
UNIVERSITY OF TRENTO

DOCTORAL THESIS

Modern Anomaly Detection:
Benchmarking, Scalability and

a Novel Approach

Author:
Sivam PASUPATHIPILLAI

Advisor:
Prof. Emanuele DELLA VALLE

Co-advisor:
Prof. Yannis VELEGRAKIS

Industrial advisors:
Mattia PASOLLI

Michele VESCOVI

ICT International Doctoral School
Department of Information Engineering and Computer Science

November 17, 2020

https://www.unitn.it
https://ict.unitn.it/
https://www.disi.unitn.it

ii

“Manners maketh man.
Practice makes perfect.”

English aphorisms

iii

To my family

v

UNIVERSITY OF TRENTO

Abstract
ICT International Doctoral School

Department of Information Engineering and Computer Science

Doctor of Philosophy

Modern Anomaly Detection:
Benchmarking, Scalability and

a Novel Approach

by Sivam PASUPATHIPILLAI

Anomaly detection consists in automatically detecting the most unusual ele-
ments in a data set. Anomaly detection applications emerge in domains such as com-
puter security, system monitoring, fault detection, and wireless sensor networks.
The strategic importance of detecting anomalies in these domains makes anomaly
detection a critical data analysis task. Moreover, the contextual nature of anoma-
lies, among other issues, makes anomaly detection a particularly challenging prob-
lem. Anomaly detection has received significant research attention in the last two
decades. Much effort has been invested in the development of novel algorithms for
anomaly detection. However, several open challenges still exist in the field.

This thesis presents our contributions toward solving these challenges. These
contributions include: a methodological survey of the recent literature, a novel bench-
marking framework for anomaly detection algorithms, an approach for scaling ano-
maly detection techniques to massive data sets, and a novel anomaly detection al-
gorithm inspired by the law of universal gravitation. Our methodological survey
highlights open challenges in the field, and it provides some motivation for our other
contributions. Our benchmarking framework, named BAD, tackles the problem of
reliably assess the accuracy of unsupervised anomaly detection algorithms. BAD
leverages parallel and distributed computing to enable massive comparison stud-
ies and hyperparameter tuning tasks. The challenge of scaling unsupervised ano-
maly detection techniques to massive data sets is well-known in the literature. In
this context, our contributions are twofold: we investigate the trade-offs between
a single-threaded implementation and a distributed approach considering price-
performance metrics, and we propose a scalable approach for anomaly detection
algorithms to arbitrary data volumes. Our results show that, when high scalability
is required, our approach can handle arbitrarily large data sets without significantly
compromising detection accuracy. We conclude our contributions by proposing a
novel algorithm for anomaly detection, named Gravity. Gravity identifies anomalies
by considering the attraction forces among massive data elements. Our evaluation
shows that Gravity is competitive with other popular anomaly detection techniques
on several benchmark data sets. Additionally, the properties of Gravity makes it
preferable in cases where hyperparameter tuning is challenging or unfeasible.

HTTPS://WWW.UNITN.IT
https://ict.unitn.it/
https://www.disi.unitn.it

vii

Acknowledgements
This thesis was developed to the best of my abilities over several years of re-

search, and it represents my contribution to the anomaly detection field. In this brief
note, I would like to thank all the people who contributed to this work, either di-
rectly or indirectly.

The first “Thank you!” goes to my doctoral advisors: professor Emanuele Della
Valle and professor Yannis Velegrakis. Without your help I would not have been
able to overcome the challenges and to navigate the world of academia. To you goes
my most sincere gratitude for assisting me with both your time and experience.

Another “Thank you!” goes to my industrial advisors Mattia Pasolli and Michele
Vescovi. Thank you for your friendship, your language classes, and in general for
making daily life at the office more enjoyable.

Of course, a big “Thank you!” goes to my family for supporting me and con-
tributing to make me the man I am today.

Finally, I would like to thank all of the people, both friendly and not, I have met
in this journey, who have contributed to the achievement of this wonderful goal, by
either assisting me, supporting me, or teaching me something new.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 2
1.2 Notation and problem statement . 3
1.3 Contributions and thesis outline . 4
1.4 List of publications . 6

I Background 7

2 Anomaly Detection 9
2.1 Introduction . 9

2.1.1 Relation with classification . 11
2.1.2 Relation with clustering . 11
2.1.3 Anomaly detection approaches 12
2.1.4 Anomaly definitions . 13
2.1.5 Evaluation . 15

2.2 Applications of anomaly detection . 18
2.2.1 Intrusion detection . 18
2.2.2 Sensor networks . 18
2.2.3 Fault detection and system monitoring 19

3 State of the Art 21
3.1 A brief history of anomaly detection . 21
3.2 Seminal papers . 22
3.3 Resources and tools . 24
3.4 Open challenges . 25

4 A Methodological Survey of Anomaly Detection 27
4.1 Introduction . 27
4.2 Methodology . 29
4.3 Discussion . 30

4.3.1 Application domains . 30
4.3.2 Anomaly definitions . 32
4.3.3 Data representations . 34
4.3.4 Evaluation methodology . 35

4.4 Summary . 37

x

II Benchmarking 39

5 BAD: Benchmarking for Anomaly Detection 41
5.1 Introduction . 41

5.1.1 Hyperparameter tuning . 43
5.2 The BAD framework . 44

5.2.1 Requirements and design goals 44
5.2.2 Architecture . 44
5.2.3 Candidates . 45
5.2.4 Data sets . 46
5.2.5 Hyperparameter specification . 47
5.2.6 Performance metrics . 48

5.3 Experimental evaluation . 48
5.3.1 Candidates . 49
5.3.2 Rule-of-thumb settings vs. grid searches 49
5.3.3 Performance gain . 53
5.3.4 Relative rankings . 54
5.3.5 Scalability . 55
5.3.6 Replicability . 57

5.4 Summary . 57

III Scalable Anomaly Detection 59

6 Cost-aware Data Analysis 61
6.1 Introduction . 61
6.2 Problem setting . 63

6.2.1 Data description . 63
6.2.2 Problem . 64

6.3 Background . 65
6.3.1 Apache Kafka . 65
6.3.2 Natron . 65
6.3.3 Apache Spark . 66

6.4 Solution design . 66
6.4.1 Infrastructure . 67
6.4.2 Architecture . 68
6.4.3 Implementation details . 68

Apache Kafka . 68
Natron . 69
Apache Spark . 69

6.4.4 Operational considerations . 70
6.5 Experimental settings . 71

6.5.1 Methodology . 71
6.5.2 Configurations . 71

Natron . 72
Apache Spark . 73

6.6 Results and discussion . 76
6.7 Summary . 78

xi

7 Scalable Unsupervised Anomaly Detection 81
7.1 Introduction . 81
7.2 Distance-based anomaly detection . 83

7.2.1 The KNN algorithm . 83
7.3 Partition-wise KNN . 84

7.3.1 On the quality of the approximation 85
7.4 Experimental evaluation . 87

7.4.1 Detection accuracy . 89
7.4.2 Scalability . 90

7.5 Summary . 90

IV Gravity-based Anomaly Detection 91

8 Gravity-based Anomaly Detection 93
8.1 Introduction . 93
8.2 The Gravity algorithm . 94

8.2.1 Finding the gravitational constant 96
8.3 Experimental evaluation . 98
8.4 Summary . 99

V Conclusions 101

9 Conclusions 103
9.1 Limitations and future works . 105

Bibliography 107

xiii

List of Figures

2.1 Outlier detection example 1 . 10
2.2 Outlier detection example 2 . 10
2.3 ROC curve example . 17
2.4 PR curve example . 18

4.1 Published papers on anomaly detection (2007-2017) 28
4.2 Surveyed application domains . 30
4.3 Distribution of anomaly definitions by application domain 34
4.4 Distribution of benchmark data sets. 36

5.1 Example deployments of BAD . 45
5.2 Rules of thumb analysis (optimal) . 51
5.3 Rules of thumb analysis (suboptimal) 52
5.4 Scalability of the BAD framework versus ELKI 56

6.1 The architecture of Natron . 66
6.2 General architecture of our solution . 67
6.3 Architecture for the single-threaded solution 68
6.4 Architecture for the distributed solution 69
6.5 Cost for different Natron configurations 72
6.6 Cost for different Spark configurations 73
6.7 Cost for different Spark executors . 75
6.8 Cost for different Spark total memory 75
6.9 Total solution cost N1 vs. Spark1 . 77
6.10 Total solution cost N2 vs. Spark1 . 78
6.11 Total solution cost N3 vs. Spark1 . 79

7.1 ROC AUC and execution time (KNN vs. PartKNN) 88
7.2 Scalability of PartKNN . 89

8.1 Hyperparameter search for g . 97

xv

List of Tables

2.1 Classifier confusion matrix. 16

4.1 Distribution of surveyed application domains 32
4.2 Distribution of anomaly definitions . 32
4.3 Distribution of data representations . 35

5.1 BAD Candidate library. 46
5.2 BAD collection of benchmark data sets. 47
5.3 Aggregated results for rule-of-thumb experiments 50
5.4 Experimental algorithm comparison (ROC AUC) 53
5.5 Experimental algorithm comparison (AP) 54
5.6 Kendall rank correlation coefficient for algorithm rankings 55
5.7 Hyperparameter for ROC AUC . 57
5.8 Hyperparameter for AP . 57

6.1 Azure VM sizes (January 2018) . 67
6.2 Operational scenarios . 76
6.3 Monthly solution cost . 77

7.1 Real-world data sets characteristics . 87

8.1 Data sets used in the experiments. 98
8.2 Gravity accuracy - ROC AUC metric . 98
8.3 Gravity accuracy - AP metric . 99

xvii

List of Algorithms

7.1 PartKNN algorithm . 85
8.1 Gravity centroid search . 95
8.2 Gravity scoring procedure . 96

xix

List of Symbols

D data set, data matrix D ∈ Rn×d

n cardinality of D n ∈N

d dimensionality of D d ∈N

xi i-th data element (row vector) xi ∈ D, i ∈ [0, n)
O outlier set O ⊂ D, O = D \ I
I inlier set I ⊂ D, I = D \O
s outlier scoring function s : Rn×d → Rn×(d+1)

g ground truth function g : Rn×d → {0.0, 1.0}n

1

Chapter 1

Introduction

As human beings, our curiosity is naturally aroused by rare or unexpected events.
Although these events are unexpected “by definition”, it is difficult to imagine a
physical world phenomenon that cannot produce unexpected results. Even when
tossing a balanced coin, an example of a simple and well-understood phenomenon,
there exists a small chance for the coin to land on its edge. Naturally, increasing the
phenomenon complexity increases the number and complexity of its unexpected
outcomes.

Considering the way we perceive our environment, one might argue that all that
is unexpected is, in fact, interesting. The rarity of an event makes it worthwhile
to experience. The rarity of a substance makes it valuable. The unexpectedness
of a situation makes it interesting. Although in this thesis we do not delve into the
philosophical, it is nonetheless interesting to reason about the definition of interesting
and unexpected, and how they relate to human intuition.

Instead of dealing with these problems, this thesis deals with the ability to recog-
nize the unexpected. This ability is valuable in countless domains. Unexpected med-
ical symptoms might indicate problematic medical conditions [116]. Unexpected In-
ternet traffic might indicate malicious intrusions [63]. Unexpected credit card trans-
actions might indicate fraud attempts [32]. Unexpected sensor readings might indi-
cate the presence of new elementary particles [1].

In data analysis, the task of recognizing unusual behavior is known as anomaly
detection, or outlier detection [3]. More precisely, anomaly detection consists in identi-
fying the most anomalous data elements in a data set. A data set represents a phe-
nomenon in the real world, and data analysis provides a way of understanding the
phenomenon by analyzing its data. This process can be applied to any phenomenon
as long as there are ways to collect its data.

Anomaly detection represents the binding thread for this thesis. In this thesis,
we present our contributions to the anomaly detection field. These contributions are
mainly related to three aspects: evaluating anomaly detection technique, or bench-
marking, scaling anomaly detection techniques to massive data sets, and proposing
a novel approach for anomaly detection. The description of these contributions con-
stitutes a large part of the contents of this thesis.

In this introductory chapter, we present the motivation for the work developed in
the thesis, formulated as a set of research questions (Section 1.1). In Section 1.2, we
introduce the mathematical notation used throughout the thesis, and we formally
define the anomaly detection problem. Section 1.3 presents the thesis outline as well
as briefly introducing each chapter. Finally, Section 1.4 concludes the chapter by
listing the scientific publications related to this thesis.

2 Chapter 1. Introduction

1.1 Motivation

The anomaly detection field has received a lot of attention in the last two decades [25,
80, 39, 164, 75, 3]. This can be related to several causes. The inception of the data
analysis field [67], and the increasing availability of data sets, commonly known as
data deluge, at the beginning of the 21st century increased the interest on all data
analysis tasks. Additionally, the large number of applications of anomaly detection
and the challenging nature of the problem, sparked the interest of both researchers
and practitioners. However, unlike in other data management communities, e.g. the
database community1, these efforts were not coordinated explicitly. This resulted in
a large corpus of research following different methodologies and approaches.

This huge corpus motivated the first contribution presented in this thesis, namely
a methodological survey of the anomaly detection literature. Several anomaly de-
tection surveys exist [39, 164, 75]. However, few studies focus on methodological
aspects. Our initial contribution can be formulated as the following research ques-
tion:

Question 1 (Q1) What are the most widespread issues in the anomaly detection literature
with respect to methodology, evaluation and reproducibility?

To answer this question, we analyzed a large sample of the anomaly detection
literature with respect to four methodological aspects. Our approach, analysis and
results are described in details in Chapter 4.

One of the issues highlighted in our survey is the inconsistent use of benchmarks
in the literature. This is particularly relevant when algorithms are compared across
studies, since different experimental conditions might induce bias in the results.

The second contribution of this thesis focuses on this problem. In particular, we
developed a benchmarking framework for anomaly detection, the BAD framework.
BAD enables users to execute reproducible anomaly detection experiments on the
most widely used benchmark data sets from the literature. BAD was developed to
answer our second research question:

Question 2 (Q2) How can we improve the reproducibility of anomaly detection evaluation
experiments across different studies?

The design and implementation of the BAD framework, as well as a comparison
study highlighting the advantages of BAD, are described in details in Chapter 5.

The development of this thesis lead us to work on several industrial anomaly
detection use cases. These works were developed at the Semantics & Knowledge
Innovation Lab (SKIL) of TIM, as well as during an internship at the Artificial Intel-
ligence Center of Excellence (AICE) at F-Secure2. One of the main issues we found
when developing production-ready anomaly detection systems is the problem of
scaling anomaly detection techniques to massive data volumes.

One well-known approach to scaling algorithms is to parallelize or distribute the
computation on a cluster of machines [13, 31]. However, in the industrial context a
distributed solution might not be optimal. This is due to the fact that in this context
the feasibility of a project is related to its monetary cost, and distributed solutions
are usually more expensive than single-threaded applications with respect to opera-
tional costs. The third contribution of this thesis analyzes this trade-off. In particular,

1http://www.tpc.org/
2https://www.f-secure.com/

1.2. Notation and problem statement 3

we take an industrial anomaly detection application as a case study and analyze the
price/performance trade-off between a distributed solution and a single-threaded
application. Our third contribution can be summarized by the following research
question:

Question 3 (Q3) At which data volume is a distributed approach more cost-effective than
a single-threaded application with respect to an anomaly detection use case?

Toward answering this question, we compared several single-threaded and dis-
tributed application deployments. This work is described in details in Chapter 6.

The problem of scaling anomaly detection techniques to huge data volumes is
analyzed more directly in Chapter 7. In this chapter, we propose a distributed for-
mulation for one of the most popular unsupervised anomaly detection techniques,
the k-nearest neighbors algorithm. Our formulation improves scalability by an order
of magnitude without significantly penalizing performance. We also discuss a possi-
ble theoretical explanation for this behavior. The contribution described in Chapter 7
revolves around the following question:

Question 4 (Q4) Is it possible to scale the k-nearest neighbors anomaly detection
algorithm to arbitrarily large data sets without significant losses in detection accuracy?

The final contribution of the thesis is a novel anomaly detection algorithm, named
Gravity. Gravity relies on a novel definition of outlier. This definition takes inspira-
tion from the law of universal gravitation by defining attractive and repulsive forces
between data elements based on their distance and a definition of mass.

The Gravity algorithm is the result of investigating the following question:

Question 5 (Q5) Is it possible to detect outliers in a data set by considering massive data
elements and using attractive and repulsive forces as an outlying criterion?

The Gravity algorithm, as well as a comparison with the current state-of-the-art,
are presented in Chapter 8.

1.2 Notation and problem statement

This section introduces the mathematical notation used throughout the thesis. All
terms introduced here will be detailed in Chapter 2.

The anomaly detection task consists in detecting outliers in a data set. A data set
is represented in relational form as a data matrix

D ∈ Rn×d (1.1)

where n and d are the data set cardinality and dimensionality, respectively. The car-
dinality refers to the number of data elements, while the dimensionality refers to
the number of features of each data element. Data elements are represented as row
vectors in D. We denote with xi the i-th data elements, i ∈ [0, n). Unless otherwise
stated, we always assume numerical features.

An anomaly detection algorithm can be modeled as a scoring function

s : Rn×d → Rn×(d+1) (1.2)

where the additional feature corresponds to the outlier score for each element, as
computed by the algorithm. We denote with si the outlier score for element xi. We

4 Chapter 1. Introduction

assume that higher outlier scores correspond to more outlying data elements. Notice
that in this formulation, a scoring function produces a ranking instead of a classifi-
cation. In order to produce a classification from a score ranking, it is possible to
introduce an arbitrary threshold σ, and assume that the outlier set O is

O = {xi ∈ D | si > σ} (1.3)

The inlier set I is defined as
I = D \O (1.4)

A benchmark data set is a data set containing class label information, i.e. each
element is classified as either normal or anomalous. We refer to this information as
the ground truth of the data set. We represent the ground truth g as a function

g : Rn×d → {0.0, 1.0}n (1.5)

where 1.0 represents true outliers and 0.0 represents true inliers.
The correctness of an outlier detection algorithm can be established by compar-

ing the results of the algorithm on a benchmark data set with its ground truth. Per-
formance metrics provide a quantitative measure of correctness.

We represent a performance metric as a function

m : {0.0, 1.0}n ×Rn×(d+1) → R (1.6)

Intuitively, given a ground truth vector g(D), and a score matrix s(D), the met-
ric m(g(D), s(D)) provides a quantifiable measure representing the quality of the
outlier scores on data set D.

We can now formally define the anomaly detection problem. We provide the
statement for unsupervised anomaly detection. The unsupervised approach is the
most common approach, since it does not require a training data set with ground
truth to be available. The unsupervised anomaly detection problem can be stated as
follows:

Problem 1 (Unsupervised Anomaly Detection) Given a benchmark data set D ∈ Rn×d

with ground truth g : Rn×d → {0.0, 1.0}n, and a metric m : {0.0, 1.0}n ×Rn×(d+1) → R,
find a scoring function s∗ from the family F = { f | f : Rn×d → Rn×(d+1)} such that

s∗ = arg max
s∈F
{m(g(D), s(D))} (1.7)

We refer to Problem 1 throughout the thesis. Notice that this formulation does
not assume any particular algorithm, modeled by the scoring function s(·). Thus, it
is applicable to any unsupervised anomaly detection technique.

1.3 Contributions and thesis outline

The rest of the thesis is organized as follows:

• Chapter 2: Anomaly Detection - In this chapter we introduce the anomaly
detection field. We analyze anomaly detection with respect to other data anal-
ysis tasks, i.e. classification and clustering. We present the anomaly detection
approaches that have been investigated in the literature with respect to learn-
ing paradigm, anomaly definitions and evaluation. Finally, we conclude the
chapter by describing the most successful applications of anomaly detection.

1.3. Contributions and thesis outline 5

• Chapter 3: State of the Art - In this chapter we present the most seminal works
in anomaly detection. We begin the chapter by presenting a brief history of the
anomaly detection field. In particular, we highlight a set of key milestones and
paradigm shifts in chronological order.

We continue by describing some of the most seminal papers in the field, which
contributed to shape the current state of the anomaly detection field. Then, we
present some of the resources and tools available to anomaly detection prac-
titioners and researchers. We conclude the chapter by presenting some of the
most important open research challenges in the field.

• Chapter 4: A Methodological Survey of Anomaly Detection [Q1] - In this
chapter we describe our first original contribution to anomaly detection, namely
our methodological survey of the state of the art.

Contrary to other surveys [25, 80, 39, 164], we focus on the research method-
ology instead of focusing on the algorithms proposed. Our aim is to highlight
potential issues with the way modern anomaly detection research is carried
out. We select impactful papers published from 2007 to 2017, where the impact
is based on the number of citations. Around 760 papers were analyzed in total.
For each surveyed paper, we analyze four aspects: application domain, formal
problem statement, data representation, and evaluation methodology.

Our results provide several insights. Although the anomaly detection task is
very general, it has been investigated in only a limited number of application
domains. Several formal problem statements exists. In fact, it is common for
each novel approach to propose a new outlier definition [89, 33, 132, 11, 108].
We propose a novel classification of anomaly definitions that provides some
insight and improves comparison studies in the field. We also find several
issues with the evaluation methodology of anomaly detection techniques.

• Chapter 5: BAD: Benchmarking for Anomaly Detection [Q2] - In this chapter
we present BAD, our Benchmarking framework for Anomaly Detection. The
BAD framework was motivated by some of the challenges highlighted in our
survey. BAD is a distributed framework for benchmarking and hyperparame-
ter tuning of anomaly detection algorithms.

BAD enables the execution of extensive hyperparameter searches, as well as
comparison studies between different algorithms. BAD relies on a selected col-
lection of benchmark data sets, as well as on plain text interfaces. This makes
it easy to produce, share and replicate results.

This chapter provides a thorough description of BAD, as well as an analysis
on the issues related with the evaluation of anomaly detection techniques. We
also present an exemplar comparison study using some of the most popular
anomaly detection algorithms.

• Chapter 6: Cost-aware Data Analysis [Q3] - This chapter describes our first
contribution toward the scalability of anomaly detection techniques. It is well
known that some of the most popular anomaly detection algorithms have a
worst-case quadratic complexity [33, 132]. Thus, they do not scale to mas-
sive data volumes. This is particularly problematic for industrial applications,
where it is not uncommon to produce large amount of data even from modestly-
sized applications. One generally accepted solution to scaling up algorithms

6 Chapter 1. Introduction

is to partition the problem into smaller instances and to distribute the compu-
tation on several machines. We analyze this approach with respect to anomaly
detection along two perspectives.

In this chapter, we analyze the trade-offs between a single-threaded applica-
tion and a distributed solution for an anomaly detection task. We base our
analysis on price-performance metrics [72, 114, 31]. We adopt this approach
since cost is an important factor when selecting the best solution for an indus-
trial use case. Our results show that a distributed approach, while speeding up
the computation, is not always the best choice in term of price performance. In
fact, for smaller data volumes a single-threaded application is more cost effec-
tive, if we can afford to wait a longer time for a solution.

• Chapter 7: Scalable Unsupervised Anomaly Detection [Q4] - This chapter
continues the analysis on the scalability of anomaly detection algorithms. Here,
we propose a scalable formulation of the famous k-nearest neighbors algo-
rithm. Our experiments on synthetic and real-world benchmark data sets
show how our approach can scale up to massive data volumes without sig-
nificant losses in accuracy.

• Chapter 8: Gravity-based Anomaly Detection [Q5] - This chapter presents the
final contribution of this thesis, the Gravity algorithm for unsupervised ano-
maly detection. This approach is inspired by the law of universal gravitation.
In particular, Gravity detects outliers by considering attraction forces between
data elements whose expression is derived from the expression for the gravi-
tational force.

In this chapter, we describe the Gravity algorithm and we present an extensive
experimental comparison with popular anomaly detection algorithms. Our
results show that our proposed algorithm is competitive with the state-of-the-
art. Additionally, Gravity properties makes it a good fit for situations where
hyperparameter tuning is unfeasible, or where a low false positive rate is re-
quired.

• Chapter 9: Conclusions - This chapter concludes the thesis. Here we sum-
marize our main contributions and results. Finally, we present the limiting
assumptions of our contributions and present interesting future directions.

1.4 List of publications

The work described in this thesis relates to the following peer-reviewed publications:

• Published - Marco Balduini, Sivam Pasupathipillai, and Emanuele Della Valle.
“Cost- aware streaming data analysis: Distributed vs single-thread”. In: Pro-
ceedings of the 12th ACM International Conference on Distributed and Event-based
Systems. 2018, pp. 160–170 [22].

• Accepted for publication - Sivam Pasupathipillai, and Emanuele Della Valle.
“BAD: a Benchmarking Framework for Unsupervised Anomaly Detection”.
In: Big Data Research - Special issue on Benchmarking, Performance Tuning and
Optimization for Big Data Analytics.

• Accepted for publication - Sivam Pasupathipillai, and Emanuele Della Valle.
“Approximate Distance-based Anomaly Detection at Massive Scale”. In: Pro-
ceedings of the 9th Workshop on Scalable Cloud Data Management.

7

Part I

Background

9

Chapter 2

Anomaly Detection

In this chapter, we introduce the anomaly detection field. Section 2.1 introduces the
problem, its fundamental concepts, and its relation with other data analysis tasks.
In Section 2.2, we present some of the most successful applications of anomaly de-
tection techniques.

2.1 Introduction

Anomaly detection, or outlier detection, consists in automatically identifying abnor-
mal data elements in a data set. These abnormal elements are commonly referred to
as anomalies or outliers. In the following, we will use these terms interchangeably.

Detecting outliers is valuable in several domains. In some cases, outliers might
represent measurement errors, faults, or other critical conditions. In these cases,
early outlier detection can help to prevent system failures and economical losses. In
other cases, outlier analysis can provide insights on the phenomenon under consid-
eration.

As humans, we are particularly skilled at detecting abnormal patterns. Unfortu-
nately, our attention span does not scale to large amounts of information. For this
reason, anomaly detection techniques are used to automatically detect unusual pat-
terns, or to filter the data and provide the analyst with a more manageable data set
to further analyze.

Notice that our ability to detect abnormal patterns relies on intuition. As an
example, consider the data set depicted in Figure 2.1. The figure depicts a simple
2-dimensional data set. Assume that we want to detect outliers from this data set.
A quick visual inspection shows that elements a1 and a2 are isolated with respect
to the majority of the data elements, and therefore, intuitively, anomalous. Notice
that we have not defined formally what “anomalous” means, or what characteristics
outliers should satisfy.

Now consider a slightly different example, depicted in Figure 2.2. The figure
represents the same data set with the addition of element b1. Notice that in this
case, our intuition alone cannot provide a crisp classification. Element a2 is still an
outstanding outlier. However, the outlierness of a1 is not so obvious anymore, and
element b1 could either be considered an outlier or an inlier.

In fact, if we consider b1 as an outlier, we would also have to reconsider other
elements at the frontier of the cluster (e.g. c1 and c2). This problem relates to the
following question:

How far from the center of the cluster would an element have to be to be
considered an outlier?

10 Chapter 2. Anomaly Detection

FIGURE 2.1: Simple 2-dimensional data set consisting of a cluster and
two outstanding outliers.

Of course, the answer to this question can only rely on intuition. Assume we
select a real-valued distance threshold d̄ as the answer. This choice would be com-
pletely arbitrary, in the sense that even slight changes in the data set might make
us question our decision. Since outliers represent abnormality, and our distinction
between normal and abnormal behavior is fuzzy, outliers can only be defined arbi-
trarily.

This example illustrates two fundamental concepts in anomaly detection: i) the
abnormality of a data element is contextual to the other elements in the data set, ii)
the definition of outliers is a fuzzy concept, thus formally defining outliers requires
arbitrary choices. These concepts characterize anomaly detection with respect to
other data analysis task. We will describe these relations in Sections 2.1.1 and 2.1.2.
We return to the problem of formally defining outliers in Section 2.1.4.

FIGURE 2.2: Simple 2-dimensional data set consisting of a cluster and
one outstanding outlier. Classification of other elements as outliers is

arbitrary.

2.1. Introduction 11

2.1.1 Relation with classification

Anomaly detection is closely related to binary classification [54]. Binary classifica-
tion consists in assigning data elements to two distinct classes, based on their fea-
tures. The similarity with anomaly detection holds when the two classes can be
thought of representing normal versus abnormal behavior. For instance, classifying
patient medical conditions, or classifying spam emails, are applications where both
binary classifications and anomaly detection techniques can be applied [145].

The difference between anomaly detection and binary classification can be de-
scribed through the different assumptions of the two approaches. Binary classifi-
cation is a supervised learning task. It relies on a data sample, i.e. the training set,
consisting of examples of data elements from each class. By analyzing the training
set, a binary classification algorithm builds a model that can be used to classify un-
seen data elements. The richer the training set, the more accurate the model can be.
There are no assumptions on the frequency of each class in the training set. Ideally,
both classes are represented equally.

On the other hand, anomaly detection has been investigated using different ap-
proaches. These include statistical methods, supervised, as well as unsupervised
learning approaches. The reason for this is that in many anomaly detection domains,
anomalies are either rare or difficult to define. In these domains, it is easier to de-
fine anomalies as “What is abnormal?”, instead of providing a representative data
set. For these reasons, most anomaly detection techniques rely on the following as-
sumptions:

• Anomalies are rare. It is assumed that anomalies represent the minority of the
data set.

• If a training set is available, it either contains few anomalies, or none at all.

In several contexts, a training set is not available, thus unsupervised learning tech-
niques must be adopted. We discuss anomaly detection approaches in greater details
in Section 2.1.3.

One last important connection between anomaly detection an binary classifica-
tion relates to evaluation and benchmarking. Since anomaly detection data sets are
rare, it is common in the literature to use binary classification data sets to evaluate
anomaly detection algorithms [147, 59, 37, 145]. These data sets contain the actual
classification for each element. This information can be used to assess the quality of a
outlier detection solution on the data set. In some cases, classification data sets must
be preprocessed in order to account for the different assumptions of anomaly detec-
tion methods, e.g. class imbalance [59, 37]. We describe the evaluation of anomaly
detection techniques in Section 2.1.5.

