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Abstract: This study aims to evaluate the difference in thermal behavior among paints with the
presence of traditional and NIR pigments by means of a simple and cheap laboratory-scale test.
Considering these goals, the thermal and esthetical properties of two different cool coatings were
assessed, highlighting their positive and limited aspects. Two different complex near-infrared
inorganic reflective (NIR) pigments with yellow and black respectably colors were mixed in an acrylic
waterborne copolymer binder. The paint formulations were applied on steel panels. The thermal
performance of the coatings was investigated in the NIR-region of the light spectrum by exposing the
samples to an IR-lamp. The outer and inner surface temperatures of the painted panels were recorded
using thermocouples and an IR camera. The samples were aged by artificial UV-B light exposure.
Color and specular gloss changes at different exposure times were evaluated. The behavior of the
cool coatings was compared with that of conventional coatings with similar color characteristics.
The black cool coating achieved a maximum temperature decrease, compared to the conventional
black one, of approximately 12 ◦C. The stability for the cool coatings was very similar to that of the
conventional coating, indicating that black pigment could be a potential candidate for cool-coating
applications. The yellow cool coatings did not show a significant decrease in temperature compared
to the conventional paint. The gloss and color changes resulted as influenced by the types and amount
of pigments.

Keywords: complex NIR-reflective pigments; artificial UV-B radiation; cool coatings; thermal
properties; color

1. Introduction

Following the global increase of population, the urbanization and expansion of cities increased with
unprecedented speed throughout the last century [1]. Consequently, the modification of landmasses
gave rise to the so-called Urban-heat island effect (UHI effect) [2,3]. Upon replacing natural material
with building materials, an increase of absorbed irradiated solar light was observed in these regions,
which caused a relevant rise in temperatures [3–6]. Literature studies reported that the UHI effect
contributes to temperature increments that may exceed several degrees Celsius when compared to
the adjacent rural environment [7]. As a direct consequence, an increase in usage of cooling devices,
such as air conditioning, was observed in these areas, contributing to a rise of emission produced
by fossil fuel use [8]. In addition, previous studies showed that the UHI effect might cause severe
health risks in major cities that already experience high peak temperatures during summer due to their
geographical location [9].
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The sun radiation is commonly divided into several different regions depending on the energy
of the electromagnetic wave. The VIS portion of light (380–780 nm) contains approximately 44% of
the total solar energy. The optical property of a material in the VIS part of light determines its color
characteristics. Nearly 50% of the total solar energy is radiated in the near-infrared (NIR) fraction of
light (780–2500 nm) [10]. The optical properties in this region do not alter the color features of surfaces
but have a strong impact on their thermal property [11,12].

The effect of buildings’ presence on urban temperature has been exhaustively illustrated by
Santamouris and coworkers [6,13–16], in particular in the Greek region [3,17]. Cool roofs and cool
pavements could represent one of the most interesting solutions [6,14,16,18] to tackle the UHI effect.

The rising energy costs and the increasing energy consumption observed due to the UHI effect,
along with increased environmental awareness, have led to the development of new materials that
lower the heat accumulation in buildings [19]. In this context, a cool roof in the form of ceiling tiles and
other roofing materials were considered [13]. Painted steel and aluminum sheets are often used in roof
construction in order to reduce building construction time and to save cost. The application of cool
coating represents a readily studied approach to mitigate the UHI effect [6]. Compared to conventional
coatings, this system exhibits a high reflection of incoming NIR light, which leads to a reduction of
surface temperature compared to conventional coatings, without altering the color characteristics
of the structure [20–22]. This result can be achieved by employing NIR reflective pigments in the
coating. NIR pigments are colored pigments which do not have electronic transitions for wavelengths
>700 nm and, therefore, reflect the wavelengths in the infrared region. For this reason, the NIR
reflective pigments containing coating represents a passive cooling system that does not require energy
to operate.

Most of the studies devoted to cool roof materials investigate the VIS-IR reflective properties of the
coatings using the spectrophotometer and the solar reflectometer [10–13,19,20,23]. This methodology
is recognized to provide useful information on coating behavior. However, this approach is limited
since it is not able to simulate a real system, which consists of a coating applied on a metallic substrate,
as it does not consider the transmission of heat through the panel. In addition, the connection between
the IR reflectivity of a surface and its actual tendency to heat up upon exposure to an IR light source is
not straightforward.

