=5 are promising.

Finally, the performance of the proposed method for the promising configura-
tions found in previous analysis namely C=1, C=3, and C=5 are analyzed with
the data collected from a commercially available FM simulator and compared
with the numerically generated data. Figure 6.12 shows the average RMSFE
among 100 Monte-Carlo simulations for different SN Rs. It is worth pointing
out that the results with the analytic and EM simulators data are approximately
equal for each configuration. Another important observation is that the config-
uration C=5 outperforms for § = {—10, 5, 13} [deg].
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6.4 Analysis With Planar Sub-Arrayed Array

As for the preliminary analysis, both ST — BC'S and MT — BC'S are applied in
planar sub-arrayed array. In order to analyze the performance of BC'S — based
estimator, the error metric defined in [79] is considered. Let us assume a planar
array consists of M x N = 36 elements with d = d, = d, = 0.5\ as shown in Fig.
6.13. For the purpose of sub-arraying, let the M x N elements are grouped into
() subarrays where the number of elements P, for each sub-array is the same in
the case of uniform sub-arraying and F, is not equal for non-uniform case.
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00 0.5

I RN

cocees

5 /A

[EEN
o
=
a1
N
o
N

Figure 6.13: Sketch Planar Array - Sketch of the planar sub-arrayed array with
N =1.

In order to estimate the performance of BC'S based methods, let us con-
sider L = {1, 2, 3} signals are impinging on a planar array of different sub-array
configurations as shown in Fig. 6.14 from the directions (6;, ¢;) = {(20, 40)}
[deg] when L = 1, (6;, ¢) = {(20, 40), (45, 150)} [deg|] when L = 2, and
(01, &) = {(20, 40), (45, 150), (60, 240)} [deg] when L = 3. The sub-array con-
figurations in Fig. 6.14 are created manually in order to analyze the behaviour
of the proposed methods. The impinging signals are randomly generated BPSK
signals and characterized by SNR = {0, 10, ..., Noiseless} [dB].
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Figure 6.14: Sub-Array Configurations - Considered planar sub-arrayed array
configurations.
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The average RMSE among 100 Monte-Carlo simulations for different noisy
scenarios are plotted in Fig. 6.15.
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Figure 6.15: Performance Analysis - Performance analysis of ST — BCS
(left collumn ) and MT — BCS (left collumn ) - (M x N = 36, SNR =
{0, 10, ..., Noiseless} [dB] L = {1,2,3}, W =1 (ST — BCS) and W = 10
(MT — BCS)) - Average RMSE among T = 100 Monte-Carlo simulations.
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The performance in-terms of average RM SFE for different sub-arrays are con-
cluded as follows:

e as expected, MT — BCS outperforms ST — BC'S;

e overall, the configuration C' = 8 outperforms irrespective of methods, num-
ber of signals, and SN Rs;

e when L = 2, the configuration C' = 6 seems promising;

e the performance of BC'S for all the non-uniform cases are better than all
contiguous uniform cases.

Since the configurations C' = 6 and C' = 8 are promising, the performance of
C =6 and C = 8 is compared with the fully populated array in Fig. 6.16.
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Figure 6.16: Performance Comparison - Fully populated versus sub-arrayed array
of C =6and C =8 (M x N =36, SNR = {0, 10, ..., Noiseless} [dB] L = 3,
W =1 (ST — BCS) and W = 10 (MT — BCS)) - Average RMSE among
T = 100 Monte-Carlo simulations.
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Chapter 7
TVCS in DoA Estimation

In this chapter, an innovative applications of DoAs estimation is addressed in
the C'S framework. More specifically, the estimation of closely-spaced DoAs or
clutter is addressed using the deterministic version C'S named total-variation
CS (TV — CS), where the sparsity of the unknown is exploited in the gradient
domain.
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7.1. INTRODUCTION

7.1 Introduction

The knowledge of the directions of the incoming signals or clutters is always
advantageous for many applications as it allows the system to focus towards the
directions of interest in order to enhance the system’s sensitivity and to suppress
the interference. In many classical and modern radars, the characterization of the
clutter including its direction and size is a major functional requirement [111].
In communication, identification of clutter is necessary to suppress multi-path
propagation and it is also sometimes used to mitigate the impacts of clutter itself
[112, 113].

