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Abstract

The analysis of signals stemming from a physical system is crucial for the experimental investigation
of the underlying dynamics that drives the system itself. The field of time series analysis comprises
a wide variety of techniques developed with the purpose of characterizing signals and, ultimately, of
providing insights on the phenomena that govern the temporal evolution of the generating system. A
renowned example in this field is given by spectral analysis: the use of Fourier or Laplace transforms
to bring time-domain signals into the more convenient frequency space allows to disclose the key
features of linear systems. A more complex scenario turns up when nonlinearity intervenes within a
system’s dynamics. Nonlinear coupling between a system’s degrees of freedom brings about interesting
dynamical regimes, such as self-sustained periodic (though anharmonic) oscillations (“limit cycles”), or
quasi-periodic evolutions that exhibit sharp spectral lines while lacking strict periodicity (“limit tori”).
Among the consequences of nonlinearity, the onset of chaos is definitely the most fascinating one.
Chaos is a dynamical regime characterized by unpredictability and lack of periodicity, despite being
generated by deterministic laws. Signals generated by chaotic dynamical systems appear as irregular:
the corresponding spectra are broad and flat, prediction of future values is challenging, and evolutions
within the systems’ state spaces converge to strange attractor sets with noninteger dimensionality.
Because of these properties, chaotic signals can be mistakenly classified as noise if linear techniques
such as spectral analysis are used. The identification of chaos and its characterization require the
assessment of dynamical invariants that quantify the complex features of a chaotic system’s evolution.
For example, Lyapunov exponents provide a marker of unpredictability; the estimation of attractor
dimensions, on the other hand, highlights the unconventional geometry of a chaotic system’s state
space.

Nonlinear time series analysis techniques act directly within the state space of the system under
investigation. However, experimentally, full access to a system’s state space is not always available.
Often, only a scalar signal stemming from the dynamical system can be recorded, thus providing, upon
sampling, a scalar sequence. Nevertheless, by virtue of a fundamental theorem by Takens, it is possible
to reconstruct a proxy of the original state space evolution out of a single, scalar sequence. This recon-
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struction is carried out by means of the so-called embedding procedure: m-dimensional vectors are built
by picking successive elements of the scalar sequence delayed by a lag L. On the other hand, besides
posing some necessary conditions on the integer embedding parameters m and L, Takens’ theorem
does not provide any clue on how to choose them correctly. Although many optimal embedding cri-
teria were proposed, a general answer to the problem is still lacking. As a matter of fact, conventional
methods for optimal embedding are flawed by several drawbacks, the most relevant being the need for
a subjective evaluation of the outcomes of applied algorithms.

Tackling the issue of optimally selecting embedding parameters makes up the core topic of this
thesis work. In particular, I will discuss a novel approach that was pursued by our research group and
that led to the development of a new method for the identification of suitable embedding parameters.
Rather than most conventional approaches, which seek a single optimal value for m and L to embed
an input sequence, our approach provides a set of embedding choices that are equivalently suitable
to reconstruct the dynamics. The suitability of each embedding choice m, L is assessed by relying on
statistical testing, thus providing a criterion that does not require a subjective evaluation of outcomes.
The starting point of our method are embedding-dependent correlation integrals, i.e. cumulative dis-
tributions of embedding vector distances, built out of an input scalar sequence. In the case of Gaussian
white noise, an analytical expression for correlation integrals is available, and, by exploiting this ex-
pression, a gauge transformation of distances is introduced to provide a more convenient representation
of correlation integrals. Under this new gauge, it is possible to test—in a computationally undemanding
way—whether an input sequence is compatible with Gaussian white noise and, subsequently, whether
the sequence is compatible with the hypothesis of an underlying chaotic system. These two statistical
tests allow ruling out embedding choices that are unsuitable to reconstruct the dynamics. The estima-
tion of correlation dimension, carried out by means of a newly devised estimator, makes up the third
stage of the method: sets of embedding choices that provide uniform estimates of this dynamical in-
variant are deemed to be suitable to embed the sequence.
The method was successfully applied to synthetic and experimental sequences, providing new insight
into the longstanding issue of optimal embedding. For example, the relevance of the embedding window

(m–1)L, i.e. the time span covered by each embedding vector, is naturally highlighted by our approach.
In addition, our method provides some information on the adequacy of the sampling period used to
record the input sequence.
The method correctly distinguishes a chaotic sequence from surrogate ones generated out of it and hav-
ing the same power spectrum. The technique of surrogate generation, which I also addressed during
my Ph. D. work to develop new dedicated algorithms and to analyze brain signals, allows to estimate
significance levels in situations where standard analytical algorithms are unapplicable. The novel em-
bedding approach being able to tell apart an original sequence from surrogate ones shows its capability
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to distinguish signals beyond their spectral—or autocorrelation—similarities.

One of the possible applications of the new approach concerns another longstanding issue, namely
that of distinguishing noise from chaos. To this purpose, complementary information is provided by
analyzing the asymptotic (long-time) behaviour of the so-called time-dependent divergence exponent.
This embedding-dependent metric is commonly used to estimate—by processing its short-time linearly
growing region—the maximum Lyapunov exponent out of a scalar sequence. However, insights on the
kind of source generating the sequence can be extracted from the—usually overlooked—asymptotic be-
haviour of the divergence exponent. Moreover, in the case of chaotic sources, this analysis also provides
a precise estimate of the system’s correlation dimension. Besides describing the results concerning the
discrimination of chaotic systems from noise sources, I will also discuss the possibility of using the
related correlation dimension estimates to improve the third stage of the method introduced above for
the identification of suitable embedding parameters.

The discovery of chaos as a possible dynamical regime for nonlinear systems led to the search of
chaotic behaviour in experimental recordings. In some fields, this search gave plenty of positive re-
sults: for example, chaotic dynamics was successfully identified and tamed in electronic circuits and
laser-based optical setups. These two families of experimental chaotic systems eventually became ver-
satile tools to study chaos and its possible applications. On the other hand, chaotic behaviour is also
looked for in climate science, biology, neuroscience, and even economics. In these fields, nonlinearity is
widespread: many smaller units interact nonlinearly, yielding a collective motion that can be described
by means of few, nonlinearly coupled effective degrees of freedom. The corresponding recorded signals
exhibit, in many cases, an irregular and complex evolution. A possible underlying chaotic evolution—as
opposed to a stochastic one—would be of interest both to reveal the presence of determinism and to
predict the system’s future states. While some claims concerning the existence of chaos in these fields
have been made, most results are debated or inconclusive. Nonstationarity, low signal-to-noise ratio,
external perturbations and poor reproducibility are just few among the issues that hinder the search
of chaos in natural systems. In the final part of this work, I will briefly discuss the problem of chasing
chaos in experimental recordings by considering two example sequences, the first one generated by an
electronic circuit and the second one corresponding to recordings of brain activity.

The present thesis is organized as follows. The core concepts of time series analysis, including the
key features of chaotic dynamics, are presented in Chapter 1. A brief review of the search for chaos
in experimental systems is also provided; the difficulties concerning this quest in some research fields
are also highlighted. Chapter 2 describes the embedding procedure and the issue of optimally choosing
the related parameters. Thereupon, existing methods to carry out the embedding choice are reviewed
and their limitations are pointed out. In addition, two embedding-dependent nonlinear techniques that
are ordinarily used to characterize chaos, namely the estimation of correlation dimension by means
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of correlation integrals and the assessment of maximum Lyapunov exponent, are presented. The new
approach for the identification of suitable embedding parameters, which makes up the core topic of
the present thesis work, is the subject of Chapter 3 and 4. While Chapter 3 contains the theoretical
outline of the approach, as well as its implementation details, Chapter 4 discusses the application of the
approach to benchmark synthetic and experimental sequences, thus illustrating its perks and its limita-
tions. The study of the asymptotic behaviour of the time-dependent divergent exponent is presented in
Chapter 5. The alternative estimator of correlation dimension, which relies on this asymptotic metric,
is discussed as a possible improvement to the approach described in Chapters 3, 4. The search for chaos
out of experimental data is discussed in Chapter 6 by means of two examples of real-world recordings.
Concluding remarks are finally drawn in Chapter 7.



1. Nonlinear dynamics, noise and chaos in
theory and experiments

Natural and artificial dynamical systems exhibit a wide variety of dynamical regimes, from trivial sta-
ble fixed points to periodic and aperiodic evolutions. The characterization of dynamical regimes and
their identification in experimental measurements are fundamental problems in Physics and make up
the core business of time series analysis. Because the concept of dynamical system is quite general—
anything that moves can be considered a dynamical system [1]—analytical techniques devoted to the
study of dynamical systems were eventually extended to other fields, from biology and physiology
to economics. Particular interest is elicited by chaotic dynamical regimes, which exhibit—similarly to
stochastic processes—unpredictability and aperiodicity, despite being driven by deterministic laws.
This Chapter provides the general framework of this thesis by introducing the essential concepts of
time series analysis.

Mathematically, the instantaneous state of a dynamical system is described by a vector s within a
state space S (typically, S ⊆ RM ). The state vector evolves in time according to an evolution operator
Et :

s(t + t0) = Et [s(t0)] .

When dealing with theoretical systems, the state space S is well-defined and the evolution operator Et

is given: both these objects are either known from first-principles or provided as the results of some
modeling. Most often, Et is defined by a set of differential equations1, which can be solved (analytically
or by numerical integration) to find the system’s evolution s(t) out of the initial conditions s(0). An
ideal pendulum can be regarded as the prototypical dynamical system: s is defined by the angle and
the velocity of the pendulum, S = R2, while Et is a second-order differential equation stemming from
Newton’s law.
The scenario is way more challenging if we consider experimentally observed systems. First, the state

1Alternatively, discrete maps (difference equations), partial differential equations and differential equations with delays
are other possible “rules” that tell how the state of the system changes in time.
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space is not always fully accessible; in some cases, it is even hard to specify what are the degrees
of freedom making up S. Second, the evolution operator Et is rarely known: most likely, collecting
information on Et is the very purpose of experimental measurements. Among the countless examples
of this scenario, it is worth mentioning possibly one of most complex dynamical system in nature,
namely the human brain: both S and Et are definitely unknown.
Experimentally, observing a system consists in recording a signal y(t) out of it. The signal is, in general,
the result of a “measurement function” M acting on the system’s state:

y(t) = M [s(t)] .

The observed signal—say, a voltage produced by a transducer—is eventually sampled and digitized,
yielding a finite time series (or sequence) {yn}, n ∈ [1, ℓ].
Often, we do not really need to determine S or Et , but we are instead interested in classifying and
characterizing the system’s dynamics in terms of few, relevant quantities, or dynamical invariants.
This task is the core business of time series analysis. Quoting literally Bradley & Kantz [2]:

“Time series analysis is essentially data compression: we compute a few characteristic numbers

from a large sample of data.”