The thermal behavior of cool coatings is generally assessed employing new samples without
taking into account the possible influence of the deterioration of the coating due to aging of the
polymeric matrix and/or of the pigments. As a matter of fact, the service life of cool coatings for exterior
surfaces of buildings could be limited due to weathering effects [23]. An important factor that may
influence the esthetical, mechanical and thermal properties of cool coatings is the degradation of the
layer due to the absorption of incoming UV-B radiation (280–315 nm) [24]. Incoming UV-B light may
be absorbed by the coating material, leading to photooxidative reactions, which could give rise to
significant degradation of the binding material or pigments inside the coating. As a result, both the
esthetic and mechanical features of the coatings are compromised. Furthermore, the alteration of the
chemical characteristics of the coatings due to individuate if UV-B absorption may affect the thermal
properties, as well. For roof coatings application, it is necessary to design cool coatings that achieve low
susceptibility towards UV-B radiation. Therefore, it is important to assess the thermal and esthetical
properties of the cool coating as a function of UV-B exposure in order to ensure the product achieves a
satisfactory service life. Lastly, it is important to study an effective procedure to analyze these aspects
in small lab-scale environments prior to large-scale, in order to estimate the coating’s performance in a
feasible and accessible way.

The purpose of this work is twofold. The first target is the development and validation of a simple
and inexpensive test method to evaluate the thermal behavior of roof coatings. The second aim of the
work deals with the assessment of whether the influence of aging can lead to significant changes in
the thermal behavior of the roof coatings. In fact, outdoor exposure could promote a decrease in the
efficiency of the roof coating, thus affecting its service life.
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The innovative aspect of this work is the development of a very easy and economical lab-scale
method for assessing variation of thermal efficiency and esthetical parameters of cool coatings as a
function of exposure to artificial UV-B radiation. A previous study [25,26] aimed to assess the potential
of this simple methodology as a reliable alternative to the most used tests [10–13,19,20,23].

With the limit of the house simulacrum, the use of the small house in this work appears to be
a simple method that provides useful data and allows to discriminate the thermal properties of the
different paints. The data collection involves a simple contact temperature gauge of very limited cost,
a house simulacrum and an IR lamp, typically employed in the field of gardening or breeding of small
animals, with a cost of a few tens of euros. Regarding the geometry of the samples, the final use of the
paint or the geometry of the building, it is also possible to easily modify the simulacrum geometry
with very limited costs. Including the building materials for the simulacrum, the temperature sensors
and the data recording system, the total cost was less than 700 euros. As a comparison, the cost of
a reflectometer is higher than 60,000 euros. In a previous work [25], a simulacrum with a flat roof
was used to make the experimental data collection easier. However, a simulacrum with the painted
panels placed at a certain angle more realistically simulates the roof of most buildings. For this reason,
in the present work, the house simulacrum geometry was modified. Despite the totally isolated
house, without thermal transfer between walls, windows and doors, does not represent a real system,
the studied setup allows to exclude external interference on the value of the measured temperatures.
This perhaps represents one of the limits of this experimental approach, which, however, enables the
evaluation of the behavior of the sample without external influences. A possible implementation of the
system could be the execution of windows, simulating vents of the lab-scale model. However, in this
case, the system would become more complicated as the transmission of heat through these openings
should be considered. Another possible critical aspect is the fact that the measurements are carried out
indoor, at room temperature: this represents a very different situation compared to the behavior of a
building that is susceptible to the great variability of the ambient temperature. However, the system
can be easily moved outside a building for outdoor measurements.

To validate the test methodology in the first work [25] industrially produced painted panels with
fixed pigments quantity were used. Thus, a complete evaluation of the NIR reflectance efficiency of
the pigments and the identification of their effective concentration was not possible.

In this study, each of two different NIR reflective pigments was mixed together with a polyacrylic
binding material to obtain cool paints. The NIR reflective inorganic pigment amount for both cool
coatings was varied between 1, 3 and 5 wt.% to determine how the pigment concentration affects the
thermal features of the system.

