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Abstract. Differential Evolution (DE) is a popular population-based continuous optimization algorithm that generates new can-
didate solutions by perturbing the existing ones, using scaled differences of randomly selected solutions in the population. While
the number of generation increases, the differences between the solutions in the population decrease and the population tends to
converge to a small hyper-volume within the search space. When these differences become too small, the evolutionary process
becomes inefficient as no further improvements on the fitness value can be made - unless specific mechanisms for diversity preser-
vation or restart are implemented. In this work, we present a set of preliminary results on measuring the population diversity during
the DE process, to investigate how different DE strategies and population sizes can lead to early convergence. In particular, we
compare two standard DE strategies, namely “DE/rand/1/bin” and “DE/rand/1/exp”, and a rotation-invariant strategy, “DE/current-
to-random/1”, with populations of 10, 30, 50, 100, 200 solutions. Our results show, quite intuitively, that the lower is the population
size, the higher is the chance of observing early convergence. Furthermore, the comparison of the different strategies shows that
“DE/rand/1/exp” preserves the population diversity the most, whereas “DE/current-to-random/1” preserves diversity the least.

INTRODUCTION

Differential Evolution (DE) is a powerful yet simple metaheuristic for real-valued optimization which only requires
tuning three parameters, i.e. the scale factor F, the crossover ratio CR and the population size N [1, 2, 3]. As its
performance heavily depends on these parameters, a great research effort has been put in the last two decades to try to
understand the effect and the optimal values of F and CR, with positive results [4, 5, 6, 7, 8, 9].

On the contrary, less clear is still the choice of the population size. In [5], it is recommended to use a number
of solutions which is 10 times greater than the dimensionality of the problem. Such recommendation is arguable, as
unfeasible in many real-world and large-scale scenarios [10, 11]. Indeed, an excessive number of candidate solutions
can introduce a number of undesirable side effects, e.g. it deleteriously strengthens the algorithmic structural bias,
which was proven to correlate with the population size in most population-based metaheuristics [12]. Moreover, it
has been noted that shrinking the population size can be beneficial to avoid stagnation, an implicit drawback of DE
[13], as shown in [14, 15] where the number of solutions is resized on-the-fly to improve the algorithmic performance
in terms of robustness and convergence. In this direction, the proximity-based mutation scheme proposed in [16]
theoretically guarantees a similar behavior, independently of the population size. However, in practice this method
turns out to be unsuitable in presence of large populations, due to its computational cost. Operators resizing and
controlling the population are commonly used also to prevent premature convergence [13, 17]. In this regard, it is
worth mentioning the DE variant with auto-enhanced population diversity [18], as well as the mechanism introduced
in [19], that preserves diversity by replacing more frequently solutions with higher fitness values.

In this light, it is clear that a good choice for the population size can make the difference in DE and all its
variants [20]. Moreover, it must be observed that while the literature is abundant with enhanced DE variants, to the
best of our knowledge a thorough study on the impact of the population size on premature convergence has never
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been properly conducted. This piece of research aims at investigating the relation between the population size and the
dynamic behavior of DE, in order to learn lessons on how to address premature convergence. To investigate that, we
measure the population diversity during the DE process with three commonly used strategies and various population
sizes. This knowledge is in fact key to properly tune the algorithm and successfully use DE on real-world applications.

METHODS

We perform an analysis of early convergence in DE. Early convergence is observed when the solutions in a population
become so similar that the differences between them approach to zero. In this case, DE is not able to produce any fur-
ther improvement, since it generates new solutions based on scaled differences of randomly selected solutions. Here,
we analyze the diversity of the population to investigate early convergence. At each generation of the tested algorithms
(see below), we measure diversity by simply calculating the maximum value of the differences between the maximum
and minimum values along each dimension of the candidate solutions: diversity = max j

[
maxi xi

j −mini xi
j

]
, where i

indicates the ith solution, and j indicates the jth dimension of the candidate solutions.

EXPERIMENTAL SETUP

We focus our analysis on three DE strategies: “DE/rand/1/bin” [1], “DE/rand/1/exp” [21] and “DE/current-to-
random/1” [22] (in the following, we refer to these strategies as BIN, EXP and CURR, respectively), with populations
of 10, 30, 50, 100, 200 solutions. We test these configurations on the 28 functions of the CEC 2013 benchmark [23].
In all the experiments, F and CR are fixed, set to 0.4 and 0.3, respectively. The strategies and their parameters were
selected based on their usage in previous works [1, 21]. It is important to note that while the crossover effect with a
fixed CR is proportional to the problem dimensionality in case of BIN, this is not true for EXP: in this case, unless an
adaptive CR is used [24], the crossover effect decreases with the dimensionality. The additional parameter K used in
“DE/current-to-random/1” is randomly sampled in [0, 1], for each trial vector generation [22, 25]. The stop condition
is set to 5000 × D function evaluations, where D is the dimensionality of the problem. Each algorithm with specified
experimental settings is executed for 30 independent runs, and the median of the results are provided.

RESULTS

Figure 1 shows the number of functions on which the BIN, EXP and CURR strategies performs the best on the
benchmark functions with 10, 30 and 50 dimensions. On all tested dimensions, when the population size is smaller,
EXP tends to perform better. The performance of the CURR tends to increase when the population size increases.

Figure 2 shows the number of functions for which each strategy obtains the lowest diversity at the last generation
(ties are considered multiple times). According to the results, in all cases CURR reduces diversity more than the other
two strategies, while EXP promotes diversity the most. In Fig 3, we report an example of the diversity trend observed
on an evolutionary run of all the tested configurations on the benchmark function f1 (sphere function). We provide an
extended set of results as supplementary material available online [26].

CONCLUSIONS

Our results show that, on most of the tested functions, regardless of the population size, the rank of the strategies from
the most diversity promoting strategy to the least one is as follows: EXP, BIN and CURR. Especially in a small pop-
ulation, CURR converges very quickly, thus further improvements in the fitness cannot be made. Larger populations
instead decrease the chance of observing this effect, independently from the specific strategy. In future works, we will
extend this study to provide adaptive mechanisms for optimal trade-off between strategies and population size.
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FIGURE 1. No. of functions for which each strategy obtains the smallest error (w.r.t. the optimal fitness) at the last generation.
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FIGURE 2. No. of functions for which each strategy obtains the lowest diversity at the last generation.
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FIGURE 3. Diversity trends of BIN, EXP and CURR, with different population sizes, during an evolutionary run on f1. (a), (b)
and (c): results on 10 dimensions. (d), (e) and (f): results on 30 dimensions. (g), (h) and (i): results on 50 dimensions.
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