The “characteristic numbers” of interest might be, for example, the oscillation frequencies of the system.
The assessment of dynamical invariants eventually leads to the classification of the system’s evolution,
which in turn sheds some light on the underlyingmechanism that drives the system, i.e. on the nature of
Et . An example of the concepts introduced so far is summarized in Fig. 1.1. In this example, a “synthetic”

Figure 1.1 – A dynamical system’s state s(t) evolves according to Et . The experimentally accessible quan-
tity is a scalar signal y(t) that is the outcome of ameasurement functionM acting on s. Time series analysis
(TSA) techniques allow to assess dynamical invariants that characterize the system. In this example, by
evaluating the FFT of the signal, two sharp spectral lines at ω1, ω2 are identified, thus characterizing the
system’s periodic nature.

dynamical system is observed through a measurement functionM; the produced scalar signal is of the
kind sin(ω1t) · sin(ω2t). The two characteristic frequencies ω1, ω2 are revealed by applying one of the
most known time series analysis technique, namely Fast Fourier Transform (FFT), to the scalar signal.
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Despite Et remains unknown, the spectrum estimated bymeans of the FFT suggests us that the system’s
evolution is periodic and presumably linear.

A key question concerning the classification of a dynamical system is whether its evolution is de-
terministic, implying that future states are univocally determined by the present state, or stochastic,
i.e. random. Signals belonging to the latter class, which are referred to as noise, are ubiquitous in na-
ture [3]. Noise is usually characterized in terms of its power spectrum, or equivalently, by virtue of
Wiener-Khinchin theorem, in terms of its autocorrelation function [4, 5]. Typically, stochastic signals
exhibit a broad (possibly flat) spectrum, corresponding to short autocorrelation times. The prototypical
example of noise is Gaussian white noise (GWN), which consists of a sequence of uncorrelated random
numbers each distributed according to the same Gaussian distribution: yn ∼ N (µ,σ 2). Due to the lack
of temporal correlation, the autocorrelation function of GWN is a described by a Dirac delta function,
and its power spectral density is frequency-independent. The presence of noise in physical systems
is unavoidable due to two fundamental sources, namely the fluctuation-dissipation theorem and the
uncertainty principle of quantum mechanics [3]. Consequently, although generated by a determin-
istic dynamic, experimentally recorded signals are always contaminated by noise, both affecting the
system’s evolution (dynamical noise) as well as added during measurement of the signal (observational
noise). A crucial task in time series analysis consists in estimating the amount of noise contained within
a sequence and, possibly, to separate the noisy contributions from the deterministic signal.

As far as determinism is concerned, we can distinguish between linear systems, for which the
superposition principle holds, i.e.

Et [c1s1 + c2s2] = c1Et [s1] + c2Et [s2] ,

and nonlinear systems for which the last equality is not satisfied. Nonlinearity enriches the possible
dynamical regimes of a system and, for certain ranges of the system’s parameters, can lead to chaos [6].

Chaos in theory

Chaos is a dynamical regime characterized by an aperiodic and unpredictable behaviour despite the
underlying equations being deterministic [1]. For example, a simple three-dimensional system of dif-
ferential equations such as

dx
dt

= y , (1.1a)

dy
dt

= z , (1.1b)

dz
dt

= y2 – x – Az , (1.1c)
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leads to a chaotic evolution if A is set within 2.0168 < A < 2.0577 [7]. The system2 is characterized by
only one nonlinearity, given by the term y2 in the last equation, which “pushes up” z at each point
along the trajectory except for y = 0. Eventually, joined with the first two equations, this term would
make the system diverge. On the other hand, the –Az term provides a damping-like action on y, which
is tuned through the parameter A, and together with the term –x manages to keep the system within
a bounded region of the phase space.

Qualitatively, the “irregularity” of chaotic evolution can be appreciated by looking at plots of the
state space trajectory or of the corresponding time series. Figure 1.2 shows an example of evolution
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Figure 1.2 – State space evolution (a) and corresponding time series (b) of a solution—obtained through
numerical integration—to Eqs. (1.1). The parameter A is set to 2.04; initial conditions are randomly assigned
(the initial transient is not shown).

governed by Eqs. (1.1): the system’s state is identified by s = (x, y, z). The evolution shown in the figure,
which is obtained by setting A = 2.04 and by numerically integrating the system of differential equa-
tions, is purely deterministic. Nevertheless, the state space trajectory exhibits a complex structure, and
the corresponding time series show seemingly random fluctuations in amplitude.
These characteristics are not just qualitative features of chaotic evolution: they correspond to mathe-
matical properties of the set of points within the state space that make up the evolution trajectory, i.e.
the system’s attractor [5]. Following the definition by Devaney [8], three conditions are necessary and
sufficient to define a system as chaotic: (i) sensitivity to initial conditions; (ii) topological transitivity;
(iii) density of periodic orbits.

(i) Sensitivity to initial conditions is what makes chaos hard to predict, despite its evolution being
deterministic. Given two initial conditions sA(0), sB(0) that are arbitrarily close within the state
space (∥sA(0) – sB(0)∥ < ε), the two trajectories evolving out of these initial conditions diverge

2The system of Eqs. (1.1) can also be recast into a single third-order differential equation (physically, a jerk equation):
Ýx + AÜx – Ûx2 + x = 0.
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exponentially in time, i.e.
∥sA(t) – sB(t)∥ ∝ eλt ,

where λ is called maximum Lyapunov exponent (MLE). In other words, two arbitrarily close—but
different—initial states eventually evolve into completely different trajectories. This property is
also known as “butterfly effect” because of the celebrated talk by Lorenz [9] entitled “Predictability:
Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas?”, where the author stated

“The question which really interests us is [...] whether, for example, two particular weather

situations differing by as little as the immediate influence of a single butterfly will gener-

ally after sufficient time evolve into two situations differing by as much as the presence of

a tornado.”

The practical consequence of this property is that, regardless of how precisely we can initially
measure a system’s state, our prediction of the system’s future will eventually fail even if we
know the exact dynamical laws that rule the evolution. A diagram depicting sensitivity to initial
conditions is shown in Fig. 1.3, where two trajectories obtained by numerically integrating Eq. (1.1)
(A = 2.04) and projected on the x-z plane are displayed. The two evolutions begin from two initial
states displaced—along the x axis—by a relative amount equal to 10–3. In time, the trajectories
diverge and their distance increases, as shown in the magnification.

Figure 1.3 –Chaotic systems exhibit sensitivity to initial conditions. Two evolutions of the system described
by Eq. (1.1) (projected on the x-z plane) are initialized with two slightly different starting points. Line color
corresponds to the time coordinate: the two trajectories are initially indistinguishable (dark colors), but
progressively diverge as time progresses.
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(ii) Topological transitivity is the property according towhich a chaotic trajectory eventually connects
any region of the state space with any other. In other words, the state space of a chaotic system
cannot be decomposed into disjoint subsets.

(iii) Within the state space, we can find a periodic orbit arbitrarily close to any given point: conse-
quently, periodic orbits make up a dense set.

While Devaney’s definition provides a formal characterization of chaos, the assessment of (ii) and (iii)
is unfeasible when dealing with time series. In practice, sensitivity to initial conditions is regarded as
the most prominent hallmark of chaos [1]. Moreover, the mathematical properties outlined above have
observable consequences on the features of chaotic time series. First of all, the evolution of a chaotic
system within the state space converges to a strange attractor, i.e. a set of state space points that has
a noninteger dimensionality and exhibits self-similarity (i.e. it is a fractal) [1]. A sketch showing this
property is displayed in Fig. 1.4 for a trajectory corresponding to a solution (obtained by numerical
integration) of Eq. (1.1) projected on the x-y plane. The region close to the origin is progressively
magnified: the same qualitative features are visible at all magnification levels, as a consequence of the
self-similarity of the attractor. Although strange attractors exist also in nonchaotic systems [10], the

Figure 1.4 – Chaotic attractors are
called strange because they exhibit
a self-similar structure. A trajectory
generated by integrating Eq. (1.1)
and projected on the x-y plane is pro-
gressively magnified to reveal self-
similarity.

assessment of an attractor’s fractal structure by estimating the corresponding dimension is one of the
most widespread techniques to identify chaos.

Besides self-similarity, another consequence of the three mathematical properties listed above re-
gards the spectral features of chaotic systems: sequences generated by this class of systems are aperiodic
and characterized by broad, noise-like Fourier spectra [11]. An example is shown in Fig. 1.5, where the
Fourier transform of a signal generated by a chaotic system, namely the x-coordinate of a Lorenz sys-
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tem (see Eq. (1.2) below), is compared to the same function estimated out of filtered GWN3. Despite the
purely deterministic nature of the former signal, the corresponding Fourier amplitudes and phases are
essentially indistinguishable from the same quantities computed out of the stochastic sequence. This
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Figure 1.5 – Chaotic sequences exhibit spectra that can be easily mistaken for those of stochastic processes.
(a) Sequence corresponding to the x coordinate of a Lorenz system (see Eq. (1.2) below). By evaluating the
FFT of the sequence, the Fourier amplitude (b) and the corresponding phase (c) are estimated. (d) Sequence
corresponding to GWN processed by a fourth-order low-pass filter having cut-off frequency equal to 1/20
of the sampling frequency. The FFT amplitude and phase are shown in (e) and (f), respectively. In (b,c,e,f)
frequencies are measured in units of inverse sampling period (T–1).

example provides an evidence of how linear techniques (such as the Fourier transform) can be fooled
by chaotic sources. The complex nature of chaotic evolution cannot be fully grasped just by analyzing
sequences in the frequency space, as we could do with linear systems: techniques that act directly onto
the system’s state space are called for.
One might wonder, at this point, how can we develop “state space techniques” if the state space itself
is inaccessible, as discussed above, and the only available quantity is a scalar sequence. This apparent

3The sequence is generated by first drawing random numbers distributed according to a standard normal distribution and,
thereupon, by piping the sequence of random numbers into a fourth-order digital low-pass filter with cut-off frequency equal
to 1/20 of the sampling frequency.
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contradiction is solved thanks to the so-called “embedding procedure”, which is thoroughly discussed in
Chapter 2 and whose correct implementation makes up the central topic of this thesis work.
Provided that the state space evolution of a system is accessible through experimental recordings, the
identification and characterization of chaos mainly relies on assessing sensitivity to initial conditions
and on estimating the geometric properties of the system’s attractor. The former feature is assessed
by computing the MLE λ, as described in Sec. 2.5. Similarly, the estimation of the dimensionality of a
system’s attractor is a crucial step to identify chaotic dynamical regimes: a discussion on dimensions
and their calculation is the topic of Sec. 2.4.