Small model houses with roof panels coated with cool paint formulations were subjected to
artificial NIR-light. The variation of thermal efficiency, gloss, color and coating degradation were
analyzed as a function of time exposed to artificial UV-B light. UV-A and UV-B radiation exposition is
a common method to simulate the natural weathering of organic coatings [13,21,27]. Possible critical
aspects could be encountered. The UV component of solar radiation is one of the elements which
contributes to the natural weathering of paints. In fact, UV-B and UV-A radiations are only portions of
the solar spectrum. Moreover, humidity and other factors can influence the degradation of organic
coatings and polymeric materials. Furthermore, no correlation was found between exposure to UV
radiation and natural weathering. This aspect is also connected to the variation of natural degradation
from area-to-area and from period to period. Therefore, natural degradation cannot be finely simulated,
except by exposing the materials at the worksite. However, outdoor exposure would entail very long
times, of many years, and it would provide results related only to the precise location of the exposure.
The laboratory accelerated UV-B, and UV-A radiation exposure represents a well-established and
widely used procedure to evaluate the degradation of polymeric materials, as demonstrated by a large
number of references present in the literature [28–42]. Among the different accelerated tests, this work
employed a UV-B radiation cabinet, which is able to promote the photochemical degradation of the
coating (matrix and pigments). UV-B radiation is recognized to strongly affect the durability of organic
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coatings in relatively short times. UV-B-humidity cycles were not considered because the adhesion
between coatings and the substrate is not the aim of this work; in addition, the possible formation of
blisters and water accumulations could interfere with the interpretation of the thermal behavior data.
Following ASTM G154 [43], 480 h of exposure were carried out, as considered to mimic the natural
changes in pigmented paints. Clearly, other material durability tests require much longer exposure
time [13]. However, for the aim of this research, this time could be considered sufficient to get the first
information about color and gloss changes.

2. Materials and Methods

2.1. Materials

In this study, commercially available NIR reflective inorganic pigments were considered.
These pigments do not absorb light in the near-infrared region. Thanks to their specific composition,
energy transitions do not occur when exposed to near-infrared light (wavelength > 700 nm).
Thus, the NIR wavelengths are not absorbed but refracted, reflected and scattered, leading to
diffuse reflection of NIR light [44]. The complex NIR reflective inorganic pigments used in this study
were: (1) a black pigment based on chrome iron hematite (PS 24-10466, supplied by Ferro Company,
Almassora, Spain) and (2) a yellow pigment based on a chrome antimony titanium buff rutile structure
(PS 10406, supplied by Ferro Company, Almassora, Spain). The composition and the structural features
of the NIR reflective pigments declared by the supplier were checked by X-ray diffraction analyses
(XRD). The black pigment exhibited the characteristic peaks of two phases: Cr1.3Fe0.7O3 in spinal
structure and Cr2O3 in eskolaite structure. The yellow pigment consisted of a two-phases system
containing a high amount of pure TiO2 in the rutile phase and a smaller concentration of (Ti,Cr,Sb)O2

with an unclear structural phase. The XRD data were found to be consistent with the data reported
in the technical datasheets of the commercial pigments provided by the supplier [45]. According to
the composition of the investigated pigments, the literature reports that: (1) the chrome iron hematite
structure provides a NIR reflectance over white of about 0.23–0.40 when incorporated in an organic
coating; while (2) the chrome antimony titanium buff rutile provides a NIR reflectance over white of
about 0.80–0.86 when incorporated in an organic coating [46].

The morphology and color of the pigments are shown in Figure 1. The scanning electron microscopy
(SEM) images (secondary electron detector, SE) were obtained from an SEM (JEOL IT 300, Akishima,
Tokyo, Japan).

The acrylic copolymer used as binding material was a pigment-free transparent paint (Aqualack,
Alpina Italia, Vermezzo, MI, Italy). The FT-IR spectrum of the binder (free of any pigment inside)
was collected to confirm the chemistry claimed by the supplier (it is uploaded with the correlation of
characteristic peaks as additional material). The colored standard acrylic copolymer paints (which
contain conventional, not NIR reflective pigments) used for comparison purposes in this project were
purchased from MaxMeyer (Porcari, LU, Italy): NCS-S 2070Y20R yellow paint and NCS-S 8500 N black
paint [47].

An acrylic clearcoat was selected due to the good weathering resistance of such a kind of resin.
A pigment-free paint was employed in order to better highlight the effect of the sole NIR pigment on
the thermal properties of the coatings. For comparison purposes with the NIR pigmented samples,
a commercial conventional pigmented acrylic paint based with comparable RAL was employed.

The coatings were applied on steel panels (152 mm × 75 mm × 0.1 mm) purchased from Q-Lab
(Westlake, OH, USA). A conventional white paint containing TiO2 (MaxMeyer, Porcari, LU, Italy) was
applied as a primer on the metal substrate prior to top coating application.
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pigment. SEM images of (c) black NIR-reflective pigment (d) yellow NIR-reflective pigment.