2.1.2 Relation with clustering

Data clustering consists in identifying groups of similar elements (clusters) in a data
set [85]. Identifying clusters and identifying outliers can be seen as two sides of the
same coin, since outliers can be defined as elements which do not belong to any
cluster, i.e. isolated elements [64].

Both clustering and anomaly detection follow an unsupervised learning approach.
This means that clusters are not defined by examples in a training set, but by a clus-
ter definition. This is similar to the definition of anomalies, and it relates to the fact
that there is no unique way of defining clusters, since our understanding of what
constitutes a group is fuzzy and relies on intuition [65].

12 Chapter 2. Anomaly Detection

Clustering algorithms have been applied to anomaly detection in several stud-
ies [64, 63, 53, 129]. However, clustering algorithms are optimized for clustering.
This causes issues when, for example, outliers are not completely isolated, but form
small outlying groups. Also, the choice of clustering algorithm affects which ele-
ments are considered outliers.

2.1.3 Anomaly detection approaches

In this section, we discuss the most common approaches to anomaly detection. Each
approach rely on different assumptions. In some contexts, we can choose between
different approaches, while in others, we might be forced to use one, depending on
the available data.

Supervised learning Supervised learning approaches for anomaly detection are
somewhat rare. This is due to the rarity of supervised data sets containing examples
of anomalous behavior. In fact, if we had access to such data, a better approach
would consist in using binary classification techniques. In case the training data set
is unbalanced, these techniques can be improved by implementing a data balancing
scheme [40].

One disadvantage of this approach is that the model specializes in detecting the
anomalies represented in the sample data, thus losing the ability to detect previ-
ously unseen abnormal behavior. This is a key strength of other anomaly detection
approaches. Some studies have also investigated the reduction of anomaly detection
to a supervised learning problem [70, 126].

Semi-supervised learning In the context of anomaly detection, semi-supervised
learning approaches consist in building an anomaly detection model using a data
sample containing only normal data [120]. This approach is convenient since in
many applications normal data can be obtained inexpensively, while producing ex-
ample of anomalies requires a large effort.

One drawback of the semi-supervised approach is that, in some contexts, it might
be unfeasible to produce a sample containing exclusively normal data. Without this
guarantee, outliers in the training set might compromise the model’s ability to dis-
criminate between normal and abnormal behavior. Artificial neural networks al-
gorithms have been applied to anomaly detection following the semi-supervised
approach [158, 9].

Unsupervised learning Unsupervised learning is the most common approach to
anomaly detection [33, 161, 63, 37, 69]. This approach does not rely on the availabil-
ity of information on the actual classes in the training set. Without this information,
an unsupervised anomaly detection algorithm must rely on the structural patterns
in the data set to provide a classification (e.g., classify as outliers those elements that
are isolated with respect to the majority of the data set, see Figures 2.1 and 2.2).

This approach is very popular since it can be applied to any data set. It is also
challenging, since, as in any unsupervised learning task, the output must rely on an
outlier definition instead of on examples of abnormal behavior in the training set.
Whether outliers satisfying the outlier definition are also interesting outliers with
respect to the application domain is not always obvious.

Most of the outlier detection literature deals with unsupervised learning. Some
example of this are statistical methods [161], where outliers are classified as elements

2.1. Introduction 13

lying in low probability regions in the feature space, distance-based methods [89,
132], where outliers are classified as elements far away from others, and clustering-
based methods [129, 63], where outliers are elements which do not belong to any
clusters. All contributions presented in this thesis refer to unsupervised outlier de-
tection. For this reason, in the following we focus exclusively on the unsupervised
learning paradigm.

2.1.4 Anomaly definitions

Unsupervised outlier detection algorithms rely on a formal anomaly definition to
identify outliers in a data set. Several definitions have been proposed in the litera-
ture [89, 33, 108]. This variety of definitions stems from the fact that there does not
exist one unique way of formally defining outliers. This is due to the fact that our
intuition of what constitutes an outlier is contextual and fuzzy. This can be related
to the problem of defining clusters in cluster analysis [65].

One important thing to notice is that data elements satisfying an anomaly defi-
nition do not necessarily correspond to outliers. For example, consider a data set in
which outliers form a small cluster. In this case, the definition “outliers are elements
which do not belong to any cluster” [64], and the algorithm implementing this def-
inition, would not be useful in discriminating outliers and inliers. Unfortunately, it
is impossible to know a priori whether a given definition of outlier is useful for a
particular data set. We discuss evaluating outlier detection algorithms, as well as
definitions, in Section 2.1.5.

The most widely quoted informal anomaly definition is the one by Hawkins [78].
The definition is the following:

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different

mechanism.

Notice that this definition is intuitive, as it refers to human suspicion, and it does not
provide any quantitative measure of outlierness.

Since machines cannot rely on intuition, a formal definition is needed to design
an algorithm for automatic anomaly detection. In the following, we discuss the
most successful formal anomaly definitions proposed in the literature. Notice that
all these definitions are parametric, in the sense that they depend on one or more
user-defined parameters. These parameters model the fuzzy nature of anomalies.

Statistical outliers. Statistical outliers are the most intuitive and well-known def-
inition of outliers. Unsurprisingly, the definition of statistical outliers originated in
Statistics, much earlier than the development of the data analysis field [73, 78].

Statistical outliers are defined with respect to the data distribution of the data
set. In this context, a data set is considered as a sample generated by the true under-
lying data distribution. This distribution can be either known (parametric statistical
methods), or unknown (non-parametric statistical methods).

14 Chapter 2. Anomaly Detection

A simple example of a parametric statistical outlier definition [23] is:

Definition 1 (zscore-outlier) An element x in data set D is a zscore-outlier if its zscore is
larger than three.

where the z-score of sample x is defined as

zscore(x) =
|x− µ|

σ
(2.1)

and where µ and σ are the sample mean and standard deviation of the data distri-
bution. Definition 1 assumes that the data follows a Gaussian distribution.

Notice that the value three in the definition is arbitrary. This value is selected fol-
lowing the empirical rule, stating that for Normally distributed data, 99.7 percent of
the data distribution falls within three standard deviations from the mean. However,
there could exist interesting outliers closer to the mean which would go undetected
by this definition. Statistical definitions of outliers have been investigated in several
studies [62, 161, 137, 123].

Distance-based outliers. The distance-based outlier definition was originally pro-
posed by Knorr and Ng [89]. The definition is:

Definition 2 (DB(ρ, dist)-outlier) An element x in data set D is a DB(ρ, dist)-outlier if
at least a fraction ρ of the elements in D lies at distance greater that dist from x.

This is historically the first definition explicitly considering the distance between
two data elements as an outlying criterion. However, Definition 2 is not widely
used, due to the difficulty in setting the ρ and dist parameters for arbitrary data sets.

A more widely used distance-based definition is the following [132].

Definition 3 (KNN-outlier) An element x in data set D is a KNN-outlier if there are no
more than n− 1 other elements in D with a larger distance to their k-nearest neighbor.

this definition is more easily applicable with respect to Definition 2, since it only
requires to set the k parameter.

Density-based outliers. The concept of density-based outliers was originally pro-
posed by Breunig et al. [33]. Density-based outliers are generally associated with
the Local Outlier Factor (LOF) algorithm [33]. Density-based outliers are formally
defined as follows:

Definition 4 (LOF-outlier) An element x in data set D is a LOF-outlier if there are no
more than n− 1 other elements in D with a larger LOF value.

where the LOF value of a data element is defined as in [33].
Similarly to distance-based techniques, density-based algorithms also consider

distances between data elements. Contrary to distance-based methods, outliers are
detected considering local properties, where locality is defined with respect to the
k-nearest neighborhood of each data element [141]. The LOF algorithm is probably
the most popular algorithm for unsupervised anomaly detection.

2.1. Introduction 15

Isolation-based outliers. More recently, the isolation-based outlier definition was
proposed by Liu et al. [108]. Intuitively, an element is an isolation-outlier if it can be
easily isolated by the rest of the data set. In the IForest algorithm [108], elements are
isolated by performing random, axis-parallel cuts in the feature space. Each element
is assigned a score representing the difficulty of isolating it from other elements.
Isolation-based outliers can be defined as follows:

Definition 5 (Isolation-outlier) An element x in data set D is an Isolation-outlier if there
are no more than n− 1 other elements in D that can be isolated more easily.

Isolation-based methods have the advantage of not having to compute directly
all pairwise distances between data elements. However, in higher dimensional space,
the procedure of isolating an element still suffers from the curse of dimensional-
ity [28, 5].

Other outlier definitions. Several other less popular outlier definitions have been
proposed. In the context of artificial neural networks, outliers can be defined as data
elements producing high residuals when fed into an Autoencoder network [79, 159,
41]. This approach consists in training the network on a data set consisting of mostly
normal data elements. The Autoencoder architecture specializes in reproducing its
input as output. This has applications in dimensionality reduction, since the hidden
layers can provide a compressed representation of the input data.

The key assumption of these approaches is that the representation of outliers
and normal elements is significantly different. Therefore, if the network is trained
to represent normal elements as accurately as possible, it will produce large resid-
uals when representing outliers. These residuals can then be used as a measure of
outlierness.

Other algorithms look for outliers in subspaces of the full feature space [101, 119,
139]. This approach has gained popularity with the development of ensemble meth-
ods for outlier detection [7, 6]. The intuition behind this approach is that the feature
space might contain features that are irrelevant, or worse, that introduce noise to
the anomaly detection task. Thus, one approach consists in randomly subsetting the
feature space and consider several anomaly detection tasks in each resulting sub-
space [101]. One open challenge with this approach is how to meaningfully split
the feature set, and how to aggregate the subspace results to maximize detection
accuracy [101, 86, 135].

2.1.5 Evaluation

Most anomaly detection techniques follow an unsupervised learning approach. This
poses several challenges to the experimental evaluation of proposed algorithms. The
evaluation of supervised learning approaches rely on the availability of a labeled
data set, containing, for each data element, information on whether it is normal or
anomalous. This information is commonly known as the ground truth of the data. In
the unsupervised paradigm, we usually do not possess this information. Thus, in
the general case, we cannot assess whether an algorithm correctly detects outliers.

The most well-established approach to solve this issue consists in leveraging bi-
nary classification data sets. These data sets contain the ground truth, since binary
classification algorithms rely on this information to be present in order to build a su-
pervised classification model. These data sets, referred to as benchmark data sets or
simply benchmarks, have been extensively used in the anomaly detection literature to

16 Chapter 2. Anomaly Detection

TABLE 2.1: Classifier confusion matrix.

Positive (Actual) Negative (Actual)

Positive (Pred.) TP FP
Negative (Pred.) FN TN

Total P N

assess the performance of anomaly detection algorithms [37, 69, 147]. An interesting
approach that does not require benchmark data sets has also been proposed [111].

Apart from benchmark data sets, the evaluation of outlier detection techniques
also requires appropriate performance metrics [72]. Most metrics for anomaly detec-
tion are defined on the algorithm confusion matrix. An example confusion matrix
is presented in Table 2.1. The confusion matrix depicts a classifier performance with
respect to the ground truth. Its components are:

• True positives (TP) - number of anomalous data elements correctly identified
as outliers.

• False positives (TP) - number of normal data elements incorrectly identified
as outliers.

• False negatives (FN) - number of anomalous data elements incorrectly identi-
fied as inliers.

• True negatives (TN) - number of normal data elements correctly identified as
inliers.

• Outliers (P) - total number of actual outliers.

• Inliers (N) - total number of actual inliers.

Several popular metrics in binary classification are not appropriate for anomaly
detection. For example, the accuracy metric, defined as:

accuracy =
TP + TN

P + N
(2.2)

is not appropriate for anomaly detection, since N � P. Thus, an algorithm assigning
the majority class (“inlier”) to all elements, would obtain an high accuracy while
incorrectly classifying all outliers.

More appropriate metrics are the precision and recall [49]. Precision is defined as:

precision =
TP

TP + FP
(2.3)

Precision refers to the ability of a detector to minimize false positives, i.e. false
alarms. Recall (or true positive rate) is defined as:

recall = TPR =
TP
P

(2.4)

Recall refers to the ability of a detector to minimize false negatives, i.e. undetected
outliers. We can also define the false positive rate as:

FPR =
FP
N

(2.5)

2.1. Introduction 17

All of these metrics are defined for a binary classifier output. However, as al-
ready discussed, the definition of anomaly is fuzzy, since it relies on intuition. There-
fore, outlier detection algorithms usually provide a ranking for each element based
on its outlier score [33, 108]. This score represents the abnormality of an element with
respect to the data set. This outlier score ranking can be converted into a binary
classification by introducing a threshold value σ, so that outliers are elements whose
outlier scores is larger than σ. However, notice that selecting a given value for σ is
arbitrary.

One approach to solve this issue is to use metrics that are defined directly on
the outlier ranking, and whose value is averaged over all possible σ values. The
most popular metric for anomaly detection is the area under the ROC curve (ROC
AUC) [66]. The ROC curve is a curve in the FPR-TPR plane. Each point in the curve
corresponds to setting σ to a value in the range from the minimum outlier score to
the maximum. The curve is obtained by interpolating the obtained points. Thus,
the ROC AUC is an aggregated metric representing the average performance of the
classifier. An example of ROC curve is presented in Figure 2.3.

One drawback of the ROC AUC metric is the overestimation of the area under
the curve due to the interpolation of its points. Thus, large values of the ROC AUC
should be taken with consideration. Another drawback is that the curve only con-
siders the recall as a measure of positive performance, without considering the clas-
sifier’s precision.

A complementary metric is the average precision score [49]. This can be defined
as the area under the Precision-Recall (PR) curve in the precision-recall plane. One
advantage of the average precision score is that it can be computed directly, without
interpolating the points of a curve. It also takes into consideration the precision of
an algorithm, thus it is more reliable when evaluating algorithms with respect to
the number of false positives. An example of precision-recall curve is presented in
Figure 2.4.

FIGURE 2.3: Example of Receiver Operating Characteristic (ROC)
curve.

18 Chapter 2. Anomaly Detection

FIGURE 2.4: Example of Precision-Recall (PR) curve.

2.2 Applications of anomaly detection

Applications for anomaly detection techniques are countless. In fact, anomaly detec-
tion can be applied to any scenario in which there is interest to automatically detect
unusual events or behavior from data. In the following, we discuss some of the most
widespread applications in the literature.

2.2.1 Intrusion detection

Anomaly detection has been extensively studied in the context of intrusion detec-
tion [144, 102, 147]. In this context, anomalies represent malicious attempts to infil-
trate a system or network. Each intrusion might cause great damage, thus detecting
intrusions in a timely manner is of great value.

Another reason for the popularity of this application domain is the availability of
the DARPA intrusion detection data set [106]. This data set is one of the few exam-
ples of a data set specifically developed for evaluating anomaly detection systems.
Although this data set presents several flaws [113, 148], it is one of the most widely
used evaluation data set in the literature.

2.2.2 Sensor networks

Sensor networks have gained popularity with the spread of interconnected sensor
devices. These sensors provide a stream of data that can be analyzed in real-time
to gather insight on the monitored environment. Detecting abnormal events in the
monitored environment is a natural application of anomaly detection [19]. Ano-
maly detection in sensor networks present unique challenges with respect to other
domains. For example, wireless sensors are constrained with respect to network
bandwidth and energy consumption, as well as having relatively high failure rates.
For these reasons, one of the most common use cases for anomaly detection in sen-
sor networks is to detect measurement errors or misbehavior or faulty sensors [123,
131, 57, 19].

2.2. Applications of anomaly detection 19

2.2.3 Fault detection and system monitoring

Complex systems, both hardware and software, require extensive monitoring and
maintenance to guarantee an adequate quality of service. The attention level of hu-
man beings cannot scale to the huge number of metrics that need to be monitored in
a complex system. Therefore, anomaly detection methods have been investigated to
provide reliable monitoring and fault detection.

One advantage of anomaly detection techniques is that, in some cases, it is possi-
ble to detect a fault before it becomes critical and it causes damage to the system. For
example, it is common for hardware components to misbehave for a given period of
time before failing. Thus, detecting misbehavior can identify components that needs
to be substituted before a system-compromising failure happens.

Some example applications of anomaly detection techniques applied to fault
detection include aircrafts maintenance [47], cloud monitoring [152], autonomous
robots [125], and hard disk drives monitoring [154].

21

Chapter 3

State of the Art

waIn this chapter, we present the current state of the art of anomaly detection. Sec-
tion 3.1 begins the chapter by presenting some historical milestones in the field. In
Section 3.2, we present some of the most seminal papers. Section 3.3 presents some
of the most popular resources and tools available to anomaly detection researchers
and practitioners. Finally, Section 3.4 concludes the chapter by presenting some of
the most relevant open challenges. As already mentioned in Chapter 2, in the fol-
lowing we focus on unsupervised anomaly detection.

3.1 A brief history of anomaly detection

The anomaly detection problem can be traced back to the problem of detecting out-
liers in statistical samples [73, 78, 25]. The term outlier was coined in the 17th cen-
tury, when it was used to refer to foreigners, outsiders or nonconformist people. The
statistical use of the term is more recent and can be found from the first half of the
20th century [149].

In Statistics, outliers are often considered as spurious data samples, e.g. mea-
surement errors. Thus, the problem of outlier classification was generally associated
with data cleaning [149, 73]. This is particularly important as it is well-known that
several statistical techniques are not robust to the presence of outliers in the data
sample [38].

The meaning and value of outliers were reconsidered at the beginning of the
21st century [89, 33]. Thanks to the development of information technology and
the wide availability of data sets, the considerations of outliers shifted from data
errors to be removed, to valuable nuggets of information to be mined. This paradigm
shift originated in application domains such as intrusion detection [106], and fraud
detection [32], where outliers represent critical and potentially catastrophic events.
In these contexts, the identification of outliers is obviously of great value.

Anomaly detection evolved from Statistics also with respect to methodologies.
Initially, anomaly detection techniques were relying on knowing [73] or estimat-
ing [161] the data distribution. This statistical approach was challenged by Knorr
and Ng [89], which introduced a novel definition of outliers based on distances be-
tween elements in the data set.

This breakthrough was shortly followed by an explosion of different anomaly
definitions, which did not rely on explicitly modeling the true data distribution [33,
132, 8, 11, 124]. These approaches were conceived within the newly born field of
data mining [67].

The development of novel algorithms and anomaly definitions did not stop.
Among these, two of the most notable contributions are: the work of Hawkins et
al. [79], which originally proposed the definitions of outliers based on residuals of
an autoencoder neural network, and the work of Liu et al. [108], which introduced

22 Chapter 3. State of the Art

the concept of isolation to avoid the burden of computing all pairwise distances in
the data set, typical of distance and density-based techniques [33, 132]. The work
of Hawkins et al. [79] paved the way for the more recent research on deep anomaly
detection [158, 168].

Apart from the proposal of novel anomaly definitions, the most disruptive hap-
pening in the field from the beginning of the century was probably the development
of a corpus on ensemble methods for anomaly detection [101, 119, 4, 169, 139, 6].
Ensemble methods are particularly well-suited for anomaly detection, since the ran-
domized nature of ensemble components is able to better capture the fuzzy nature
of outliers with respect to deterministic algorithms.

3.2 Seminal papers

This section describes seminal papers on unsupervised anomaly detection. Each
paper either presented one of the most popular algorithms in the current state of the
art, or introduced a paradigm shift in the literature.

Breunig et al. [33], Identifying density-based local outliers. The Local Outlier
Factor (LOF) algorithm [33] is one of the most popular algorithms for unsupervised
anomaly detection. LOF is a ranking method which assign an outlier score to each
data element. The LOF score depends on the relative k-nearest neighborhood density
between the elements and its k nearest neighbors. The LOF value is close to one
for elements in a dense cluster and it is higher for isolated elements [33]. Since it
considers relative densities with respect to a k-nearest neighborhood, LOF can be
classified as a local density-based algorithm.

Although it was proposed almost two decades ago, LOF has stood the test of
time and it is still one of the most popular baseline algorithms used in the literature.
One drawback of LOF is that it requires the user to select the value of the k hyper-
parameter. The optimal value of k depends on the data set under consideration, and
an appropriate setting can only be discovered empirically.

With respect to algorithm comparison, the most extensive comparison study in
outlier detection by Campos et al. [37] presents LOF as being one of the best perform-
ing methods on the considered benchmarks, along with KNN [132] and its variants.
In particular, these algorithms stand out both when performance is averaged over
different values of k, and when k is selected to be optimal in a given range of values.

Another comparison study by Goldstein and Uchida [69] found that LOF per-
formance is often superior or comparable with other local nearest-neighbors based
algorithms, however it fails to accurately detect global outliers.

A more recent evaluation by Domingues et al. [52] show that LOF underper-
forms with respect to IForest [108], and other methods on the considered bench-
marks. However, these results might be influenced by the arbitrary choice of the k
parameter used in the analysis. LOF has also been found to outperform other algo-
rithms on benchmarks specific to the intrusion detection domain [102].

Ramaswamy et al. [132], Efficient algorithms for mining outliers from large data
sets. The most popular distance-based algorithm is the KNN algorithm by Ra-
maswamy et al. [132]. Instead of following the original distance-based definition
proposed by Knorr and Ng [89], the authors propose a simpler definition. The out-
lier score in their formulation is based on the distance between an element and its
k-th nearest neighbor.

3.2. Seminal papers 23

This simple definition is extremely useful in practice. In fact, the KNN algorithm
has been found to outperform other techniques in different comparison studies [37,
69]. Additionally, KNN has been found to be more robust with respect to the k
hyperparameter setting with respect to other algorithms [37]. Notice that other vari-
ants of the original distance-based approach have been proposed [11, 26]. However,
the proposed methods have not been found to consistently outperform the original
KNN algorithm.

Hawkins et al. [79], Outlier detection using replicator neural networks. The idea
of using replicator neural network for anomaly detection was pioneered by Hawkins
et al. [79]. This approach consist in training an autoencoder architecture to represent
as closely as possible the data elements, and then, detect outliers as elements who
have large average residuals with respect to their reconstructed representation.

Considering its differences with respect to other unsupervised anomaly detec-
tion techniques, this algorithm is not usually included in comparison studies. Thus,
we cannot report its performance with respect to the current state of the art.

Lazarevic and Kumar [101], Feature bagging for outlier detection. The feature
bagging method [101] is a meta-algorithm for anomaly detection. Feature bagging
is one of the first approaches investigating the idea that outliers might be easier to
find in subspaces of the full feature space. This is especially true when the data set
presents a large number of noisy features. As a meta-algorithm, feature bagging can
be applied to other algorithms to improve their detection accuracy. This procedure
can be related to ensemble methods, since each subspace can be considered as an
independent ensemble component [6].

Liu et al. [108], Isolation forest. The isolation forest (IForest) algorithm by Liu
et al. [108] is one of the most recent milestones in unsupervised anomaly detection.
IForest follows the ensemble paradigm [6]. Each ensemble component builds a space
partitioning tree data structure, called an isolation tree, from a sample of the data set.
The isolation tree is constructed by successively cutting the feature space via axis-
parallel random cuts. Each cut isolates a portion of the data set from the rest. The
procedure terminates when all elements are isolated. Then, the outlier score for
each element is computed as a function of the depth (i.e. the number of cuts) of the
element in the tree.

Intuitively, the number of cuts required to isolate an element is inversely propor-
tional to its outlierness, i.e. outliers are more easy to isolate. IForest has been proven
more accurate and efficient than LOF and ORCA [26, 108]. These results have also
been confirmed by a few independent studies [59, 52].

Sathe et al. [135], Subspace outlier detection in linear time with randomized hash-
ing. One of the most important milestones in the ensemble methods literature for
anomaly detection is the development of linear time algorithms. One example is the
random subspace hashing algorithm (RS-Hash) by Sathe and Aggarwal [135]. Tradi-
tional distance and density-based algorithms need to compute the full data set dis-
tance matrix [33, 132, 26]. This implies that distance-based methods have a quadratic
complexity. RS-Hash is a linear-time ensemble algorithm for anomaly detection.

The algorithm relies on locality-sensitive hashing (LSH) [2, 48] to partition the
feature space into randomly-sized buckets. Buckets with a low number of element

24 Chapter 3. State of the Art

corresponds to low-density regions in the feature space, and can therefore be consid-
ered as outliers. The RS-Hash algorithm was been shown to outperform LOF, KNN
and IForest [135]. These results have not been confirmed by independent studies.

3.3 Resources and tools

In this section, we present software resources and tools available to anomaly detec-
tion researchers and practitioners.

ELKI data mining framework. The ELKI data mining framework [138] is a soft-
ware project providing and extensive library of data analysis techniques, focused on
clustering and anomaly detection. ELKI is implemented in Java and it is available as
open-source software1.

ELKI provides an extensive library implementing popular unsupervised ano-
maly detection algorithms. Additionally, ELKI provides several APIs for algorithm
development, such as efficient indexed data structures, standardized input format,
etc. One disadvantage of ELKI is that it user interface does not enable running mul-
tiple experiment in parallel, and it cannot be easily embedded in other applications.
ELKI implementations have been used extensively in the anomaly detection litera-
ture [97, 18, 140, 37].

PyOD library. A more recent resource is the PyOD outlier detection library [167].
PyOD is a library aimed at providing a large collection of implementations of outlier
detection algorithms. The library is written in Python and it is available as open-
source software2.

Although it is less mature with respect to ELKI, PyOD already contains numer-
ous outlier detection algorithms. Additionally, the success of scientific projects in the
Python ecosystem [121, 127] makes it easy to extend the library by providing new
algorithm implementations.

One disadvantage of PyOD is that it does not provide a user interface. Therefore,
some scripting is required in order to use it to run experiments. On the other hand,
PyOD can be easily embedded into other applications.

DAMI benchmark repository. The DAMI benchmark repository3 is the most ex-
tensive repository for anomaly detection benchmark data sets.

The repository contains data sets generated for the most extensive study on ano-
maly detection carried out in the literature [37]. The repository contains both data
sets and the results of the evaluation study. For each data set, several randomized
versions are available. All data sets are represented in the Weka ARFF format4.

ODDS benchmark repository. The Outlier Detection DataSets (ODDS) repository
is another repository dedicated to outlier detection research5. It hosts a larger num-
ber of data sets with respect to the DAMI repository.

1https://elki-project.github.io/
2https://pyod.readthedocs.io/en/latest/
3https://www.dbs.ifi.lmu.de/research/outlier-evaluation/
4https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable/
5http://odds.cs.stonybrook.edu/

3.4. Open challenges 25

Data sets are organized with respect to data properties (univariate, multivariate),
as well as application domain. All data sets are represented in the MATLAB data
format.

Numenta anomaly detection benchmark. The Numenta Anomaly detection Bench-
mark (NAB) is a benchmark repository containing time-series data6. The benchmark
is described in Lavin and Ahmad [100] and Singh and Olinski [143]. NAB is an ex-
cellent resource for researchers and practitioners in the field of time-series anomaly
detection.

3.4 Open challenges

In this section, we present what we consider are the most interesting open challenges
in anomaly detection.

Evaluation and benchmarking. As already mentioned in Section 2.1.5, the evalua-
tion of anomaly detection techniques is more challenging than for other data analysis
tasks. This challenge is related to the unsupervised nature of anomaly detection.

Even though most anomaly detection techniques follow an unsupervised learn-
ing approach, benchmark data sets are required to assess the quality of a solution.
Unfortunately, the evaluation methodologies and the use of these data sets are not
consistent across the literature. This raises the issue of comparing results across dif-
ferent studies. Without replicable results, the value of research is greatly diminished.

A relatively small collection of benchmark data sets has been used in anomaly
detection studies. However, it is common to apply different preprocessing across
different studies, thus effectively obtaining different benchmarks [163, 146]. Com-
paring performance across different benchmarks is unfeasible, thus the only reli-
able way of assessing the relative performance of anomaly detection algorithms is
through comparison studies. However, these studies require a lot of effort, and are
therefore rare [102, 37, 69, 52].

We argue that the adoption of standard benchmarks and evaluation methodolo-
gies would be immensely beneficial to the anomaly detection field. We propose our
contribution toward this challenge in Chapter 5.

Scalability. The generality of anomaly detection makes it interesting to apply ano-
maly detection algorithms to a broad spectrum of application domains. One hin-
drance to this is the poor scalability of anomaly detection algorithms. Most of the
most reliable algorithms in the field were proposed almost two decades ago [33, 132].
These algorithms were designed in a world that never experienced the massive data
volumes that we have to deal with today. For example, for multi-million data sets,
the quadratic complexity of LOF is unfeasible. Therefore, the scalability of anomaly
detection algorithms is a critical open challenge in the field.

One common approach to scalability is to distributed the computation on multi-
ple machines, or parallel threads in a CPU. Some distributed approaches have been
proposed for outlier detection [109, 122, 92, 13]. However, these approaches are ei-
ther restricted to a particular problem settings, e.g. categorical features, or do not
provide results for massive data sets.

6https://github.com/numenta/NAB

26 Chapter 3. State of the Art

The ability to scale anomaly detection algorithms to huge data volumes its criti-
cal for their adoption in a wide spectrum of use cases. We investigate this challenges
in Chapters 6 and 7.

Data streams. A particularly challenging anomaly detection setting is that of data
streams [117]. Data streams represent continuous and theoretically infinite sources
of information. In this context, an algorithm must provide results online, while ana-
lyzing only a portion of the data. Additionally, the dynamic nature of data streams
influences what we consider as outliers. In fact, it is possible for an element to be cor-
rectly considered as an outlier at a given point in time, but to be incorrectly classified
at a different time, a concept known as concept drift [155, 82]. As an example, consider
a stream of temperature measurements. Depending on the geographical location, a
temperature of 0°C might be unusual at noon, but completely normal at midnight.
These features make streaming anomaly detection a particularly challenging task.

Although several works deal with streaming anomaly detection [10, 146, 18,
157, 135], several open challenges still exist with respect to accuracy, scalability and
benchmarking [30].

27

Chapter 4

A Methodological Survey of
Anomaly Detection

Anomaly detection has received a lot of research attention in the past two decades.
Numerous papers and surveys on the topic have been published. However, the large
variety of methodological approaches makes it difficult to characterize the current
state of the art.