Chaotic behaviour was assessed in many theoretical continuous systems described by a set of or-
dinary differential equations (flows), as well as in discrete systems described by difference equations
(maps). A collection of chaotic systems is provided in Ref. [12].
In the following, for the sake of simplicity, we only consider flows. Because chaotic evolution is de-
terministic and aperiodic, no intersections are allowed within the trajectory and the evolution cannot
return twice on the same point within the state space. Consequently, the minimum number of inde-
pendent dimensions that are required to sustain a chaotic flow is 3, corresponding to a set of three
first-order differential equations such as Eqs. (1.1), or, equivalently, to a third-order differential equa-
tion.

In this work, three theoretical dynamical systems are used as references to provide synthetic se-
quences generated by a chaotic dynamic. The first system considered here is the well-known Lorenz
system [13], which is a model of atmospheric convection representing forced dissipative hydrodynamic
flows. The set of equations describing the system is

dx
dt

= σ (y – x) , (1.2a)

dy
dt

= x(r – z) – y , (1.2b)

dz
dt

= xy – bz . (1.2c)

Standard settings for the parameters are σ = 10, r = 28, b = 8/3 [14]. An example of state space evolu-
tion, as well as of the corresponding time series, is shown in Fig. 1.6.
The Ueda oscillator [15], which stems from Duffing’s equation, is described by two differential equa-
tions with a periodic forcing:

dx
dt

= y , (1.3a)

dy
dt

= –x3 – ky + A sin(t) , (1.3b)
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Figure 1.6 – State space evolution (a) and corresponding time series (b) for the benchmark Lorenz system
used in this work.

where the parameters are typically set to A = 7.5, k = 0.05 [14]. Figure 1.7 shows an example of state
space evolution for the Ueda oscillator, as well as of the corresponding time series; the z coordinate is
provided by the periodic forcing sin(t) (the Ueda oscillator is non-autonomous).
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Figure 1.7 – State space evolution (a) and corresponding time series (b) for the benchmark Ueda oscillator
used in this work.

The third dynamical system considered in this work is the Rössler system [16], introduced as a “simpler”
version of the Lorenz system (a single nonlinearity is present in the equations) and defined by

dx
dt

= –y – z , (1.4a)

dy
dt

= x + ay , (1.4b)

dz
dt

= b + z(x – c) . (1.4c)

In the following, two different settings for the system’s parameters are considered: the settings a = b = 0.2,
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c = 5.7 are referred to as “standard”, while setting a = 0.343, b = 1.82, c = 9.75 yields the so-called “fun-
nel”4 attractor [17]. Figure 1.8 shows examples of state space evolution and of the corresponding time
series for these two settings of the Rössler system.
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Figure 1.8 – State space evolution (a,c) and corresponding time series (b,d) for the benchmark Rössler
systems used in this work. (a,b) Rössler system with “standard” parameter settings; (c,d) Rössler system
with “funnel” parameter settings.

Throughout this work, benchmark synthetic sequences are generated out of these theoretical sys-
tems by numerical integration. Initial conditions are randomly assigned, and integration is carried out
by means of a Runge-Kutta Prince-Dormand (8,9) algorithm [18]. System parameters, as well as the
integration time step δ t, are specified every time a synthetic sequence is used. The sampling period T

is always taken equal to δ t.

4This name is due to the peculiar shape of the system’s trajectories, which are folded over to give a shape similar to that
of a cornucopia.
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Chaos in experiments

The discovery of theoretical systems admitting chaotic evolutions was eventually followed by the
search of chaos in natural systems. The first observations of chaos in experiments were carried out
in chemical, mechanical, optical and electronic systems.
As early as 1981, chaotic behaviour was observed in the Belousov-Zhabotinskyi reaction, a nonlinear
chemical oscillator far from thermodynamic equilibrium [19, 20]. Since this first observations, chemical
chaos was thoroughly investigated [21, 22, 23]: for example, reactions governed by the same equations
as the Lorenz system were identified [24]. Chemical chaos is also responsible for complex spatial pat-
terns, with possible applications to surface-catalyzed reactions [22].
The presence of chaos was also investigated in industrial systems to improve control and diagnos-
tics. Attractors corresponding to chaotic dynamics were reconstructed from recordings of electric arc
furnace discharges with the aim of improving real-time control of these systems [25]. Mechanical vibra-
tions in metal cutting [26, 27] and drilling [28] were analyzed by means of nonlinear time series anal-
ysis techniques: a possible application concerns the real-time monitoring of industrial machinery [29].
Atomic force microscopy microcantilevers were also shown to exhibit—under certain conditions—
chaotic oscillations, which introduce a source of “deterministic error” in measurements [30].
Optics is one of the research fields in which chaos has been mostly studied. One of the first works
about chaos in optical systems was published in 1979 by Ikeda [31], who discussed a model of “insta-
bility” of transmitted light by a ring cavity—later renamed as “optical turbulence” [32]—that eventu-
ally leads to chaotic behaviour. These theoretical results were confirmed by several experiment using
lasers with time-delayed feedback [33, 34], as well as in pulsed [35], frequency-modulated [36] and
gain-modulated [37] lasers. Moreover, some laser systems were shown to be governed by the same
equations as those of a Lorenz system [38], an equivalence that was experimentally proved [39, 40].
The sequence corresponding to the intensity of a far-infrared (81.5 µm wavelength) NH3 ring laser
studied in Ref. [40] and publicly available [41] is shown in Fig. 1.9. Besides showing an excerpt of
the intensity sequence {yn}, Fig. 1.9 also shows an attempted reconstruction of the system’s attractor
performed by means of the so-called “embedding procedure”, which is thoroughly described in Chap-
ter 2: points in the three-dimensional space of Fig. 1.9(b) correspond to vectors (yn, yn+1, yn+2). The
far-infrared laser intensity sequence is used as a reference experimental recording throughout this the-
sis work.
The interest in chaotic lasers grew in the last decades and particular attention was devoted to the pos-
sible application of chaotic lasers as (pseudo-)random generators [42, 43, 44], e.g. for data encryption.
A comprehensive review on laser chaos—including the more recent cryptographic applications—can be
found in Ref. [45].
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Figure 1.9 – (a) Excerpt of an intensity sequence stemming from a far-infrared laser running in chaotic
regime [40, 41]. (b) Tentative reconstruction—via the embedding procedure described in Chapter 2—of the
corresponding attractor.

Electronic circuits provide excellent platforms for the study of chaos. As for optical systems, the first
observations of chaos in electronics date back to the early Eighties [46]. The prototypical chaotic circuit
is Chua’s circuit [47], whose study and implementation prompted a huge number of publications [48].
The high degree of customization of electronic circuits makes them an efficient tool to generate and
optimize different chaotic regimes [49, 50, 51, 52], as well as to simulate theoretical models [53]. More-
over, the inexpensiveness and scalability of electronic setups allows to investigate chaotic behaviour
emerging from collective phenomena in networks of oscillators [54, 55] or even in fractal-like topolo-
gies [56].

The list of experimental findings concerning chaos in real systems presented so far is limited to
controlled systems. Electronic circuits, lasers, mechanical devices and chemical reactions are dynamical
systems that can be designed, optimized and stabilized with a high degree of control. Therefore, these
systems make up excellent test benches, as well as versatile chaos generators. The search for chaos in
natural systems that elude the experimentalist’s control is definitely more challenging. Consequently,
the corresponding results in terms of chaos indentification are often questionable.
As a first example, the irregular fluctuations in the number of sunspots were claimed to be generated by
a chaotic dynamics [57, 58] and to exhibit a self-similar structure [59]. However, sunspot number was
also shown to be well described by a relaxation oscillator model with stochastic perturbations [60], thus
contradicting the claims of chaoticity. Moreover, an analysis of “light curves” of stars (i.e. sequences of
recorded brightness) showed that the corresponding dynamics is strange, but nonchaotic [61].
Similar considerations apply in geophysics. The appealing idea of an underlying deterministic source—
and thus of predictability, albeit limited—prompted the use of nonlinear time series analysis techniques
in this field [62]: chaos was claimed to be present in the oscillations of sea levels [63, 64], in seismic
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activity [65, 66, 67, 68] and in volcanic eruptions [69]. These claims were criticized by pointing out that
techniques for the identification of chaos were misused [70]; for example, some works showed that
seismic phenomena can be described by stochastic processes [71, 72]. Nonlinear analytical techniques
are also used to study atmospheric data [73, 74], mostly aimimg at forecasting. Because the Lorenz
system is a model of atmospheric convection [13], researchers expect the weather to show—at least
under some conditions and for some spatial scales—a chaotic dynamical regime. Chaos detection in
weather data was positively assessed, for example, by processing pressure time series [75] and wind
recordings [76, 77]. Again, some doubts were raised concerning the correct application of nonlinear
analytical techniques to climate data, as well as on the interpretation of the corresponding results [78,
79, 80]. In this context, a “climatic attractor” was claimed to exist and to have dimension 3.1 [81],
although the reliability of this assessment was criticized due to it being based on as few as 500 data
points [82]. Similarly, a finite dimension of about 7 was estimated out of a time series of about 4000
values of vertical wind velocity [83]. However, as pointed out by Procaccia [84], the amount of data to
reliably estimate the dimension of such a system would be of order 107: high dimensions assessed out
of short sequences should be considered unreliable. In many cases, for example for sequences of daily
temperature, stochastic modeling is sufficient to extract system features [85].