2.2. Paint Formulation

Initially, 1, 3 and 5 wt.% of each NIR-reflective pigment type were individually mixed in a
beaker containing the transparent acrylic paint. The mixture was stirred in a motor-driven blade
mixer (IKA® RW 20 digital, Staufen, Germany) for 1 h with a rotational speed of 550 rounds per
minute (rpm). Subsequently, the paints were ultrasonicated (Hielscher ultrasound technology UP400S,
Teltow, Germany) for 10 min using 70% amplitude and one cycle mode. During the mixture step,
a large amount of unwanted air was admixed into the paint, resulting in the possible formation of air
bubbles. To prevent the risk of air trapping inside the coatings, the paints were sealed and stored at
room temperature for 12 h. Prior to coatings application, the metal substrates were sandblasted and
cleaned with acetone and demineralized water.

2.3. Paint Application

A schematic representation of the application of the developed paints on the steel substrate is
shown in Figure 2. The paints were sprayed on the treated metal substrates using a spray gun and N2

as pressure gas. The white primer paint was initially spray-deposited on the metal substrate and dried
at room temperature for 24 h. The presence of the white primer of equal thickness for all the samples
allows discriminating the behavior of the top layers, considering the type and quantity of pigments.

After the base paint coating had dried, the formed cool and conventional paints were sprayed on
top of the base paint and dried at room temperature for 8 h. The coated samples were then stored
at room temperature. A thickness greater than 30 microns of the top layer was chosen to completely
cover the primer due to the lower covering power of this formulation.

The thicknesses of the primer and top coatings, summarized in Table 1, were measured by means
of a digital thickness gauge (Phynix Surfix, Neuss, Germany). Comparing the thickness of the samples,
the coatings with 1% exhibited higher values.
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Table 1. Dry film thickness of each coating.

Top Coating Color Sample Top Coating (µm) White Primer (µm)

Yellow

1 wt.% cool coating 54.0 ± 12.3 29.4 ± 3.1
3 wt.% cool coating 39.5 ± 3.4 25.2 ± 1.7
5 wt.% cool coating 38.3 ± 6.4 35.3 ± 4.6

Conventional coating 37.4 ± 2.2 25.3 ± 1.7

Black

1 wt.% cool coating 69.7 ± 13.0 38.4 ± 8.7
3 wt.% cool coating 37.1 ± 5.3 27.7 ± 2.9
5 wt.% cool coating 32.8 ± 6.6 25.5 ± 3.4

Conventional coating 31.0 ± 4.3 23.2 ± 6.0

Ten data points were collected for each sample, and the recorded results were represented as
the arithmetic mean of the obtained data points. The dispersion of the data was attributed to the
deposition technique (spray coating), which does not allow optimal control of the amount of paint
deposited on the substrate.

3. Characterization Techniques

3.1. Gloss and Color Samples Analysis

The gloss for each coating was measured using a Picogloss model 503 Erichsen Glossmeter
instrument (Hemer, Germany) at a 60◦ angle. Five data points were collected for each sample in different
areas of the exposed surface to have representative data of the whole coating area. The recorded gloss
values were represented as the arithmetic mean of the obtained data points. The color measurements
were conducted using a CM-2600d spectrophotometer (Konica Minolta, Chiyoda-ku, Tokyo, Japan)
with an observer angle of 10◦ and an opening diameter of 10 mm. These measurements were carried
out in accordance with CIEL*a*b* color space method [48,49]. The CIEL*a*b* color space method is an
approximated system where all apparent colors visible to the human eye are described mathematically
in a 3D color coordination system. The axes represent three different color characteristics (L*, a* and b*).
The L-axis corresponds to the brightness of the paint, L* = 100 represents the white color, and L* = 0
correlates to a totally dark color sensation. The a* and b* chromatic axes represent color opponent
dimensions. The positive a-axis goes from a negative value that corresponds to green color towards a
positive value that is red. Positive b* value represents yellow color, while negative b* value stands for
blue color. The color change of each sample after exposure using the three different coordinates can be
described with one single value (∆E), mathematically expressed as follows:

∆E = (∆a*2 + ∆b*2 + ∆L*2)1/2 (1)

where ∆a*,∆b*,∆L* = a*,b*,L*initial − a*,b*,L*post-exposure. Five measurements were carried out on the
whole surface of the sample in order to have representative data of the whole exposed surface and not
just limited to a small selected area.
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3.2. Thermal Behavior Evaluation

The setup for the thermal evaluation of the coatings is illustrated in Figure 3c.
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The coated samples were applied as roof panels on a small-scale house model with a roof angle of
45◦ (2 panels for each part of the roof). Each sample was exposed under an IR lamp (Philips BR125 IR
150 W, Philips, Eindhoven, The Netherlands) that was placed 20 cm above the roof panels.

The lamp irradiation used does not correspond exactly to the solar spectrum, as the lamps are
focused on IR radiation. They were chosen to evaluate the thermal behavior of the different coatings
containing NIR pigments and to highlight the differences between the samples.