In this chapter, we present our methodological survey of the anomaly detection
literature. This survey is developed around answering the research question: “What
are the most widespread issues in the anomaly detection literature with respect to
methodology, evaluation and reproducibility?”.

In our survey, we quantitatively analyze the research methodology in the field.
In particular, we analyze 760 anomaly detection papers along four methodological
perspectives: application domain, definition of anomaly, data representation, and
evaluation methodology. We characterize each surveyed paper along these axes, and
we provide quantitative evidence of some of the open challenges in the field. Our re-
sults highlight that, contrary to their generality, anomaly detection techniques have
been applied to only a handful of domains. Additionally, several different anomaly
definitions make it difficult to compare algorithms’ performance and hinder com-
parative research studies. Finally, inconsistent benchmark usage makes it difficult to
clearly identify the current state of the art.

4.1 Introduction

Anomaly detection has received a lot of attention from the research community in
recent years. The number of published papers on the topic has tripled in the last
decade (see Figure 4.1). This published corpus describes a wide range of different
approaches to the anomaly detection problem. Anomaly detection papers differ in
both technical, e.g. how data is represented, and fundamental aspects, e.g. how
anomalies are defined. These differences make it difficult to identify, and reason
about, the current state of the art.

In order to shed some light on the issues in modern anomaly detection, in this
chapter we present our extensive methodological survey of the recent literature.

A methodological survey is a quantitative survey focusing on analyzing method-
ological trends and patterns in a corpus. Contrary to other surveys [80, 39, 164, 75],
a methodological survey does not focus on algorithmic aspects of a given paper.
Instead, it categorizes and evaluates the research methodology presented therein.

Although uncommon in computer science, methodological surveys have been
applied successfully to diverse fields such as medicine [44], psychology [61], and
chemistry [17]. This type of survey is valuable in identifying issues in the research

28 Chapter 4. A Methodological Survey of Anomaly Detection

FIGURE 4.1: Published/impactful papers (upper/lower bar) on ano-
maly detection from 2007 to 2017 (source dblp).

methodology that might go unnoticed when analyzing only the algorithmic aspects
of a proposed method. Moreover, methodological surveys also highlight possible
improvement directions that can benefit the surveyed field as a whole.

In the context of our survey, we analyze 760 anomaly detection papers, pub-
lished in the last decade. Papers are selected to satisfy some minimum requirements
of quality and impactfulness. Data for this survey is obtained by cross-referencing
the dblp1 and Google Scholar2 online archives. Each surveyed paper is analyzed
along four methodological perspectives: application domain, anomaly definition,
data representation, and evaluation methodology.

Anomaly detection can be applied to a broad range of application domains. Ana-
lyzing application domains makes it possible to highlight the different approaches
adopted, as well as identifying gaps in the literature by considering the differences
across domains.

The anomaly definition characterizes every anomaly detection algorithm. It is of-
ten the case that different papers propose different definitions [33, 132, 108]. One
issue with this approach is that it makes it difficult to analytically compare results
obtained by different algorithms. Additionally, it is not trivial to theoretically ana-
lyze algorithmic properties since different algorithms rely on different assumptions.
Toward solving this issue, in this work we propose an high-level algorithm classifi-
cation based on the assumptions embodied by the anomaly definition. We show that
with our classification we are able to categorize the whole surveyed corpus under
only six classes (see Table 4.2), thus demonstrating the usefulness of our proposal.

The data representation is a less fundamental aspect with respect to the anomaly
definition. However, how data is represented is crucial in many application do-
mains, since it determines which algorithms can be applied to a given use case. We
provide quantitative results representing the current state of the art also with respect
to data representations.

Finally, we focus on the evaluation methodology of anomaly detection algorithms.
In particular, we stress the importance of consistent usage of benchmark data sets
and performance metrics. We show how benchmarks are used rather inconsistently,
thus making it difficult to identify the current state of anomaly detection research.

1https://dblp.uni-trier.de/
2https://scholar.google.com/

4.2. Methodology 29

This chapter is structured as follows. Our survey methodology is detailed in Sec-
tion 4.2. Our main discussion is presented in Section 4.3. In particular, Section 4.3.1
describes our analysis of anomaly detection applications. In Section 4.3.2, we illus-
trate our proposed classification of anomaly definitions. Section 4.3.3 presents the
most frequent data representations used in the literature. The evaluation methodol-
ogy of anomaly detection techniques is discussed in Section 4.3.4. Finally, Section 4.4
summarizes the chapter.

4.2 Methodology

In this section, we describe our methodology in carrying out this survey. The pa-
pers surveyed in this work were selected to be representative of prominent trends
in recent anomaly detection literature. For this reason, we only considered papers
published in the last decade.

We also require a minimum number of citations for each paper to filter out both
niche and low-impact papers. Setting a hard threshold on the number of citations
is somewhat arbitrary. However, the large number of surveyed papers makes it so
that our conclusions are robust to the variation of this threshold within a reasonable
range.

Papers are selected by cross-referencing the dblp and Google Scholar online archives.
Data was collected in July 2018. The number of citation refers to this period. In this
work, we surveyed a total of 760 papers.

Each surveyed paper must meet the following criteria, in order:

1. The paper is indexed by dblp.

2. The paper’s title contains the words “anomaly detection” or “outlier detec-
tion”.

3. The paper is indexed by Google Scholar.

4. The paper has at least n citations, according to Google Scholar, where

n =

20, if year < 2016
15, if year = 2016
10, if year = 2017

(4.1)

Each selected paper is analyzed by answering the following questions:

• What is the application domain?

• How are anomalies defined?

• How is data represented?

• How is the evaluation performed?

We select these questions since they characterize the research methodology of the
paper, and they are general enough to find an answer in most surveyed papers.

Figure 4.1 depicts the total number of considered papers versus the number of
surveyed papers. The full list of surveyed papers and their characterization accord-
ing to the survey axes considered can be found in our online repository3.

3https://github.com/passiv-me/ad-meta-survey

30 Chapter 4. A Methodological Survey of Anomaly Detection

FIGURE 4.2: Surveyed papers by application domain.

4.3 Discussion

In this section, we present the results of our methodological survey. The discussion
is organized by our four methodological perspectives.

4.3.1 Application domains

Anomaly detection can be applied to any data set where a semantically meaningful
distinction between anomalies and normal data exists. Anomalies represent abnor-
mal events in the phenomenon under consideration. Understanding these events
might highlight actionable insights about the phenomenon. Detecting anomalies
should therefore be valuable in a wide range of application domains.

In contrast to this argument, our analysis shows that anomaly detection have
been investigated in a relatively small number of domains. Figure 4.2 depicts the
most represented anomaly detection domains in our surveyed corpus by number of
papers.

These domains are:

• Cross-domain - Cross-domain papers present research in anomaly detection
that is not tied to a particular application domain. These papers usually pro-
pose algorithms or surveys that rely on general assumptions, e.g. relational
data sets, and can be applied to several domains. Some examples in this cate-
gory include the LOF [33], KNN [132] IForest [108], and Feature Bagging [101]
algorithms.

• IDSs and network security - These papers present applications of anomaly
detection to intrusion detection systems (IDSs), network monitoring, and com-
puter security. We found this domain to be the most popular among the sur-
veyed papers. In fact, around a third of all surveyed papers deals with intru-
sion detection at large.

This can be related to several reasons. Firstly, intrusions are potentially catas-
trophic for an organization, thus motivating large investments and interest in
their prompt detection. Secondly, intrusion detection is a very natural ap-
plication of anomaly detection, and historically one of the first to be investi-
gated [106, 63, 102]. Finally, one of the first benchmark data set developed for

4.3. Discussion 31

anomaly detection, the KDD Cup 1999 data set [106, 148] represents an intru-
sion detection task. The availability of this data set certainly contributed to the
development of anomaly detection techniques in the intrusion detection do-
main. Papers in this domain include Eskin et al. [63], Tylman [151] and Lin et
al. [105].

• Video and remote sensing - This category includes papers dealing with video
surveillance and remote sensing. Video surveillance consists in detecting ab-
normal events in a video stream, e.g. anomaly detection in crowded scenes [110],
while remote sensing deals with detecting outliers in hyperspectral images.
We consider these application domains together since they both rely on im-
age analysis techniques. These techniques are not commonly found in other
domains. Papers in this category include Mahadevan et al. [110], Khazai et
al. [88], and Zhang et al. [166].

• Sensor networks - Sensor networks are distributed systems composed of sev-
eral interconnected sensors. Sensor networks can be deployed in an envi-
ronment in order to monitor a given phenomenon. One common assump-
tion in the sensor network literature is that sensors are constrained in term
of resources, such as battery power or network bandwidth. Sensors are also
assumed to be unreliable and to have high failure rates. Moreover, sensor
networks are often deployed in uncertain environments. These assumptions
make it valuable to apply anomaly detection techniques to various aspects of a
sensor network. These include monitoring sensors’ health and resource utiliza-
tion, and identifying outliers in sensor measurements. Some example papers
in this domain include Rajasegarar et al. [131], Zhang et al. [165], and Egilmez
and Ortega [57].

• Fault detection - Detecting failures or misbehaving equipment is another nat-
ural use case for anomaly detection techniques. Early detection of outliers in
this domain is particularly valuable since preventing a failure might be order
of magnitude less costly than repairing a broken equipment. Fault detection
techniques have been applied the a broad spectrum of use cases, such as in-
dustrial equipment [16], aeronautical vehicles [142], and cloud environment
monitoring [152].

• GIS - Geographic Information Systems (GISs) are information systems for man-
aging spatial data. Anomalies in this domain have the advantage of being
more easily explainable and comprehensible. Additionally, in this context anoma-
lies can arise both in term of spatial and temporal data features. These types
of anomalies are known as spatial and temporal outliers, respectively. Example
applications in this category include maritime surveillance [93], urban traffic
monitoring [103], and mobile phone data sensing [45].

• e-Health - Anomaly detection techniques have been investigated also in the
medical domain. Example use cases include clinical patient monitoring [77]
and assisted diagnosis systems [150]. It has been shown that anomaly de-
tection algorithms can be used to discriminate between normal and abnor-
mal medical conditions, thus assisting medical professionals in the diagnosis
process. In particular, surveyed applications include automatically detecting
seizures [158], eye diseases [136], and cancer [150].

32 Chapter 4. A Methodological Survey of Anomaly Detection

TABLE 4.1: Distribution of surveyed papers by application domains.

Application domain Surveyed papers (%)

Cross-domain 30.9
IDS and network security 30.0
Video and remote sensing 10.8
Sensor networks 10.5
Fault detection 6.8
GIS 5.1
e-Health 3.6
Others 2.3

• Others - Less than three percent of surveyed papers deals with application
domains not included in the previous categories. Some examples include op-
timization [156] and business process mining [29].

For convenience, the distribution of surveyed papers by application domain is
presented in Table 4.1. As already mentioned, intrusion detection systems are the
most represented domain. Video and remote sensing and sensor networks respec-
tively represent around ten percent of the surveyed corpus. Other application do-
mains are discussed in less than seven percent of papers.

4.3.2 Anomaly definitions

As introduced in Section 2.1.4, each anomaly detection algorithm is characterized
by a particular anomaly definition. An anomaly definition identifies which data
elements are to be considered anomalous by the algorithm. Since the property of
being anomalous cannot be defined in absolute terms, an anomaly definition usually
depends on user-defined hyperparameters [33, 108, 129].

A large number of anomaly definitions have been proposed [39]. This can be
related to the large number of cluster definition proposed in the clustering litera-
ture [65]. Namely, the definitions of both anomalies and clusters rely on human
intuition and there is no one-size-fit-all definition that encompasses all aspects of
the problem.

The relation between different anomaly definitions has been partially investi-
gated in Knorr and Ng [89], Yamanishi and Takeuchi [160], and Schubert et al. [141].
However, which definition is better suited for a given anomaly detection task still
remains an open question.

TABLE 4.2: Distribution of surveyed papers by anomaly definition
class.

Anomaly definition Surveyed papers (%)

Likelihood anomaly 33.3
Model-based anomaly 28.6
Similarity-based anomaly 17.5
Cluster-based anomaly 11.2
Frequency-based anomaly 7.0
Rule-based anomaly 2.4

4.3. Discussion 33

In this work, we propose an high-level classification of anomaly definitions, and
consequently algorithms, into six classes. These classes are based on the theoretical
assumptions that an algorithm relies on. Noticeably, most anomaly detection algo-
rithms rely an a limited set of assumptions. In fact, all 760 surveyed papers could be
classified using only six classes.

Our classification finds its value, for example, in comparison studies, where it
might make little sense to compare algorithms based on profoundly different as-
sumptions. Our proposed classification is summarized in Table 4.2.

In particular, we propose the following classes:

• Likelihood-based anomalies - Algorithms in this class consider a data element
as anomalous if its probability, or likelihood, according to a given generative
stochastic process, is below a given threshold. This class relies on the assump-
tion that the data distribution is either known (parametric approach) or can
be estimated (non-parametric approach). Some examples of likelihood-based
algorithms include Bayesian Networks [151], GMMs [161], and Information
Entropy models [46].

• Model-based anomalies - Algorithms in this class consider as outliers those
data elements whose reconstruction error, according to a machine learning
model, is above a given threshold. The assumption in this class is that a train-
ing data set is available. Some machine learning models also require labeled
data to be available. Some examples of these models include SVMs [60, 130],
and wavelet decomposition [71]. Neural networks have also been investigated
for outlier detection [79].

• Similarity-based anomalies - These algorithms consider a data element anoma-
lous if its distance, or a function of its distance, to other data elements exceeds
a given threshold. The underlying assumption is that a similarity metric can
be defined between data elements, and that such a metric makes sense in the
considered feature space [28].

This class of algorithms is one of the most popular for unsupervised outlier de-
tection due to its explainability and good baseline performance [37]. However,
algorithms based on distance computations are known to suffer from the curse
of dimensionality in high-dimensional data sets [28]. This class encompasses
both distance-based approaches [90, 132] and density-based approaches [33].

• Cluster-based anomalies - This class of algorithms considers as anomalies
those data elements that do not belong to any of the prominent clusters in
the data. Algorithms in this class assume that a cluster definition is available.
These mainly differ with respect to the particular clustering approach adopted.
The most popular approaches are density-based clustering [134], k-means clus-
tering [58], and fuzzy clustering [107].

• Frequency-based anomalies - For algorithms in this class a data element is
anomalous if the values of its attributes have low frequency with respect to
the majority of the data. This class of algorithms assumes that data contains
discrete attributes which can only take on a limited number of values. Some
examples include Bezerra et al. [29] for business process logs, and Koufakou et
al. [92] for categorical data sets.

• Rule-based anomalies - Algorithms in this class consider a data element anoma-
lous if it does not match a set of rules set by a domain expert. These algorithms

34 Chapter 4. A Methodological Survey of Anomaly Detection

FIGURE 4.3: Distribution of anomaly definitions by application do-
main

assume that domain knowledge is available in order to define the rules. Exam-
ples in this class include Narita and Kitagawa [118] and Duffield et al. [55].

The distribution of surveyed papers with respect to anomaly definition classes is
presented in Table 4.2. The most represented classes are the likelihood and model-
based anomalies, amounting to a total of 61.9% of the surveyed papers. Similarity-
based approaches, although very popular in unsupervised outlier detection [37],
amount only for 17.5% of the surveyed papers. Frequency and rule-based approaches
have been analyzed in less than 10% of the surveyed papers. Notice that these ap-
proaches are generally less articulated and more easy to implement with respect to
other approaches.

To complement our analysis, we also present the anomaly definition distribu-
tion with respect to the application domains introduced in Section 4.3.1. Figure 4.3
illustrates our results. Most noticeably, likelihood-based approaches have been in-
vestigated consistently across all application domains considered, with frequencies
varying between 20% and 50%. Model-based approaches are also fairly popular, in
particular in the remote sensing domain (almost 50% of surveyed papers). However,
they are particularly underrepresented in the GIS domain. Interestingly, similarity-
based algorithms have been investigated successfully in cross-domains papers (around
27% of surveyed papers), but not as much in domain-specific papers.

Finally, notice that in the less investigated application domains, i.e. “Others”, the
prevalent approach is frequency-based. This might be due to the ease of implemen-
tation and low resource requirements of frequency-based algorithms, which makes
them appropriate to a large variety of use cases.

4.3.3 Data representations

Data can be represented in a variety of formats. Popular data representations in-
clude tabular data, time series [83] and graph data [56]. Most anomaly detection

4.3. Discussion 35

TABLE 4.3: Distribution of data representations in surveyed papers.

Data representation Surveyed papers (%)

Real-valued vectors 63.5
Discrete vectors 18.9
Videos 5.9
Hyperspectral images 5
Graphs 3.9
Mixed-attribute vectors 2.8

algorithms assume data is represented in a particular format. Thus, data representa-
tions affect which techniques can be applied to a particular use case. In this section,
we analyze our surveyed corpus with respect to data representations.

Table 4.3 presents the distribution of surveyed papers by data representation.
The most common data representation in anomaly detection is real-valued feature
vectors, i.e. real-valued data matrices. This is to be expected, since real-valued data
sets are one of the most common representations in data analysis and machine learn-
ing applications [115].

The second most common data representation is discrete vectors. This represen-
tation is used for data attributes that can only take on a limited set of values. Some
examples include application logs or network packet traces. Other data representa-
tions in our surveyed corpus include multimedia formats, such as video or images,
and graph data. The least popular data representation consists of mixed-attribute
data sets, i.e. data sets containing a mixture of continuous and discrete attributes.
Noticeably, this representation, which is the most general, is also the least investi-
gated in our surveyed corpus.

4.3.4 Evaluation methodology

As mentioned in Section 2.1.5, the evaluation of anomaly detection techniques presents
several challenges.

The most common approach for evaluating an anomaly detection algorithm con-
sists in executing the algorithm on a benchmark data set [37]. A benchmark data set,
or benchmark, contains for each data element a label stating whether the element is
anomalous or normal. This information is known as the ground truth of the data set.
By comparing the results of the algorithm with the ground truth we can assess its
performance. This comparison is carried out by using binary classification metrics
such as precision, recall and the area under the ROC curve (ROC AUC) [49, 66].

One issue with this approach is that it relies on benchmark data sets. Realis-
tic benchmarks are seldom available in anomaly detection. Anomalies are rare by
definition, and labeling large data sets requires a lot of time and effort. Therefore,
anomaly detection research and practitioners must settle for surrogates of realistic
benchmarks.

One of the first benchmark developed for anomaly detection is the KDD Cup
1999 intrusion detection data set [106]. This benchmark contains data on cybersecu-
rity attacks in a computer network, as well as “clean” network data. This benchmark
is a surrogate data set, since it was collected in a simulated environment. This dimin-
ishes the reliability of the benchmark, as well as introducing other issues highlighted
in different studies [148, 147].

36 Chapter 4. A Methodological Survey of Anomaly Detection

FIGURE 4.4: Distribution of benchmark data sets.

A popular approach for producing benchmark data sets for anomaly detection is
to manipulate binary classification benchmarks to introduce characteristics of ano-
maly detection problem instances, e.g. class imbalance [59, 37]. This approach
produces better quality benchmarks with respect to adopting binary classification
benchmarks without modifications [37].

In the context of our analysis, Figure 4.4 depicts the most commonly used bench-
marks in our surveyed corpus. The benchmark source is also presented.

Our results show that the KDD Cup 1999 data set is clearly the most frequently
used benchmark. However, it is important to notice that this benchmark was used
in less than ten percent of surveyed papers. Considering that, as discussed in Sec-
tion 4.3.1, intrusion detection papers comprise around thirty percent of the surveyed
corpus (see Table 4.1), this implies that the most common benchmark is not widely
used even within the community for which it was designed. Less popular bench-
marks are used even less consistently.

This highlights an important issue with data set usage in anomaly detection.
Namely, data sets for comparative research are either not publicly available [153, 81,
52] or not used consistently, e.g. using the same data set but considering different
anomalous classes. Modifying a benchmark, effectively obtaining a different data
set, generates unnecessary confusion and hinders the replicability of results.

Notice that the majority of surveyed benchmarks comes from the UCI machine
learning repository [104]. This repository contains binary classification data sets
which are not fit for testing anomaly detection algorithms. Using binary classifi-
cation data sets to assess the performance of anomaly detection algorithms might
lead to inconsistent results [37]. Luckily, several anomaly detection benchmarks and
repository have been recently proposed [59, 37, 133]. These should be preferred over
more generic benchmarks.

Finally, we note that most surveyed anomaly detection papers focus on the ROC
AUC metric as the only performance metric. Although this approach improves com-
parability of results across papers, it also has some drawbacks. For instance, it is
known that the ROC AUC metric tend to overestimate the quality of an algorithm
with respect to more conservative metrics, e.g. the average precision score [49]. We

4.4. Summary 37

advocate for a multi-metric approach, since considering different metrics has the
power to highlight different aspects of a given solution.

4.4 Summary

In this chapter, we presented our quantitative methodological survey of anomaly
detection. Methodological surveys have been proven valuable in a broad spectrum
of fields including medicine and chemistry. In particular, methodological surveys
highlight open challenges in the surveyed field.

In our survey, we analyzed anomaly detection papers along four methodologi-
cal aspects, namely: application domain, definition of anomaly, data representation,
and evaluation methodology. We considered for review a large number of anomaly
detection papers published in the last decade and surveyed a total of 760 papers.

With respect to application domains, we showed that anomaly detection has
been investigated in a limited number of domain. This is in contrast with the gen-
erality of anomaly detection techniques. The most represented anomaly detection
domain is intrusion detection. Other popular domains include sensor networks and
remote sensing. We showed how the popularity of a given domain is related to the
availability of benchmark data set for that domain.

Then, we analyzed surveyed papers by anomaly definitions. We demonstrated
that a large number of anomaly definitions have been proposed. This variety makes
it difficult to compare different techniques and clearly establish the state of the art.
To tackle this problem, we proposed an high-level classification of surveyed papers
based on six anomaly definition classes. We showed how our classification can be
used to organize the literature into easily comparable subfields.

We then analyzed the surveyed corpus with respect to both anomaly definitions
and application domains, and we presented our discussion on how different classes
are more popular in different domains. Similarly, we analyzed the surveyed corpus
with respect to data representations.

Finally, we discussed the most popular evaluation methodologies in the field and
highlighted several issues. In particular, we demonstrated how benchmark data sets
are not used consistently, thus making it difficult both to replicate published results
and to conduct comparative research studies.

39

Part II

Benchmarking

41

Chapter 5

BAD: Benchmarking for Anomaly
Detection

Most anomaly detection algorithms depend on one to several hyperparameters to
be set by the user. Finding the optimal settings for these hyperparameters requires
testing several configurations for each data set under analysis. This approach is
both time and effort-consuming, and it is often unfeasible. For this reason, users
usually choose hyperparameter settings by following rules of thumb, which leads to
suboptimal performance.

In this chapter, we present our framework for Benchmarking Anomaly Detec-
tion (BAD). BAD aims at answering the following research question: “How can we
improve the reproducibility of anomaly detection evaluation experiments across dif-
ferent studies?”. BAD reduces the burden of hyperparameter tuning by testing sev-
eral hyperparameter configurations in parallel on a cluster of machines. We demon-
strate BAD’s usefulness and effectiveness by analyzing four state-of-the-art anomaly
detection techniques on eight benchmark data sets. Our results show that rule-of-
thumb settings are unreliable, and that hyperparameter tuning leads to significant
performance gains on the majority of the problem instances considered. Addition-
ally, we demonstrate how different hyperparameter tuning strategies lead to differ-
ent outcomes when trying to reproduce comparative research studies. Finally, we
highlight the effectiveness and scalability of BAD with respect to other anomaly de-
tection frameworks.

An extended version of this chapter has been accepted for publication in the Big
Data Research journal.

5.1 Introduction

A large collection of anomaly detection techniques has been developed over the
years [39, 3]. Most of these techniques require the user to set one to several hy-
perparameters. An hyperparameter is a setting that characterizes the execution of an
anomaly detection algorithm. Each hyperparameter is defined on a given domain,
e.g. the set of positive integers [108], or a probability between zero and one [137].

The notion of an hyperparameter is not unique to anomaly detection. For ex-
ample, the number of clusters in the famous k-means clustering algorithm [84] is
an example of an hyperparameter. In the context of anomaly detection, an exam-
ple of hyperparameter is the number of neighbors in the Local Outlier Factor (LOF)
algorithm [33], defined on the set of positive integers smaller then the data set size.

Hyperparameter settings determine the performance of an anomaly detection
algorithm on a particular data set. The performance of an anomaly detection algo-
rithm can be measured via classification metrics, such as the average precision score

42 Chapter 5. BAD: Benchmarking for Anomaly Detection

(AP) or the area under the ROC curve (ROC AUC) [49]. These metrics provide a
quantifiable measure of the quality of a solution provided by the algorithm to the
anomaly detection task.

Finding the optimal hyperparameter settings with respect to a performance met-
ric is not trivial. The number of hyperparameter configurations to test grows combi-
natorially with the number of hyperparameters. Additionally, even a single hyper-
parameter might lead to a large number of possible configurations, e.g. in k-means
the k hyperparameter is defined over the set of all positive integers. In these cases, i.e
when the hyperparameter domain is unbounded, proving the optimality of a given
configuration might be impossible.

The need to test all possible hyperparameter configurations stems from the fact
that the dependency between the hyperparameter settings and the performance met-
ric is not known. In general, this relation is arbitrary and it depends on the data set
under consideration. Thus, when searching for the optimal hyperparameter settings,
we cannot assume the monotonicity, or continuity, of the metric with respect to the
hyperparameters. This make it impossible to prune the search space [15]. For the
same reasons, if the hyperparameter domain is unbounded, we cannot prove that a
given configuration is optimal, since we cannot test all possible configurations.

These issues make hyperparameter tuning a difficult and time-consuming task.
In the case where finding the optimal hyperparameter configuration is unfeasible,
hyperparameter tuning deals with finding an “appropriate” configuration following
heuristic procedures. The most common heuristic procedures are rules of thumb and
grid searches in the hyperparameter space.

Finding an acceptable hyperparameter configuration for a given anomaly detec-
tion task is critical to both practitioners and researchers. Practitioners are interested
in detecting anomalies as accurately as possible, since detection errors might lead to
economical losses. On the other hand, researchers are interested in pushing the state-
of-the-art by developing competitive and novel techniques. The competitiveness of
a technique is established through experimental comparison with the state-of-the-
art. However, without proper hyperparameter tuning, the comparison might result
biased toward a particular algorithm [95].

As our contribution toward overcoming these issues, in this chapter we present
our framework for Benchmarking Anomaly Detection (BAD). BAD is a distributed
framework for benchmarking and hyperparameter tuning of unsupervised anomaly
detection techniques. BAD leverages distributed computation on commodity hard-
ware to enable parallel execution of a large number of experiments. This let users
perform massive hyperparameter grid searches in a timely manner. BAD includes
a library of anomaly detection algorithms to foster comparison studies. At the time
of this writing, BAD library features seven state-of-the-art anomaly detection tech-
niques. Additionally, this library can be easily extended with novel techniques. BAD
also includes a collection of benchmark data sets from the literature that can be used
to compare algorithms in a reproducible and shareable manner. Finally, BAD fea-
tures a simple web-based graphical user interface to monitor experiments execution
and to visually analyze the results.

In this chapter, we introduce the hyperparameter tuning problem in Section 5.1.1.
We describe the BAD framework in details in Section 5.2. In Section 5.3.2, we make
use of BAD to analyze several issues with rules of thumb hyperparameter settings.
We compare rules of thumb with grid-search hyperparameter tuning in Section 5.3.3.
Then, in Section 5.3.4, we demonstrate how hyperparameter tuning affects compari-
son studies. Finally, in Section 5.3.5, we compare the scalability of BAD with respect

5.1. Introduction 43

to the ELKI framework [138], a popular choice among researchers to implement ano-
maly detection algorithms, on an hyperparameter tuning task. Section 5.4 concludes
the chapter.

5.1.1 Hyperparameter tuning

In the remainder of this chapter, we focus on the hyperparameter tuning problem.
This is related to Problem 1 defined in Chapter 1. We extend our notation to account
for the fact that an anomaly detection algorithm might depend on user-defined hy-
perparameters. We represent a scoring function as s : Rn×d ×Θ → Rn×(d+1), where
Θ is the hyperparameter domain. For example, if s depends on a positive integer
parameter, then Θ ≡ N+. If s depends on a positive integer and a real-valued hy-
perparameter then Θ ≡ N+ ×R. We can now define the hyperparameter tuning
problem as follows:

Problem 2 (Hyperparameter Tuning) Given a benchmark data set D ∈ Rn×d with ground
truth g : Rn×d → {0.0, 1.0}n, a metric m : {0.0, 1.0}n ×Rn×(d+1) → R, and a scoring
function s from the family F = { f | f : Rn×d ×Θ → Rn×(d+1)}, find an hyperparameter
configuration θ∗ ∈ Θ such that

θ∗ = arg max
θ∈Θ
{m(g(D), s(D, θ))} (5.1)

Without any assumption on the shape of m(g(D), s(D, θ)) with respect to θ, find-
ing θ∗ requires considering all hyperparameter configurations θ ∈ Θ. When Θ is
unbounded this is unfeasible. A common approach in hyperparameter tuning is to
find an appropriate hyperparameter configuration for scoring function s on dataset
D. An appropriate configuration can be defined as the optimal configuration in a
heuristically defined subset of the hyperparameter domain Θ.

The two most common approaches to hyperparameter tuning in anomaly detec-
tion are to apply rules of thumb, or to perform a grid search. Applying a rule of
thumb (RoT) for an algorithm consists in reusing hyperparameter settings proposed
in the original paper describing the algorithm.

For example, the original paper for LOF suggests to set the number of neighbors
in the range [10, 50] independently from the data set [33]. These settings have been
used in several studies throughout the literature [124, 108, 96]. This approach re-
quires the least amount of effort, since it does not rely on testing a large number of
hyperparameter configurations. On the other hand, this approach does not adapt it-
self to the data set under consideration, which might lead to unreliable results when
considering a large variety of data sets.