The difficulties in chaos detection outlined so far are common also in the field of physiology. Mackey
and Glass first introduced [86] a model for physiological control—based on a differential equation
with delay—that can produce chaotic evolutions, thus prompting the search for chaos in physiolog-
ical recordings [87].
The discovery of chaotic regimes in the dynamics of heart pacemaker cells [88, 89] opened the way
to nonlinear analysis into cardiology [90]. Some works claimed that electrocardiographic recordings
indeed provide evidence of a chaotic heart [91, 92]. However, other studies showed that heartbeat mod-
ulations can be reproduced by means of a stochastic model [93]: a general consensus was established
on the fact that heartbeats are not chaotic, but are rather generated by a stochastic process that exhibits
“multifractality” [94, 95, 96]. A review on nonlinear analysis of the human heart is provided in Ref. [97].
The human brain produces electromagnetic signals that are routinely recorded through electroen-
cephalography (EEG) [98] or magnetoencephalography (MEG) [99]. Brain recordings show complex, ir-
regular evolutions [100], thus stimulating the search for possible chaotic regimes in neurobiology [101].
Chaos was first assessed in sleep recordings of human brain EEG by Babloyantz et al. [102, 103]. Particu-
lar interest was raised by epileptic seizures, especially with regards to the possibility of their prediction
via nonlinear techniques [104, 105]. Both Babloyantz & Destexhe [106] and Lehnertz & Elger [107]
claimed that the human brain attractor drifts from higher to lower dimensionality at the onset of an
epileptic seizure. Other examples concern the existence of chaos in the olfactory system [108], while
listening to music [109], or simply in resting-state [110, 111]. The possible role of chaos in neural
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systems, related models and experimental evidence are reviewed in Refs. [112, 113]. The search for
chaos in the human brain was also encouraged by the experimental evidence of chaotic regimes in the
activity of single neurons [114, 115] and in numerical simulations of neuron populations [116]. How-
ever, the experimental evidence mentioned so far were critically re-examined and sometimes rejected:
as pointed out by some studies, the limitations of the algorithms applied to detect chaos were often
overlooked [117, 118, 119]. Consequently, the efforts in nonlinear analysis of human brain signals were
redirected [119] towards the development of new nonlinear metrics for the quantitative characteriza-
tion of complexity, rather than to specifically assess deterministic chaos [111, 117, 120].

The above list of experimental investigations looking for chaos in natural systems is definitely not
exhaustive. Nevertheless, it allows to draw some conclusions concerning the possibility of detecting
chaotic regimes in the real world, as well as, more in general, on nonlinear analysis of experimental
recordings. First of all, chaos is definitely achievable in laboratory systems (above all, optics and elec-
tronics) for which we can tune parameters with sufficient precision. Noise, in this case, does not spoil
the chaotic evolution: as shown in Chapter 6 for an electronic circuit, chaos is attainable and detectable
by using cheap electronic components and basic equipment. Similar considerations also apply to suf-
ficiently small biological systems, such as single neurons. On the contrary, a definitive assessment of
chaos (or the lack of it) in systems comprising a huge number of interacting “units”, such as earth cli-
mate or the human brain, is far from trivial. The difficulties concerning the analysis of these systems,
which are exemplified in the literature discussion above, can be ascribed to several causes. First of all,
chaotic behaviour is expected in this class of systems as a consequence of the huge number of interact-
ing units—being them air molecules or neurons—“organizing” their motion into few effective degrees
of freedom due to nonlinear coupling [1]. However, this organization does not necessarily exist at all
spatial scales within the system, and the physical quantities that we can access might not probe the
system with sufficient depth. For instance, the dynamics of small groups of neurons might be chaotic,
but EEG and MEG recordings can only measure the fields resulting from a superposition of the ac-
tivity of many thousands of neurons: therefore, unless some synchronization occurs, these recordings
might be essentially stochastic. Another crucial problem to deal with is the nonstationary of this kind
of systems: both a human brain and the weather definitely drift between different dynamical regimes,
possibly confounding analysis algorithms. Other technical issues exist: for example, the signal-to-noise
ratio of electromagnetic fields recorded out of a human brain is low and the interesting dynamics might
be washed out by noise [121, 99, 100]. Finally, insufficiently long or too coarsely sampled sequences can
lead to misleading results [1, 117]: as discussed by Kantz & Olbrich [122], the length of scalar sequences
required to detect determinism increases exponentially with the system’s dimension. While “simple”
systems (e.g. a chaotic circuit) have low dimensionality (2 ÷ 3), a human brain’s attractor is possibly
characterized by a higher dimension, and the available recordings migh just be too short to provide
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conclusive evidence on its deterministic nature.
The issue of detecting chaos in experimental recordings is discussed in Chapter 6 by applying the

method described in Chapter 3 to an electronic circuit and to MEG recordings of a human brain in
resting-state.
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2. Chaos characterization and the
longstanding issue of optimal embedding

The characterization of a nonlinear system essentially consists in condensing its dynamics into a hand-
ful of invariant quantities. This operation relies on the possibility to analyze the state space evolution
of the system itself. If the differential (or difference) equations that rule the dynamics are known, the
corresponding state space evolution is readily accessible. On the other hand, observing the whole state
space is almost never possible in experimental conditions. In most cases, only few (or even just a sin-
gle one) observable quantities can be recorded out of a dynamical system. Nevertheless, it is possible
in principle to reconstruct the full dynamics out of a single measured signal, i.e. a scalar sequence.
This quite remarkable possibility, which stems from Takens’ theorem, is implemented by means of
the so-called time delay embedding—or simply embedding—procedure. The correct application of the
embedding procedure to experimental sequences, however, is not straightforward at all, due to the
presence of noise, the finite sampling rate and the finite length of recordings. Despite the considerable
efforts to find a criterion for optimal embedding, a definitive method is still lacking.
In the first part of this chapter the embedding procedure is described and, thereupon, the issues concern-
ing its correct implementation are discussed. The second part of the chapter deals with two techniques
that rely on embedding and allow to estimate fundamental quantities that characterize nonlinear sys-
tems, namely correlation dimension and maximum Lyapunov exponent. These embedding-dependent
techniques provide the building blocks of the methods discussed in Chapters 3–5.

2.1 State space reconstruction: the embedding procedure

As discussed in Chapter 1, the instantaneous state of a dynamical system is described, in general, by an
M-dimensional vector s = (s1, s2, . . . , sM ) within anM-dimensional state space. The system’s evolution,
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i.e. the trajectory s(t) within this space, is provided by a system of differential equations:

ds(t)
dt

= F [s(t)] .

In most experimental conditions, observing the system’s state space evolution s(t) is impracticable, and
experimentally available data are limited to a single, scalar quantity y(t) that is a function of s(t). This
limitation emerges immediately if we think about complex dynamical systems such as the Sun, financial
markets, or the human brain. The observable y(t) is usually sampled with a sampling period T , so that
data come in the form of a scalar sequence {yn}: yn = y(nT ).

Despite the apparent scantiness of the information contained within {yn} with respect to s(t), many
properties of the system can be estimated by reconstructing a proxy state space evolution out of the
available scalar sequence. This reconstruction is implemented by the so-called time delay embedding

procedure, which is henceforth simply referred to as “embedding”. Embedding consists in building a
sequence of m-dimensional vectors Yn by picking m time-delayed samples of the sequence yn:

Yn =
(
yn, yn+L, yn+2L, . . . , yn+(m–1)L

)
. (2.1)

The parameter L, which is an integer number, is the lag (in terms of sequence index) at which samples
of the scalar sequence are picked. A “causal” version of Eq. (2.1), in which samples yn–kL are picked in
place of yn+kL (k ∈ [0,m – 1]), is by all means equivalent. A diagram of the embedding procedure is
shown in Fig. 2.1.

Figure 2.1 – The state space evolution of a dynamical system is reconstructed out of a scalar sequence yn
by means of the embedding procedure (m = 3, L = 4).

The time delay embedding procedure was first devised by Packard et al. [123]. Soon after, Tak-
ens [124] and Mañé [125] provided the proofs that the procedure—if done correctly—indeed recon-



Chapter 2 27

structs a state space evolution that is topologically identical to the full original dynamics [2]. In other
words, according to Takens’ theorem, a “good” embedding provides a smooth one-to-one map from the
original state space evolution to the reconstructed one [1], thus allowing to estimate many properties
of dynamical systems that are invariant under such mapping. Takens’ theorem poses two conditions
on the embedding parameters m (dimension) and L (lag) for an embedding to be successful. The first
condition prescribes that m > 2D, where D is the dimension of the manifold corresponding to the sys-
tem’s evolution. This condition can be relaxed to m > D when estimating correlation dimension [126].
The second one requires L not to be a multiple of the period of any system’s orbit [127, 2].

Before carrying on with the discussion on embedding, it is worth mentioning that, although time
delay embedding is by far the most common reconstruction method [11, 2], other embedding models
exist. For example, a method proposed by Broomhead & King [128] (and a similar one by Landa &
Rosenblum [129]) is based on principal component analysis. Another reconstructionmethod consists in
building vectors by picking the derivatives of y(t) (estimated from yn) of successively higher order [130].
In general, any vector that is reconstructed from scalar data is related to time delay embedding by a
linear transformation [122]. In the case of reconstruction relying on derivatives, this relationship is
revealed by the first-order estimator of derivatives, namely (T is the sampling period):

Ûy(t) ≈ yn+1 – yn
T

,

which is indeed a linear combination of delayed coordinates.

2.2 The issue of optimal embedding

The embedding procedure is quite a powerful tool. In principle, it allows us to study an arbitrarily
complex dynamical system by simply measuring any observable produced by it. Takens’ theorem, as
well as later reformulations such as the one by Sauer et al. [131], are existence proofs and do not give any
clue on how to choose m and L besides the minimal conditions stated above. We might then conclude
that, in agreement with the theorem, any valid choice of m and L is good to reconstruct the dynamics.
However, this is true only for noiseless, finely sampled and infinitely long sequences [1, 2]. Real datasets
put forward several issues regarding the choice of embedding dimension and lag: the presence of noise,
which blurs states, and the finite sampling period make the selection of m and L critical [130].

As far asm is concerned, the conditionm > 2D implies knowledge of D, which is usually unknown
and whose estimation depends (circularly) on the sequence being embedded. Because any m > 2D
satisfies the theorem’s condition, one might be tempted to choose a “very large” m ≫ 1. However, as-
suming the deterministic evolution of the system to be correctly embedded with a dimension m0 < m,
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the remaining m – m0 dimensions would then be “populated” by noise. Of the m-dimensional recon-
structed space, only a subspace of dimension m0 would be informative: the remaining dimensions
would be redundant, thus increasing the computational cost of analysis algorithms, or even leading
them astray [11, 5]. A sketch of this issue is provided in Fig. 2.2. As an example, a sinusoidal signal

Figure 2.2 – Embedding of a sinusoidal sequence contaminated by observational GWN (L is chosen as
1/4 of the period of the sinusoid). Dots correspond to embedding vectors; the black, solid line shows the
reconstructed trajectory in the noiseless case. The direction along the noiseless trajectory is highlighted by
means of a red arrow, while orange arrows identify the m – 1 directions orthogonal to it.

contaminated by observational GWN1 is considered. In this simplified example, we already know that
m = 2 is enough to reconstruct the state space evolution of the system, which is one-dimensional. The
sequence is embedded with m = 2 and m = 3 (the lag is chosen as 1/4 of the period of the sinusoid).
Both choices of m yield a trajectory that faithfully reproduces the deterministic evolution. However,
the directions orthogonal to the deterministic noiseless trajectory are “populated” by noise and do not
provide extra information: the larger m, the more are these redundant, “noisy dimensions”.
An additional problem, which might be relevant when dealing with short sequences, is that the larger
is the embedding dimension m, the fewer independent embedding vectors are available.
For these reasons, the smallest m that leads to the topologically correct reconstruction is desired [2].