Thermocouples were applied on the rear part of the roof panel substrate. The thermocouples were
connected to a Delta OHM HD 32.7 RTD data-logging instrument (Delta Ohm, Caselle di Selvazzano,
PD, Italy) that recorded and collected temperature data every 60 s. The experimental procedure
continued until the inner surface temperature of the roof panel reached a stable temperature plateau.
The inner roof panel temperature recorded by the thermocouple was represented as the arithmetic
mean temperature of the observed temperature plateau (Figure 3b).

The outer surface temperature of the coatings was recorded using an IR camera (FLIR-T62101,
Flir, Santa Barbara, CA, USA). The IR images were taken at 30 cm in front of the house model setup
and approximately at the same position as the thermocouple, recording the internal temperature of
the metal roof panel. Several IR images for each sample were taken, and the recorded result was
represented as an average (arithmetic mean) value obtained from the recorded images (Figure 3a).
The IR images were taken at the end of each thermal measurements, and the emittance of each coating
sample was estimated to be equal to 0.9. The thermal measurements were collected every 96 h of UV-B
exposure for a total of 480 h.
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3.3. Lab Scale Weathering

The painted samples were exposed in a laboratory UV-B cabinet (UV-Chamber, Erichsen, Hemer,
Germany) to highlight the possible influence of coatings weathering damage on their thermal behavior.

The accelerated UV-B test was carried out in compliance with the ASTM-G154-06 standard using
UV-B 312-EL Hg lamps as the light source. The total exposition time was 480 h because it proved
to be sufficient to provide a relevant color change of the investigated materials and to point out the
difference among the coatings.

Every 96 h of UV-B exposure, the thermal behavior and the changes of gloss and color (also
affected by the different nature and percentage of the pigment in the different coatings) were checked
to investigate the potential correlations among these parameters. Three data points were collected for
each evaluation position, for a total of 15 measurements per sample.

The chemical degradation of the coatings as a function of accelerated UV-B exposure was assessed
using FT-IR spectroscopy in attenuated total reflection (ATR) mode. The analysis was carried out using
a Varian 4100 FT-IR Excalibur series instrument (Santa Clara, CA, USA). A resolution of 1 cm−1 and a
spectrum of wavelength ranging from 600–4000 cm−1 were used.

4. Results and Discussion

4.1. Distribution of Pigments

The dispersion of the pigments inside the acrylic coatings was assessed by means of SEM
observation of the cross-sections of the samples. Figure 4 exhibits an almost homogeneous dispersion
of both yellow and black pigments in the acrylic paint. However, a partial agglomeration of the
pigments seemed to occur since 1–2 µm particles were detected.
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4.2. Thermal Evaluation

Figure 5 shows the achieved inner and outer temperatures for each coated metal sample as a
function of time exposed to UV-B radiation.

First, in all cases, the outer surface temperature result was higher than the inner one. This aspect
was connected with the heat diffusion through the two layers of organic coatings and the thickness
of the substrate. The surface of the sample was irradiated by the lamp and heated. The heat was
then transmitted by conduction to the rear part of the panel (outer surface→ inner surface). Since the
external surface was continuously irradiated and the diffusion of heat was not immediate, a temperature
difference between the two external and internal surfaces was detected. In addition, as illustrated in
Figure 3, the data were collected after the first stabilization of the temperature.

A significant reduction in outer and inner surface temperatures of the metal panels was observed
for the black cool-coated samples compared to the black conventionally coated ones. The recorded
temperature maximum difference was observed for the outer part of the 1 wt.% sample at the
initial state and corresponded to a temperature difference of 12 ◦C compared to the conventional
coating. After 480 h of UV-B exposure, the maximum temperature difference was approximately 10 ◦C
compared to the conventional one and was recorded for the 3 wt.% sample. This aspect may indicate
lower effectiveness of the NIR pigments after UV exposure that may be partially shielded from the
degradation of the matrix. In addition, no significant temperature deviation was detected as a function
of pigment concentration.
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roof panel (a), black coatings inner surface of roof panel (b), yellow coatings outer surface of roof panel
(c), yellow coatings inner surface of roof panel (d).

The temperature profile for each black coating, including the conventional one, did not significantly
change after 480 h of UV-B exposure. Considering that the thermal analysis was conducted in the
NIR section of light and that the conventional coatings achieved a similar color as the cool coatings,
these results suggest that a significant reduction of absorbed light was achieved for the black cool
coatings regardless of the pigment amount.