In general, the estimation of direction of clutter (DoC') is often associated as
an estimation of closely spaced direction of arrivals (DoAs) in the sense that the
clutter itself is the combination of many closely spaced sources. This point of
reasoning is often adopted in order to estimate the clutter or closely separated
DoAs with the classical estimators. However, the resolution of the classical
estimators for closely spaced DoAs are limited by the physics of the problem: a
massive number of antennas are required to have a very narrow beam width in
order to separate the signals having narrower angular separation.

The estimation of closely spaced DoAs is challenging and most of the tradi-
tional estimators failed miserably due to the physical constraint of the problem
itself. Liu et al. [114] adopted a modified M USTC-like subspace based estimator
to address the problem in hand. The performances of other subspace-based esti-
mators are compared in [115]. Tt is worth pointing out that the performance of
subspace based estimators are generally limited as it is computationally demand-
ing (i.e., required many snapshots data) and not suitable nowadays for many
applications. In this context, the modern estimators based on the CS frame-
work plays an important role: less computational burden yet robust [81, 117].
Because of its computational efficiency and the robustness in the accuracy, CS
based methodologies have been successfully applied in many applied electro-
magnetic (E'M) fields of engineering [67] including EM scattering [72], medical
imaging [73], ground penetrating radar imaging [74], and antenna array synthesis
[118].

In this context, Total-Variation (T'V') approach is the most potential method
[119]. However, [119] is based on L1-SVD and is still subject to the multiple
snapshot data in order to have a reliable estimation. In this case, the clutter or
closely spaced DoAs can be considered as a piece-wise constant and the sparsity
is exploited in the gradient domain. Finally, TV — C'S is adopted to efficiently
estimates the closely spaced DoAs with single snapshot data.
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7.2 Mathematical Formulations

Let us consider a clutter occupied ¢ space and its center is located at v |deg]
in the far-field of a linear array of M elements uniformly separated of spacing
d along x-axis at positions x,, as shown in Fig. 7.1 (a). In order to simplify
problem, assume that the clutter itself is a source of L closely spaced signals with
inter-source spacing of A [deg|. Since the clutter is in the far-field, the sources
are impinging as a plane wave from 6;, [ = 1, ..., L directions. Therefore, the
open-circuit voltages measured at the terminal of each element is mathematically
defined in (3.8). With referring to (3.8), the dimension of each parameter is
therefore:

T Mx1.
data vector, v = [vy, vg, ..., vy € CM>*1;

e signal vector, s = [sy, So, ..., s7]" € CE¥1;

e steering vector, a (6;) = [effrisinfi - eifrasiny ejBstmel}T € CMx1,
e steering matrix, A (0) =[a(0;,),a(6s),...,a(0;)] € CM*E,

e noise vector, B = [y, 7o, ..., )" € CM*1,

To apply the BC'S approach, the visible angular range is discretized with K > L
samples as shown in Fig. 7.1 (b) such that A (5) € CM*K in and the DoAs

of the incoming signals are assumed to belong to the set of the K directions
Or, k =1,..., K. Now, the estimation problem turns out to be that of recover-
ing the sparse signal vector § € CX*! in correspondence with the user-defined

K-sampling of the angular range, 6 = [51, ..,5[(]. The dimension of of each

parameter is therefore:

T Mx1.
data vector, v = [vy, vg, ..., vy € CM*1;

. T
e signal vector, s = [s1, Sy, ..., s1]” € CI*L;

~ ~ - 4T
e steering vector, a <9l) = [ejﬁxlsmel, eIBw2sindy ...,ejBstmel} € CMx1,
e steering matrix, A <§> = [a (51) ,a (@;) sy @ (5;()} € CMxK
e noise vector, B = [y, 7o, ..., )" € CM*1.
However, because of the nature of the problem, the reference problem [Fig. 7.1
(a)] itself is not sparse. It is worth pointing out that, the unknown signal vector

s € CK*! is a piece-wise constant function in the gradient domain and the
gradient of the s is defined as:
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Figure 7.1: Sketch of the Scenario - Clutter as many closely spaced DoAs and

linear array arrangement.