Regarding the lag L, its selection is not trivial, too. On the one hand, if L is too short, the elements of
the embedding vectors Yn are strongly correlated with each other: the embedded evolution described
by Yn is clustered around the diagonal of the m-dimensional space [5]. If the noise level is higher than
the “thickness” of this evolution, the reconstructed trajectory is essentially indistinguishable from the
diagonal itself. On the other hand, a too large L leads to the opposite situation: the elements of Yn are

1Here, the sinusoidal signal has unit amplitude, while the noise standard deviation is 0.1.
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completely uncorrelated with each other, and the trajectory is folded over on itself [1, 2]. A faithful
reconstruction of state space trajectories thus requires a trade-off between these two extreme cases.
An example of the outcomes of selecting too small or too large L for state space reconstruction is
shown in Fig. 2.3. In this example, a sequence corresponding to the x-coordinate of a Rössler system2

Figure 2.3 – Sequence generated by integrating a Rössler system corrupted by observational GWN. The
sequence is embedded with L = 2, 20, 200. For the sake of this example, m = 2.

contaminated by observational GWN3 is embedded with m = 2. The choices of too small (L = 2) or too
large (L = 200) lag yield a “bad” reconstructed trajectory: in the former case, the trajectory is squeezed
onto the diagonal of the state space and noise blurs the reconstructed evolution; in the latter case, the
system’s evolution is lost because the components of embedding vectors are uncorrelated. Faithful
reconstruction is achieved by intermediate values of L.

2.3 State of the art

The issues outlined in the previous Section prompted the development of many optimal embedding

methods, i.e. algorithms aimed at choosing the correct m and L to faithfully reconstruct state spaces
out of experimental sequences. So far, no criterion to make this choice is considered conclusive [132,
133]. A general solution to the problem is hindered for two reasons. First, it was shown that intrinsic

2See Chapter 1, Eq. (1.4) for the system’s equations. Here the system parameters are set to a = 0.15, b = 0.2, c = 10, and
the integration time step is δ t = 0.05.

3Here, the signal (peak-to-peak) amplitude is ∼ 32, and the noise standard deviation is 0.2.
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statistical fluctuations—which are due to the finiteness of sequences—hamper this search [133]. Second,
the optimal embedding criterion depends on both “the time series and the applied measure” [132]:
the m and L provided by a given approach might be optimal to estimate some of the quantities that
characterize the underlying system, but not others.

Conventionally, optimal embedding is conceived as two separate problems: first, the lag L is opti-
mized; subsequently, the optimal dimension m is determined [2].

In traditional approaches, the optimization of L is carried out by relying on some statistic that
measures the degree of independence of L-separated points in the sequence. As discussed in Sec. 2.2, the
desired value of L is the one that selects sequence elements that are neither too strongly correlated nor
completely uncorrelated with each other. The most straightforward implementation of this criterion
consists in computing the autocorrelation function A(L) of the sequence:

A(L) =
ℓ∑

n=L+1

(yn – y) · (yn–L – y)√∑ℓ
n=L+1 (yn – y)2

√∑ℓ
n=L+1 (yn–L – y)2

,

where ℓ is the sequence length and y denotes the average over all values of y within the sum. There-
upon, one selects L as the lag at which the A(L) function first passes through zero [11, 2], thus minimiz-
ing linear dependence between elements of the embedding vectors. Because the systems we are dealing
with are nonlinear, one might want to minimize nonlinear dependence: to this purpose, the commonly
accepted statistic to use is the average mutual information, defined as

I (L) =
ℓ–L∑
n=1

P (yn, yn+L) log
[

P (yn, yn+L)
P (yn) P (yn+L)

]
,

where P(yn, yn+L) is the joint probability of observing yn, followed by yn+L and P (yn), P (yn+L) are the
respective marginal probabilities. In practical implementations, joint and marginal probabilities are
estimated by building 2-dimensional histograms of (yn , yn+L) or 1-dimensional histograms of yn, re-
spectively (efficient algorithms to carry out this estimation exist [134]). If the sequence is stationary
and ℓ ≫ L, P (yn) and P (yn+L) are the same. The average mutual information I (L) is a measure of how
much we learn on yn+L by observing yn: I (L) is thus a generalization of autocorrelation that takes into
account any kind of dependence (and not only linear ones) [134]. The optimal embedding lag for a se-
quence under investigation is finally selected as the value of L for which I (L) exhibits the first minimum,
i.e. the smallest L that minimizes nonlinear dependence between sequence elements [134, 135, 11].

Once the lag L is determined, the dimension m has to be determined. Methods to carry out this
selection can be classified into two families.
A first group of methods relies on the estimation, as a function of m, of invariant quantities that char-
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acterize the system under analysis. The idea is that, once a sufficiently large m is selected, a further
increase of the embedding dimension does not yield significant changes in the estimated quantity.
Typically, in this “saturation of system invariants” approach, the invariant quantities considered in the
estimation are the correlation dimension or the maximum Lyapunov exponent (see Sec. 2.4 and 2.5,
respectively).
A second family of methods relies on the concept of false nearest neighbours (FNN), which can be
summarized as follows. Suppose that, in an m-dimensional space, two embedding vectors Ym

i , Y
m
j are

neighbours, i.e. closer than some distance threshold. If the embedding dimension is increased to m + 1
and the two embedding vectors Ym+1

i , Ym+1
j are not neighbours in them+1-dimensional space, the vec-

tors Ym
i , Y

m
j are deemed to be false neighbours: their proximity is due to the reconstruction of the state

space evolution being faulty in them-dimensional space. A sketch of this idea is shown in Fig. 2.4. The

Figure 2.4 – For m = 1, the points j, k marked by a gray
and a white circle, respectively, are both neighbours of the
point i, marked by a black circle. Increasing the dimension
to m = 2 reveals that point k is a false neighbour of i, while
points j and i are still close despite the increased dimension
of the space. Diagram adapted from Ref. [136].

points i and j are genuine neighbours in m = 1: when m is increased to 2, the corresponding points in
the two-dimensional space are still neighbours. On the contrary, the points i and k are false neighbours
in m = 1: their neighbourhood relationship does not hold anymore in the higher-dimensional space
m = 2.
The existence of false nearest neighbours is taken as a marker of the inadequateness of a given di-
mension m to reconstruct the system’s evolution: m is typically increased until the number of false
nearest neighbours drops below some threshold. The natural way to evaluate the number of false
nearest neighbours is to compute Euclidean distances ∥Yi – Yj ∥m, ∥Yi – Yj ∥m+1 in the m- and m + 1-
dimensional embedding space [137]. Two embedding vectors are deemed to be false neighbours in the
m-dimensional space if √

∥Yi – Yj ∥2m+1 – ∥Yi – Yj ∥2m
∥Yi – Yj ∥m

> Rth ,

where Rth is a suitably selected threshold. The evaluation of the last expression is carried out by span-
ning the whole sequence (i ∈ [1, ℓ – L]): for each embedding vector Yi, the nearest neighbour Yj is
considered [137]. The fraction of false nearest neighbours (i.e. the fraction of i values for which the
above expression holds) is computed as a function of the embedding dimension. The value of m above
which the fraction of false nearest neighbours vanishes (or, more realistically, falls below an “acceptable
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value” [132]), is deemed to be the optimal embedding dimension.

The use of averagemutual information to optimize L combinedwith FNN to determinem is possibly
the most common way to assess optimal embedding parameters out of a recorded sequence [5, 2]. The
popularity of these two methods is reflected by the number of citations of the papers where they were
introduced (∼ 1800 for average mutual information [134] and ∼ 1300 for FNN [137], respectively), as
well as by their implementation in the TISEAN package [138]—a widely used software package for time
series analysis—as quantitative tools dedicated to the choice of embedding parameters. Despite being so
popular, the combined use of these twomethods does not settle the issue of optimal embedding [5, 139].
For example, as criticized by Garcia & Almeida [140], using mutual information to assess the optimal
L has several drawbacks: first of all, the estimated mutual information depends on the kind of binning
used to build histograms. Moreover, the approach described above maximizes independence between
yn and yn+L, which does not necessarily imply the independence between yn and yn+2L or any other
successive element of the sequence. In addition, a clear minimum of mutual information might not
be present, thus hindering an objective determination of the lag L that maximizes independence [11].
Identifying false neighbours by relying on Euclidean distances is not necessarily the best choice: other
metrics might be, for example, more robust against noise [132]. Finally, onemight want to optimize both
m and Lwith respect to the same criterion. The method of Gao and Zheng, the method of characteristic
lengths and the method of Schuster aim at determining both embedding parameters by means of a
single FNN-like argument, although they differ from the latter in terms of the metric implemented to
quantify the amount of false neighbours [132]. These methods are summarized below.

The method of Gao and Zheng [141, 142] is based on the idea that trajectories that evolve out of two
neighbouring points separate more quickly if the points are false neighbours with respect to genuine
neighbours. This criterion is implemented by first selecting a set {(i, j)} of embedding vector pairs Yi, Yj

such that their Euclidean distance ∥Yi – Yj ∥m is smaller than some threshold (i.e. they are neighbours
in the m-dimensional space). Thereupon, the following measure is evaluated:

Λ(δk,m, L) =
1

Npairs

∑
{(i,j)}

log
( ∥Yi+δk – Yj+δk ∥m

∥Yi – Yj ∥m

)
,

where Npairs is the size of the set of embedding vector pairs, and δk ∈ N+. Because the last expression
is an estimator of how much neighbouring points separate after a time step δk, Λ(δk,m, L) is expected
to be minimum when optimal embedding is achieved, i.e. when the number of false neighbours is
minimized. One thus evaluates Λ(δk,m, L) for increasing m and L until a minimum is found. This
approach has a significant drawback: the choice of δk is arbitrary and is thus based on subjective
assessments.

The method of characteristic length follows the same argument as the method of Gao and Zheng,
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though bypassing the issue of choosing a time step δk to observe the divergence of trajectories [132].
A characteristic size is first estimated by computing the average distance J(m, L) = ⟨∥Yi – Yj ∥m⟩ over
a randomly selected set of embedding vector pairs. Given two neighbours Yk , Yh, the time required by
the two points to separate is estimated as the integer δk such that

∥Yk+δk – Yh+δk ∥m > αJ(m, L) ,

where 0 < α < 1. If Yk , Yh are false neighbours, the corresponding trajectories are expected to separate
faster than in the case of genuine neighbours, and the corresponding δk is smaller. Taking the average
K = ⟨δk⟩ over a set of neighbouring embedding vectors provides a (relative) measure of the number
of false neighbours: the larger is K , the fewer false neighbours are present. The criterion thus consists
in identifying the optimal m and L as those for which K is maximized. The same drawback as for the
method of Gao and Zheng is present: the assessment of separation is based on a subjectively selected
parameter (α ).