The yellow cool coatings reached similar temperatures as the conventional system.
However, in observing the temperature profile, a limited decrease in temperature was exhibited
as a function of pigment concentration. The highest difference between the conventional sample and
the samples containing NIR pigments was about 2 ◦C for the sample with 5% pigments. This aspect
implies that a higher pigment wt.% was required for these samples to achieve a more significant
temperature reduction. The temperature of the cool coatings remained similar even after 480 h of
UV-B exposure.

The thickness of the coatings did not appear to had a significant influence. For example,
considering the black samples, the 1% and 3% coatings showed similar thermal behavior (at time 0,
less than 1 ◦C of difference) regardless of the different thickness.

Figures 6 and 7 show the thermal measurements for the black and yellow 5 wt.% cool coatings,
respectively and the conventional one. The IR images represent only one of many images that were
taken for each data point to achieve arithmetic mean temperature value. The temperature plateau of
the inner surface was achieved after approximately 25 min, regardless of coating type or pigment load.
Considering the not-weathered black samples (0 h), a noticeable temperature difference between NIR
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and the conventional coating was observed. This effect was attributed to the nature of the NIR pigment,
which reflected a significant portion of the infrared light. The difference in the plateau temperature
between the conventional and the black cool coatings increased after 480 h of exposure in the UV
chamber. The poorer performance upon UV-B exposure of the conventional coating may be attributed
to the surface modification of the coating in terms of gloss and color, as illustrated below. The presence
of the NIR pigment seemed to prevail over the degradation of the polymeric matrix since the surface of
the 5 wt.% black cool coating was also affected by the UV-B light. In fact, the 5 wt.% black cool coating
showed approximately the same inner temperature after 480 h of exposure in the UV cabinet, while the
standard black coating decreased in IR reflectance after the same accelerated aging treatment.
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The difference between the conventional and the NIR pigment samples was less marked in the
case of the yellow pigment. This behavior may have been due to the difference between black and
yellow colors. The black color tended to increase its temperature more remarkably in comparison to the
yellow one [23,50,51], and therefore it was easier for the black NIR pigment to show its effectiveness.
However, comparing the behavior of the yellow samples, it was also possible to observe a reduction of
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the temperature in the case of the coatings containing the NIR pigments, even if the effect was less
marked. Again, the effect of the weathering on the temperature trend was noticeable.

4.3. Gloss and Color Evaluation

Table 2 summarizes the initial color for each coating sample represented as CIEL*a*b*
color coordinates.

Table 2. Initial color coordinates for each coating sample.

Color Sample
Color Coordinates

L* a* b*

Yellow

1 wt.% cool coating 75.04 ± 0.85 14.01 ± 0.44 69.14 ± 0.63
3 wt.% cool coating 70.77 ± 0.13 21.89 ± 0.24 75.59 ± 0.23
5 wt.% cool coating 69.38 ± 0.14 24.71 ± 0.03 74.22 ± 0.16

Conventional coating 72.96 ± 0.07 25.99 ± 0.19 81.73 ± 0.32

Black

1 wt.% cool coating 18.38 ± 0.43 4.65 ± 0.44 4.52 ± 0.72
3 wt.% cool coating 11.50 ± 0.13 6.72 ± 0.21 5.84 ± 0.17
5 wt.% cool coating 7.85 ± 0.14 8.69 ± 0.34 6.85 ± 0.34

Conventional coating 6.50 ± 0.0 6.29 ± 0.0 4.86 ± 0.10

The samples containing 1 wt.% reflective pigment achieved a slightly lighter color sensation compared
to higher pigment-loaded samples, regardless of the pigment type. The color difference could be easily
detected by the naked eye inspection (the corresponding figure was reported as additional material).

Figure 8a shows the evolution of gloss measured for each coating as a function of UV-B exposure
time. A very small alteration in gloss was observed for each cool coating, indicating a very low
susceptibility of the coatings towards UV-B radiation. The initial gloss of each coating results decreased
as a function of pigment load.

Coatings 2020, 10, x FOR PEER REVIEW 12 of 18 

 

4.3. Gloss and Color Evaluation 

Table 2 summarizes the initial color for each coating sample represented as CIEL*a*b* color 
coordinates. 

Table 2. Initial color coordinates for each coating sample. 