Véz{Vékzék_1—§k; k’:l, ceey K} (71)
turns out to be non-zero only for the indexes k that belongs to the actual
The vector Vs is thus a sparse vector which

sources occupying the clutter.
enables the use of TV — C'S strategy for finding the problem solution.
Therefore, the estimation problem of (3.8) can be reformulated in TV — C'S

framework as
(7.2)

sTV=C5 = arg [mjn (HVéHp + g”Aé — VH2>] st.8>0
2) operator. The first term of (7.2) is

where | . |, is the (2*—norm (p
the TV — C'S regularization term and in our case, it is isotropic. The isotropic

regularization is often adopted for the signals which have sharp discontinuity
(e.g., fewer zig-zag object boundaries in the case of image). In addition, the
second term is commonly referred to as the fidelity term where p > 0 is the

penalty parameter.
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In order to solve (7.2), guidelines given in [72, 118] are adopted. First, (7.1)
is written in equivalent problem with the auxiliary variable y as follows:

x = min||Vx||, subject to x =VS§ and V = As (7.3)
X

where x = {xx, k=1, ..., K'}. Then the following augmented Lagrangian
function is minimized with respect to s, x, p, ¥

. L _ B.ie. . T
IIXIIp—pT(VS—X)—'YT(AS—V)+§I|VS—XI|§+§||AS—VII§ (7.4)

where p and ~ are the Lagrangian multiplier vectors and  and p are the
penalty terms. The two penalty terms must be calibrated carefully in order to
have reliable estimation.
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7.3 Calibration of Penalty Parameters

The calibration of these two parameters must be done including all possible
scenarios of a particular problem. For the problem in hand, these two parameters
are optimized for the following scenarios:

e varying the number of sectors, S = {1, 2, 3};
e varying the sectors width, § = {11, 21, 31, 41, 51} [deg];
e varying the SNRs, SNR = {Noiseless, 20, 10, 5} [dB|.

For each of the above scenario, the following parameters are fixed:

‘ Fixed Parameters Value ‘

Variable Symbol | Value | Unit
Number of elements M 20
Inter-element spacing d 0.5\ | [m]
Inter-source spacing Af 1 [deg]
Number of angular samples K 181
Number of snapshots %4 1
Number of Trials T 100

The root mean square errors RMSFEs of all test scenarios are then averaged
for each combination of § and p. The computed average RMSFE for each com-
bination of # and p are shown in Fig. 7.2. The minimum “Average RMSE” is
computed for n =2 (z = 1) and 5 = 64 (y = 6) as shown in Fig 7.2 (indicated
by the black square box).

Calibration Parameter : p= 25; p=2Y

110
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12 100
11 9
10 =
9 80 3
8 70 @
> 7 E
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4 z
3 40
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1
20

123 45 6 7 8 910111213
X

Figure 7.2: TV-CS Calibration - Calibration of penalty parameters n and (.
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In order to show the impacts of n and  on the performance of estimation,
the average RMSE over all the test cases are shown in Fig. 7.3 (a) for different
n and Fig. 7.3 (b) for different 8. It is evident that the RMSE for SNR = 10
|[dB] dominates in the minimum “Average RMSE".

Calibration Parameter : pu = 2% B=64
140 B, - |

120

ooy L

________

RMSE [deg]

1 2 3 4 5 6 7 8 9 10 11 12 13
X [arbitrary unit]

SNR = Noiseless SNR =10 [dB] =
SNR =20 [dB] - SNR =5 [dB] @

(a)

Calibration Parameter : p = 2; B =2%

140

120 -

100 |

80

60

RMSE [deg]

40 4 8

20 +

1 2 3 4 5 6 7 8 9 10 11 12 13
X [arbitrary unit]

SNR = Noiseless —+— SNR =10 [dB] -
SNR =20 [dB] - SNR =5 [dB] e

(b)

Figure 7.3: Performance Analysis - Impacts of penalty parameters on the esti-
mation of DoA - (a) impacts of n for fixed § and (b) impacts of § for fixed 7.
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7.4 Numerical Validation

In order to validate the performance of TV —(C'S, three different types off clutters
have been considered for analysis with ST — BC'S and TV — C'S. The first case
considers S = 1 clutter which consists of 6 = 11 [deg| clutter width with Af =1
[deg] (i.e., L = 11) and is coming from ¥ = 15 [deg|. The second case considers
S = 1 clutter which consists of § = 41 [deg| clutter width with Af = 1 [deg]
(i.e., L = 41) and is coming from ¥ = 0 [deg|. The third case considers S = 2
clutters which consists of § = 11 [deg| clutter width with Af = 1 [deg] for each
clutter (i.e., L = 22) and is coming from ¥ = {27, 35} [deg].