A grid search (GS) consists in testing hyperparameter settings at regular inter-
vals in the hyperparameter space Θ. A grid search requires testing all configura-
tions in the grid. With this approach, it is possible to trade-off the time spent in
hyperparameter tuning with the likelihood of finding an appropriate hyperparam-
eter configuration. This feature is desirable in resource constrained environments,
e.g. in industrial applications, where the cost of hyperparameter tuning might be an
issue [22]. The more configurations are tested during the grid search, i.e. the larger
the grid, the more likely we are to find a good configuration. Although a grid search
requires more effort, this approach is more robust than the rule-of-thumb approach,
as we will demonstrate in Section 5.3.2. This is because a grid search exploits the
information in the data set under analysis. In fact, with a grid search we can analyze
the most promising hyperparameter configurations, and we can iteratively refine the
search to move toward promising directions.

44 Chapter 5. BAD: Benchmarking for Anomaly Detection

5.2 The BAD framework

In this section, we present the Benchmarking Anomaly Detection (BAD) framework.
The BAD framework enables running extensive hyperparameter grid searches for
anomaly detection techniques. The BAD framework is written in Python. All source
code and documentation of BAD can be found in the BAD repository1.

In the following sections, we describe the implementation details of BAD with
respect to design goals (Section 5.2.1), architecture (Section 5.2.2), algorithms (Sec-
tion 5.2.3), data sets (Section 5.2.4), hyperparameters (Section 5.2.5), and perfor-
mance metrics (Section 5.2.6).

5.2.1 Requirements and design goals

Effective hyperparameter tuning requires a large number experiments to be exe-
cuted. This determines the number of hyperparameter configuration in Θ that can
be tested during a grid search. The more configurations we test the more likely we
are to find a “good-enough" hyperparameter configuration. Following these consid-
erations, a good metric for a benchmarking framework is the experiment throughput,
i.e. the number of experiments executed per unit of time. Naturally, the experiment
throughput depends on the type of experiments executed (e.g. cardinality of the
data set, anomaly detection algorithm, etc.) since different experiments amount to
different execution times.

If we want to maximize the experiment throughput and without assuming any
prior information on the type of experiments, the only viable approach is to imple-
ment parallel experiment execution. BAD implements this paradigm by distributing
the experiments on a cluster of machines. This provides high experiment through-
put, and it also has the desirable property of introducing a trade-off between cost,
i.e. amount of computational resources used or execution time, and quality of the
hyperparameter tuning results.

BAD was also designed to produce easily replicable and shareable results. This is
important in the research community to produce high-quality research. In order for
results to be replicable, each experiment must be completely specified, and specifica-
tions must be easy to understand, edit and share. An anomaly detection experiment
is completely specified by selecting an algorithm, a data set and an hyperparameter
configuration. BAD uses plain-text files to specify each of these aspects, thus making
specifications easy to share (e.g. see Section 5.2.5).

5.2.2 Architecture

The BAD framework consists of several processes that can be either instantiated on
a single host or distributed on multiple hosts. BAD uses a client-server architecture.
The main components of BAD are:

• BAD client - the BAD client provides the main user interface for the BAD
framework. It is responsible for parsing user input (configuration files and
options) and sending the required information to the server-side processes, as
well as downloading the results once execution has completed.

• BAD master - the BAD master is the main server-side process. The master is
responsible for scheduling experiments and collecting results. The BAD mas-
ter is also the only communication point between the server-side processes and

1https://github.com/passiv-me/bad-framework

5.2. The BAD framework 45

FIGURE 5.1: Example deployments of the BAD framework. BAD can
be deployed either on a single machine (left) or on a cluster (right).

the BAD client. Finally, the BAD master exposes the Web GUI that the user can
use to monitor the execution. Only one master can be active at any given time.

• BAD worker - the BAD worker executes experiments within the BAD frame-
work. Several workers can be instantiated within the framework. Each worker
is responsible for running the experiments that the master has assigned to it.
Workers are also responsible for sending the results of each completed experi-
ment to the master.

Both master and workers are implemented as Web applications. There are no con-
straints on the BAD client as long as it implements the required communication
protocol with the BAD master. All inter-process communication within BAD relies
on the HTTP protocol.

Figure 5.1 depicts two possible deployments of the BAD framework. On the left,
we have a single-host deployments. In this case, all processes are instantiated on the
same machine. On the right, an example of multi-host configuration is shown. In
this case, client and master reside on the same host while workers reside on different
hosts.

5.2.3 Candidates

A Candidate is the main BAD abstraction for an anomaly detection algorithm. The
name “candidate” refers to the benchmarking purpose of BAD, i.e. to find the best
candidate algorithm for a given problem.

A Candidate must implement a scoring function, as defined in Problem 1. This
restricts a Candidate to implement scoring functions for numerical data sets only. We
argue that this assumption is not too restrictive since most unsupervised anomaly
detection research deals with numerical data sets, and there are ways to convert
categorical features into numerical ones [37, 68].

In practice, a Candidate is a Python module implementing an anomaly detection
scoring function according to a specific interface. The scoring function takes as input
a data element and produces and outlier score as output. Each candidate can also be
fitted on a particular data set using the fit function. This interface is general enough
to be easily implemented for most unsupervised anomaly detection algorithms.

46 Chapter 5. BAD: Benchmarking for Anomaly Detection

TABLE 5.1: BAD Candidate library.

Candidate Source Reference

LOF scikit-learn [33]
KNN scikit-learn [132]
Weighted KNN scikit-learn [11]
OCSVM PyOD [137]
LOCI PyOD [124]
FeatureBagging PyOD [101]
IForest scikit-learn [108]

BAD includes a library of Candidate implementations. Each Candidate in this
library implements one state-of-the-art anomaly detection technique. At the time of
this writing the Candidate library contains the algorithms represented in Table 5.1.
For a detailed description of the Candidates used in this chapter, see Section 5.3.1.

The BAD Candidate library makes it easy to compare different anomaly detec-
tion techniques. Most implementations comes directly from popular data analysis
frameworks, such as scikit-learn [127] and PyOD [167]. Additionally, the BAD Can-
didate library can be easily extended with novel algorithms. The choice of Python
as programming language makes it easy to implement new anomaly detection al-
gorithms by leveraging the large collection of APIs found in the scientific Python
ecosystem [121, 127].

5.2.4 Data sets

As already described in Section 5.1.1, in order to measure an anomaly detection
performance metric a benchmark data set is required. According to the principle
of domain-specific benchmarks [72], a benchmark data set should represent a real-
world problem instance. This is important since the purpose for anomaly detection
algorithms is to be applied to real-world anomaly detection tasks. When using a
benchmark data set we assume that the performance on the algorithm on the bench-
mark is an approximation of the performance of the algorithm on any anomaly de-
tection task. If the benchmark does not represent a realistic anomaly detection task
this assumption does not hold.

Realistic benchmark data sets for anomaly detection are rare. One way to over-
come this issue is to adapt binary classification data sets to anomaly detection [59,
37]. The adaptation process is required in order to produce realistic data sets. For
example, one common assumption in anomaly detection is that the anomaly class is
much less frequent than the normal class, i.e. classes are unbalanced. This assump-
tion does not hold for many classification data sets. In these cases, the anomaly
class should be subsampled to enforce class imbalance. In some cases, other forms
of preprocessing are also necessary [37]. Several repositories with adapted anomaly
detection data sets exist [37, 133].

Another issue with respect to anomaly detection benchmarking is that data sets
are not used consistently across different studies. One example of this is when the
same data set is used in different studies, but it is preprocessed differently, effectively
generating different problem instances [42, 163]. This hinders the replicability of
results, and it creates confusion.

The BAD framework solves these problems by decoupling algorithm design and
evaluation. BAD includes a collection of benchmark data sets from the literature.

5.2. The BAD framework 47

TABLE 5.2: BAD collection of benchmark data sets.

Data set Data elements Features Outliers (%) Source

annthyroid 7129 21 7.49 DAMI [37]
covertype 286048 10 0.9 ODDS [133]
glass 213 9 4.22 ODDS [133]
kdd99 48133 40 0.42 DAMI [37]
pendigits 6870 16 2.27 DAMI [37]
shuttle 1013 9 1.28 DAMI [37]
wbc 377 30 5.3 ODDS [133]
wine 129 13 7.7 ODDS [133]

These data sets have been used extensively for evaluating anomaly detection algo-
rithms and they have been shown to represent realistic problem instances [37, 133].

The adoption of a static collection of data sets has several advantages: i) per-
formance metrics for different algorithms can be easily compared and shared, ii)
algorithm comparison cannot be biased by hand-picking particular data sets, iii) all
data sets are ready to use, without the need for preprocessing or format conversion.

All BAD data sets are represented using the ARFF format2. The ARFF format
has the advantage to be both humanly-readable and easily parseable. Additionally,
ARFF data can be easily shared since each data set is represented by a single text file.

The BAD data set collection is listed in Table 5.2. To improve diversity, the data
sets are selected from a wide range of applications domains and have varying char-
acteristics. The number of data elements ranges from a few hundreds to several
thousands. The outlier frequency ranges between approximately 1% to 8%.

Although a static collection of benchmark data sets has several advantages for
benchmarking, we designed the BAD data set collection to be extensible so that other
use cases might also be included.

5.2.5 Hyperparameter specification

The BAD framework is designed to run anomaly detection experiments. Each exper-
iments is defined by a data set, a Candidate, and the Candidate’s hyperparameter
configuration.

As with data sets and Candidates, hyperparameter configurations are specified
using plain-text files. This ensures simple usage and easy sharing of configurations.
BAD uses the same interface for hyperparameter settings and grid searches. For
each hyperparameter, either a value or a range of values can be specified in the
hyperparameter file. An example hyperparameter specification is:

Hyperparameter s e t t i n g example : <name> <value >
x 10

Grid search example : <name> < s t a r t > <end> <step >
y 1 10 1

If a single value is specified, a single experiment is run. If, on the other hand, a
range of values is specified, an experiment for each value in the range is run, thus
performing a grid search. Through this interface, the user can specify both single
experiment runs, as well as multiple experiment runs, i.e. experiment suites. BAD

2https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable/

48 Chapter 5. BAD: Benchmarking for Anomaly Detection

supports integer, real-valued and string hyperparameters. Grid searches are not
defined for string hyperparameters.

5.2.6 Performance metrics

Performance metrics provide a quantifiable measure of quality for a solution. The
most commonly used metrics for the effectiveness of anomaly detection techniques
are the area under the ROC curve (ROC AUC), the precision/recall, and other de-
rived metrics [76, 49]. For each completed experiment, BAD reports the ROC AUC
and the average precision score (AP).

The ROC AUC is defined as the area under the ROC curve [76]. The ROC curve
is the curve in the true positive rate/false positive rate plane composed by varying
the decision threshold of a classifier. ROC AUC can range in [0.0, 1.0], where 1.0
represents a perfect classifier. The theoretical ROC AUC of a random classifier is 0.5.
ROC AUC has the advantage of being independent on the magnitude of the outlier
scores, since it depends only on their relative ordering. A perfect ROC AUC implies
that all outliers have higher scores with respect to any normal data elements. One
disadvantage of the ROC AUC is that the interpolation used to compute the area can
overestimate the performance of the algorithm.

AP is defined as:
AP = ∑

n
(Rn − Rn−1)Pn

where n varies within the classifier decision thresholds, and Pn and Rn are the pre-
cision and recall at threshold n, respectively. This formulation does not interpolate
the area under a curve. Thus, it is more robust to overestimation.

Most anomaly detection studies focus on ROC AUC as the only effectiveness
metric. In the design of BAD, we followed a multi-metric approach. Using multiple
metrics is advisable since even though performance metrics might be correlated,
considering multiple metrics usually exposes useful information [49]. We provide
evidence of this in the following section.

5.3 Experimental evaluation

In this section, we leverage the power of the BAD framework to answer the follow-
ing questions:

• Is the rule-of-thumb approach reliable for hyperparameter tuning of anomaly
detection techniques?

• How does the rule-of-thumb approach compares with grid searches?

• Is the performance gain obtained via grid searches significant with respect to
rule-of-thumb settings?

• Does using different performance metrics and hyperparameter tuning approaches
affect the relative rankings of anomaly detection algorithms?

• How does BAD compare with other anomaly detection frameworks in term of
experiment throughput?

To answer these questions we present a comparative evaluation of some of the algo-
rithms in the BAD Candidate library on the BAD data set collection.

All reported experiments are executed on Ubuntu Linux 18.04 LTS machines
powered by an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 8GB of RAM.

5.3. Experimental evaluation 49

5.3.1 Candidates

In this section, we introduce the Candidates used in our experiments. All Candidate
implementations can be found in the BAD Candidate library.

LOF The Local Outlier Factor algorithm (LOF) [33] is one of the most popular al-
gorithms for unsupervised anomaly detection. LOF is classified as a local density-
based technique. LOF’s scoring function assigns a score to each data element de-
pending on the relative k-nearest neighborhood density between the data element
and its neighbors. This approach is known to work well in data sets with varying de-
grees of density, where a global approach cannot discriminate between low-density
and high-density regions [33]. The only hyperparameter of LOF is the number of
neighbors k to consider in the computation.

KNN The KNN algorithm (KNN) [132] is another popular algorithm in anomaly
detection. Similarly to LOF, KNN also uses distances between data elements to com-
pute the scoring function. However, contrary to LOF, the score for each element is
the Euclidean distance to its k-th nearest neighbor. KNN can be classified as a global
distance-based approach [141]. Similarly to LOF, the only hyperparameter of KNN
is the neighborhood size k.

IForest The Isolation Forest algorithm (IForest) [108] is an ensemble method for
unsupervised outlier detection. Instead of relying on distance computations it relies
on the concept of isolation. Intuitively, anomalous elements are the ones that can
be more easily isolated from the rest of the data set. For each data element, IForest
computes the number of random cuts (i.e. hyperplanes in the feature space) required
to isolate it from other data elements. This procedure is repeated multiple times by
subsampling the data set and generating a forest of isolation trees. The average
number of cuts averaged within the forest is used to compute the outlier score for
the element.

The hyperparameters for IForest are the number of trees, the size of the sample
used to build each tree, and the random number generation seed which determines
the sampling process.

OCSVM The one-class Support Vector Machine (OCSVM) [137] is an optimization
technique for binary classification that can be adapted to anomaly detection. This
technique relies on solving the problem of estimating a region in space that contains
the majority of the data set, i.e. where the data distribution is positive. This region
is defined by its boundary data elements, known as support vectors (SV). A classi-
fication is obtained by evaluating the position of each data element with respect to
the computed region. Non-linearly separable classes can be mapped onto a linearly
separable space using a kernel function.

The hyperparameter of OCSVM are the “softness” of the boundary, the ε-precision
of the solver, and the parameter specifying the kernel function.

5.3.2 Rule-of-thumb settings vs. grid searches

In this section, we investigate the performance of rule-of-thumb settings with respect
to grid searches for hyperparameter tuning. Applying a rule of thumb corresponds
to selecting an hyperparameter value based on previous studies, i.e. without exper-
imental validation. For example, a common choice for the LOF’s hyperparameter k

50 Chapter 5. BAD: Benchmarking for Anomaly Detection

Algorithm POS NEG NUL

LOF 25% 75% 0%
KNN 25% 50% 25%
OCSVM 0% 62.5% 37.5%

Total 16.66% 62.5% 20.83 %

TABLE 5.3: Aggregated results for rule-of-thumb experiments. POS
refers to the case in which rule-of-thumb settings are optimal. NEG
refers to the case in which they are suboptimal. NUL refers to the case
in which performance does not depend on hyperparameter settings.

is k = 10, as suggested in the original paper [33] and applied in several other stud-
ies [124, 108, 96]. On the other hand, a grid search consists in testing hyperparameter
configurations at regular intervals in the hyperparameter domain.

In order to test the robustness of rule-of-thumb settings with respect to grid
searches, we analyze the performance of LOF, KNN, and OCSVM on all data sets
in the BAD data set collection (see Table 5.2). We use the rule-of-thumb value k = 10
for both LOF and KNN. For OCSVM, we use the value ν = 0.05, as in the original
paper [137]. With respect to grid searches, we consider a grid search in the range
k ∈ [1, max(n, 500)], where n is the cardinality of the data set, for both LOF and
KNN. For OCSVM we consider ν values in the range ν ∈ [1, 100].

As our performance metrics we consider both ROC AUC and AP. Results are
presented in Figures 5.2 and 5.3. To improve readability we only illustrate one-
dimensional grid searches. We also only report the most representative trends. The
complete set of results can be found in our online repository.

Discussion Figure 5.2 depicts examples in which rule-of-thumb settings are opti-
mal with respect to the grid search considered. In the following, we refer to these
cases as POS. Figure 5.3 shows cases where rule-of-thumb setting are suboptimal
with respect to the grid search. We will refer to these cases as NEG. Finally, we will
refer to cases in which the performance does not seem to depend on the analyzed
hyperparameters as NUL.

Table 5.3 summarizes the experiment results. Among the 24 configurations ana-
lyzed (three algorithms on eight data sets), the results show that in 62.5% of the cases
hyperparameter tuning via grid search provides a better configuration with respect
to rule-of-thumb settings. In the considered examples, the additional effort required
to perform a grid search is compensated by the significant performance gain with
respect to rule-of-thumb settings. We analyze this performance gain in more details
in Section 5.3.3.

The results also show that the relationship between performance metrics and hy-
perparameter configurations depends on the data set considered. For example, the
rule-of-thumb value of k = 10 for the LOF method leads to suboptimal performance
on the larger convertype and kdd99 data sets (see Figures 5.3.a and 5.3.b). In these
instances, the optimal value for k seems to be much higher than the rule-of-thumb
setting. This is in line with the fact that the LOF algorithm depends on the analy-
sis of k-nearest neighborhoods. In a larger data set neighborhoods are likely to be
more dense. Thus, it is more likely that a larger number of data elements needs to
be analyzed in order to correctly discriminate anomalous elements.

Figure 5.2.b shows a good example of a metric (ROC AUC) being non-monotonic
with respect to the hyperparameter (k). In this case, a grid search considering k ∈

5.3. Experimental evaluation 51

FIGURE 5.2: Rules of thumb analysis. Cases in which rule-of-thumb
settings are optimal with respect to the grid search considered (POS).
The solid lines and circles represent the ROC AUC metric. Dashed
lines and crosses represent the AP metric. Lines correspond to the
rule-of-thumb setting. Points correspond to grid search results. For

both metrics higher values are better (best printed in colors).

52 Chapter 5. BAD: Benchmarking for Anomaly Detection

FIGURE 5.3: Rules of thumb analysis. Cases in which rule-of-thumb
settings are suboptimal with respect to the grid search considered
(NEG). The solid lines and circles represent the ROC AUC metric.
Dashed lines and crosses represent the AP metric. Lines correspond
to the rule-of-thumb setting. Points correspond to grid search results.

For both metrics higher values are better (best printed in colors).

5.3. Experimental evaluation 53

[0, 100] (e.g. [37]) would probably set for the local optimum around k = 50. However,
a better hyperparameter configuration can be found when considering values larger
than one hundred.

Finally, our results also show that considering different metrics provides differ-
ent insights. For example, even though ROC AUC and AP are correlated, AP is
systematically lower than ROC AUC. An extreme example is the KNN algorithm
on pendigits (Figure 5.2.d), where ROC AUC is close to one, whereas AP is close to
zero. This might be due to the large number of false positives in the results. This
analysis demonstrates one drawback of using a single-metric evaluation approach,
since a single metric cannot capture all characteristics of a solution.

5.3.3 Performance gain

The effort required to perform a grid search must be justified by the performance
gain obtained with respect to rule-of-thumb settings. In this section, we analyze this
performance gain in more detail. To this end, we present an experimental compar-
ison of the considered algorithms. For each algorithm and data set we report the
performance obtained with rule-of-thumb settings, the performance obtained with
the optimal hyperparameter configuration found in the grid search, as well as the
relative performance gain.

Each grid search is carried on by adopting the following procedure. If an increas-
ing performance trend is found (e.g. Figure 5.3), the hyperparameters are increased
until a plateau is found. If a descending trend is found (e.g. Figure 5.2), the current
best hyperparameter settings are used. If several hyperparameter settings corre-
spond to the same performance, the smallest hyperparameter value is used.

Consistently with the rest of the chapter, the comparison is repeated for both
ROC AUC and AP metrics. In order to produce these results, approximately 50K
experiments where executed using BAD. More details on the final hyperparameter
settings used in the experiments can be found in ??. Tables 5.4 and 5.5 present the
results for the ROC AUC and AP metrics, respectively.

Discussion Considering the ROC AUC (Table 5.4), we notice that, when using grid
searches for hyperparameter tuning, either LOF or KNN achieve the best perfor-
mance on all analyzed data sets. In most data sets considered, LOF and KNN are

Data set
LOF KNN IForest OCSVM

RoT GS RoT GS RoT GS RoT GS

annthyroid 0.674 0.674 (+0%) 0.613 0.659 (+8%) 0.617 0.661 (+7%) 0.473 0.483 (+2%)
covertype 0.567 0.973 (+72%) 0.852 0.905 (+6%) 0.889 0.908 (+2%) 0.501 0.501 (+0%)
glass 0.783 0.824 (+5%) 0.869 0.869 (+0%) 0.7 0.711 (+2%) 0.456 0.462 (+1%)
kdd99 0.538 0.912 (+69%) 0.91 0.99 (+9%) 0.989 0.989 (+0%) 0.989 0.989 (+0%)
pendigits 0.624 0.917 (+47%) 0.987 0.987 (+0%) 0.738 0.881 (+19%) 0.21 0.318 (+51%)
shuttle 0.989 0.989 (+0%) 0.974 0.989 (+2%) 0.858 0.88 (+3%) 0.695 0.731 (+5%)
wbc 0.895 0.954 (+7%) 0.954 0.954 (+0%) 0.952 0.952 (+0%) 0.666 0.92 (+38%)
wine 0.936 1.0 (+7%) 0.999 0.999 (+0%) 0.775 0.816 (+5%) 0.519 0.681 (+31%)

TABLE 5.4: Experimental comparison of unsupervised anomaly de-
tection algorithms with respect to ROC AUC. Results in parenthesis
show the performance gain with respect to the rule-of-thumb settings.
The best performance for each data set and hyperparameter tuning

approach (RoT vs. GS) is represented in bold.

54 Chapter 5. BAD: Benchmarking for Anomaly Detection

Data set
LOF KNN IForest OCSVM

RoT GS RoT GS RoT GS RoT GS

annthyroid 0.124 0.124 (+0%) 0.102 0.121 (+19%) 0.112 0.143 (+28%) 0.069 0.071 (+3%)
covertype 0.016 0.278 (+1637%) 0.070 0.070 (0%) 0.065 0.075 (+15%) 0.009 0.009 (+0%)
glass 0.178 0.207 (+16%) 0.151 0.206 (+36%) 0.097 0.108 (+11%) 0.088 0.201 (+128%)
kdd99 0.006 0.037 (+516%) 0.082 0.549 (+569%) 0.361 0.446 (+24%) 0.432 0.438 (+1%)
pendigits 0.009 0.015 (+87%) 0.065 0.072 (+10%) 0.004 0.009 (+125%) 0.001 0.002 (+100%)
shuttle 0.363 0.378 (+4%) 0.205 0.386 (+88%) 0.062 0.099 (+60%) 0.033 0.048 (+45%)
wbc 0.267 0.583 (+118%) 0.516 0.601 (+16%) 0.624 0.652 (+4%) 0.282 0.552 (+95%)
wine 0.616 1.0 (+62%) 0.991 0.991 (+0%) 0.178 0.235 (+32%) 0.112 0.22 (+96%)

TABLE 5.5: Experimental comparison of unsupervised anomaly de-
tection algorithms with respect to average precision score. Results in
parenthesis show the performance gain with respect to the rule-of-
thumb hyperparameter settings. The best performance for each data
set and hyperparameter tuning approach (RoT vs. GS) is represented

in bold.

the best performing algorithms independently on the hyperparameter tuning ap-
proach (best value for both RoT and GS in Table 5.4). This is not the case for IForest
which achieves the best performance on covertype and kdd99 when considering
rule-of-thumb settings, but is outperformed by LOF and KNN when considering a
grid search.

This might explain the results in Domingues et al. [52], where the authors fol-
low a rule-of-thumb hyperparameter tuning approach, and where it is reported that
IForest outperforms LOF on the data sets considered. Our results after extensive
grid search hyperparameter tuning disagree with theirs.

With respect to relative performance gains, we can see that the gain ranges from
0% (where rule-of-thumb settings are optimal, i.e. POS cases) to a maximum of 72%
(LOF on covertype). The average performance gain with respect to ROC AUC is
12.4%, possibly justifying the investment in grid searches.

Considering the AP metric (Table 5.5), results notably show that the relative rank-
ing of algorithms has changed. This is analyzed in more detail in Section 5.3.4. The
average performance gain with respect to average precision is 119%. Thus, in this
case, tuning the hyperparameters via grid searches doubles the algorithm perfor-
mance on average.

By comparing Table 5.4 and Table 5.5, we can confirm our finding that AP val-
ues are much lower than ROC AUC values. This is additional evidence for the fact
that ROC AUC tends to overestimate algorithm performance and it should not be
considered as the only performance metric.

We were also able to reproduce the results of Campos et al. [37], when the optimal
hyperparameter settings were found in the grid that the authors considered in their
study. In other cases, we found better hyperparameter settings by analyzing a larger
grid using the BAD framework.

5.3.4 Relative rankings

In this section, we analyze how different hyperparameter settings and performance
metrics affect the relative ranking of algorithms in a comparison study. To this end,
we use the Kendall ranking correlation coefficient [87] as our main metric. The
Kendall’s coefficient can be used to establish the correlation between different rank-
ings. A coefficient value of one corresponds to perfect correlation (i.e., the rank-
ings are the same), a value of minus one corresponds to inverse correlation (i.e., the

5.3. Experimental evaluation 55

Data set RoT vs GS (ROC) RoT vs GS (AP) ROC vs AP (RoT) ROC vs AP (GS)

annthyroid 1.0 0.66 1.0 0.66
covertype 0.33 0.0 0.66 1.0
glass 1.0 0.66 0.66 0.33
kdd99 0.0 0.66 1.0 1.0
pendigits 0.66 1.0 0.66 1.0
shuttle 1.0 0.66 1.0 0.66
wbc 0.33 0.66 0.33 0.0
wine 0.66 0.66 1.0 1.0

TABLE 5.6: Kendall rank correlation coefficient for algorithm rank-
ings. A value of one means perfect correlation, a value of zero rep-
resents uncorrelated rankings. Only 37.5% of rankings are perfectly
correlated, suggesting that different metrics and hyperparameter tun-

ing approaches affect algorithm relative performance.

rankings are one the inverse of the other). Finally, a value of zero corresponds to
uncorrelated ranking.

We analyze rankings obtained in four different scenarios:

• RoT vs GS (ROC AUC) - The compared rankings are obtained considering
rule-of-thumb settings versus grid-search settings. ROC AUC is selected as
performance metric.

• RoT vs GS (AP) - The compared rankings are obtained considering rule-of-
thumb settings versus grid-search settings. Average precision score is selected
as metric.

• ROC AUC vs AP (RoT) - The compared rankings are obtained considering the
ROC AUC metric versus the AP metric. Hyperparameters are set to rules-of-
thumb settings.

• ROC AUC vs AP (GS) The compared rankings are obtained considering the
ROC AUC metric versus the AP metric. Hyperparameters are set to grid-
search settings.

Results of this analysis are presented in Table 5.6. As expected, these results clearly
show that different metrics and hyperparameter tuning approaches do affect algo-
rithm relative rankings. We obtain perfectly correlated rankings in only 37.5% of
considered cases. Thus, in the majority of these there is at least one discordance
between the compared rankings.

This analysis validates both the need for reliable hyperparameter tuning in com-
parative research studies, as well as the advantages of using a multi-metric approach
when analyzing anomaly detection algorithms. Notably, both grid searches and the
AP metric considerably change the relative ranking of methods up to the point of
questioning results published in other comparative studies [52].

5.3.5 Scalability

Having demonstrated the advantages of robust hyperparameter tuning practices, in
this section we analyze whether BAD is indeed a good framework for performing
grid searches.

In the last set of experiments, we compare BAD with the ELKI framework [138].
ELKI is a popular choice among researchers to implement and compare anomaly

56 Chapter 5. BAD: Benchmarking for Anomaly Detection

FIGURE 5.4: Scalability of the BAD framework versus ELKI. Exe-
cution time refers to running a suite of 100 experiments (LOF on
annthyroid data set) with different hyperparameter configurations
(k ∈ [1, 100]). Reported times are averaged over ten runs. Even when
using a single worker the BAD framework exhibits good scalability
with respect to ELKI. Running on more workers improves scalability,

as expected.

detection algorithms. ELKI also provides several efficient data structures that can be
used to speed up the analysis. We consider these data structures in our evaluation.
In our comparison, we use as our metric the experiment throughput, defined in
Section 5.2.

For consistency, we run the same experiment suite on both frameworks. The
suite represents a grid search for the k hyperparameter of the LOF algorithm on
the annthyroid data set. The hyperparameter range corresponds to k ∈ [1, 100].
Reported execution times are averaged over ten executions.

In our experiments, we compare the following configurations:

• ELKI - ELKI implementation of LOF (without indexes).

• ELKI with indexes - ELKI implementation of LOF using a KD-tree in-memory
index for faster neighbor searches.

• BAD (1 worker) - BAD implementation of LOF. BAD framework running on a
single worker (distributed).

• BAD (2 workers) - BAD implementation of LOF. BAD framework running on
two workers (distributed).

• BAD (3 workers) - BAD implementation of LOF. BAD framework running on
three workers (distributed).

Results are depicted in the bar chart in Figure 5.4. The plot shows the competitive-
ness of BAD with respect to ELKI. Even when running on a single worker, BAD is
twice as fast as ELKI.

When considering experiment throughput, BAD with one worker achieves 0.95
experiment per second, versus 0.35 for ELKI (0.41 with indexes). When increasing
the number of workers, the experiment throughput improves, as expected. Notice

5.4. Summary 57

Data set LOF (k) KNN (k) OCSVM (ν) IForest (num. trees) IForest (sample size)

annthyroid 11 1 0.01 450 100
covertype 1300 182 0.3 50 900
glass 17 6 0.3 50 300
kdd99 322 90 0.06 450 900
pendigits 69 13 0.01 300 1000
shuttle 9 4 0.01 100 600
wbc 66 68 0.3 450 100
wine 28 10 0.04 250 100

TABLE 5.7: Hyperparameter settings used in this study when opti-
mizing ROC AUC.