Color Sample 
Color Coordinates 

L* a* b* 

Yellow 

1 wt.% cool coating 75.04 ± 0.85 14.01 ± 0.44 69.14 ± 0.63 
3 wt.% cool coating 70.77 ± 0.13 21.89 ± 0.24 75.59 ± 0.23 
5 wt.% cool coating 69.38 ± 0.14 24.71 ± 0.03 74.22 ± 0.16 

Conventional coating 72.96 ± 0.07 25.99 ± 0.19 81.73 ± 0.32 

Black 

1 wt.% cool coating 18.38 ± 0.43 4.65 ± 0.44 4.52 ± 0.72 
3 wt.% cool coating 11.50 ± 0.13 6.72 ± 0.21 5.84 ± 0.17 
5 wt.% cool coating 7.85 ± 0.14 8.69 ± 0.34 6.85 ± 0.34 

Conventional coating 6.50 ± 0.0 6.29 ± 0.0 4.86 ± 0.10 

The samples containing 1 wt.% reflective pigment achieved a slightly lighter color sensation 
compared to higher pigment-loaded samples, regardless of the pigment type. The color difference 
could be easily detected by the naked eye inspection (the corresponding figure was reported as 
additional material). 

Figure 8a shows the evolution of gloss measured for each coating as a function of UV-B exposure 
time. A very small alteration in gloss was observed for each cool coating, indicating a very low 
susceptibility of the coatings towards UV-B radiation. The initial gloss of each coating results 
decreased as a function of pigment load. 

 
(a) 

 
(b) 

Figure 8. Evolution of 60° gloss units (a) and color variation, ΔEL*a*b* (b), as a function of UV-B 
exposure time. 

Compared to conventional coatings, the cool coatings containing pigments exhibit higher gloss 
stability. The gloss values remain almost constant or show a slight increase. This change could be 
connected with the modification of the layer surface introduced by UV-B exposure. Figure 9 shows 
the SEM pictures (BED–T, backscattering topographic modality) of the 3 wt.% black sample (a) before 
and (b) after 96 h of UV-B exposure. 

Figure 8. Evolution of 60◦ gloss units (a) and color variation, ∆EL*a*b* (b), as a function of UV-B
exposure time.

Compared to conventional coatings, the cool coatings containing pigments exhibit higher gloss
stability. The gloss values remain almost constant or show a slight increase. This change could be
connected with the modification of the layer surface introduced by UV-B exposure. Figure 9 shows the
SEM pictures (BED–T, backscattering topographic modality) of the 3 wt.% black sample (a) before and
(b) after 96 h of UV-B exposure.
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Figure 9. SEM (BED-topographic) pictures of the sample 3 wt.% at time 0 (a) and after 96 h of exposure (b).

Before the UV-B exposure, the sample showed a rougher surface with the presence of bumps.
After 96 h of UV-B exposure, the surface seemed to flatten. The exposure to UV radiation locally
increased the surface temperature and may have favored the evaporation of possible residual solvent;
moreover, if the local temperature exceeded the Tg of the polymer, it was possible to also have distension
of the material. This surface appearance was also maintained under prolonged UV-B exposure.

The color evolution, represented as CIEL*a*b* color coordinates, observed for each coating as a
function of UV-B exposure time, is represented in Figure 8b. For each cool coating, the highest color
variation was observed after 96 h of UV-B exposure. Probably, the high-energy radiation was able to
modify the very external part of the coatings in a short time, thus promoting color changes. Furthermore,
the 3 wt.% and 5 wt.% black cool coatings exhibited the highest color variation after 480 h of UV-B
exposure. A color change greater than 1–2 color points could be detected by the naked eye. On the
contrary, the conventional black sample achieved stable color properties, and only a small alteration of
color was recorded after 480 h of UV-B, probably due to the presence of carbon black filler. In addition,
considering the color stability of the conventional coatings, it could be deemed that the color alteration
for the cool coatings was within an acceptable range. Higher stability than conventional coatings
was observed in the case of all yellow cool coating samples. The change of color was related to the
modification of the surface caused by UV-B irradiation. Figure 10 shows the surface of the 3 wt.% black
sample at different UV-B exposure time observed by SEM (BED—backscattering modality).
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UV-B exposure.

Considering the evolution of the surface appearance with exposure time (Figure 10), an increase
in pigment agglomerated was observed, probably due to the deterioration of the polymeric matrix.
No microcracks or other defects were present.

FT-IR analyses were collected at different exposure times in order to get information on the
chemical changes produced by UV-B exposure.