Figure 7.4 shows the best estimated DoAs among T = 100 Monte-Carlo
simulations for M = 20, d = 0.5\, SNR = Noiseless [dB]), and K = 181. It
is evident that the T'V — C'S outperforms ST — BC'S for all the three cases.
However, as expected, ST — BC'S is unable to estimate the closely spaced DoAs.
The estimated DoAs are and the average RMSE for each of the test case are
reported in Tab. 7.1. The statistics of the performance of TV — C'S for closely
spaced DoAs among T" = 100 Monte-Carlo simulations verify that the TV — CS
is the promising method.

Table 7.1: Numerical Validation - Best estimated direction of clutter (M = 20,
d = 0.5\, SNR = Noiseless [dB|, and K = 181) among T = 100 trials.

| Fig. 7.4 | 0 [deg] | 05T -BCS [deg] | RMSE [deg] |
(a) [10 : 20] {12, 15, 18, 22} 157.99
(b) [10 : 20] [10 : 20] 0.00
(c) [—20 : 20] {—19,-12, 11, —6, 1, 7, 18} 167.95
(d) [—20 : 20] [—21 : 20] 0.618
(e) | [-32:—22]U[30:40] | {—28, —26, —19} U {26, 31, 36} | 162.74
(f) | =32 —22]U[30 : 40] (321 —22] U [30 : 40] 0.00
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Figure 7.4: Numerical Validation - Best estimated direction of clutter (M = 20,
d = 0.5\, SNR = Noiseless |[dB], and K = 181) among T = 100 trials -
(a)(c)(e)ST — BCS (b)(d)(f) versus TV — CS.
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7.5 Performance Analysis

An extensive analysis is done in order to further verify the potentialities of the
TV — CS method for estimating closely spaced DoAs or clutter. First of all, the
impact of the positions of the clutter (fixed width of § = 11 [deg]) is analyzed
where the clutters are coming from Broadside (e.g., ¥ = 0 [deg]), Intermediate
(e.g., ¥ = 45 [deg]), and End-fire (e.g., ¥ = 85|deg|) directions. The data
received at M = 20 elements with equal spacing of d = 0.5\ are characterized
by SNR = [10 : Noiseless| [dB].

The statistics of the performance in-terms of minimum, maximum, and av-
erage RMSFE among T = 100 trials are shown in Fig. 7.5. It is evident that
the performance of TV — C'S for any positions except end-fire is approximately
equal. In addition, the DoAs are perfectly reconstructed (average RMSE = 0
[deg]) for the broadside and the intermediate case when SNR = 20 [dB].

Min: Broadside = 7
Min: Intermediate = = = -
Min: Endfire = = = =

Max: Broadside =——— |

Max: Intermediate = ===

Max: Endfire === =

Avg: Broadside =———

Avg: Intermediate ===-

Avg: Endfire = ===

RMSE [deg]

-10 0 10 20 30 40 50 Noiseless
SNRs [dB]

Figure 7.5: Performance analysis - Impacts of position of the clutter for different
noisy conditions (M = 20, d = 0.5\, S =1, 6 = 11 [deg|, ¥ = {0, 45, 85}|deg|
SNR =110 : Noiseless| |dB|, K =181, and T' = 100). ,

The impacts of clutter width is analyzed next for fixed clutter position ¥ = 45
[deg|] and noise characteristics SNR = 10 [dB]. The statistics of the performance
clearly indicate that the minimum, maximum, and average RM SFE are increased
as the width of the clutter increased as shown in Fig. 7.6.

The impacts of the number of clutters for fixed 6 = 11 [deg|] and SNR = 10
[dB] is shown in Fig. 7.7. The statistics of the performance clearly indicate that
the minimum, maximum, and average RMSE are increased as the width of the
clutter increased as shown in Fig. 7.7. By analyzing Fig. 7.6 and Fig. 7.7, the
impacts of the number of clutters are relatively higher than the width of the
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clutter. This is expected because the number sparsity level is decreased when
number of clutters increased.
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Figure 7.6: Performance analysis - Impacts of the clutter widths (M = 20,
d=05\S=1,0 =[10 : 50] [deg|], ¥ = 45 [deg] ,SNR = 10 [dB|, K = 181,
and T = 100).
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Figure 7.7: Performance analysis - Impacts of the number of clutters (M = 20,
d=0.5\ S=1[1,: 4], =11 |deg|, ¥ = {—45, —20, 30, 55} [deg|] ,SNR = 10
[dB], K =181, and T = 100).