Data set LOF (k) KNN (k) OCSVM (ν) IForest (num. trees) IForest (sample size)

annthyroid 11 1 0.01 450 100
covertype 1500 10 0.3 50 900
glass 5 1 0.06 50 300
kdd99 350 93 0.03 50 500
pendigits 60 13 0.02 300 1000
shuttle 9 4 0.01 450 700
wbc 97 309 0.3 450 100
wine 28 10 0.16 500 100

TABLE 5.8: Hyperparameter settings used in this study when opti-
mizing AP.

that the performance gain is not linear due to the cluster management overhead and
network communication delay. This is expected, as these are common bottlenecks in
distributed systems.

These results show that BAD is able to efficiently run extensive hyperparameter
searches. This makes it a good fit for benchmarking and hyperparameter tuning of
anomaly detection algorithms.

5.3.6 Replicability

In this section, we report the hyperparameter settings used to run the experiments
described in this chapter. For stochastic algorithms, i.e. IForest, the random number
generator seed was varied between one and ten and the reported results are aver-
aged over those ten runs.

These hyperparameter settings where found following the heuristic grid search
procedure described in Section 5.3.3. It is possible that by considering a larger grid
better hyperparameter settings could be found.

Table 5.7 reports, for each algorithm and data set, the optimal hyperparameter
settings with respect to the ROC AUC metric. Table 5.8 illustrates the optimal hy-
perparameter settings for the AP metric.

5.4 Summary

In this chapter, we presented the BAD framework for benchmarking anomaly detec-
tion. BAD enables the execution of a large number of anomaly detection experiments
in parallel on commodity hardware. This is achieved by distributing the computa-
tion on a cluster of machines. Running a large number of experiments in parallel is

58 Chapter 5. BAD: Benchmarking for Anomaly Detection

important both for hyperparameter tuning of anomaly detection algorithms, as well
as for comparative research studies.

The traditional approach for hyperparameter tuning in anomaly detection is to
set hyperparameters via rules of thumb. We showed that this approach is unreliable
and leads to suboptimal performance with respect to grid searches in the majority of
cases considered.

We showed that hyperparameter tuning via grid searches leads to large perfor-
mance gains with respect to rule-of-thumb settings. This is particularly significant
when considering the AP metric over the ROC AUC. We also demonstrated that dif-
ferent metrics and hyperparameter tuning approaches influence the relative ranking
of anomaly detection algorithms in comparative evaluation studies.

Having proven the advantage of grid search hyperparameter tuning, we ana-
lyzed the efficiency of BAD in running grid searches with respect to the popular
ELKI data mining framework. Our results showed that, in this task, BAD outper-
forms ELKI, even when running on a single worker.

We release the BAD framework as open-source software for the community to
provide feedback and contribute to it. We hope that our work will contribute to the
development of robust and reproducible research in the anomaly detection field.

59

Part III

Scalable Anomaly Detection

61

Chapter 6

Cost-aware Data Analysis

In this chapter, we begin to investigate the scalability of anomaly detection tech-
niques. A common approach to scaling data analysis tasks is to distribute the com-
putation on a cluster of machines. A distributed system is able to achieve superior
performance by managing a large pool of resources as a single entity. However, in
the industrial context, performance is not the only important metric. For example,
when comparing equivalent solutions to a given task, the cost of the solution be-
comes an important factor.

This chapter presents our analysis of the price-performance trade-offs in the con-
text of a streaming anomaly detection task. This contribution deals with the follow-
ing research question: “At which data scale is a distributed approach more cost-
effective than a single-threaded application with respect to the anomaly detection
task?”.To this end, we describe our empirical evaluation of two equivalent anomaly
detection solutions by considering price-performance metrics. Our use case is taken
from the Telecommunication industry. Our results show that, in case of both online
and periodic analysis, the benefits of distributed processing are outvalued by the
higher cost of distributed data ingestion. However, if we fix the data ingestion costs,
our results show that the most cost-effective solution depends on the data set size.

The work described in this chapter was developed at the Semantics and Knowl-
edge Innovation Lab (SKIL) at TIM1.

Some of the contents of this chapter have been previously published in the pro-
ceedings of the 12th ACM International Conference on Distributed and Event-based
Systems [22].

6.1 Introduction

The massive amounts of data we deal with daily is pushing the development of dedi-
cated tools for their collection, storage, and analysis. The most well-established tools
to deal with such Big Data are distributed computing systems. A distributed system
is made up of several independent components, or nodes, that communicate with
each other to solve a given problem. For example, a node could be a PC or a wire-
less sensor. The great advantage of distributed systems is that they can seamlessly
manage a large pool of resources as a single entity.

Modern computing infrastructures increasingly rely on distributed systems to
manage huge volumes of data, and to increase performance and reliability. Cloud
service providers, such as AWS2 and Microsoft Azure3, are key enablers for this

1https://www.tim.it/
2https://aws.amazon.com/
3https://azure.microsoft.com/

62 Chapter 6. Cost-aware Data Analysis

trend. These providers make computing resources available to their customers un-
der a pay-per-use billing policy. This model greatly reduces operational costs with
respect to the total cost-of-ownership. Also, this eases the development of dis-
tributed applications running on clusters of computers.

Nonetheless, when dealing with data analysis tasks, distributed systems are just
one of the possible solutions. A drawback of distributed systems is that they add
a significant overhead to many use cases. Additionally, using several components
usually implies multiplying the total cost of the solution by the number of compo-
nents. Thus, going for a distributed solution whenever a data analysis need arises,
might not be the best choice, especially in cost-aware environments.

In recent years, the benchmarking of distributed systems against single-threaded
implementations has drawn some attention [114, 31]. One of the main results [114]
reports that expertly implemented single-threaded solutions can outperform state-
of-the-art distributed systems, even at scale. The analysis is carried out on various
graph processing tasks. The reported results show that single-threaded libraries out-
perform distributed solutions by an order of magnitude, at a fraction of the cost.
This approach highlights some flaws in the current evaluation methodology of dis-
tributed systems and algorithms, where single-threaded implementations are usu-
ally not considered as baselines.

In this work, we present an empirical comparison between a distributed solution
and an equivalent single-threaded implementation for a streaming anomaly detec-
tion task. The focus of our analysis is less on performance, and more on the total
cost of solving the task. This shift is motivated by the industrial setting in which
this work was conceived. In industry, solutions must be evaluated both in terms of
cost-effectiveness and efficacy.

It is well established [72] that performance metrics are frail when they ignore
cost-related indexes. For this reason, differently from previous work [14, 43] that
focuses on latency and throughput, we base our analysis on the total solution cost.
This cost is obtained by multiplying the price-per-second of the machines storing
the data and running the solution by the execution time needed for the analysis
task. With this choice, we want to highlight the cost-effectiveness of a solution.

Our use case is an on-line anomaly detection task. Our goal is to detect unusually
crowded areas in a city. Our dataset consists of the mobile phone connection data
collected in the city. The possibility to perform this task is well documented in [98,
35, 34]. Both of our solutions use the same anomaly detection strategy. This consists
in a statistical model-based anomaly detector trained on historical data [23].

We compare the performance of two equivalent solutions for this task. The first
solution is based on Natron, the most recent version of [24, 21], a single-threaded
framework for stream processing. The second solution is based on Apache Spark
Structured Streaming API [162]. Both solutions use Apache Kafka [94] as their stor-
age layer. We describe the tuning of both solutions to our particular use case. Then,
we compare them on the total cost required to solve the anomaly detection task. In
order to assess the solutions’ scalability, the analysis is replicated multiple times and
for different data volumes.

The design of an industrial solution also requires operational considerations.
With the term operational, we refer to the choices regarding when and how data
is ingested, stored, and processed. Depending on the use case, there might be differ-
ent operational requirements. In our use case, data is generated continuously from
the mobile phone network. To avoid data losses, our only operational requirement is
that data must be ingested continuously. For our analysis, we consider the following
two consumption policies: (i) continuous; data is consumed in real-time as soon as it

6.2. Problem setting 63

is ingested, and (ii) periodic; data is consumed at regular time intervals (e.g., once a
day, or once a week). These choices influence the total solution cost. For example, if
we want to analyze data continuously, we need dedicated hardware running 24/7.

The chapter is organized as follows. We begin the chapter by describing our
data and our problem setting (Section 6.2). We introduce the software systems used
(Section 6.3), and present our considerations regarding the design of the solutions
(Section 6.4). Then, we describe our methodology and experimental settings (Sec-
tion 6.5). Finally, we present our results in Section 6.6. In Section 6.7, we conclude
the chapter and present possible extensions.

6.2 Problem setting

In this section, we present our data set and our problem setting. The data set comes
from a real-world industrial use case in the mobile telecommunication (a.k.a., telco)
sector.

6.2.1 Data description

Mobile phone data can offer relevant and real-time hints about the presence of peo-
ple in a geographical area [36, 98, 35, 34, 23, 51]. Such analyses can be used to
describe a territory’s macro-dynamics. In particular, we refer to mobile phone con-
nection data, commonly known as Call Detail Records (or CDRs). Every mobile phone
generates a CDR every time a call, SMS or Internet connection is made. The CDR
contains information about the customer, the type of connection, and the cellular
tower instantiating the connection. This data is used by telco companies for billing
purposes.

Each CDR can be associated to a base tower, and each tower can be associated
to a geographical location. Then, it is possible to map mobile phone activity to ge-
ographical locations. The number of active mobile phones at a location, computed
following a privacy-preserving methodology, can approximate the number of peo-
ple in the area. To make analysis more understandable, the mobile network is often
approximated with a regular grid4. In our case, each grid cell represents a 250x250
meters square. We term each square a pixel and we represent the city as a series of
frames composed by pixels [20].

In this work, we use CDRs collected in the city of Milan, Italy, during the months
of February, March, April and June 2016. Data was made available thanks to the
collaboration with TIM – Telecom Italia.

In order to preserve user privacy, these data are aggregated at pixel level using
15-minutes-long windows; that is we count the number of distinct mobile phone
users in each pixel each 15 minutes to generate a time series of integers per pixel. If
the counting goes below a given threshold, it is set to zero.

The data collected in the month of April is the most significant; in this period the
city of Milan hosts a design festival5 that attracts half a million of visitors, and an
anomalous density of people can be detected in the 11 districts of Milan that host
the 1.151 events [23] of the festival. This dataset comprises CDRs of calls and SMSs
collected between April 13th and April 17th 2016. CDRs of Internet connections
are filtered out since this data is missing in the majority of the months considered.

4For an industrial implementation of this solution see TIM Big Data https://www.olivetti.com/
en/retail/data-driven-solutions/tim-big-data

5http://archivio.fuorisalone.it/2016/en

https://www.olivetti.com/en/retail/data-driven-solutions/tim-big-data
https://www.olivetti.com/en/retail/data-driven-solutions/tim-big-data
http://archivio.fuorisalone.it/2016/en

64 Chapter 6. Cost-aware Data Analysis

This one-week dataset occupies 1.7GB, and contains around 24 millions calls and 17
millions SMS records. We name this dataset Mobile 1, and we shorten it as MOB1.

We use the rest of the data (March, February, June) for training the models de-
scribed in Section 6.2.2. The cost of this activity is not considered in this work.

In order to include the scalability dimension in our analysis, we generated sev-
eral datasets by scaling our original MOB1 dataset. The scaling procedure takes as
input an integer scaling factor k, and it replicates each CDR in the dataset k times.

Through scaling, we generated several additional datasets for our experiments.
The most representative ones are:

• MOB1 (1.7GB), original dataset, representative of weekly mobile traffic (ex-
cluding Internet connections) in a large metropolitan area (Milan).

• MOB10 (17GB), k = 10, representative of weekly mobile traffic (including In-
ternet connections) in a large metropolitan area (Milan).

• MOB30 (50GB), k = 30, representative of weekly mobile traffic in a country
(Italy).

• MOB50 (83GB), MOB100 (170GB), extreme situations.

Representative sizes are based on internal TIM metrics. Unfortunately, all datasets
used in this study are not available for public disclosure under TIM policies. Aggre-
gated data similar to the one we produced internally when processing the raw CDRs
is available as part of the TIM Big Data challenge 2015 dataset6.

6.2.2 Problem

In our use case, we are interested in finding out which areas of a metropolitan city
are unusually crowded. The people present in a certain area can be approximated
by the number of active mobile phones in the area.

We can cast this use case into an on-line time series anomaly detection problem.
Anomaly, or outlier, detection is a fundamental data analysis task [3]. An anomalous
pattern could be composed of a single or several data elements. Anomaly detection
relies on the ability of building a model of normality for a system or phenomenon.
The model is then used to detect anomalies by computing the “distance” between
the model and the anomalous element.

In our case, an anomaly represents an infrequent event in the city, which attracts
a large number of people. A model of normality can be built by analyzing mobile
phone data in periods where no event occurs. This is usually known as training in
the machine learning community. Then, the trained model is compared with the
collected data to detect anomalies.

We follow the anomaly detection approach described in [23]. For training, we
consider a time series for each geographical pixel. The series contains the number of
mobile phone connections inside the pixel aggregated every fifteen minutes. Follow-
ing [23], we assume each pixel follows a Gaussian distribution, and we approximate
its parameters by computing the sample mean and variance in periods where no
sizable event happens (i.e., in February, March, and June). We repeat this process
for weekdays and weekends, since they present different mobile activity patterns.
This accounts for 2× 24× 4 = 192 models for each pixel, i.e., 1.92 million models

6http://www.telecomitalia.com/tit/en/bigdatachallenge.html

http://www.telecomitalia.com/tit/en/bigdatachallenge.html

6.3. Background 65

considering the 10.000 pixels the city is divided in. Anomalies are detected at run-
time by joining each pixel measurement with the corresponding model distribution.
Measurement x is reported as an anomaly if its z-score is larger than 3, that is

|µ̄− x|
σ̄

> 3 (6.1)

where µ̄ and σ̄ are the estimated mean and standard deviation for x’s pixel in the
corresponding fifteen minutes slot.

Note that there exists a plethora of more advanced anomaly detection techniques
(for an extensive reference see [3]). Finding the most accurate detector is outside the
scope of this work. We use the Gaussian model since it has been show [23] to be well-
fit for the problem at hand. In particular, our method can be executed in parallel on
a cluster of computers, since every pixel can be analyzed independently from the
others. As already mentioned, the only operational requirement for our use case is
that data is collected in real-time to avoid data losses.

6.3 Background

In this section, we briefly present the software systems used in our solutions. Inter-
ested readers can learn more by checking out the references.

6.3.1 Apache Kafka

Apache Kafka [94] is a distributed message broker with stream processing capa-
bilities. Kafka organizes data into topics. Each topic is made up of one or several
partitions. Each partition is assigned to a node in the Kafka cluster.

The Kafka APIs are based on the producer and consumer components. The pro-
ducer is responsible for transferring data from an external source to a Kafka cluster.
Conversely, the consumer is responsible for reading data from a Kafka cluster and
sending it to an external sink. By instantiating and using these components, an ap-
plication can integrate Kafka as its storage solution.

Kafka is designed to enable high-throughput applications, and it supports at-
least-, at-most-, and exactly-once message delivery.

6.3.2 Natron

Natron is a general-purpose, pluggable system for stream processing implemented
in Java. Natron exploits the generic functions abstraction, to deal with data variety,
and it generalizes the Streaming Linked Data (SLD) framework [24, 21]. Natron’s
users can define pipelines that continuously receive external data streams from sev-
eral sources, publish them on an internal type-agnostic shared bus, process them
and emit results to multiple sinks.

Figure 6.1 illustrates the architecture of the Natron framework. Natron includes
three main components: Receivers, Processors and Translators. These components
are interconnected through a Generic Data Stream Bus.

A typical Natron application receives a set of streams as input through a Re-
ceiver component. Receivers are responsible for accessing external data streams and
push their contents to the internal Generic Data Stream Bus. Data is analyzed by
Processors. A Processor manages and manipulates internal data streams, i.e. it

66 Chapter 6. Cost-aware Data Analysis

Generic Data
Stream Bus

Processor

Receiver TranslatorStream

In
te

rn
et

Stream

In
te

rn
et

Sources Natron Sinks

.

FIGURE 6.1: The architecture of Natron

creates and processes portions of internal streams by applying time-based or size-
based windows. Processors’ intermediate results are then published to the Generic
Data Stream Bus. Finally, Translator components publish the final results to external
sinks. Natron relies on a monolithic single-threaded architecture.

6.3.3 Apache Spark

Apache Spark [162] is a distributed processing engine which improves upon the
MapReduce [50] programming model for processing massive amounts of data in
parallel. The main advantage over MapReduce is that intermediate results can be
stored into main memory, thus reducing disk I/O operations.

Spark environment consist of several components, which communicate with each
other via the network. The highest level components are the master and worker.
The master is responsible for coordinating the execution of a Spark application and
presenting its results. Workers are responsible for managing the execution of dis-
tributed application code. There can be more than one worker, and each physical
machine can host several workers. Master and workers are implemented as sepa-
rate processes running in the JVM.

Apache Spark is based on the Resilient Distributed Dataset (RDD) abstraction.
An RDD represents an immutable dataset distributed over a cluster of machines.
Each fragment of the dataset is termed a partition. A Spark application consists of a
sequence of transformations on a collection of RDDs. During execution, these trans-
formations run in parallel on each partition. When an aggregated result is needed,
e.g. COUNT after GROUP BY, Spark performs a shuffle operation by transferring
partitions over the network between master and workers. Each worker spawns
several subprocesses known as executors. Executors run the distributed application
code. The atomic unit of parallel execution is called a task. At runtime each task is
assigned to an executor.

6.4 Solution design

The cost of an analytics solution depends on infrastructural, architectural, and oper-
ational choices. We here describe our considerations in designing the solutions.

Our data analysis task can be decomposed into three main phases (see Figure 6.2):

• data ingestion – data is collected from the mobile network and transferred to a
storage layer.

• data consumption – data is transferred from the storage layer to the analysis
layer.

6.4. Solution design 67

.

FIGURE 6.2: General architecture of our solution

• data analysis – data is processed and results are generated by joining streaming
data with the static models.

Note that we add a storage layer between ingestion and consumption to decou-
ple the two phases. This means that we can ingest data in real-time, and analyze it
at a later stage. This also enables various operational scenarios.

6.4.1 Infrastructure

An infrastructural choice specifies where a solution is deployed. The hardware used
to run an application can be bought, or rented from a cloud service provider. We
restrict our analysis to cloud services, since they usually reduce the operational cost
of the solution.

When instantiating virtual machines (VMs), cloud service providers usually offer
two types of billing policies: pay-per-use instances and reserved instances. Reserved
instances (RIs) can be held for a fixed amount of time at a reduced price with respect
to pay-per-use instances. RIs are well-fit to reduce the cost of continuous data anal-
ysis solutions, while pay-per-user instances are better fit for bursty workloads, such
as periodic analysis tasks. In the following, we refer to pay-per-use instances as
shared.

Table 6.1 presents the characteristics of the virtual machines used in this study.
The last column contains the approximated cost of running a shared instance versus
a reserved instance. The reported costs and characteristics refer to Fsv2-series VMs

TABLE 6.1: Azure VM sizes (January 2018)

VM Type Cores RAM (GB) S/R (€/month)

VM1 2 4 64.62/60.33
VM2 4 8 127.99/121.58
VM3 8 16 256.61/242.42
VM4 16 32 513.23/484.92

68 Chapter 6. Cost-aware Data Analysis

.

FIGURE 6.3: Architecture for the single-threaded solution

of Microsoft Azure7. We chose the Fsv2-series because it is equipped with com-
putation optimized hardware that fitted our needs at affordable cost. Nevertheless,
reported costs do not differ significantly from those of other cloud service providers.

6.4.2 Architecture

We designed our solutions according to the general architecture depicted in Fig-
ure 6.2.

The storage layer is responsible for ingesting data in real-time from the mobile
network. Due to the arbitrary velocity of the mobile data stream, the streaming stor-
age must be able to scale seamlessly to huge data volumes. Moreover, the streaming
storage must be able to record data continuously, since this is one of our operational
requirements. The space required to store the generated models is constant, and it
can fit comfortably into memory. The storage cost for the raw CDR data is not con-
sidered in our analysis, since in the real use case we can aggregate data on-line using
windowing operators.

The analysis layer is responsible for processing data and producing results. The
analysis layer communicates with the storage layer to retrieve the data, and it pro-
duces the results by performing the necessary aggregation queries. Data processing
can happen continuously or periodically. We consider both settings in our analysis.

Note that our architecture is related to the lambda architecture [112], since we
produce results by combining data from both batch and speed layers.

6.4.3 Implementation details

In this section, we present some details about the implementation of our single-
threaded and distributed solutions. Both solutions use Kafka as storage.

Apache Kafka

In this work, we use Kafka as our streaming data storage. We use two different con-
figurations, one for each solution. The single-threaded solution, based on Natron,
reads data from a single VM1 machine. The distributed solution, based on Spark,
reads data from a Kafka cluster composed of four VM2. In the distributed setting,

7https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute

6.4. Solution design 69

.

FIGURE 6.4: Architecture for the distributed solution

we set the number of partitions for each topic to eight. We choose this value by con-
sidering the number of executors used in the experiments, since executors can read
in parallel from different partitions.

Natron

In the single-threaded solution, the consumption phase is implemented using a
Kafka Receiver that polls the data from the server in comma separated value format.
The architecture for this solution is depicted in Figure 6.3. The Receiver connects
to an Apache Kafka server that provides the data. The data enters the system as a
stream of generic objects. Each object contains its event timestamp. Downstream
to the Receiver, a Processor takes the data from the Bus and transforms each ele-
ment into a domain-specific Java object (i.e. a Java representation of a CDR, named
PixelCDR).

Then, an Esper8 Processor performs the analysis. The internal stream of Pix-
elCDRs flows into Esper, which performs the query presented in Listing 6.1. The
query counts, every 15 minutes, the number of calls/SMSs grouped by pixelId, i.e.
the pixel identifier. The window operation is performed on the event timestamp.
We use Kafka exactly-once message delivery to analyze the whole data stream. The
query produces the list of anomalous pixels. The anomalies are identified using the
isAnomalous user defined function, that access the models file, stored in memory, and
implements Equation (6.1). The query results are then saved to the file system by a
Translator.
SELECT pixe l Id , MAX(timestamp)
FROM PixelCDR .WIN: EXT_TIMED_BATCH(timestamp , 15 min)
GROUP BY p i x e l I d
HAVING isAnomalous (pixe l Id , COUNT(*) , MAX(timestamp))

LISTING 6.1: EPL query performed by Esper Processor

Apache Spark

We implemented our distributed streaming pipeline using Spark Structured Stream-
ing. Spark Structured Streaming is the relational streaming API for Apache Spark.
It enables the evaluation of continuous query over both static and streaming data.

8http://www.espertech.com/esper/

http://www.espertech.com/esper/

70 Chapter 6. Cost-aware Data Analysis

Structured Streaming works on dynamic relational tables that get updated as the
stream data arrives. Through the Structured Streaming API, users can express rela-
tional (SQL) queries over streaming data and generate result tables.

In our implementation, we register both the static models table, and the CDR
data stream as temporary views that can be queried through the Structured Stream-
ing API. The CDR view is actually a dynamic table that gets updated as data is
ingested. The anomaly detection method is implemented as a SQL query that per-
forms a join on the aforementioned tables, and filters the results based on the ano-
maly condition defined in Equation (6.1). Listing 6.2 contains the pseudocode for
the query.

The distributed application is deployed on a multi-node Spark cluster, while data
is ingested from a multi-node Kafka cluster. This deployment is represented in Fig-
ure 6.4. Spark is integrated with Kafka to provide parallel reads from multiple Kafka
partitions. Section 6.5.2 presents more details about the Spark cluster configuration.

We choose Apache Spark for our distributed solution due to its wide spread use
in industry, and the availability of previously developed source code and expertise.
In Section 6.7 we propose future works considering other distributed processing en-
gines.

SELECT pixe l Id , timestamp
FROM (
SELECT cdrs . p ixe l Id , cdrs . timestamp , COUNT(1)
FROM cdr_stream AS cdrs
WINDOW ON cdrs . timestamp EVERY 15 minutes
GROUP BY cdrs . p i x e l I d
) AS windowed_cdrs LEFT JOIN models ON models . timestamp = windowed_cdrs . window . s t a r t

WHERE isAnomalous (windowed_cdrs . value , model . mean , model . sd)

LISTING 6.2: Spark SQL anomaly detection query

6.4.4 Operational considerations

Operational requirements are related to business choices. They deal, for example,
with how often a result report should be produced. We consider the following two
operational scenarios:

• Continuous ingestion – continuous consumption and analysis This scenario includes
real-time use cases, such as crowd monitoring for security purposes. Data is
consumed as soon as it is produced, and the delay with which results are pro-
duced corresponds to the latency of the system. In this regime, results are
produced continuously with whatever latency the system might have. This
scenario requires the continuous utilization of reserved resources, since the so-
lution must run without interruptions.

• Continuous ingestion – periodic consumption and analysis Periodic analysis rep-
resents a common scenario. In many use cases, the results of the analysis can
be summarized in a periodical report, and the real-time analysis is not neces-
sary. The ingestion layer must still run continuously to avoid data losses. On
the other hand, the analysis layer can be allocated only for the amount of time
needed to perform the analysis and generate the results.

Another important considerations when designing an industrial analytics sys-
tem are fault-tolerance and redundancy. Apache Kafka and Apache Spark respec-
tively provide out-of-the-box redundancy and fault-tolerance. Nonetheless, we do

6.5. Experimental settings 71

not include these aspects in our analysis, since the total solution cost of a fault-
tolerant system can be approximated as the total solution cost multiplied by the
redundancy factor. If we apply this consideration to both solutions, it does not affect
our final results.

6.5 Experimental settings

In this section, we describe our experimental methodology and the tuning of our
solutions that led to the final settings used in the experiments.

6.5.1 Methodology

The goal of our experimental methodology is to find the most cost-effective solution
for the given problem. To assess this, we run our solutions on both real and sim-
ulated problem instances. The real data MOB1 is collected from the mobile phone
network of TIM. Starting from this real data we generated several other datasets
(MOB10, MOB30, etc.). These datasets were generated to analyze the scalability of
our solutions. The dataset generation procedure is described in Section 6.2.

We compare our solutions based on their total cost when they both provide cor-
rect results. This is not always the case since the most economic single-threaded
configurations struggle to deal with the most demanding problem instances. The so-
lution cost is computed by multiplying the cost of the solution (i.e., price-per-second
of the used VMs) with the execution time of the experiment (if completed correctly).
The cost of the solution also depends on the operational requirements, e.g., a contin-
uous solution can run on reserved instances, thus reducing the price-per-second.

We executed all experiments on Microsoft Azure Linux VMs. For each experi-
ment, we performed five experimental runs. All reported results are average over
four runs by discarding the worst outcome. We do not include error bars in the plots
since their bounds are so tight that they simply overlap with the point shapes and
clutter the images.

We do not consider latency in our analysis due to the following reasons:

1. In the continuous analysis scenario, at regime the latency of the system does
not influence the stream of results. Moreover, the latency to analyze one minute
of data is below 1.5 seconds for both solutions, which is appropriate for our use
case.

2. In the periodic analysis scenario, the latency of both systems is negligible with
respect to the periods considered (i.e. every day or every week).

Thus, in the following we omit latency from our discussion.

6.5.2 Configurations

In this section, we present our analysis on the configuration for our solutions. Our
goal is to find the most cost-effective configuration which solves the problem. We
restrict our analysis to Fsv2-series VMs under the assumption that in cost-aware
scenarios more general-purpose VMs are preferrable to workload-optimized VMs,
since they can be shared and used by different workloads. Figures 6.5 and 6.6 show
the solution cost as a function of the scale factor for different configurations of Na-
tron and Spark.

72 Chapter 6. Cost-aware Data Analysis

Natron

.

FIGURE 6.5: Solution cost over data scale for different Natron config-
urations.

Natron was deployed using a docker container to create a sandbox environment
and to ease the monitoring operations for CPU and memory consumption. The
whole infrastructure needed a single VM for each experiment in addition to the VM
needed for the data provider, i.e. a single partition Kafka server on a VM1. We run
multiple experiments for each dataset and remove the outliers, e.g. the first run of
each experiments was considered as a system setup, collect data result for correct-
ness check, i.e. anomalies, and CPU/memory consumption log to monitor the health
of the infrastructure. During each run the container exploits all available virtual ma-
chine resources for the computation. We vary the dimension of the VMs in azure to
stress the environment and get the upper limit of the resource needed to handle a
given amount of data.

We experimented with three configurations, having different number of cores,
RAM, disk I/O, and network I/O available:

• Natron1: one VM1

• Natron2: one VM2

• Natron3: one VM4

The single-threaded implementation suffers from the volume of the data, a sin-
gle VM cannot scale horizontally to deal with a continuously increasing amount of
data. Figure 6.5 clearly shows that the different configurations can bear different
loads of data. Natron1 can handle dataset MOB1, which represents the original data
size, and can perform the anomaly detection in about 120 seconds. This configu-
ration can handle up to dataset MOB10, but bigger dataset results are problematic.
Configurations Natron2 and Natron3 can bear at most dataset MOB50 and MOB100
(respectively), but are more expensive than configuration Natron1 . The three cho-
sen configurations widely explore the hardware offerings in order to find the best

6.5. Experimental settings 73

.

FIGURE 6.6: Solution cost over data scale for different Spark configu-
rations.

solution related to the data loads. Due to the variability of configurations’ behav-
iors, we tested the system against more dataset than the ones listed in Section 6.2.1,
i.e. we tested dataset with scale factor k=2, k=3, k=5, and k=20.

We compare all the three Natron configurations with the best configuration cho-
sen for the distributed system in order to have a complete overview for the different
input volumes. During the experiments, regardless of the Natron configuration, the
normality models are loaded in memory, while streaming data is read from the Kafka
cluster described in Section 6.4.3.