As the method of Gao and Zheng and the method of characteristic length, the method of Schus-
ter [143] is based on a metric W (m, L) that quantifies the amount of false neighbours. The metric
W (m, L) is a measure of how much the set of nearest neighbours of Yi changes when the embedding
dimension is increased to m + 1 (see Ref. [132] for the definition of W (m, L)). In this case, W (m, L)
is proportional the number of false neighbours. Consequently, one expects W (m, L) to decrease for
increasingly large m and L, up to when a further increase of the embedding parameters does not pro-
duce significant changes in W (m, L) (the metric W (m, L) exhibits a “limiting behaviour” [132]). The
evaluation of this limiting behaviour, however, again relies on a subjective assessment.

A comparative study of the methods described above was published by Cellucci, Albano & Rapp
in 2003 [132]. As pointed out by the authors, all the methods mentioned so far require the user to
set some parameters, such as Rth in the FNN approach, δk in the method of Gao and Zheng, α in the
method of characteristic length. Moreover, these methods also require to carry out the evaluation of
“limiting behaviours” to assess whether variations in m, L do not produce “significant changes” in the
metric of interest. This evaluation is unavoidably subjective [132, 139]. Various attempts to improve and
possibly overcome these methods have been published, yielding a plethora of sophisticated techniques
for optimal embedding.

Nonuniform embedding, namely an embedding implemented with different lags L1 . . . Lm–1 within
the same vector, drew considerable attention [144, 145, 140, 139]: such a reconstruction strategy is
expected to perform better when multiple time scales characterize the dynamics of the underlying sys-
tem [2].
Several works criticized and attempted to improve the FNN method. For example, Hegger & Kantz
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[146] evaluated the effects of noise in the selection of neighbouring embedding vectors and thereupon
concluded that correlated noise is easily mistaken as chaos by the FNNmethod. Garcia & Almeida [140]
extended the FNN method to nonuniform lags L1 . . . Lm–1, claiming that an optimization of lags based
on FNN performs better than the conventional mutual information approach. In other cases, the mea-
sure used to evaluate the amount of false neighbours was modified, for example by evaluating false
nearest “strands”, namely trajectory segments (rather than single points) [147, 148], or by replacing—in
determining false neighbours—the evaluation of Euclidean distance with the evaluation of the deriva-
tive in the direction of the nearest neighbour [149].
Other studies proposed alternative metrics to replace the assessment of false neighbours. Regardless of
the specific metric, these approaches boil down to the maximization (or minimization) of a given cost
function [150]. For example, Garland & Bradley [151] investigated—with the purpose of time series
forecasting—a measure of “shared information” between an embedding vector and its future evolution.
In a more recent work [152], minimization of the local curvature of reconstructed trajectories was pro-
posed as a way to assess the optimal lag L (while ignoring the dimension m).
Another key aspect of optimal embedding concerns the so-called embedding window, namely the prod-
uct (m – 1)L. The embedding window, which (multiplied by the sampling period) corresponds to the
time span covered by each embedding vector [153], is deemed to be a relevant parameter in the frame-
work of optimal embedding [130, 2]. Nevertheless, its role is overlooked in most works where optimal
embedding criteria are investigated [139].
Finally, some works claimed that optimal embedding parameters obtained by using neural networks
performed better than ordinary methods [154, 155]. However, these investigations tested the optimal
embedding parameters provided by neural networks only in the context of time series prediction, which
is the same task used to train the networks themselves. No clues are given about the performance of
these optimal embedding methods when estimating dynamical invariants.

All these improved optimal embedding criteria do not solve the twofold problem introduced before.
On the one hand, selection and trimming of the parameters on which these methods rely is arbitrary;
on the other hand, the evaluation of “limiting behaviours” is subjective. A significant step towards the
solution of this crucial issue was made by Pecora et al. [139], who developed an optimal embedding
method that relies exclusively on statistical testing: in this way, the selection of heuristic parameters
is replaced by the choice of significance threshold, i.e. probabilities, which have a clearer and objective
interpretation. The algorithm evaluates a “continuity statistic” [156] to test functional dependence be-
tween the sequence elements contained in each embedding vector. The core idea is, again, that optimal
attractor reconstruction is the one for which vectors have independent coordinates [139]. Therefore,
the dimension and (possibly nonuniform) lags that provide—according to the “continuity” statistical
test—functionally independent elements are deemed to be optimal.
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Another approach that is based on statistical testing—and thus avoids subjective interpretations—was
developed by Carroll & Byers [157]. Givenm and L, their method statistically tests whether the embed-
ded sequence is isotropic in the m-dimensional space. Because noise fills isotropically any space when
embedded, anisotropy is considered to be a marker of a correct reconstruction of the attractor.
The strategy of assessing probabilities by carrying out statistical tests, rather than relying on heuristic
parameters, is a core property of the method discussed in Chapter 3 for the identification of suitable
embedding pairs.

2.4 Correlation dimension

As introduced in Chapter 1, one of the fundamental characteristics of chaotic systems is the self-
similarity of trajectories within the state space. This property is quantified by estimating the dimension

of the system’s attractor. While linear systems have integer dimension, a noninteger (fractal) dimen-
sion is a marker of chaoticity [5]. Noise, on the other hand, is characterized by an infinite dimension.
Because the dimension of a system provides significant information on its dynamics, the estimation of
dimensions out of scalar sequences is a key technique in the analysis of nonlinear systems.

The most intuitive way to estimate the dimension of a set consists in assessing how the (hyper)
volume V occupied by the set scales as a function of length l:

V ∝ lD .

The estimation of the dimension D of a set of points4 within an m-dimensional space is carried out
by partitioning the space in hypercubes of size ξ and by counting, as a function of ξ , the fraction η of
these hypercubes containing at least one point of the set. For l → 0, the curve η(l) allows to estimate
the dimension D given that η ∝ lD. This method to estimate D, which is referred to as box-counting
dimension, is computationally demanding and sensitive to data length [158, 2].
Given a set of points {Xn} within anm-dimensional space partitioned in hypercubes of size ξ , and given
pi the fraction of points of the set that fall within the i-th hypercube, the idea of dimension can be
generalized according to the following expression [1]:

Dq = lim
ξ→0

1
q – 1

log
(∑

i p
q
i
)

log(ξ )
.

For a uniform fractal (all pi are equal), Dq is independent of q, and we can choose any q to estimate
the dimension. For a nonuniform fractal, Dq decreases with q: computing Dq for q > 0 provides an

4Formally, the dimension of a set of points is zero. What is actually sought is an estimate of the dimension of the “ideal”
underlying set, represented by the set of available points that are unavoidably finite in number and in precision [1, 11].
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underestimated dimension (the less uniform is the fractal, the larger is the underestimation) [1].
The case q = 0 corresponds to the intuitive definition introduced above. The value for q → 1 is called
information dimension because of the numerator becoming

∑
i pi log(pi), in analogy with information

theory. Setting q = 2 yields, at the numerator, log
(∑

i p2i
)
: because p2i is the probability of finding two

points within the i-th hypercube, D2 is referred to as correlation dimension [11]. D2 is essentially a
measure of pairwise proximity of points: this interpretation prompted the introduction by Grassberger
& Procaccia [159, 160] of the so-called correlation integral defined as

C(r) ≡ lim
ℓ→∞

1
ℓ2

ℓ∑
i,j

θ
(
r – ∥Xi – Xj ∥

)
, (2.2)

where ℓ is the total number of points Xk within the space, and θ (x) is the Heaviside theta. The key
observation by Grassberger & Procaccia was that the correlation integral, for small distances (r → 0),
grows as

C(r) ∝ rD2 . (2.3)

By virtue of this last property, it is possible to estimate dimensions out of finite sets of points in a com-
putationally efficient way. In practice, D2—and thus the correlation integral C(r)—has to be estimated
out of a scalar sequence {yn}. Clearly, the set of points that describe the state space trajectory of the
system has to be reconstructed by embedding the scalar sequence. A sample correlation integral is
assessed out of an embedded sequence {Yn} according to

Ĉm,L(r) =
1

Npairs

∑
i,j
θ

(
r – ∥Yi – Yj ∥

)
, (2.4)

where the subscriptm, L highlights the dependence of the sample correlation integral on the embedding
parameters. Sample correlation integrals are computed by considering a number Npairs of pairs i, j of
vectors. In principle, one might consider all possible pairs (with i , j) within the embedded sequence.
However, this approach leads to a computationally demanding evaluation, as the number of possible
pairs grows quadratically with the sequence length. Alternatively, one proceeds with a Monte Carlo
evaluation by fixing the number Npairs and by extracting random pairs of vectors out of the embedded
sequence [161].
If a system having dimension D is embedded with m < D, the full dimensionality of the system cannot
be unfolded and the embedded sequence simply fills all the available space. Consequently, for any
m < D, correlation integrals exhibit a scaling ∝ rm, rather than ∝ rD. On the other hand, for m > D

and regardless of m, the correct scaling ∝ rD holds [1]. This phenomenon is sometimes exploited to
determine the minimum embedding dimension required to reconstruct a system’s state space [126].
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Figure 2.5 shows some examples of sample correlation integrals in the case of two different input se-
quences and for different embedding dimensionsm (L is set to 4). The correlation integrals in Fig. 2.5(a)
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Figure 2.5 – Examples of sample correlation integrals for different embedding dimensions m. The lag L is
set to 4. (a) The input sequence corresponds to the x-coordinate of a Lorenz system. The black, dashed line
highlights the Grassberger-Procaccia power law scaling C(r) ∝ rD2 . (b) The input sequence is GWN.

are built out of a sequence corresponding to the x-coordinate of a Lorenz system5. The ∝ rD2 scaling is
highlighted by means of a black, dashed line, where D2 = 2.05 is the accepted value of the correlation
dimension for the Lorenz system used in this example [14]: increasing m does not change the small-
distance scaling of the correlation integral. On the other hand, the correlation integrals in Fig. 2.5(b) are
built out of a GWN sequence. For this kind of signal, the Grassberger-Procaccia scaling is not present:
increasingm provides an increasingly larger slope of the correlation integral in log-log scale, hinting at
a very large (and possibly infinite) dimensionality of the underlying system. Indeed, since noise is char-
acterized by an infinite dimension, correlation integrals corresponding to embedded noise sequences
grow as ∝ rm: in other words, noise fills all the available dimensions of the reconstructed state space,
regardless of m.