Finally, the impacts of the number of elements for different noisy conditions
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are analyzed. It is worth pointing out that the performance of the estimations
are improved as the number of elements increased as shown in Fig. 7.8.

Noiseless
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g
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B 1ot
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& 2
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50
SNRs, [dB]
MintM=12 —— Max: M =12 —— Avg:M =12 ——
Min: M = 16 Max: M =16 - - - - Avg: M =16 - - -~
Min:M=20 - —--- Max:M =20 -—--- Avg: M =20 -—---

Figure 7.8: Performance analysis - Impacts of the number of elements (M =
{12, 16, 20}, d = 0.5\, S = 1, 6 = 11 [deg|, ¥ = 45 [deg|] ,SNR = 10 [dB],

K =181, and T = 100).
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Chapter 8

Conclusions and Final Remarks

In this chapter, the important observations about the proposed methods and
their performances for various applications have been concluded. In addition of
concluding remarks, a scope of future research has been listed.
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In this thesis, sparse processing of signals for DoAs estimation has exten-
sively analyzed in the framework of Compressive Sensing (C'S). In particular,
DoA estimation problem for different sources, systems, and applications have
been formulated in the C'S paradigm. In addition, the fundamental conditions
related to the “Sparsity” and “Linearity” have been carefully exploited in order
to apply confidently the C'S—based methodologies. Moreover, innovative strate-
gies based on the C'S estimator for various systems and applications have been
developed, validated numerically, and analyzed extensively for different scenar-
ios considered in the literature of DoA estimation problem including signal to
noise ratio, mutual coupling, polarization loss and so on. In order to analyze the
performance of the proposed estimators, a standard metric called root-mean-
square error (RMSE) has been defined. The more realistic data from EM
simulators have also been considered to validate the potentialities of the pro-
posed approaches. In order to guarantee the reliability of the estimators, the
performance in terms of RMSFE have been analyzed with respect to different
degrees-of-freedom (DoF's) of DoA estimation problem including number of el-
ements, number of signals, and randomly generated signals. In nutshell, the
contribution of this thesis is the development of computationally efficient, reli-
able, and robust C'S—based estimators. Therefore, the proposed methods can
be applied in systems having different geometries, in real time applications, and
for narrow-band or wideband signals. The outcomes of this thesis are concluded
as follows:

e Chapter 2 - the state-of-the-art DoAs estimation problem has been re-
viewed;

e Chapter 3 - the general DoAs estimation problem is formulated including
electromagnetic properties like mutual coupling and polarization loss. Then
the state-of-the-art C'S formulation for solving DoAs estimation problem
have been described;

e Chapter J - the performance of state-of-the-art ST — BCS method has
been improved significantly with the proposed IMSA — BCS strategy,
where the inherent parameter of BC'S related to noise variances have been
smartly exploited in order to refine the ARol and then iterative estimates
the DoAs. The method has been validated with the data collected from
EM simulator and also compared with the SoA methods. It has been
shown that the IMSA — BC'S outperformed the classical estimator even
with a single snapshot data and thus appropriate for real time applications;

e Chapter 5 - the performance of state-of-the-art MT — BCS method has
been improved significantly with the proposed M F — BC'S strategy, where
the signal’s inherent properties (e.g., frequencies) have been exploited in or-
der to correlate the BC'S solutions over different frequency samples. Based
on the time-frequency configurations, two MF — BCS methods named
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MFSS — BCS and MFMS — BCS have been proposed. It has been
shown that these methods are able to estimate also the bandwidth of the
incoming signals thus appropriate for cognitive radar;

e Chapter 6 - the state-of-the-art ST — BCS and MT — BCS methods
have been analyzed for different linear and planar sub-array geometries.
It has been shown that some sub-array geometries performed same as the
fully populated array. This interesting outcome opened a scope for future
research in the cost effective system design for DoAs estimation;

e Chapter 7 - the state-of-the-art T'V — C'S approach has been adapted for
an innovative application. The TV CS penalty parameters are optimized
for different M scenarios. It has been shown that the proposed approach
is able to correctly estimate the considered clutters when for a reasonable

SN Rs.
The future research can be listed as follows:

e analysis of the performance of the proposed methods for unconventional
arrays like con-formal array;

e analysis of the performance of the proposed methods for sparse arrays like
random array and co-prime array;

e research on optimizing the best sub-array configurations for maximizing
the performance of estimation;

e research on differential DoA estimation method.
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