Apache Spark

We tuned our Spark cluster using the total solution cost as a metric, and experi-
menting with three parameters which commonly affect Spark’s performance. Our
intention here is to present our findings on the best Spark configuration for our spe-
cific use case, datasets, and problem setting. We implemented our Apache Spark
cluster using Azure Linux VMs (see Table 6.1).

We experimented with the following cluster parameters:

• Virtual machine size,

• Number of executors per worker (or number of cores per executor), and

• Memory allocated per executor.

All other parameters were set to their default values. Note that, since in Microsoft
Azure each virtual core (vCPU) corresponds to a single thread, in the following we
use the terms core and thread interchangeably.

Virtual machine size - Cloud service providers offer several VM types. These
types vary depending on the number of cores, RAM, disk I/O, and network I/O
available to user applications running on the VM. Thus, an important consideration
when deploying a cloud solution is the choice of VM type.

74 Chapter 6. Cost-aware Data Analysis

We evaluated two different cost-equivalent configurations for our Spark cluster
(refer to Table 6.1 for VM characteristics):

• Spark1: one VM2 master and four VM2 workers

• Spark2: one VM2 master and two VM3 workers

Note that we also experimented with smaller cluster configurations (e.g., a single
VM2 worker). However, we found that these were not as cost-effective as the con-
figurations described above. This might seem counterintuitive. However, consider
that a smaller configuration usually takes more time to perform the analysis. Since
our metric is the total solution cost, to be cost-effective a solution’s cost reduction
should compensate for its performance penalty.

As an example, we found out that a cluster with a single VM2 worker takes from
2.75 to 3 more time (depending on the dataset) to perform the task with respect to
our Spark1 configuration, while only costing 2.5 less.

Figure 6.6 shows the cost of the solution for both configurations. All Spark set-
tings were set to their default values (all available cores, 1GB of RAM per executor).
The figure highlights that the Spark1 configuration tend to be more cost-efficient,
even though the total number of used cores is the same in both configurations.

Even after tuning both clusters, i.e. by changing the default parameters, we
could not find a configuration for Spark2 outperforming Spark1. We used Spark1
for all other experiments. The two following sections provide more details on the
experiments we performed measuring the sensitivity of the selected configuration
to changes in the number of cores per executor and in the amount of RAM per ex-
ecutor.

Cores per executor - An important parameter in Spark configuration is the num-
ber of cores allocated to each executor. The default configuration allocates all avail-
able cores. Incidentally, the number of cores per executor also determines the num-
ber of executor processes that a worker can spawn. Thus, we perform our sensitivity
analysis in term of executors per worker. We fixed the total RAM to 24GB and varied
the number of executors per worker machine. Figure 6.7 shows our results. We can
see that having a single executor on each worker outperforms other configurations.
This is supposedly due to the fact that when multiple executors reside on the same
machine, the JVM must handle a large volume of I/O network traffic in order for
them to communicate. This could possibly influence application performance.

RAM per executor - Another important parameter is the amount of RAM des-
ignated to each executor. In this case, we picked the best configuration from the
previous analysis, i.e. one executor per worker, and varied the RAM allocated to
each executor. Figure 6.8 shows our results to this sensitivity analysis. We can no-
tice that the amount of memory allocated to each executor does not seem to affect
execution time. This is surprising, considering the common knowledge that Spark
performance is proportional to the amount of main memory available. However,
our particular use case, i.e. windowed and watermarked relational query, is exe-
cuted considering one window of data at a time. Even at maximum scale (x100), our
windows do not exceed 1GB of RAM, and therefore in this particular scenario the
system is not memory-bounded.

All the following experiments were executed using configuration Spark1 with 4
cores and 3GB of RAM per executor. The normality models are stored in a static file
over the Spark cluster, while streaming data is read from the Kafka cluster described
in Section 6.4.3.

6.5. Experimental settings 75

.

FIGURE 6.7: Solution cost over number of executors per worker on
different datasets (RAM at 24GB).

.

FIGURE 6.8: Solution cost over total number of RAM in GB for differ-
ent datasets (1 executor per worker).

76 Chapter 6. Cost-aware Data Analysis

6.6 Results and discussion

In this Section, we present our experimental results. We organize our discussion
based on the operational requirements considered in Section 6.4. The analyzed sce-
narios are summarized in Table 6.2. The resulting monthly solution costs per sce-
nario are represented in Table 6.3. All costs refer to the MOB100 dataset. Periodic
scenarios (S2 and S3) refer to analysis carried out daily, i.e., 30 times per month.

S1 – Continuous ingestion – continuous consumption and analysis

In this scenario, we consider the case in which we require a continuous analytics
solution. The whole infrastructure must be continuously up and running to sup-
port the ingestion, consumption and analysis phases. We can compute a monthly
solution cost by considering the reservation price of all VMs used in the solution.

From Table 6.3, we can see the estimated monthly solution cost for scenario S1.
Ingestion cost is calculated using reserved instance price, since these machines must
run continuously. This is the same for analysis cost. Consumption cost is included
in the ingestion, since the Kafka VMs perform both phases continuously. The single-
thread cost is calculated considering configuration Natron3.

In this case, we can clearly see that the single-threaded implementation is the
most cost-effective solution for the problem.

S2 – Continuous ingestion – periodic consumption and analysis

This scenario represents a use case where the continuous analysis is not necessary,
but periodic reports are needed. Table 6.3 contains the cost analysis for this sce-
nario. The costs of ingestion and consumption are equivalent to S1. The analysis
cost is computed on the more demanding dataset MOB100, using Spark1 and Na-
tron3 configurations. We report the monthly cost for an analysis performed daily.
The ingestion phase must be continuous and, consequently, the infrastructure that
support the ingestion and consumption phases can be deployed on reserved hard-
ware. The analysis is periodic (once a day), and can be executed on pay-per-use VMs
which can be turned on only for the duration of the analysis.

In this scenario, we can see that the Spark system is more cost-effective with
respect to the analysis phase, but not to the ingestion phase. The cost of continuously
ingesting data using a distributed cluster outvalues the benefits of processing such
data in parallel. This is still true at lower data scales, where the convenience of the
single-threaded solution is even more evident.

After realizing this fact we included a final scenario (S3) in our analysis. This
scenario is a situation where data ingestion is provided at a fixed and small price,
i.e. it does not depend on VMs cost but only on data throughput and retention. This

TABLE 6.2: Operational scenarios. Each layer of the system can run
continuously (C) or periodically (P), and on shared (S) or reserved
(R) hardware. Data ingestion and consumption are both handled by
Apache Kafka, therefore they are always executed on the same hard-

ware.

Scenario Ingestion Consumption Analysis

S1 C/R C/R C/R
S2 C/R P/R P/S

6.6. Results and discussion 77

.

FIGURE 6.9: Total solution cost for S3: Natron1 vs Spark1. Natron1
is the lowest cost solution, but it can handle only datasets of modest

size.

is the case with some particular offers from cloud providers such as Confluent9.
Since the throughput and the retention are fixed, in this scenario the ingestion cost
is the same for both solutions.

S3 – Continuous ingestion at fixed/small price – periodic consumption and analy-
sis

In this scenario the total cost of the solution depends on the number of machines
active during the analysis phase, and on the duration of this phase. Thus, if the
additional costs of using more machines in the distributed setting implies reducing

9https://www.confluent.io

TABLE 6.3: Monthly solution costs. The monthly cost of our solution
depending on the operational scenario. Notice that if we perform
continuous ingestion, the consumption costs are included (Incl.). The
third scenario represents the case in which ingestion costs are fixed,
i.e. they do not depend on the number of machines, but only on data

throughput. The most cost-effective solution is highlighted.

Scenario Ingestion Consum. Analysis Total

S1 Spark1 €486.32 Incl. €607.9 €1094.22
Natron3 €60.33 Incl. €484.92 €545.25

S2 Spark1 €486.32 Incl. €12,41 €498,73
Natron3 €60.33 Incl. €76.85 €137.18

S3 Spark1 Fixed €9.93 €12.41 €22.34
Natron3 Fixed €9.68 €76.85 €86.53

https://www.confluent.io

78 Chapter 6. Cost-aware Data Analysis

.

FIGURE 6.10: Total solution cost for S3: Natron2 vs Spark1. The two
solutions are cost-equivalent at a scale factor around 10. After that,

Spark1 becomes the most cost-effective solution.

the execution time by the same factor, then the distributed solution is the most cost-
effective.

Table 6.3 presents the results for this scenario. The results compare configuration
Spark1 versus configuration Natron3 when processing the dataset MOB100. We as-
sume the analysis is carried out periodically each day. We can see that the reduced
execution time for the analysis makes up for the increased number of VMs. This
makes the distributed solution around 3.8 times more cost-efficient than the single-
threaded system.

We provide more insight on this scenario by considering different data scales.
We compare configuration Spark1 with the less expensive Natron configuration that
can handle a given data scale: configuration Natron1 for a scale factor up to 10,
configuration Natron2 for a scale factor up to 50, and configuration Natron3 for the
dataset MOB100.

We can see that, in this setting, the most cost-effective solution depends on the
data size. At small data scales, configuration Natron1 is the most cost-effective solu-
tion. The configuration Natron1 can only deal with data volumes up to scale factor
10 (city scale), but, until this point, it is more cost-effective than configuration Spark1
(Figure 6.9). When the data size increases, the solutions first become equivalent in
term of cost around city scale (Figure 6.10), and, then, configuration Spark1 becomes
the most cost-effective solution (Figure 6.11) when dealing with national and ex-
treme scales.

6.7 Summary

Distributed systems have become widely used as data analysis tools. Those systems
are designed to ease the management of a pool of resources as a single entity. This
makes them scalable to massive volumes of data.

6.7. Summary 79

.

FIGURE 6.11: Total solution cost for S3: Natron3 vs Spark1. Natron3
can handle all datasets considered, however it is less cost-effective

than the distributed system at all scales.

Recently,the research community showed some interest in benchmarking dis-
tributed systems against single-threaded libraries [114, 31]. The results of those
works show that, in particular problem settings, distributed systems are inferior to
expertly implemented single-threaded solutions.

In this chapter, we presented an experimental cost-aware comparison between
two performance-equivalent solutions for a streaming anomaly detection task. The
first solution is a single-threaded application based on the Natron stream process-
ing engine, whilst the second solution is a distributed application based on Apache
Spark. We based our analysis on a real industrial data analysis task, and we use the
total solution cost as our metric.

Our results show that in case of continuous analysis, the single-threaded solution
is the most cost-effective option.

When periodic analysis is considered, the distributed solution is the most cost-
effective in analyzing the data. However, this benefit is outvalued by the costs of
distributed data ingestion. Thus, the single-threaded application remains the best
choice also in this case.

Finally, if we assume that data ingestion costs only depends on data throughput
and retention, i.e. they are fixed and small, we show that the most cost-effective
choice depends on the data size. The single-threaded application is cost-effective
when managing small datasets, which is our setting are the CDRs generated by Mi-
lan when including Internet or those of the entire Italy if limiting the analysis to calls
and SMSs. However, as the data size grows to the size of Italy including Internet,
the distributed solution becomes the most cost-effective option.

81

Chapter 7

Scalable Unsupervised Anomaly
Detection

In this chapter, we continue our analysis on the scalability of anomaly detection
techniques. Distance-based algorithms are one of the most well-known techniques
for anomaly detection. These algorithms have been shown to produce good accuracy
in a wide range of applications. However, distance-based algorithms are limited in
terms of scalability by their quadratic complexity.

To overcome this limitation, in this chapter we propose a parallel formulation
of the popular KNN distance-based algorithm for unsupervised anomaly detection.
More specifically we analyze the following research question: “Is it possible to scale
the k-nearest neighbors anomaly detection algorithm to arbitrarily large data sets
without significant losses in detection accuracy?”.

Our formulation focused on improving scalability by analyzing in parallel dif-
ferent parts of the data. This finds use whenever the analyzed data does not fit
comfortably into memory, or when it is distributed across several locations. To re-
duce synchronization latency, the proposed approach computes approximate near-
est neighborhoods. We show, both theoretically and empirically, how this approach
greatly improves scalability without significantly penalizing detection accuracy. To
validate our approach, we perform extensive experiments on both synthetic and
real-world data sets.

This work was developed at the Artificial Intelligence Center of Excellence (AICE)
at F-Secure1. Some of the techniques presented herein have been deployed as part of
an intrusion detection system at F-Secure. An extended version of this chapter has
been accepted for publication in the proceedings of the 9th Workshop on Scalable
Cloud Data Management.

7.1 Introduction

Given the large number of applications, anomaly detection algorithms can be used in
environments where data velocity and volume vary widely. For high-velocity envi-
ronments, several streaming anomaly detection techniques have been proposed [128,
18, 74]. However, a streaming analysis requires to continuously ingest, process and
analyze data. This poses several non-trivial challenges, and it limits the adoption of
the streaming approach.

A more common analysis scenario is when data is collected to be analyzed at a
later time, e.g. daily. This scenario is known as batch analysis. The volume of data
handled by batch processing systems can grow very rapidly. It is not uncommon
for production systems to generate hundreds of gigabytes of information every day,

1https://www.f-secure.com/

82 Chapter 7. Scalable Unsupervised Anomaly Detection

even for modest applications. For this reason, efficient and scalable batch anomaly
detection algorithms are required. Unfortunately, the scalability of anomaly detec-
tion techniques to massive data volumes still represents an open challenge.

The scarce availability of large realistic data sets, makes it so that most studies
focus on modestly sized data sets [59, 37, 52]. Even in studies that focus on scala-
bility, the data sets used in the experiments are seldom larger than one million data
elements [132, 91, 139].

Among the numerous anomaly detection techniques proposed over the years [39,
3], distance-based [132] and density-based [33] techniques have stood the test of
time by proving to be the most reliable in recent comparison studies [37, 69]. One
limitation of distance-based algorithms is that they rely on the computation of all
pair-wise distances between elements in a data set. The computational complexity
of this procedure is known to be quadratic in the number of data elements. This
limits the scalability of distance-based methods to huge data volumes.

In this chapter, we challenge this limitation by proposing a parallel formulation
of the famous k-Nearest Neighbor (KNN) algorithm for distance-based anomaly de-
tection. Our algorithm is termed partition-wise KNN (PartKNN). The k-Nearest
Neighbor algorithm, originally proposed by Ramaswamy et .al [132], is one of the
most commonly used distance-based algorithm in the literature. The KNN algo-
rithm identifies outliers as isolated elements in the data set. This is done by com-
puting the k-nearest neighbor distance, i.e. the Euclidean distance to the k-th nearest
neighbor, for each element in the data set. The k-NN distance is then used as a mea-
sure of outlierness, e.g. the top-n elements with highest k-NN distance are flagged as
outliers. This approach rely on the fact that outliers are generally farther from their
k-nearest neighbor than inliers, i.e. inliers belongs to clusters of size greater than or
equal to k.

A common approach to improve the scalability of an algorithm is to divide its
input into chunks, or partitions, and parallelize the processing of each partition. This
can be by either leveraging multi-core architectures or distributing the computation
on a cluster of machines. If partitions are not independent, this approach requires
a synchronization step to make sure that analyzing a partition in isolation does not
lead to the wrong results.

With respect to the KNN algorithm, the most expensive procedure is the k-nearest
neighborhood search for each data element. If our goal is to compute exact nearest
neighborhoods, a synchronization step is required to check whether potential neigh-
bors are found outside of the local partition. However, the ultimate goal of the KNN
algorithm is not to compute exact neighborhoods, it is instead to reliably detect out-
liers. For this reason, our parallel formulation drops the constraint to compute exact
nearest neighborhoods. This enables us to analyze each partition independently
without any synchronization overhead. This leads to massive speedups. Addition-
ally, although our algorithm uses approximate neighborhood, we demonstrate both
theoretically and empirically how this does not affect the detection accuracy of iso-
lated data elements as outliers. This bound can be related to the data set size, and it
becomes tighter as this size increases, thus making our algorithm particularly well-
fit for analyzing massive data sets.

Our approach was motivated by the need to deploy a batch anomaly detection
system in production at F-Secure2. F-Secure systems generate hundreds of millions
of daily events which need to be analyzed in a timely fashion. To the best of our

2https://www.f-secure.com/

7.2. Distance-based anomaly detection 83

knowledge, these demanding requirements were not satisfied by any of the ap-
proaches proposed in the literature. Some of the results of this study have been
deployed as a data analysis pipeline in production at F-Secure, handling millions of
data elements per week.

This chapter is structured as follows. Section 7.2 describes distance-based ano-
maly detection algorithms and the KNN algorithm in particular. Section 7.3 present
our partition-wise formulation of the KNN algorithm, as well as its theoretical prop-
erties, described in Section 7.3.1. In Section 7.4, we empirically evaluate the pro-
posed algorithm in terms of both detection accuracy and scalability. Finally, Sec-
tion 7.5 summarizes the chapter.

7.2 Distance-based anomaly detection

Distance- and density-based anomaly detection algorithms have been shown to con-
sistently outperform other techniques in recent comparison studies [37, 69]. The key
idea of these algorithms is to detect outliers by analyzing the distribution of dis-
tances between elements in a data set. Intuitively, data elements isolated from the
majority of the data are considered as outliers. Several ways have been proposed to
formally define the concept of isolation.

Distance-based algorithms were initially proposed by Knorr et al. [90] at the be-
ginning of the 21st century. However, their outlier definition relies on the knowledge
of structural properties of the data set, which are seldom known in practice, mak-
ing their approach difficult to apply. This lead to the development of more practical
outlier definitions. One of the most famous anomaly detection algorithm, the Local
Outlier Factor (LOF) [33], build on the concept of distances between data elements
by definition the first density-based anomaly detection algorithm. Related to dis-
tance, density refers to the number of elements belonging to the local neighborhood
of an elements. Defining the neighborhood relies on a parameter k, representing the
number of neighborhood element to consider.

A similar approach was proposed with the k-Nearest Neighbors algorithm [132].
Contrary to LOF, which defines the measure of outlierness as a function of the dis-
tances within a data element’s neighborhood, the KNN algorithm simplifies the defi-
nition by simply assigning as outlier score the k-NN distance. This simple approach
turned out to be extremely successful in practice, and, two decades later, it is still
one of the most consistently performing algorithms across comparison studies. For
a more in-depth discussion on distance- and density-based algorithms see Schubert
et al. [141].

7.2.1 The KNN algorithm

The KNN algorithm [132] is the most popular distance-based algorithm for unsu-
pervised anomaly detection. The algorithms takes as input a numerical data set
D ⊂ Rd and an integer parameter k ∈ [1, n], where n is the size of the data set. Then,
it computes the k-nearest neighborhood for each element x ∈ D. Finally, the each
element is assigned an outlier score corresponding to the Euclidean distance to its
k-th nearest neighbor.

Some variations of this base algorithm have been proposed. For example, one
variation considers as outlier score the mean distance, or the sum of all distances [12],
instead of the largest distance.

84 Chapter 7. Scalable Unsupervised Anomaly Detection

The KNN algorithm identifies outliers as isolated elements in a data set. More
formally, outliers are those elements whose k-nearest neighbor distance is largest,
with respect to other data elements. This formal outlier definition is not unique in
the literature. In fact, it is common practice for each anomaly detection technique to
propose a different definition of outlier [33, 132, 124, 108]. This is due to the fact that
there does not exist an universal way to define outliers, as there does not exist an
universal way to define an unusual event [65]. Moreover, there is no experimental
evidence that a particular outlier definition is better than another in a given context.

For the KNN algorithm, the fact that the distance to the k-th nearest neighbor is
taken as outlier score is quite arbitrary. Therefore, the success of the KNN algorithm
might not depend on computing k-th nearest neighborhoods exactly. In fact, as will
be demonstrated in the following, computing exact nearest neighborhoods is not
necessary to obtain good detection accuracy. To explain this fact we must consider
how the KNN algorithm works. By using the distance to the k-nearest neighbor as
outlier score, we are assuming that for the majority of inliers, there exist at least k
other data elements belonging to a dense neighborhood around the inlier. We are
also assuming that the opposite is true for the majority of outliers. If these assump-
tions do not hold, the KNN algorithm fails at correctly discriminating outliers from
inliers.

In the following section, we will discuss how to make use of this insight to im-
prove the scalability of the KNN algorithm while maintaining good detection accu-
racy.

7.3 Partition-wise KNN

The complexity of the KNN algorithm is lower-bounded by the complexity of the
nearest neighborhood search. Therefore, the KNN algorithm has a quadratic com-
plexity.

However, one important thing to notice is that exactly computing nearest neigh-
borhoods is not necessary for the accuracy of the KNN algorithm. In fact, as long as
for the most inliers, their k-th nearest neighbor is approximately closer than that of
most outliers, the algorithm will maintain a good detection accuracy. This consider-
ation was the main motivation for the main contribution of this work, the partition-
wise KNN algorithm (PartKNN).

PartKNN is a parallel formulation of the KNN algorithm. PartKNN aims at max-
imizing the scalability of KNN while maintaining high detection accuracy. In order
to make KNN scalable, our formulation divides the data set into a given number of
partitions. Then, it analyzes each partition in parallel.

The original KNN algorithm assumes that exact k-nearest neighborhood are com-
puted for each data element. In order to parallelize this procedure, an expensive
synchronization step is required to make sure that candidate nearest neighbors do
not exist outside of the local partition. However, the primary goal of KNN is not to
compute neighborhoods, but the reliably detect outliers. This goal can be achieved
even without considering exact nearest neighborhoods, as long as enough neigh-
bors for each inlier are included in each partition. The PartKNN algorithm avoids
the overhead of synchronization by only considering nearest neighborhoods only
within a given partition.

The PartKNN algorithm is depicted in Algorithm 7.1. The algorithm works as
follows: given a numerical data set D ⊂ Rd, a positive integer k ∈ [1, n], where
n = |D|, and a positive integer p ≥ 0 representing the total number of partitions, do:

7.3. Partition-wise KNN 85

1. For each data element x ∈ D, assign a partition number px to x uniformly at
random, where px ∈ [0, p).

2. Then, for each pi ∈ [0, p), consider the partition Pi = {x ∈ D|px = pi}.

3. For each data element in x ∈ Pi compute its outlier score sx using the KNN
algorithm on Pi.

This simple formulation has several advantages. Sampling data uniformly at
random guarantees that local differences in data distribution in the original dataset
are preserved in each partition, assuming that each partition contains enough data
elements. Notice that this is expected since our formulation is designed to handle
massive data sets, thus we can assume that p� n.

This formulation allows us to also provide some insight on the expected results
of PartKNN with respect to the base KNN algorithm. In particular we can compute
the probability of KNN and PartKNN to produce similar results, as demonstrated in
the following section.

Algorithm 7.1 PartKNN algorithm.
Require: data set D, number of partitions p, neighborhood size k.

for x ∈ D do
px ← uni f orm(0, p)

end for
for 0 ≤ pi < p do

Pi ← {x ∈ D|px = pi}
for x ∈ Pi do

sx ← KNN(x, Pi, k)
end for

end for

7.3.1 On the quality of the approximation

The PartKNN algorithm partitions the original data set into p partitions. This might
cause issues since an inlier might be end up isolated in a given partition. To analyze
the expected occurrence of this situation let us assume, as it is often the case, that
outliers are rare and isolated occurrences, while inliers have common properties,
and are therefore clustered and close by to other inliers. Notice that if this assump-
tion does not hold, distance-based algorithms, by their nature, cannot discriminate
properly between outliers and inliers

As already mentioned, the PartKNN algorithm partition the data set uniformly at
random. With this procedure, we are guaranteed that outliers, i.e. isolated element
in the original data space, are still isolated in their respective partitions. On the
other hand, inliers might loose relevant neighbors in their partition, and therefore
they might be erroneously considered as outliers.

Let us assume that we subsample the original data set into a set of p partitions.
We denote with P the set of all partitions. Each partition contains approximately
n/p elements, selected uniformly at random. The probability of an element x ∈ D
to end up in a given partition P̂ ∈ P is:

P(x ∈ P̂) =
1
p

(7.1)

86 Chapter 7. Scalable Unsupervised Anomaly Detection

Now, let kNNx ⊂ D denote the set of the k nearest neighbors of x in the original
data set. The probability of all elements y ∈ kNNx of ending up in a given partition
P̂ is:

P(∀y ∈ kNNx, y ∈ P̂) =
1
pk (7.2)

Thus, the chance of our partitioning scheme to preserve exact neighborhood is quite
small.

However, considering the fact that our goal is not to compute neighborhoods,
but to identify outliers, we might be content as long as the subsampling process does
not “dilutes" too much the nature of data elements; outliers should remain isolated
while inliers should remain clustered.

It is trivial to notice that isolated elements in the original data set can only become
“more isolated" by removing elements with subsampling. With respect to inliers, we
can demonstrate that the subsampling procedure should not cause excessive disrup-
tion in the results of the original KNN algorithm.

To demonstrate this, consider an inlier xi ∈ D. We assume that xi is similar to
other inliers with respect to the features we are considering, thus we can assume that
xi belongs to some form of data cluster C ⊂ D. Let us denote with c the size of this
cluster, i.e. c = |C|.

We have already seen that the probability that all exact k nearest neighbors of xi
are included in the same partition as xi is small. However, let us compute the prob-
ability that at least k elements from C are included in a given partition P̂. Since the
KNN algorithm considers only the k closest elements, as long as at least k elements
of the cluster are preserved inside a given partition, the algorithm should behave
consistently with respect to considering the whole data set.

The probability that at least k elements from C are included in a given partition
P̂ is:

P(|{y ∈ P̂|y ∈ C}| > k) ≥ 1−
(

p− 1
p

)c−k

(7.3)

To provide some context to this finding, let us consider a large data set. It is
common to assume that outliers represent less than 10% of the data set, and we can
reasonably imagine that the smallest inlier cluster must have at least more elements
than there are outliers in the data. Considering also that it is common to consider
values of k ≤ 100 for the KNN algorithm. Thus, we can assume that c� k.

Plugging in some numbers in the above equation, e.g. a data set of 150K ele-
ments, where the smallest cluster has size 10K, 1000 partitions, and considering k as
high as k = 1000, the above probability becomes:

P(|{y ∈ P̂|y ∈ C}| > k) ≥ 1−
(

1000− 1
1000

)10K−1K

= 0.9998

Thus, we have very high confidence that at least k points in the cluster will be
preserved by partitioning, this implies that inliers will approximately maintain their
clustered property. Most importantly, notice that this confidence increases with the
data set size, thus we expect PartKNN to provide detection accuracy similar to KNN
as the size of the data set grows. This theoretical insight is validated in the following
section.

7.4. Experimental evaluation 87

TABLE 7.1: Real-world data sets characteristics

Name Size Features Outliers (%)

shuttle 1’013 9 1.30

annthyroid 7’129 21 7.49

pendigits 9’868 16 0.20

kdd99 48’133 40 0.41

7.4 Experimental evaluation

In this section, we evaluate the PartKNN algorithm with respect to both detection
accuracy and scalability.

Detection accuracy is validated by comparing the area under the ROC curve
(ROC AUC) [76] of PartKNN with the one of the original KNN algorithm. Scala-
bility is validated by comparing execution times on large synthetic data sets.

To evaluate the detection accuracy of our proposed approach we selected four
real-world benchmark data sets commonly used in the literature.

• annthyroid - this data set contains medical cases of normal and abnormal thy-
roid conditions. Abnormal conditions are labeled as outliers.

• kdd99 - this data set contains normal traffic and intrusions in a computer
network. Intrusions are labeled as outliers. This data set was derived from
the KDD 1999 Big Data Challenge data3, which in turn was derived from the
DARPA 1998 intrusion detection data set [106].

• pendigits - this data set contains handwritten digits. Badly written digits are
labeled as outliers.

• shuttle - this data set contains measurements from the space shuttle sensors.
Abnormal readings are labeled as outliers.

The characteristics of each benchmark are summarized in Table 7.1. The exact bench-
mark data sets used in the experiments can be also found in the our online reposi-
tory4.

For the scalability experiments, a collection of synthetic data sets was generated.
Each data set consists of a random number of clusters sampled from a multivariate
Gaussian distribution with uniformly sampled random mean and covariance ma-
trix. These clusters corresponds to inliers. All data points are sampled within an hy-
percube centered in the origin with a side of 50. Outliers are generated by sampling
uniformly at random within this hypercube. The percentage of outliers is selected
uniformly at random between 2% and 7%.

All experiments were executed on a workstation featuring an Intel(R) Core(TM)
i7-4810MQ, 2.80GHz processor and 16GB of RAM running Manjaro Linux. All pre-
sented algorithm were implemented in Python. Unless otherwise noted, the number
of partitions was set to the number of available CPU cores, i.e. 8.

88 Chapter 7. Scalable Unsupervised Anomaly Detection

FIGURE 7.1: ROC AUC (a) and execution time (b) for KNN and
PartKNN. Data sets are ordered by cardinality (increasing from left
to right). PartKNN present similar accuracy to KNN but much lower

execution times (around one order of magnitude).

7.4. Experimental evaluation 89

FIGURE 7.2: Scalability of PartKNN with respect to KNN and LOF.
The execution time is averaged over five runs. The grey area repre-
sents the standard deviation across different runs. PartKNN clearly

outperforms both KNN and LOF with respect to scalability.

7.4.1 Detection accuracy

The results of detection accuracy experiments are depicted in Figure 7.1. We report
both detection accuracy (Figure 7.1.a) and execution time (Figure 7.1.b) for each con-
sidered benchmark.

Detection accuracy corresponds to the maximum ROC AUC with k ∈ [1, 100].
Execution time is averaged over all k ∈ [1, 100] Benchmarks are ordered by increas-
ing data set size from left to right.

The figure clearly depicts the similarity in accuracy between the PartKNN and
KNN algorithms. A small difference can be noticed for the smaller shuttle data set.
This is due to the small size of the data, only 1013 data elements, which imply that
partitions contain too few elements to correctly characterize outliers. As expected,
the results improve as the data set size grows, so much so that there is practically no
difference between the two algorithms on the larger kdd99 dataset, with around 48K
elements.

With respect to execution times, the PartKNN outperforms the original KNN al-
gorithm by one order of magnitude for all considered data sets (notice the log scale).
This is expected, since the partitioning approach introduces an expected speedup of
p, where p is the number of partitions.