Figure 11 shows the FT-IR spectra of each cool coating samples corresponding to 1 and 5 wt.% pigment
loads. The different spectra were collected at three different UV-B exposure times (0, 96 and 480 h).Coatings 2020, 10, x FOR PEER REVIEW 15 of 18 
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The peaks observed between 2961 and 2762 cm−1 were due to C–H aliphatic stretching of the
copolymer [21]. The peak at 1725 cm−1 corresponds due to the stretching bond of C=O. The small
peak observed at 1601 cm−1 was assigned to C=C stretching, while the narrow peak at 1152 cm−1

was determined to be due to the vibration of C–O–C bonds [21]. The strong peak observed at
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1152 cm−1 correlated to C–C/C–O bond stretching. The peak observed at 1460 cm−1 was assigned
to C–H2 bending, and lastly, the peak observed at 761 cm−1 was believed to be due to C–H rock
bending [21]. The characteristic peaks were similar for each spectrum, which indicated that only
small traces of chemical degradation of the coatings due to exposure time to UV-B radiation were
analyzed, regardless of the pigment type/load. No reduction or acceleration of degradation was
observed as a function of pigment load, as all the observed peaks had a very similar shape. The peak
at 1725 cm−1 tended to broaden with exposure time to UV-B radiation [20]. This fact suggests that a
photooxidative reaction between the irradiated light and the carbonyl group in the acrylic polymer
occurs, which resulted in the formation of new carbonyl groups such as ketone alcohols and carboxylic
acid. Furthermore, the progressive reduction of stretching aliphatic C–H peaks at 2957–2762 cm−1

indicated that UV-B exposure tended to reduce the molecular weight of the binder material as a
function of photooxidative reactions [20]. The remaining observed peaks show only minor changes
and were thus not further analyzed.

The comparison of the thermal efficiency (Figure 5) with the FT-IR spectra for each type and load
of pigment suggests that the observed photooxidative degradation of the coatings did not influence
the thermal efficiency significantly. However, considering very small alteration in FT-IR spectra as a
function of UV-B radiation exposure time and pigment load together with small variation in thermal
efficiency, it was difficult to draw any straight conclusions about the influence of the binding material
degradation on the optical properties of the pigments.

5. Conclusions

In this work, two different cool coatings were deposited by mixing complex NIR-reflective
inorganic pigments with an acrylic copolymer based binding material. The study presents an accessible
lab-scale approach to analyze the performance of cool coatings. This aspect has a great relevance
from the industrial point of view, as the thermal behavior of a coating can be assessed with a very
simple and low-cost method without the need for expensive equipment. This method of analysis could
be used to evaluate the thermal performance of other types of paint systems (the type of paint and
method of application). In comparison with the actual methods present in the literature, the thermal
behavior evaluation allows us to get interesting results in a very simple way and with very limited
cost. A possible improvement of the setup could be represented by the change of the light source
(e.g., selecting the most similar to the solar radiation spectrum). Furthermore, the thermal behavior
could also be investigated outdoor (with natural solar radiation) in order to have further confirmation
of the validity of the method used in the laboratory scale. In addition, the influence of surface fouling
on the thermal behavior of cool coatings could be very interesting. Further development could be
to study the influence on the thermal behavior of the presence of openings in the walls of the scale
simulacrum, representing the windows and doors.

Considering the comparison with the conventional system, the addition of black NIR pigment
was more effective than that of the yellow one in limiting the warming up. While the presence of
1 wt.% of black pigment already seemed to be effective in reducing the temperature compared to
the conventional system, the yellow pigment improved the behavior of the system only with high
percentages of NIR pigment.

The highest temperature difference with the conventional coating (12 ◦C) was achieved for black
cool coatings. The yellow cool coating did not show a great temperature difference compared to the
conventional coating.

The color characteristics of the yellow cool coating sample remained similar after 480 h of UV-B
exposure. With the exception of the black samples with 3 and 5 wt.% pigments, all NIR pigmented
coatings remained below two points of color delta. Instead, a decrease in gloss values was measured.
Thus, the UV-B radiation damage did not produce perceptive appearance change, in particular for
the samples containing the yellow pigment. In addition, the comparison of the color stability of roof
and conventional coatings evidenced a color change and gloss decay of the cool coatings within an
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acceptable range. However, for some samples, in particular with 3 and 5 wt.% black pigments, the color
change was also observed by the naked eye.

Considering the thermal behavior as a function of UV exposure, the black coatings, both the
sample containing the NIR pigments and the conventional one did not show significant differences.
Differently, the yellow samples showed a slight deterioration, considering the internal temperature.
However, the results from the thermal assessment pointed out that coating degradation produced by
480 h UV-B exposure did not significantly affect the cooling properties of the cool coatings.

Considering the studied pigment types, further developments could be focused on the study
of other NIR different-colored pigments without toxicity and with low environmental impact.
Many pigments can be obtained in the laboratory, and their color can be changed by heat treatment.
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