The estimation of a system’s dimension out of a scalar sequence through Eq. (2.4) is among the
most popular techniques in nonlinear time series analysis: the two seminal works by Grassberger &
Procaccia [159, 160] count more than 3000 citations each. Reliable estimations of D2, however, are
not straightforward [1]: the finite size of sequences and the presence of noise are the main sources of
uncertainty and bias in the estimation of the logarithmic slope of correlation integrals [127]. Significant
efforts were made to investigate issues related to edge effects [162, 163], to an oscillating behavior of
Ĉ(r) [164], and to statistical errors produced by the finite number of points used to build Ĉ(r) [165, 14].
A source of error regarding the estimation of C(r) are temporal correlations within the input sequence.
If we include, within the sum of Eq. (2.4), distances between embedding vectors that are close in time,

5See Chapter 1, Eq. (1.2) for the system’s equations. Here, the system parameters are set to σ = 10, r = 28, b = 8/3 and the
integration time step is δ t = 0.03.
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the resulting D2 turns out to be smaller than the true value [166]. Ignoring this issue leads to spurious
assessment of finite correlation dimensions even in the case of stochastic sequences, such as noise
with 1/f α spectrum [167, 168]. This problem is avoided by including in Eq. (2.4) only vector pairs
whose time separation is larger than some minimum delay c0, i.e. by prescribing that |i – j| ⩾ c0. The
minimum delay c0 is typically set equal to the first zero of the autocorrelation function [166], or its first
minimum [169].

Sample correlation integrals are the building blocks of the method discussed in Chapter 3.

2.5 Maximum Lyapunov exponent

Besides their geometric properties—quantified by the dimension of the attractor—state space trajecto-
ries of chaotic systems exhibit sensitivity to initial conditions or, more quantitatively, an exponential
divergence of initially close trajectories (see also Chapter 1). The rate of this divergence is determined
by the so-called Lyapunov exponents, which are invariants that characterize each specific system [11].
There are as many Lyapunov exponents as the number of state space dimensions: each exponent λi
corresponds to one of the independent directions along which fiducial volumes within the state space
contract (λi < 0) or expand (λi > 0) in an infinitesimal time interval. The maximum Lyapunov exponent
(MLE) λ1 is the most relevant one, as it is the exponent that dominates the divergence of nearby tra-
jectories [5, 1]. The sign of λ1 provides crucial information on the kind of system under investigation:
a negative λ1 implies that the system is stable and eventually reaches a stable fixed point; if λ1 = 0, the
system is again stable, but on a limit cycle; finally, a positive λ1 is the marker of chaos. As far as noise is
concerned, its short time behavior is diffusive and distances grow as

√
t: the corresponding diverging

rate of expansion suggests an infinite MLE [5].

If the differential equations ruling a system’s evolution are known, one can apply the so-called stan-
dard method [170, 171] and compute numerically all Lyapunov exponents. In experimental conditions,
if the equations of motions are unknown, this computation is not possible. However, the MLE can be
estimated out of scalar sequences by first reconstructing the state space evolution of the system through
the embedding procedure. Thereupon, the estimation of the MLE relies on the so-called divergence rate
method [172, 173, 174]. The divergence rate method is based on the evaluation of the time-dependent
divergence exponent Λ̂m,L(k), which quantifies the average separation of nearby trajectories:

Λ̂m,L(k) ≡
1

Npairs

∑
i,j

log
( ∥Yi+k – Yj+k ∥

∥Yi – Yj ∥

)
, (2.5)

where the sum runs over a set of Npairs pairs i, j of neighbouring vectors, i.e. vectors that satisfy
∥Yi – Yj ∥ < r , with r a “shell radius”. The subscript m,L highlights the fact that the vectors Yn are em-
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bedding vectors built with embedding parameters m and L. The time-dependent divergence exponent
measures the progressive separation, as a function of the time delay k, of the trajectories corresponding
to initially close points Yi,Yj . The initial proximity of the vector pairs is tuned by changing the shell
radius r , which is typically estimated as the distance corresponding to the a given percentile p of the
sample distribution of all Euclidean distances [133, 175].
If the underlying system is chaotic, Λ̂(k) is expected to grow linearly with k, as a result of the expo-
nentially increasing numerator within the logarithm of Eq. (2.5). Suitably fitting this linear growth (see
Ref. [133] for a robust protocol) provides the value of the MLE. The growth of Λ̂(k) cannot continue for
arbitrarily large values of k: eventually, the separation becomes comparable to the size of the attractor
and Λ̂(k) saturates.
As discussed in Sec. 2.4 for correlation integrals, the evaluation of Λ̂(k) cannot include pairs of embed-
ding vectors Yi,Yj separated by a time interval |i– j| that is smaller or comparable to the autocorrelation
time of the sequence. Therefore, only those vector pairs whose time separation satisfies |i – j| ⩾ c0 can
be included in the sum of Eq. (2.5). As in the case of correlation integrals, the minimum delay c0 is set
equal to the first zero of the autocorrelation function [166] or, more conservatively, to its second zero
multiplied by m(L + 1) [133].

Figure 2.6 shows some examples of time-dependent divergence exponent in the case of two different
input sequences and for different values of the distance percentile p. The curves Λ̂(k) in Fig. 2.6(a) are
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Figure 2.6 – Examples of time-dependent divergence exponent for different distance percentile p. (a) The
input sequence corresponds to the x-coordinate of a Lorenz system; the embedding parameters are set to
m = 8, L = 6. The black, solid line highlights the region of linear scaling Λ̂(k) ∝ k. (b) The input sequence
is GWN; the embedding parameters are set to m = 8, L = 1.

built out of a sequence corresponding to the x-coordinate of a Lorenz system6 embedded with m = 8,
L = 6. The region of linear scaling Λ̂(k) ∝ k is highlighted by means of a black, solid line. The slope

6See Chapter 1, Eq. (1.2) for the system’s equations. Here, the system parameters are set to σ = 10, r = 28, b = 8/3 and the
integration time step is δ t = 0.03.
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of the straight line is 0.9δ t, where 0.9 is the MLE of the system determined by means of the standard
method and δ t is the sampling period. Figure 2.6(b) shows, instead, the curves Λ̂(k) in the case of a
GWN sequence embedded with m = 8, L = 1. A linearly growing region is, in this case, lacking. Λ̂(k)
quickly saturates at k = m (in this example, m = 8), which corresponds to the delay for which a vector
Yi+k and its precursor Yi do not share any component and, therefore, are uncorrelated.

Besides the linearly growing Λ̂(k) within the small k region, which is processed to estimate the
MLE, the asymptotic “plateau-like” behavior attained for k ≫ 1 is also interesting. In particular, the
dependence of the asymptotic Λ̂(k) on the distance percentile p provides a tool to distinguish finite-
dimensional chaotic systems from stochastic sources and, for the former ones, it allows to precisely
estimate correlation dimension. These results are the topic of Chapter 5.



3. Identification of suitable embedding
regions

As discussed in Chapter 2, a general solution to the problem of optimally setting the embedding param-
eters m, L is lacking. Existing methods have several drawbacks, most notably the arbitrary choice of
parameters, the subjective evaluation of “limiting behaviours”, and the separation of the optimization
of m and L into two distinct problems, thus overlooking the crucial role of the embedding window
(m – 1)L. Finally, a single optimal choice (m, L) does not necessarily exist: more realistically, a set of
(m, L) can provide reconstructions of the underlying dynamics that are equivalently good.

In this chapter, I will discuss the development, carried out within our research group, of a new
method for the identification of suitable embedding dimensions and lags [161]. We tackled the issue
of optimal embedding by trying to overcome the drawbacks that characterize existing methods. To
this purpose, our method does not provide a single choice of parameters, but rather a set of suitable
embedding pairs (m, L) that are statistically equivalent to reconstruct the dynamics. In addition, our
approach relies on statistical testing and does not require any subjective evaluation of results: the only
parameters to be chosen are significance thresholds, i.e. probabilities, which have a straightforward
interpretation.

A graphical outline of the method is shown in Fig. 3.1. Given an input scalar sequence, several
operations are carried out for each element of an embedding lattice, i.e. a discrete set of choices of the
embedding parameters {(m, L) |m ∈ [2,mmax], L ∈ [1, Lmax], }. In the following, mmax and Lmax are both
set to 20. For each embedding pair or embedding point (m, L), sample correlation integrals are built
as described in Sec. 3.1. The analytical expression of correlation integrals corresponding to Gaussian
white noise (GWN) allows us to introduce a “gauge” transformation of distances. As a consequence,
correlation integrals are remapped into a more convenient form, henceforth referred to as “correlation
bridges”. In addition to these preprocessing steps, the core of the method consists of three stages. The
first two stages rely on statistical tests to rule out embedding pairs that are unsuitable to embed the
sequence: first, correlation bridges are tested for compatibility with GWN sources (Sec. 3.2.1); second,
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Figure 3.1 – Graphical summary of the method described in this chapter. Given an input scalar sequence,
the processing stages within the flowchart are carried out for each embedding point (m, L) within the em-
bedding lattice. As a result, the procedure yields amap of the embedding lattice that provides information
on which (m, L) are suitable or not to embed the input sequence.

correlation bridges are tested for compatibility with a finite-dimensional source (Sec. 3.2.2). In the
third stage, correlation dimension is estimated out of correlation bridges on those embedding pairs
that survived the previous skimming stage (Sec. 3.2.3, 3.3). The result of these stages is a map of the
embedding lattice in which some points are deemed to be unsuitable to embed the sequence, while a
set of suitable embedding pairs is identified by looking at the uniformity of the correlation dimension
estimator.

Suitable embedding choices are expected to comply with two requirements concerning the cor-
responding embedding window W = (m – 1)L. On the one hand, the embedding window has to be
large enough to overcome redundance. On the other hand, W cannot be too large, so that irrelevance
is avoided [153, 130]. By calling τR and τI the redundance and irrelevance times, respectively, the above
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requirements can be expressed as τR/T ≲ (m – 1)L ≲ τI /T , where T is the sampling period of the input
sequence.
These constraints have a straightforward interpretation on the embedding lattice: a given value of W
identifies a hyperbola. Therefore, the irrelevance and redundance times correspond to two hyperbolae
within the embedding lattice, and the region bounded by them is where we can expect to find suitable
embedding choices. As shown in Sec. 3.2.3, the regions of suitable (m, L) identified by our method are
indeed in agreement with these constraints.