90 Chapter 7. Scalable Unsupervised Anomaly Detection

7.4.2 Scalability

To evaluate the scalability of the PartKNN algorithm we compare it to both KNN
and LOF. We use data sets ranging from 10K to 1M elements. Scalability results are
depicted in Figure 7.2.

For each data set, we report the average execution time over fine runs with k
ranging from 20 to 100. We also report the standard deviation, depicted as a con-
fidence interval. As expected, the figure clearly depicts the better scalability of the
PartKNN algorithm with respect to both KNN and LOF. This demonstrates the abil-
ity of PartKNN to scale to multi-million data sets. This ability was also demonstrated
by analyzing massive production data sets at F-Secure.

7.5 Summary

In this chapter, we presented a novel approach for scaling the popular KNN algo-
rithm to massive data sets. The scalability of KNN is limited by the quadratic com-
plexity of the exact nearest neighborhood search. Our approach leverages parallel
processing to greatly speedup the computation. The expensive synchronization step
required to compute exact nearest neighborhood can be avoided by considering the
clustered property of inliers in large data sets. This consideration also provides a
theoretical bound on the quality of the algorithm with respect to the original KNN
formulation.

We also presented an extensive experimental evaluation of the proposed ap-
proach. Our results demonstrate that the PartKNN algorithm clearly outperforms
the considered baseline both with respect to scalability and detection accuracy. In
particular, when compared with the original KNN formulation, PartKNN achieves
similar accuracy with an execution time an order of magnitude smaller.

Some of the techniques presented in this study have been deployed and evalu-
ated as part of an intrusion detection system at F-Secure. The evaluation was carried
out by security analysts. The approach showed good performance with respect to
both accuracy and scalability.

3https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://github.com/passiv-me/bad-framework

91

Part IV

Gravity-based Anomaly Detection

93

Chapter 8

Gravity-based Anomaly Detection

In this chapter, we present the final original contribution described in this thesis, the
Gravity anomaly detection algorithm. Gravity is an unsupervised anomaly detec-
tion algorithm taking inspiration from the law of universal gravitation. More specif-
ically, in this chapter we consider the following research question: “Is it possible to
detect outliers in a data set by considering massive data elements and using attrac-
tive and repulsive forces as an outlying criterion?”. Gravity identifies outliers by
assigning a mass to each data element and defining attraction forces between them.
Elements that are close enough collapse onto each other to form gravitational clus-
ters, or centroids. An anomaly score is then computed for each element depending
on it either belonging to a cluster or being isolated.

Our results show that Gravity is competitive with respect to other state-of-the-art
anomaly detection algorithms. Morever, the properties of its hyperparameter g, i.e.
the gravitational constant, make it easier to find an optimal hyperparameter config-
uration. This makes Gravity a good candidate for situations where other algorithms
require large hyperparameter searches.

8.1 Introduction

As discussed throughout this thesis, outliers can be defined in many ways. In Sec-
tion 2.1.4, we introduced some of the most popular anomaly definitions found in the
literature. These include defining anomalies with respect to their distance to other
data elements [33, 132], as elements belonging to low density regions of the data
distribution [161, 137, 135], or as elements having high residuals with respect to a
predictive model [79, 71].

Distance-based definitions have been shown to outperform other algorithms in
recent comparison studies [37, 69]. However, there is no theoretical evidence that
a given definition is superior to another. Different definitions rely on different as-
sumptions on the nature of outliers, e.g. outliers correspond to isolated elements.
These assumptions depend on the nature of the data under consideration. It is thus
difficult to define apriori which definition is better suited for a particular data set.

It is well-known that two massive bodies, x and y, exert an attraction force with
respect to each other corresponding to the expression

fa(x, y) = g
mxmy

d(x, y)2 (8.1)

where mx and my are the masses of the two bodies, d(x, y) is the distance between
them and g is the gravitational constant.

94 Chapter 8. Gravity-based Anomaly Detection

Gravity causes massive elements to interact. If these elements are in movement,
gravity is responsible for their orbital interaction. On the other hand, if elements are
too close or too slow, gravity causes them to collapse onto each other.

If is not difficult to imagine elements in an n-dimensional data set as celestial
bodies. If n = 3, this similarity is even more obvious. Data elements are defined by
their position in the feature space. However, contrary to celestial bodies, there is no
concept of mass in a data set.

In this work, we investigate how we can use ideas from gravitation to detect
outliers. Outliers usually correspond to isolated elements in a data set. Assuming it
is possible to define the concept of gravity in a data set, it might be possible to detect
outliers by analyzing elements with low “gravitational” interactions with respect to
the rest of the data. In this chapter, we develop these ideas into a novel algorithm
for unsupervised anomaly detection. We call this algorithm Gravity.

Gravity can be classified as a distance-based algorithm. However, contrary to
other popular approaches [33, 132], it does not explicitly rely on computing k-nearest
neighborhoods for each element in the data set. Instead, Gravity uses the concepts
of distance and mass to define an attractive force between data elements. This force
is defined using an expression similar to Equation 8.1. If the attractive force is above
a given threshold, Gravity collapses data elements and substitutes them with a new
element, referred to as a centroid, corresponding to their center of mass. Once the
centroids have been computed, data elements are assigned an anomaly score ac-
cording to their closest centroid. Gravity relies on the definition of the gravitational
constant g as its only hyperparameter.

Our experimental evaluation shows that Gravity is competitive with respect to
popular state-of-the-art anomaly detection algorithms. Moreover, the properties of
Gravity makes it so that the optimal value for g is necessarily bounded for each data
set. This eases the effort required for hyperparameter tuning with respect to other
distance-based algorithms, e.g. finding the optimal value of k for LOF [33]. This
property makes Gravity a good fit for cases where extensive hyperparameter tuning
is unfeasible.

This chapter is structured as follows. In Section 8.2, we present our proposed
Gravity algorithm in details. In Section 8.2.1, we describe the properties of the hyper-
parameter g and provide some empirical evidence of these properties. In Section 8.3,
we compare Gravity to other state-of-the-art techniques with respect to detection ac-
curacy using a multi-metric approach. Finally, Section 8.4 summarizes the chapter.

8.2 The Gravity algorithm

This section presents the Gravity algorithm for unsupervised anomaly detection.
Gravity define outliers as data elements with weak interactions with other elements.
Element interactions are defined following an expression similar to the law of uni-
versal gravitation between massive bodies.

We define the attraction force between two elements x and y ∈ D, as

fa(x, y) =
g

dist(x, y)
(8.2)

where g is a user-defined hyperparameter, referred to as the gravitational constant.
Notice that Equation 8.2 resembles the law of universal gravitation, if we assume
that each data element in D has unit mass, and we avoid the quadratic relationship

8.2. The Gravity algorithm 95

Algorithm 8.1 Gravity - Centroid search
Require: data set D, gravitational constant g

D ← standard_scaler(D)
C ← {}
for x, y ∈ D, x 6= y do

dxy ← dist(x, y)
end for
for x ∈ D do

cx ← find_centroid(x)
C ← C ∪ cx

end for

with respect to distance. These assumptions simplify the computation without af-
fecting the main ideas behind the algorithm.

One important thing to notice is that elements in a data set are static, i.e their
position does not change in time. Therefore, if we consider the attraction force as the
only interaction, all elements would naturally collapse into a single centroid. This
centroid would end up in the center of mass of the whole data set. This does not
happen in the physical world, since celestial entities are not static and move with
respect to each other. In order to avoid all elements collapsing, we introduce the
concept of constant repulsion force between elements, r. Since for each value of r̂ of
r there exists a value of g which produces the same algorithm results, r is considered
as an internal parameter of Gravity.

Depending on the magnitude of the attractive forces between them, elements can
either be unaffected or they can collapse onto each other. The algorithm models this
idea by introducing the concept of a centroid. A centroid represents either an isolated
data element or a group of collapsed data elements. Each centroid is identified by
a position and an integer size. Isolated centroids have position equal to that of the
data element they represent and size equal to one. Collapsed centroids have position
equal to the mean of the positions of the collapsed elements and size equal to the
number of collapsed elements.

Gravity consists of two main procedures: a centroid search and an element scor-
ing procedure. The goal of the centroid search is to find a suitable set of centroids
representing the structure of the data set. The centroid search takes as input the data
set D and a positive real-valued hyperparameter g, and produces as output a set
of centroids. This procedure is described in Algorithm 8.1. Initially, the data set is
scaled to have zero mean and unit variance. This limits the hyperparameter search
space for g, as described in Section 8.2.1. Then, we compute all pairwise distances in
the data sets. The distance matrix is used to find all centroids in the data set. Each
data element x is considered to be part of a centroid. If x is distant from other ele-
ments, then for each y ∈ D, y 6= x we have fa(x, y) ≤ r. This causes x to generate a
isolated centroid. Otherwise, i.e. if there exists y ∈ D, y 6= x such that fa(x, y) > r,
we create a centroid by merging x with all such elements. This procedure is repeated
for each element of the data set until all elements belong to centroids, either isolated
or collapsed. Depending on the value of g, several scenarios are possible. If g is
too small, no data elements collapse onto each other, therefore the procedure gen-
erate one centroid for each data element. Naturally, this scenario does not provide
any value with respect to the anomaly detection task. On the opposite spectrum,
i.e. when g is too large, all elements collapse into a single centroid corresponding
to the center of mass of the data set. We discuss these scenarios in more details in

96 Chapter 8. Gravity-based Anomaly Detection

Section 8.2.1.
The second procedure in Gravity is the scoring procedure, depicted in Algo-

rithm 8.2. The scoring procedure takes as input the precomputed set of centroids
C, the data set D, and outputs an anomaly score for each x ∈ D. The scoring pro-
cedure depends on which kind of centroid element x belongs to. If x belongs to
an isolated centroid, x is assigned a larger score, corresponding to the number of
centroids in the data set. If x belongs to a collapsed centroid, x is assigned a score
proportional to its distance to the centroid center of mass and inversely proportional
to the number of elements in the centroid. This represents the fact that collapsed
centroids represents dense region in the feature space. Intuitively, the denser the re-
gion the less likely it is for an element belonging to it to be an outlier. Following the
same reasoning, elements closest to the center of a dense region are less likely to be
outliers. Notice that the results of an anomaly detection algorithm are invariant with
respect to scaling or translation of the scores. In other words, what matters for the
success of the algorithm is that outliers are scored higher than inliers, independently
on the actual score values. Thus, selecting the number of centroids as the score value
for isolated centroids does not affect the results of the algorithm In Section 8.3, we
empirically evaluate our approach.

Algorithm 8.2 Gravity - Scoring procedure
Require: data set D, centroid list C

for x ∈ D do
cx ← find_closest_centroid(x, C)
if |cx| = 1 then

sx ← |C|
else

sx ← dist(x, cx)/|cx|
end if

end for

8.2.1 Finding the gravitational constant

The gravitational constant is a physical constant which can be defined empirically. In
our algorithm, we also use a gravitational constant, modeled by the hyperparameter
g. Contrary the the physical constant, the hyperparameter g needs to be fitted on
the structure of the data set. This is required in order for Gravity to detect outlier
correctly.

Notice that the dependency on an hyperparameter is very common among ano-
maly detection algorithms [33, 132, 108]. For example, most distance-based algo-
rithms require the hyperparameter k, corresponding to the nearest neighborhood
size, to be set by the user. This hyperparameter is defined between one and the size
of the data set n = |D|. If the data set is large, finding the optimal value for k us-
ing a grid search might be unfeasible. Contrary to k, the hyperparameter g has an
important property which avoids this limitation.

As already mentioned, depending on the value of g two extreme cases are possi-
ble:

1. all centroids are isolated centroids.

2. all elements collapse into one centroid.

8.2. The Gravity algorithm 97

FIGURE 8.1: Hyperparameter search for g. Data set pendigits (top)
and wine (bottom). The optimal value for g is found using the same
search space for both data sets, even though these have very different

characteristics.

98 Chapter 8. Gravity-based Anomaly Detection

TABLE 8.1: Data sets used in the experiments.

Data set Data elements Features Outliers (%)

annthyroid 7129 21 7.49
glass 213 9 4.22
kdd99 48133 40 0.42
pendigits 6870 16 2.27
shuttle 1013 9 1.28
wbc 377 30 5.3
wine 129 13 7.7

In fact, it is easy to see that for each data set D, there exist two values gm and gM,
with 0 < gm ≤ gM, such that if g ≤ gm scenario (1) happens, and if g ≥ gM scenario
two happens. Naturally, these two scenarios are not interesting for the anomaly
detection task, since in scenario (1) all elements are assigned the same score, while
in scenario (2) the algorithm identifies as outliers the elements at the limits of the
feature space.

The existence of gm and gM is important since it restricts the search space for
tuning the g hyperparameter. More specifically, once we identify gm and gM, the op-
timal value for g must necessarily lie between gm and gM. Examples of this behavior
are depicted in Figure 8.1. It is easy to notice that for the pendigits data set (Fig-
ure 8.1 top) gm is approximately equal to 8 and gM is around 82. For the wbc data set
(Figure 8.1 bottom) gm is around 15 and gM is around 70. Notice that pendigits and
wbc have very different characteristics (see Table 8.1). Figure 8.1 demonstrates how
the optimal value for g does not seem to depend on the data sets characteristics.
This is not the case other algorithms’ hyperparameters, such as k, for which there
are no theoretical bounds on the optimal value. Scaling the data set, as described in
Algorithm 8.1 makes it even easier to find appropriate values for gm and gM.

8.3 Experimental evaluation

In this section, we present an experimental evaluation for the proposed Gravity al-
gorithm. The evaluation is conducted using the BAD framework, described in Chap-
ter 5.

TABLE 8.2: Detection accuracy of Gravity with respect to the ROC
AUC metric (ROC AUC). The best results for each data set are high-
lighted in bold. Gravity shows the best performance on shuttle and is
within 2% of the best performance for the majority of the considered

benchmarks.

Data set Gravity LOF KNN IForest OCSVM

annthyroid 0.646 0.674 0.659 0.661 0.483
glass 0.726 0.824 0.869 0.711 0.462
kdd99 0.968 0.917 0.987 0.881 0.318
pendigits 0.958 0.917 0.987 0.881 0.318
shuttle 0.996 0.989 0.989 0.88 0.731
wbc 0.932 0.954 0.954 0.952 0.92
wine 0.976 1.0 0.999 0.816 0.681

8.4. Summary 99

TABLE 8.3: Detection accuracy of Gravity with respect to the aver-
age precision score metrics (AP). The best results for each data set are
highlighted in bold. Gravity shows the best performance on annthy-
roid, pendigits and shuttle. Higher values for AP indicate an highest

resiliency to false positives.

Data set Gravity LOF KNN IForest OCSVM

annthyroid 0.144 0.124 0.121 0.143 0.071
glass 0.103 0.207 0.206 0.108 0.201
pendigits 0.163 0.015 0.072 0.009 0.002
shuttle 0.586 0.378 0.386 0.099 0.048
wbc 0.435 0.583 0.601 0.652 0.552
wine 0.642 1.0 0.991 0.235 0.22

We evaluate gravity in terms of detection accuracy. We consider eight bench-
marks from the literature. The benchmarks are described in Table 8.1. We compare
Gravity with respect to four baseline algorithms from the literature. As our base-
lines, we consider the LOF [33], KNN [132], IForest [108] and OCSVM [137] algo-
rithms. In the comparison, we follow a multi-metric approach. In particular, we
focus on both the area under the ROC curve (ROC AUC) and the average precision
score (AP) [49].

For each algorithm and data set, we perform an extensive grid search to find an
appropriate hyperparameter configuration. The reported metrics correspond to the
optimal hyperparameter value found during the search.

Results for the ROC AUC metric are depicted in Table 8.2. The highest metric
value for each data set is depicted in bold. When considering ROC AUC, Gravity
shows performance comparable with the current state of the art. Gravity obtains
the best performance on the shuttle data set. Moreover, Gravity is within a couple
points with respect to the best algorithm with respect to all other considered bench-
marks, except for glass. Considering the hyperparameter properties described in
Section 8.2.1, this performance is not to be disregarded as disappointing. In fact, we
argue that this fact makes Gravity a good candidate for applications where hyper-
parameter tuning is particularly expensive.

This is also demonstrated by the fact that we used the same grid search strategy,
i.e. g ∈ [1.0, 100.0], for Gravity on all data sets. This approach is not feasible for
other algorithms since the optimal hyperparameter setting directly depends on the
cardinality of the data set.

Table 8.3 presents our results with respect to the average precision score met-
ric. Considering this metric, Gravity shows the best performance on the annthy-
roid, pendigits, and shuttle benchmarks. These results suggests that Gravity might
be particularly well-fit for applications where false positive errors are particularly
costly (see Section 2.1.5).

8.4 Summary

In this chapter, we presented our novel algorithm for anomaly detection, named
Gravity. Gravity is inspired by ideas for the law of universal gravitation. In particu-
lar, Gravity defines outliers by assigning a mass to each data element, and comput-
ing attraction forces between elements. Elements with strong enough interactions
are less likely to be outliers.

100 Chapter 8. Gravity-based Anomaly Detection

We defined the concept of centroid, as an abstraction used to model dense re-
gions in the feature space. Gravity learns centroids from the data set, and later uses
them to assign an anomaly score to each data element. This procedure relies on
setting the g hyperparameter, referred to as the gravitational constant.

Gravity can be classified as a distance-based algorithm. However, contrary to
other distance-based algorithms, the optimal hyperparameter settings for g doed
not depend on the characteristics of the data set. This makes it possible to find the
optimal hyperparameter settings for Gravity more easily than with respect to other
algorithms.

To evaluate Gravity, we compared it with four state-of-the-art anomaly detection
algorithms on eight benchmark data sets. Our results show that Gravity’s perfor-
mance is competitive with respect to the considered state-of-the-art algorithms. In
particular, Gravity shows superior performance when considering the average pre-
cision score metric. This work shows the advantages of Gravity in cases where hy-
perparameter tuning is particularly expensive, or where a low false positive error
rate is critical.

101

Part V

Conclusions

103

Chapter 9

Conclusions

In this thesis, we presented our contributions to the anomaly detection field. Ano-
maly detection is a challenging data analysis task with several critical applications.
The development of reliable and accurate anomaly detection techniques has the po-
tential of revolutionizing applications ranging from computer security to remote
sensing, system monitoring and e-health.

We began our analysis by presenting the anomaly detection field and the current
state of the art. In Chapter 2, we presented the main characteristics of the anomaly
detection problem, and its differences with respect to other data analysis tasks. We
also presented an in-depth review of the anomaly detection approaches proposed in
the literature. In Chapter 3, we presented some of the most seminal works in the
field. In particular, we illustrated the historical development of the field from the
outlier identification problem in Statistics. We also described what we consider to
be the most important open challenges in the field.

In Chapter 4, we presented our first original contribution to the field. Our goal
with this contribution was to find the most widespread issues in the anomaly detec-
tion literature with respect to methodology, evaluation and reproducibility. With this
goal in mind, we conducted a methodological survey of the most recent anomaly de-
tection literature. We selected a collection of 760 papers on anomaly detection. These
papers were selected to be representative of impactful contributions to the field. We
analyzed each paper along four methodological perspectives, namely application
domain, anomaly definition, data representation and evaluation methodology.

The results of our survey provide several interesting insights. Most notably, the
application domains to which anomaly detection has been applied are still limited.
This is in contrast with the generality of the anomaly detection task. Secondly, even
though a large number of anomaly definitions exist in the literature, these can be
classified using only six classes. The proposed classification is based the core as-
sumptions underlying a given definition, and is beneficial when comparing different
anomaly detection techniques. Additionally, most of the published literature deal
with numerical data sets, while the more general setting of mixed-attribute data set
has been only partially investigated. The evaluation of anomaly detection presents
several challenges. Benchmark data sets are not used consistently across different
studies. This hinders the replicability of published results. Finally, when different
approaches are compared, it is common to heuristically set hyperparameters val-
ues using rules of thumb. This approach is less robust with respect to grid search
hyperparameter tuning, especially in comparison studies.

We further analyzed the evaluation methodology for anomaly detection in Chap-
ter 5. In this chapter, we proposed a novel framework, named BAD, for benchmark-
ing anomaly detection algorithms. BAD enables the execution of massive hyperpa-
rameter searches by distributing the computation on a cluster of machines. Using
BAD, we empirically demonstrated some of the evaluation issues highlighted in our

104 Chapter 9. Conclusions

survey. We also showed how BAD is designed to solve most of these issues. In par-
ticular, we illustrated how rule-of-thumb settings are unreliable for the majority of
considered benchmarks, and how a grid-search approach to hyperparameter tuning
provides significant performance gains. Additionally, we demonstrated how dif-
ferent performance metrics and hyperparameter settings affect the relative rankings
of anomaly detection algorithms in comparison studies. This result is particularly
concerning, since most published research rely on rule-of-thumb settings and use
the area under the ROC curve as the only efficacy metric. In fact, we demonstrated
how our results diverge from other comparison studies which do not follow our best
practices, while we were partially able to replicate the results of studies considering
the grid-search hyperparameter tuning approach. Finally, we demonstrated the ef-
ficiency of BAD with respect to the popular ELKI framework, when considering the
hyperparameter tuning task.

In the second part of the thesis, we presented our works toward solving the chal-
lenge of scaling anomaly detection techniques to massive data sets. This challenge
arose in several industrial use cases we dealt with in the context of this doctoral the-
sis. As our first contribution in this direction, in Chapter 6 we analyzed the trade-offs
between a single-threaded and a distributed solution for an anomaly detection task
in term of price-performance. This type of analysis was motivated by the industrial
setting, where cost is an important factor when assessing the feasibility of a project.
In this work, we compared two equivalent solutions for the anomaly detection task.
The first solution is a single-threaded application, whereas the second solution is
distributed. Our results demonstrate that the most cost-effective solution depends
on the data size, evidencing that at smaller scales, the single-threaded application is
more cost-effective than the distributed solution.

In Chapter 7, we presented our approach to scaling the popular KNN anomaly
detection algorithm to massive data set. The KNN algorithm’s scalability is bounded
by its quadratic complexity. To overcome this limitation, we proposed a parallel for-
mulation of KNN which greatly reduces execution times on massive data sets. Con-
trary to other approaches, our formulation does not require a synchronization step,
and it detect outliers based on approximated nearest neighborhoods. We showed
both theoretically and empirically how this approach does not hinder the quality of
the solution. We demonstrated both the scalability and efficacy of our proposed ap-
proach through extensive experimental evaluation on both real-world and synthetic
data sets.

Finally, in Chapter 8 we presented Gravity, our novel algorithm for anomaly de-
tection. Gravity takes inspiration from the law of universal gravitation to detect
outliers based on attractive and repulsive forces between massive elements in a data
set. Data elements can collapse into each other depending on the balance between
attractive and repulsive forces. Elements with low attractive forces are classified as
outliers. This novel outlier definition requires finding the hyperparameter g, cor-
responding to the gravitational constant. We demonstrated how this can be done
efficiently for a large variety of data sets. Finally, we showed how Gravity is com-
petitive with other state-of-the-art anomaly detection algorithms with respect to de-
tection accuracy on a collection of benchmark data sets.

9.1. Limitations and future works 105

9.1 Limitations and future works

In this section, we describe the limiting assumptions of our contributions. This anal-
ysis highlights the strength and weaknesses of our approach, and it helps us to de-
fine interesting future works.

A Methodological Survey of Anomaly Detection. Our methodological anomaly
detection survey, presented in Chapter 4, provides a broad view of the anomaly de-
tection literature from a methodological perspective. One of our key assumption in
this work is that the surveyed papers are representative of the anomaly detection
literature as a whole. If this assumption hold, we can presume that the issues high-
lighted in our survey are indeed issues of anomaly detection research. The arbitrary
condition on the number of citations described in Section 4.2 might invalidate our
assumption. However, we experimented with different conditions and considering
the large number of surveyed papers, the inclusion or exclusion of a small portion of
papers from the surveyed corpus does not influence the macro analysis carried out
in the survey.

One possible extension of this work could be to consider more methodological
perspectives, e.g performance metrics, streaming versus batch, etc. Another inter-
esting extension could be to survey each application domain, or anomaly definition,
or data representation independently. This approach could certainly provide more
detailed insights on the research methodology in one particular subfield.

BAD: Benchmarking for Anomaly Detection. The design and implementation of
BAD required several design choices. The current version of BAD is limited to nu-
merical data sets. Although this is a common assumption in the literature [68], it is
nonetheless a limitation. Apart from the obvious improvements in software quality,
BAD is also limited to static data sets, i.e. it does not provide APIs for the evaluation
of streaming anomaly detection techniques. This is an interesting challenge, and it
has been investigated in several studies [30, 99, 100]. One obvious extension for BAD
would be to define and implement streaming evaluation APIs.

Another interesting future use of BAD could be the production of a large corpus
of comparison studies. This could lead to a better understanding of the anomaly
detection state of the art. Extensions to the BAD collection of benchmark data sets
and algorithms are also possible. Finally, optimization-based parameter tuning ap-
proaches could also be implemented within BAD [27].

Cost-aware Data Analysis. In our study on cost-aware data analysis (Chapter 6),
we analyzed a common data analysis task under a novel perspective. This type of
analysis is interesting and much work still need to be done. Our study could be eas-
ily extended by considering different data analysis tasks and settings, e.g. streaming
classification, streaming clustering, etc. This direction has already been partially in-
vestigated [114, 31]. This could further validate our results, since the analysis task
influences the query’s complexity, execution time and cost.

Also, the data sets considered could be varied along different dimensions. In
our work, we only considered the data set size dimension. Other interesting dimen-
sions to consider are the stream variability, the number of features, and the pres-
ence of categorical attributes. We implemented our solutions to the best of our skill.
However, our system implementations might not be optimal. Another direction of

106 Chapter 9. Conclusions

investigation to extend our work is how the system implementation affects the to-
tal solution cost. This is particularly interesting for the distributed solution, where
several processing engines are available. Another extension could be to consider dif-
ferent hardware configurations. For example Azure offer VM series optimized for
various workloads, e.g. memory-optimized, HPC-optimized. An analysis in term
of cost-effectiveness of such machines could be interesting. Another interesting line
of work parallel to our approach is to investigate how to choose the optimal cluster
configuration. In our work, we analyzed several configurations, however the results
might be different depending on the particular data analysis task.

Scalable Unsupervised Anomaly Detection. The parallel formulation of KNN,
presented in Chapter 7, represents a step towards solving the scalability issue of
anomaly detection algorithms.

Although our approach shows good results, it is limited to the KNN algorithm.
Investigating similar approaches for other anomaly detection algorithms is an in-
teresting future work. Another promising direction is to find good approximation
bounds. Since anomaly detection algorithms rely on heuristic definition of outliers,
relaxing this definitions might improve scalability without significantly affecting de-
tection performance. Naturally, this type of analysis must be replicated for each
anomaly definition in the literature, since results for different definitions might be
difficult to generalize.

Gravity-based Anomaly Detection. We showed in Chapter 8 how our Gravity al-
gorithm is competitive with respect to other state-of-the-art techniques. Nonethe-
less, several improvement directions could be investigated.

Being a distance-based algorithm, Gravity suffers from the same scalability is-
sues as other algorithms in the same class. Thus, finding a good approach to scale
Gravity to massive data sets is an interesting research challenge. Extensions to the
base algorithm could also be investigated by analyzing its performance on a larger
variety of benchmarks and use cases.

107

Bibliography

[1] Georges Aad et al. “Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics
Letters B 716.1 (2012), pp. 1–29.

[2] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss
with binary coins”. In: Journal of computer and System Sciences 66.4 (2003),
pp. 671–687.

[3] Charu C Aggarwal. “Outlier analysis”. In: Data mining. Springer. 2015, pp. 237–
263.

[4] Charu C Aggarwal. “Outlier ensembles: position paper”. In: ACM SIGKDD
Explorations Newsletter 14.2 (2013), pp. 49–58.

[5] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. “On the sur-
prising behavior of distance metrics in high dimensional spaces”. In: ICDT.
Vol. 1. Springer. 2001, pp. 420–434.

[6] Charu C Aggarwal and Saket Sathe. Outlier ensembles: An introduction. 2017.

[7] Charu C Aggarwal and Saket Sathe. “Theoretical foundations and algorithms
for outlier ensembles”. In: Acm Sigkdd Explorations Newsletter 17.1 (2015), pp. 24–
47.

[8] Charu C Aggarwal and Philip S Yu. “Outlier detection for high dimensional
data”. In: ACM Sigmod Record. Vol. 30. 2. ACM. 2001, pp. 37–46.

[9] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. “Ganomaly:
Semi-supervised anomaly detection via adversarial training”. In: Asian Con-
ference on Computer Vision. Springer. 2018, pp. 622–637.

[10] Fabrizio Angiulli and Fabio Fassetti. “Detecting distance-based outliers in
streams of data”. In: Proceedings of the sixteenth ACM conference on Conference
on information and knowledge management. ACM. 2007, pp. 811–820.

[11] Fabrizio Angiulli and Clara Pizzuti. “Fast outlier detection in high dimen-
sional spaces”. In: European Conference on Principles of Data Mining and Knowl-
edge Discovery. Springer. 2002, pp. 15–27.

[12] Fabrizio Angiulli and Clara Pizzuti. “Outlier mining in large high-dimensional
data sets”. In: IEEE transactions on Knowledge and Data engineering 17.2 (2005),
pp. 203–215.

[13] Fabrizio Angiulli et al. “A distributed approach to detect outliers in very
large data sets”. In: European Conference on Parallel Processing. Springer, Berlin,
Heidelberg. 2010, pp. 329–340.

[14] Arvind Arasu et al. “Linear road: a stream data management benchmark”.
In: Proceedings of the Thirtieth international conference on Very large data bases-
Volume 30. VLDB Endowment. 2004, pp. 480–491.

108 Bibliography

[15] Andrea Arcuri and Gordon Fraser. “On parameter tuning in search based
software engineering”. In: International Symposium on Search Based Software
Engineering. Springer. 2011, pp. 33–47.

[16] Antonio Arranz et al. “DADICC: Intelligent system for anomaly detection in
a combined cycle gas turbine plant”. In: Expert Systems with Applications 34.4
(2008), pp. 2267–2277.

[17] R Arshady. “Suspension, emulsion, and dispersion polymerization: A method-
ological survey”. In: Colloid and polymer science 270.8 (1992), pp. 717–732. DOI:
10.1007/BF00776142.

[18] Ira Assent et al. “AnyOut: Anytime Outlier Detection on Streaming Data.”
In: DASFAA (1). 2012, pp. 228–242.

[19] Aya Ayadi et al. “Outlier detection approaches for wireless sensor networks:
A survey”. In: Computer Networks 129 (2017), pp. 319–333.

[20] Marco Balduini and Emanuele Della Valle. “FraPPE: a vocabulary to repre-
sent heterogeneous spatio-temporal data to support visual analytics”. In: In-
ternational Semantic Web Conference. Springer. 2015, pp. 321–328.

[21] Marco Balduini, Emanuele Della Valle, and Riccardo Tommasini. “SLD rev-
olution: A cheaper, faster yet more accurate streaming linked data frame-
work”. In: European Semantic Web Conference. Springer. 2017, pp. 263–279.

[22] Marco Balduini, Sivam Pasupathipillai, and Emanuele Della Valle. “Cost-
aware streaming data analysis: Distributed vs single-thread”. In: Proceedings
of the 12th ACM International Conference on Distributed and Event-based Systems.
2018, pp. 160–170.

[23] Marco Balduini et al. “Citysensing: Fusing city data for visual storytelling”.
In: IEEE MultiMedia 22.3 (2015), pp. 44–53.

[24] Marco Balduini et al. “Social listening of city scale events using the streaming
linked data framework”. In: International Semantic Web Conference. Springer.
2013, pp. 1–16.

[25] Vic Barnett, Toby Lewis, et al. Outliers in statistical data. Vol. 3. 1. Wiley New
York, 1994.

[26] Stephen D Bay and Mark Schwabacher. “Mining distance-based outliers in
near linear time with randomization and a simple pruning rule”. In: Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2003, pp. 29–38.

[27] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter op-
timization”. In: The Journal of Machine Learning Research 13.1 (2012), pp. 281–
305.

[28] Kevin Beyer et al. “When is “nearest neighbor” meaningful?” In: International
conference on database theory. Springer. 1999, pp. 217–235.

[29] Fábio Bezerra, Jacques Wainer, et al. “Anomaly detection algorithms in busi-
ness process logs”. In: Proceedings of the 10th International Conference on Enter-
prise Information Systems (ICEIS), volume AIDSS, Barcelona, Spain. 2008, pp. 11–
18.

[30] Albert Bifet et al. “Efficient online evaluation of big data stream classifiers”.
In: Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. 2015, pp. 59–68.

https://doi.org/10.1007/BF00776142

Bibliography 109

[31] Christoph Boden, Tilmann Rabl, and Volker Markl. “Distributed Machine
Learning-but at what COST”. In: Machine Learning Systems Workshop at the
2017 Conference on Neural Information Processing Systems. 2017.

[32] Richard J Bolton and David J Hand. “Statistical fraud detection: A review”.
In: Statistical science (2002), pp. 235–249.

[33] Markus M Breunig et al. “LOF: Identifying Density-Based Local Outliers”. In:
Proceedings of the 2000 ACM SIGMOD international conference on Management
of data - SIGMOD ’00 29.2 (2000), pp. 93–104. ISSN: 0163-5808. DOI: 10.1145/
342009.335388. URL: http://portal.acm.org/citation.cfm?doid=342009.
335388.

[34] Francesco Calabrese et al. “Real-time urban monitoring using cell phones: A
case study in Rome”. In: IEEE Transactions on Intelligent Transportation Systems
12.1 (2011), pp. 141–151.

[35] Francesco Calabrese et al. “The geography of taste: Analyzing cell-phone mo-
bility and social events.” In: Pervasive. Vol. 10. Springer. 2010, pp. 22–37.

[36] Francesco Calabrese et al. “Urban computing and mobile devices”. In: IEEE
Pervasive Computing 6.3 (2007), pp. 52–57.

[37] Guilherme O Campos et al. “On the evaluation of unsupervised outlier detec-
tion: measures, datasets, and an empirical study”. In: Data Mining and Knowl-
edge Discovery 30.4 (2016), pp. 891–927.

[38] Raymond L Chambers. “Outlier robust finite population estimation”. In: Jour-
nal of the American Statistical Association 81.396 (1986), pp. 1063–1069.

[39] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection:
A survey”. In: ACM computing surveys (CSUR) 41.3 (2009), p. 15.

[40] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[41] Jinghui Chen et al. “Outlier detection with autoencoder ensembles”. In: Pro-
ceedings of the 2017 SIAM international conference on data mining. SIAM. 2017,
pp. 90–98.

[42] Yixin Chen et al. “Outlier detection with the kernelized spatial depth func-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.2
(2009), pp. 288–305.

[43] Sanket Chintapalli et al. “Benchmarking streaming computation engines: Storm,
flink and spark streaming”. In: 2016 IEEE international parallel and distributed
processing symposium workshops (IPDPSW). IEEE. 2016, pp. 1789–1792.

[44] Joël Coste, Jacques Fermanian, and Alain Venot. “Methodological and sta-
tistical problems in the construction of composite measurement scales: a sur-
vey of six medical and epidemiological journals”. In: Statistics in medicine 14.4
(1995), pp. 331–345. DOI: 10.1002/sim.4780140402.

[45] Alessandro D’Alconzo et al. “A distribution-based approach to anomaly de-
tection and application to 3G mobile traffic”. In: Global Telecommunications
Conference, 2009. GLOBECOM 2009. IEEE. IEEE. 2009, pp. 1–8.

[46] Armin Daneshpazhouh and Ashkan Sami. “Entropy-based outlier detection
using semi-supervised approach with few positive examples”. In: Pattern
Recognition Letters 49 (2014), pp. 77–84.

https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
http://portal.acm.org/citation.cfm?doid=342009.335388
http://portal.acm.org/citation.cfm?doid=342009.335388
https://doi.org/10.1002/sim.4780140402

110 Bibliography

[47] Dipankar Dasgupta et al. “Negative selection algorithm for aircraft fault de-
tection”. In: Artificial immune systems (2004), pp. 1–13.

[48] Mayur Datar et al. “Locality-sensitive hashing scheme based on p-stable dis-
tributions”. In: Proceedings of the twentieth annual symposium on Computational
geometry. ACM. 2004, pp. 253–262.

[49] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall
and ROC curves”. In: Proceedings of the 23rd international conference on Machine
learning. ACM. 2006, pp. 233–240.

[50] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing
on large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[51] Emanuele Della Valle and Marco Balduini. “Listening to and visualising the
pulse of our cities using Social Media and Call Data Records”. In: International
Conference on Business Information Systems. Springer. 2015, pp. 3–14.

[52] Rémi Domingues et al. “A comparative evaluation of outlier detection algo-
rithms: Experiments and analyses”. In: Pattern Recognition 74 (2018), pp. 406–
421.

[53] Lian Duan et al. “Cluster-based outlier detection”. In: Annals of Operations
Research 168.1 (2009), pp. 151–168.

[54] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John
Wiley & Sons, 2012.

[55] Nick Duffield et al. “Rule-based anomaly detection on IP flows”. In: INFO-
COM 2009, IEEE. IEEE. 2009, pp. 424–432.

[56] William Eberle and Lawrence Holder. “Anomaly detection in data repre-
sented as graphs”. In: Intelligent Data Analysis 11.6 (2007), pp. 663–689. DOI:
10.5555/1368018.1368024.

[57] Hilmi E Egilmez and Antonio Ortega. “Spectral anomaly detection using
graph-based filtering for wireless sensor networks”. In: 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2014, pp. 1085–1089.

[58] Manzoor Elahi et al. “Efficient clustering-based outlier detection algorithm
for dynamic data stream”. In: Fuzzy Systems and Knowledge Discovery, 2008.
FSKD’08. Fifth International Conference on. Vol. 5. IEEE. 2008, pp. 298–304.

[59] Andrew F Emmott et al. “Systematic construction of anomaly detection bench-
marks from real data”. In: Proceedings of the ACM SIGKDD workshop on outlier
detection and description. ACM. 2013, pp. 16–21.

[60] Sarah M Erfani et al. “High-dimensional and large-scale anomaly detection
using a linear one-class SVM with deep learning”. In: Pattern Recognition 58
(2016), pp. 121–134.

[61] Charles W Eriksen. “Discrimination and learning without awareness: a method-
ological survey and evaluation.” In: Psychological review 67.5 (1960), p. 279.
DOI: 10.1037/h0041622.

[62] Eleazar Eskin. “Anomaly detection over noisy data using learned probabil-
ity distributions”. In: In Proceedings of the International Conference on Machine
Learning. Citeseer. 2000.

[63] Eleazar Eskin et al. “A geometric framework for unsupervised anomaly de-
tection: Detecting intrusions in unlabeled data”. In: Applications of data mining
in computer security 6 (2002), pp. 77–102.

https://doi.org/10.5555/1368018.1368024
https://doi.org/10.1037/h0041622

Bibliography 111

[64] Martin Ester et al. “A density-based algorithm for discovering clusters in
large spatial databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[65] Vladimir Estivill-Castro. “Why so many clustering algorithms: a position pa-
per”. In: ACM SIGKDD explorations newsletter 4.1 (2002), pp. 65–75.

[66] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters
27.8 (2006), pp. 861–874.

[67] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From data
mining to knowledge discovery in databases”. In: AI magazine 17.3 (1996),
pp. 37–37.

[68] Mathieu Garchery and Michael Granitzer. “On the influence of categorical
features in ranking anomalies using mixed data”. In: Procedia Computer Sci-
ence 126 (2018), pp. 77–86.

[69] Markus Goldstein and Seiichi Uchida. “A comparative evaluation of unsu-
pervised anomaly detection algorithms for multivariate data”. In: PloS one
11.4 (2016), e0152173.

[70] Nico Görnitz et al. “Toward supervised anomaly detection”. In: Journal of Ar-
tificial Intelligence Research 46 (2013), pp. 235–262.

[71] Aurea Grané and Helena Veiga. “Wavelet-based detection of outliers in fi-
nancial time series”. In: Computational Statistics & Data Analysis 54.11 (2010),
pp. 2580–2593.

[72] Jim Gray. Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc., 1992.

[73] Frank E Grubbs. “Procedures for detecting outlying observations in sam-
ples”. In: Technometrics 11.1 (1969), pp. 1–21.

[74] Sudipto Guha et al. “Robust random cut forest based anomaly detection on
streams”. In: International Conference on Machine Learning. 2016, pp. 2712–2721.

[75] Manish Gupta et al. “Outlier detection for temporal data: A survey”. In: IEEE
Transactions on Knowledge and Data Engineering 26.9 (2014), pp. 2250–2267.

[76] James A Hanley and Barbara J McNeil. “The meaning and use of the area
under a receiver operating characteristic (ROC) curve.” In: Radiology 143.1
(1982), pp. 29–36.

[77] Milos Hauskrecht et al. “Outlier detection for patient monitoring and alert-
ing”. In: Journal of biomedical informatics 46.1 (2013), pp. 47–55.

[78] Douglas M Hawkins. Identification of outliers. Vol. 11. Springer, 1980.

[79] Simon Hawkins et al. “Outlier detection using replicator neural networks”.
In: International Conference on Data Warehousing and Knowledge Discovery. Springer.
2002, pp. 170–180.

[80] Victoria Hodge and Jim Austin. “A survey of outlier detection methodolo-
gies”. In: Artificial intelligence review 22.2 (2004), pp. 85–126.

[81] Junho Hong, Chen-Ching Liu, and Manimaran Govindarasu. “Integrated ano-
maly detection for cyber security of the substations”. In: IEEE Transactions on
Smart Grid 5.4 (2014), pp. 1643–1653.

[82] Shin-Ying Huang, Jhe-Wei Lin, and Rua-Huan Tsaih. “Outlier detection in
the concept drifting environment”. In: 2016 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2016, pp. 31–37.

112 Bibliography

[83] Hesam Izakian and Witold Pedrycz. “Anomaly detection in time series data
using a fuzzy c-means clustering”. In: 2013 Joint IFSA World Congress and
NAFIPS Annual Meeting (IFSA/NAFIPS). IEEE. 2013, pp. 1513–1518. DOI: 10.
1109/IFSA-NAFIPS.2013.6608627.

[84] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988. ISBN: 013022278X. DOI: 10.5555/46712.

[85] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a
review”. In: ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[86] Fabian Keller, Emmanuel Muller, and Klemens Bohm. “HiCS: High contrast
subspaces for density-based outlier ranking”. In: 2012 IEEE 28th international
conference on data engineering. IEEE. 2012, pp. 1037–1048.

[87] Maurice G Kendall. “A new measure of rank correlation”. In: Biometrika 30.1/2
(1938), pp. 81–93.

[88] Safa Khazai et al. “Anomaly detection in hyperspectral images based on an
adaptive support vector method”. In: IEEE Geoscience and Remote Sensing Let-
ters 8.4 (2011), pp. 646–650.

[89] Edwin M Knorr and Raymond T Ng. “A Unified Notion of Outliers: Proper-
ties and Computation.” In: KDD. 1997, pp. 219–222.

[90] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. “Distance-based
outliers: algorithms and applications”. In: The VLDB Journal - The International
Journal on Very Large Data Bases 8.3-4 (2000), pp. 237–253.

[91] Anna Koufakou et al. “A scalable and efficient outlier detection strategy for
categorical data”. In: Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th
IEEE International Conference on. Vol. 2. IEEE. 2007, pp. 210–217.

[92] Anna Koufakou et al. “Fast parallel outlier detection for categorical datasets
using MapReduce”. In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint Conference on. IEEE. 2008,
pp. 3298–3304.

[93] Kira Kowalska and Leto Peel. “Maritime anomaly detection using Gaussian
Process active learning”. In: Information Fusion (FUSION), 2012 15th Interna-
tional Conference on. IEEE. 2012, pp. 1164–1171.

[94] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[95] Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. “The (black) art of
runtime evaluation: Are we comparing algorithms or implementations?” In:
Knowledge and Information Systems 52.2 (2017), pp. 341–378.

[96] Hans-Peter Kriegel, Arthur Zimek, et al. “Angle-based outlier detection in
high-dimensional data”. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2008, pp. 444–452.

[97] Hans-Peter Kriegel et al. “LoOP: local outlier probabilities”. In: Proceedings
of the 18th ACM conference on Information and knowledge management. 2009,
pp. 1649–1652.

[98] Gautier Krings et al. “Urban gravity: a model for inter-city telecommunica-
tion flows”. In: Journal of Statistical Mechanics: Theory and Experiment 2009.07
(2009), p. L07003.

https://doi.org/10.1109/IFSA-NAFIPS.2013.6608627
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608627
https://doi.org/10.5555/46712

Bibliography 113

[99] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. “Generic and scalable frame-
work for automated time-series anomaly detection”. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM. 2015, pp. 1939–1947.

[100] Alexander Lavin and Subutai Ahmad. “Evaluating Real-Time Anomaly De-
tection Algorithms–The Numenta Anomaly Benchmark”. In: Machine Learn-
ing and Applications (ICMLA), 2015 IEEE 14th International Conference on. IEEE.
2015, pp. 38–44.

[101] Aleksandar Lazarevic and Vipin Kumar. “Feature bagging for outlier detec-
tion”. In: Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM. 2005, pp. 157–166.

[102] Aleksandar Lazarevic et al. “A comparative study of anomaly detection schemes
in network intrusion detection”. In: Proceedings of the 2003 SIAM International
Conference on Data Mining. SIAM. 2003, pp. 25–36.

[103] Xiaolei Li et al. “Temporal outlier detection in vehicle traffic data”. In: IEEE
International Conference on Data Engineering. IEEE. 2009, pp. 1319–1322.

[104] M. Lichman. UCI Machine Learning Repository. 2013. URL: http://archive.
ics.uci.edu/ml.

[105] Shih-Wei Lin et al. “An intelligent algorithm with feature selection and deci-
sion rules applied to anomaly intrusion detection”. In: Applied Soft Computing
12.10 (2012), pp. 3285–3290.

[106] Richard P Lippmann et al. “Evaluating intrusion detection systems: The 1998
DARPA off-line intrusion detection evaluation”. In: DARPA Information Sur-
vivability Conference and Exposition, 2000. DISCEX’00. Proceedings. Vol. 2. IEEE.
2000, pp. 12–26.

[107] Duo Liu et al. “Network traffic anomaly detection using clustering techniques
and performance comparison”. In: Electrical and Computer Engineering (CCECE),
2013 26th Annual IEEE Canadian Conference on. IEEE. 2013, pp. 1–4.

[108] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In: Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE. 2008,
pp. 413–422.

[109] Elio Lozano and E Acufia. “Parallel algorithms for distance-based and density-
based outliers”. In: Fifth IEEE International Conference on Data Mining (ICDM’05).
IEEE. 2005, 4–pp.

[110] Vijay Mahadevan et al. “Anomaly detection in crowded scenes”. In: Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010,
pp. 1975–1981.

[111] Henrique O Marques et al. “On the internal evaluation of unsupervised out-
lier detection”. In: Proceedings of the 27th International Conference on Scientific
and Statistical Database Management. ACM. 2015, p. 7.

[112] Nathan Marz and James Warren. Big Data: Principles and best practices of scala-
ble realtime data systems. Manning Publications Co., 2015.

[113] John McHugh. “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lin-
coln laboratory”. In: ACM Transactions on Information and System Security (TIS-
SEC) 3.4 (2000), pp. 262–294.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

114 Bibliography

[114] Frank McSherry, Michael Isard, and Derek G Murray. “Scalability! But at
what {COST}?” In: 15th Workshop on Hot Topics in Operating Systems (HotOS
{XV}). 2015.

[115] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[116] Janaina Mourão-Miranda et al. “Patient classification as an outlier detection
problem: an application of the one-class support vector machine”. In: Neu-
roimage 58.3 (2011), pp. 793–804.

[117] Shanmugavelayutham Muthukrishnan. “Data streams: Algorithms and ap-
plications”. In: Foundations and Trends® in Theoretical Computer Science 1.2
(2005), pp. 117–236.

[118] Kazuyo Narita and Hiroyuki Kitagawa. “Outlier detection for transaction
databases using association rules”. In: Web-Age Information Management, 2008.
WAIM’08. The Ninth International Conference on. IEEE. 2008, pp. 373–380.

[119] Hoang Vu Nguyen, Hock Hee Ang, and Vivekanand Gopalkrishnan. “Min-
ing outliers with ensemble of heterogeneous detectors on random subspaces”.
In: International Conference on Database Systems for Advanced Applications. Springer.
2010, pp. 368–383.

[120] Keith Noto, Carla Brodley, and Donna Slonim. “FRaC: a feature-modeling ap-
proach for semi-supervised and unsupervised anomaly detection”. In: Data
mining and knowledge discovery 25.1 (2012), pp. 109–133.

[121] Travis E Oliphant. “Python for scientific computing”. In: Computing in Science
& Engineering 9.3 (2007), pp. 10–20.

[122] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. “Fast dis-
tributed outlier detection in mixed-attribute data sets”. In: Data Mining and
Knowledge Discovery 12.2-3 (2006), pp. 203–228.

[123] Themistoklis Palpanas et al. “Distributed deviation detection in sensor net-
works”. In: ACM SIGMOD Record 32.4 (2003), pp. 77–82.

[124] Spiros Papadimitriou et al. “Loci: Fast outlier detection using the local corre-
lation integral”. In: Proceedings 19th International Conference on Data Engineer-
ing (Cat. No. 03CH37405). IEEE. 2003, pp. 315–326.

[125] Daehyung Park et al. “Multimodal execution monitoring for anomaly de-
tection during robot manipulation”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2016, pp. 407–414.

[126] Heiko Paulheim and Robert Meusel. “A decomposition of the outlier detec-
tion problem into a set of supervised learning problems”. In: Machine Learning
100.2-3 (2015), pp. 509–531.

[127] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[128] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. “Incre-
mental local outlier detection for data streams”. In: Computational Intelligence
and Data Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE. 2007, pp. 504–
515.

[129] Sutharshan Rajasegarar, Christopher Leckie, and Marimuthu Palaniswami.
“Hyperspherical cluster based distributed anomaly detection in wireless sen-
sor networks”. In: Journal of Parallel and Distributed Computing 74.1 (2014),
pp. 1833–1847.

Bibliography 115

[130] Sutharshan Rajasegarar et al. “Centered hyperspherical and hyperellipsoidal
one-class support vector machines for anomaly detection in sensor networks”.
In: IEEE Transactions on Information Forensics and Security 5.3 (2010), pp. 518–
533.

[131] Sutharshan Rajasegarar et al. “Quarter sphere based distributed anomaly de-
tection in wireless sensor networks”. In: Communications, 2007. ICC’07. IEEE
International Conference on. IEEE. 2007, pp. 3864–3869.

[132] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient algorithms
for mining outliers from large data sets”. In: ACM Sigmod Record. Vol. 29. 2.
ACM. 2000, pp. 427–438.

[133] Shebuti Rayana. “ODDS library”. In: Stony Brook,-2016 2017 (2016).

[134] Fei Ren et al. “Using density-based incremental clustering for anomaly de-
tection”. In: Computer Science and Software Engineering, 2008 International Con-
ference on. Vol. 3. IEEE. 2008, pp. 986–989.

[135] Saket Sathe and Charu C Aggarwal. “Subspace Outlier Detection in Linear
Time with Randomized Hashing”. In: Data Mining (ICDM), 2016 IEEE 16th
International Conference on. IEEE. 2016, pp. 459–468.

[136] Thomas Schlegl et al. “Unsupervised anomaly detection with generative ad-
versarial networks to guide marker discovery”. In: International Conference on
Information Processing in Medical Imaging. Springer. 2017, pp. 146–157.

[137] Bernhard Schölkopf et al. “Estimating the support of a high-dimensional dis-
tribution”. In: Neural computation 13.7 (2001), pp. 1443–1471.

[138] Erich Schubert and Arthur Zimek. “ELKI: A large open-source library for
data analysis-ELKI Release 0.7. 5" Heidelberg"”. In: arXiv preprint arXiv:1902.03616
(2019).

[139] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. “Fast and Scalable
Outlier Detection with Approximate Nearest Neighbor Ensembles”. In: DAS-
FAA (2). 2015, pp. 19–36.

[140] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. “Generalized outlier
detection with flexible kernel density estimates”. In: Proceedings of the 2014
SIAM International Conference on Data Mining. SIAM. 2014, pp. 542–550.

[141] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. “Local outlier detec-
tion reconsidered: a generalized view on locality with applications to spatial,
video, and network outlier detection”. In: Data Mining and Knowledge Discov-
ery 28.1 (2014), pp. 190–237.

[142] Mark Schwabacher, Nikunj Oza, and Bryan Matthews. “Unsupervised ano-
maly detection for liquid-fueled rocket propulsion health monitoring”. In:
Journal of Aerospace Computing, Information, and Communication 6.7 (2009), pp. 464–
482.

[143] Nidhi Singh and Craig Olinsky. “Demystifying Numenta anomaly bench-
mark”. In: Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE.
2017, pp. 1570–1577.

[144] Rasheda Smith et al. “Clustering approaches for anomaly based intrusion de-
tection”. In: Proceedings of intelligent engineering systems through artificial neural
networks (2002), pp. 579–584.

116 Bibliography

[145] Lorne Swersky et al. “On the evaluation of outlier detection and one-class
classification methods”. In: Data Science and Advanced Analytics (DSAA), 2016
IEEE International Conference on. IEEE. 2016, pp. 1–10.

[146] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. “Fast anomaly detection
for streaming data”. In: IJCAI Proceedings-International Joint Conference on Ar-
tificial Intelligence. Vol. 22. 1. 2011, p. 1511.

[147] Mahbod Tavallaee, Natalia Stakhanova, and Ali Akbar Ghorbani. “Toward
credible evaluation of anomaly-based intrusion-detection methods”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
40.5 (2010), pp. 516–524.

[148] Mahbod Tavallaee et al. “A detailed analysis of the KDD CUP 99 data set”.
In: Computational Intelligence for Security and Defense Applications, 2009. CISDA
2009. IEEE Symposium on. IEEE. 2009, pp. 1–6.

[149] William R Thompson. “On a criterion for the rejection of observations and
the distribution of the ratio of deviation to sample standard deviation”. In:
The Annals of Mathematical Statistics 6.4 (1935), pp. 214–219.

[150] Jaree Thongkam et al. “Support vector machine for outlier detection in breast
cancer survivability prediction”. In: Asia-Pacific Web Conference. Springer. 2008,
pp. 99–109.

[151] Wojciech Tylman. “Anomaly-based intrusion detection using Bayesian net-
works”. In: Dependability of Computer Systems, 2008. DepCos-RELCOMEX’08.
Third International Conference on. IEEE. 2008, pp. 211–218.

[152] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. “A novel technique
for long-term anomaly detection in the cloud”. In: 6th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 14). 2014.

[153] Chengwei Wang et al. “Statistical techniques for online anomaly detection in
data centers”. In: Integrated Network Management (IM), 2011 IFIP/IEEE Inter-
national Symposium on. IEEE. 2011, pp. 385–392.

[154] Yu Wang et al. “Online anomaly detection for hard disk drives based on ma-
halanobis distance”. In: IEEE Transactions on Reliability 62.1 (2013), pp. 136–
145.

[155] Geoffrey I Webb et al. “Characterizing concept drift”. In: Data Mining and
Knowledge Discovery 30.4 (2016), pp. 964–994.

[156] James M Whitacre, Tuan Q Pham, and Ruhul A Sarker. “Use of statistical out-
lier detection method in adaptive evolutionary algorithms”. In: Proceedings of
the 8th annual conference on Genetic and evolutionary computation. ACM. 2006,
pp. 1345–1352.

[157] Ke Wu et al. “RS-Forest: A rapid density estimator for streaming anomaly de-
tection”. In: Data Mining (ICDM), 2014 IEEE International Conference on. IEEE.
2014, pp. 600–609.

[158] Drausin Wulsin et al. “Semi-supervised anomaly detection for EEG wave-
forms using deep belief nets”. In: 2010 Ninth International Conference on Ma-
chine Learning and Applications. IEEE. 2010, pp. 436–441.

[159] Yan Xia et al. “Learning discriminative reconstructions for unsupervised out-
lier removal”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 1511–1519.

Bibliography 117

[160] Kenji Yamanishi and Jun-ichi Takeuchi. “A unifying framework for detecting
outliers and change points from non-stationary time series data”. In: Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2002, pp. 676–681.

[161] Kenji Yamanishi et al. “On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms”. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2000, pp. 320–324.

[162] Matei Zaharia et al. “Apache spark: a unified engine for big data processing”.
In: Communications of the ACM 59.11 (2016), pp. 56–65.

[163] Ke Zhang, Marcus Hutter, and Huidong Jin. “A new local distance-based out-
lier detection approach for scattered real-world data”. In: Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. Springer. 2009, pp. 813–822.

[164] Yang Zhang, Nirvana Meratnia, and Paul Havinga. “Outlier detection tech-
niques for wireless sensor networks: A survey”. In: IEEE Communications Sur-
veys & Tutorials 12.2 (2010), pp. 159–170.

[165] Yang Zhang et al. “Statistics-based outlier detection for wireless sensor net-
works”. In: International Journal of Geographical Information Science 26.8 (2012),
pp. 1373–1392.

[166] Ying Zhang et al. “Combining motion and appearance cues for anomaly de-
tection”. In: Pattern Recognition 51 (2016), pp. 443–452.

[167] Yue Zhao, Zain Nasrullah, and Zheng Li. “PyOD: A Python Toolbox for Sca-
lable Outlier Detection”. In: Journal of Machine Learning Research 20.96 (2019),
pp. 1–7. URL: http://jmlr.org/papers/v20/19-011.html.

[168] Chong Zhou and Randy C Paffenroth. “Anomaly detection with robust deep
autoencoders”. In: Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. 2017, pp. 665–674.

[169] Arthur Zimek et al. “Subsampling for efficient and effective unsupervised
outlier detection ensembles”. In: Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. 2013, pp. 428–436.

http://jmlr.org/papers/v20/19-011.html

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Notation and problem statement
	Contributions and thesis outline
	List of publications

	I Background
	Anomaly Detection
	Introduction
	Relation with classification
	Relation with clustering
	Anomaly detection approaches
	Anomaly definitions
	Evaluation

	Applications of anomaly detection
	Intrusion detection
	Sensor networks
	Fault detection and system monitoring

	State of the Art
	A brief history of anomaly detection
	Seminal papers
	Resources and tools
	Open challenges

	A Methodological Survey of Anomaly Detection
	Introduction
	Methodology
	Discussion
	Application domains
	Anomaly definitions
	Data representations
	Evaluation methodology

	Summary

	II Benchmarking
	BAD: Benchmarking for Anomaly Detection
	Introduction
	Hyperparameter tuning

	The BAD framework
	Requirements and design goals
	Architecture
	Candidates
	Data sets
	Hyperparameter specification
	Performance metrics

	Experimental evaluation
	Candidates
	Rule-of-thumb settings vs. grid searches
	Performance gain
	Relative rankings
	Scalability
	Replicability

	Summary

	III Scalable Anomaly Detection
	Cost-aware Data Analysis
	Introduction
	Problem setting
	Data description
	Problem

	Background
	Apache Kafka
	Natron
	Apache Spark

	Solution design
	Infrastructure
	Architecture
	Implementation details
	Apache Kafka
	Natron
	Apache Spark

	Operational considerations

	Experimental settings
	Methodology
	Configurations
	Natron
	Apache Spark

	Results and discussion
	Summary

	Scalable Unsupervised Anomaly Detection
	Introduction
	Distance-based anomaly detection
	The KNN algorithm

	Partition-wise KNN
	On the quality of the approximation

	Experimental evaluation
	Detection accuracy
	Scalability

	Summary

	IV Gravity-based Anomaly Detection
	Gravity-based Anomaly Detection
	Introduction
	The Gravity algorithm
	Finding the gravitational constant

	Experimental evaluation
	Summary

	V Conclusions
	Conclusions
	Limitations and future works

	Bibliography