Throughout this chapter, the stages of the method are illustrated by applying the corresponding
algorithms to three benchmark sequences, defined as follows:

• a GWN sequence, built by generating i.i.d. random numbers out of a standard normal distribu-
tion;

• a sequence corresponding to filtered GWN, generated by first drawing i.i.d. random numbers
out of a standard normal distribution and, thereupon, by piping the resulting sequence into a
first-order digital low-pass filter with cut-off frequency equal to 1/20 of the sampling frequency;

• a sequence corresponding to the x-coordinate of a Lorenz system, or Lorenz sequence. See
Chapter 1, Eq. (1.2) for the system’s equations; here the system’s parameters are set to σ = 10,
r = 28, b = 8/3, and the integration time step, which coincides with the sampling period, is
δ t = 0.03.

3.1 Correlation integrals and GWN gauge

The method discussed in this chapter takes in input a scalar sequence {yn} consisting of ℓ points. As a
preprocessing step, the sequence is standardized by subtracting its sample mean y and dividing by its
sample standard deviation sy each element: (yn–y)/sy → yn. Thereupon, the sequence is embeddedwith
parameters m, L, so that a sequence of vectors Yn = (yn, yn+L, . . . , yn+(m–1)L) having length ℓ – (m – 1)L
is provided.

A sample correlation integral corresponding to the sequence yn and embedded with parameters
m, L is built by means of a Monte Carlo integration as follows. A set S of N vector pairs Yi, Yj are
randomly selected without replacement. As discussed in Sec. 2.4, temporally correlated vector pairs
have to be avoided, and thus the time indexes i, j are chosen such that |i – j| ⩾ c0, where c0 is set equal
to the largest between the second zero of the autocorrelation function and the product 2m(L + 1). The
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distance di,j between vectors Yi, Yj is evaluated as their Euclidean distance divided by1
√
m:

di,j =

[
1
m

m–1∑
k=0

(
yi+kL – yj+kL

)2] 1
2

. (3.1)

The sample correlation integral Ĉm,L;N (r) is given by the empirical cumulative distribution of the N

sample distances:
Ĉm,L;N (r) =

1
N

∑
(i,j)∈S

θ
(
r – di,j

)
. (3.2)

The parameter N sets the resolution of the sample correlation integral and, at the same time, poses
a constraint to the sequence length: provided that the sequence autocorrelation time is much smaller
than the sequence length, i.e. ℓ ≫ c0, the number of available pairs (∼ ℓ2/2) has to satisfy ℓ2/2 ≫ N to
provide a reliable integration. In the following, ℓ = 105 and N = 4000; the maximum observed c0 is of
order 103.
Figure 3.2 shows four examples of correlation integrals Ĉm,L;N (r) built out of a GWN sequence and a
Lorenz sequence. Embedding pairs (m, L) are reported in the figure key.
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Figure 3.2 – Example correlation integrals
Ĉm,L;N (r) for a GWN sequence and a sequence
generated by the Lorenz system. Embedding
dimensions and lags (m, L) are reported in the
key.

Sample correlation integrals Ĉm,L;N (r) converge to the corresponding asymptotic limit2 Cm,L(r),
henceforth referred to as “asymptotic correlation integral”, when N → ∞. The analytical assessment of
Cm,L(r) is impossible for most dynamical systems, even if the corresponding differential equations are
known. On the other hand, GWN provides an exception: given a sequence of i.i.d. elements drawn from
a normal distribution (yn ∼ N (µ,σ 2)) it is possible to write down Cm,L(r) for any m, L. For a GWN se-
quence, |i – j| ⩾ c0 = 2m(L + 1) ⩾ 2, since the second zero of the autocorrelation function corresponds
to a delay equal to 2. Consequently, all elements entering into the sum of Eq. (3.1) are independent,
and thus the differences yi+kL – yj+kL is distributed according to a normal distribution with vanishing

1The normalization by
√
m is introduced to provide an m-independent distance in the case L = 0.

2This result is guaranteed by the Glivenko-Cantelli theorem.
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mean and variance equal to 2σ 2. Because d2i,j is the sum of the squares ofm such differences, it follows—
besides a scaling factor—a χ 2 distribution with m degrees of freedom, i.e. d2i,j ∼ (2σ 2/m)χ 2m. This last
results holds if L > 0: if L = 0, regardless of m, we have instead d2i,j ∼ 2σ 2χ 21 . Asymptotic correlation
integrals for GWN sequences are thus given by

Cm;GNW(r) =



1
Γ

(m
2
) γ (

m
2 ,

mr2
4σ 2

)
, if L > 0 ,

1
Γ

( 1
2
) γ (

1
2 ,

r2
4σ 2

)
, if L = 0 ,∀m .

(3.3)

The function γ (s, x) is the lower incomplete Gamma function, defined as γ (s, x) =
´ x
0 ts–1e–tdt.

The analytical shape of GWN correlation integrals allows us to transform distances so that sample
correlation integrals built out of GWN sequences are drawn from the same, embedding-independent
distribution. This “gauge” transformation consists in mapping the distances di,j into transformed dis-
tances δi,j by applying the analytic expression of Eq. (3.3):

δi,j = Cm;GNW
(
di,j

)
=



1
Γ

(m
2
) γ (

m
2 ,

md2i,j
4

)
, if L > 0 ,

1
Γ

( 1
2
) γ (

1
2 ,

d2i,j
4

)
, if L = 0 ,∀m ,

(3.4)

where σ is set to 1 in agreement with the standardization step described above. In this new gauge,
sample correlation integrals Ĉ ′

m,L;N (ϱ) are evaluated by transforming “ordinary” sample distances di,j
into δi,j ; Eq. (3.2) becomes

Ĉ ′
m,L;N (ϱ) =

1
N

∑
(i,j)∈S

θ
(
ϱ – δi,j

)
.

Because Cm;GNW is a strictly monotonous function, we have that

ϱ = Cm;GNW(r) =⇒ Ĉm,L;N (r) = Ĉ ′
m,L;N (ϱ) .

This last equality is the reason why we called Eq. (3.4) a “gauge transformation”: the metric through
which distances are measured is changed, but the information contained within Ĉm,L;N (r) and Ĉ ′

m,L;N (ϱ)
is the same.

Because Cm;GNW is a cumulative distribution function—and thus bounded between 0 and 1—the
gauge transformation defined by Eq. (3.4) changes the d domain given by R0+ into the δ domain given
by [0, 1). Therefore, the gauge-transformed correlation integrals Ĉ ′

m,L;N (ϱ) are fully contained within
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the unitary square [0, 1] × [0, 1]. The correlation integrals of Fig. 3.2, upon application of the gauge
transformation, are mapped into the correlation integrals shown in Fig. 3.3.
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Figure 3.3 – Four correlation integrals shown
in Fig. 3.2 after the application of the gauge
transformation of distances. Embedding di-
mensions and lags (m, L) are reported in the
key.

In the new gauge, correlation integrals Ĉ ′
m,L;N (ϱ) corresponding to a GWN sequence turn out to

have the same shape (besides statistical fluctuations due to the finiteness of N ). This result is due to
the probability integral transform theorem [176]: if a random variable z follows a cumulative distribu-
tion function Fz(z), then the mapping ζ = Fz(z) yields a new random variable ζ distributed according
to a uniform distribution within [0, 1]. In other words, Fζ (ζ ) = ξ (ζ ) = ζ , with ζ ∈ [0, 1]. Therefore,
in the new gauge, the asymptotic correlation integrals corresponding to GWN turn out to be given
by C ′

m,L(ϱ) = ξ (ϱ), regardless of the embedding parameters m, L. Sample correlation integrals of GWN
sequences are expected to be statistically compatible with ξ (ϱ). Statistical compatibility between cu-
mulative distributions is assessed by means of the Kolmogorov-Smirnov (K-S) test, which relies on the
K-S statistic K̂m,L;N defined as

K̂m,L;N = sup
ρ ∈[0,1]

���Ĉ ′
m,L;N (ϱ) – ξ (ϱ)

��� = sup
ρ ∈[0,1]

���Ĉ ′
m,L;N (ϱ) – ϱ

��� . (3.5)

In the null hypothesis of the sample Ĉ ′
m,L;N (ϱ) being drawn from the parent asymptotic cumulative

distribution ξ (ϱ), the K-S statistic is distributed as [177]

F (K) = 1 – 2
∞∑
k=1

(–1)k–1 exp
(
–2k2N ′K2) , (3.6)

where the parameter N ′ is the effective number of samples: N ′ = (
√
N + 0.12 + 0.11/

√
N )2. Mean µK and

standard deviation σK of F (K) can be evaluated by taking its first derivative dF (K)/dK and integrating
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over [0,∞):

µK = E[K] =
ˆ ∞

0

dF (K)
dK

KdK = 8N ′
∞∑
k=1

(–1)k–1k2
ˆ ∞

0
K2e–2k

2N ′K2
dK =

=
√

π

2N ′

∞∑
k=1

(–1)k–1

k
=

√
π

2N ′ log 2 , (3.7a)

E[K2] =
ˆ ∞

0

dF (K)
dK

K2dK = 8N ′
∞∑
k=1

(–1)k–1k2
ˆ ∞

0
K3e–2k

2N ′K2
dK =

= 8N ′
∞∑
k=1

(–1)k–1k2

2

ˆ ∞

0
κe–2k

2N ′κdκ =

=
1
N ′

∞∑
k=1

(–1)k–1

k2
=

1
N ′

π 2

12
,

σK =
√
E[K2] – E[K]2 =

√
π

2N ′

√
π

6
– log2 2 . (3.7b)

Both the mean and the standard deviation of F (K) tend to zero when N ′ → ∞, as expected.

3.2 Skimming and selecting suitable embedding pairs

3.2.1 Correlation bridges and the null hypothesis of a GWN source

The K-S statistic of Eq. (3.5) suggests the possibility of adjusting correlation integrals in a more con-
venient form: we define a “sample correlation bridge” B̂m,L;N (ϱ) as a gauge-transformed correlation
integral Ĉ ′

m,L;N (ϱ) to which we subtract the reference line ξ (ϱ):

B̂m,L;N (ϱ) ≡ Ĉ ′
m,L;N (ϱ) – ξ (ϱ) = Ĉ ′

m,L;N (ϱ) – ϱ .

As in the case of correlation integrals, sample correlation bridges converge to the corresponding asymp-
totic correlation bridges for N → ∞. A correlation bridge is a function defined in the interval [0, 1],
taking up values between [–1, 1], and tied to zero at both ends, i.e. B̂m,L;N (ϱ) = 0 for ϱ = 0, 1. Asymp-
totic correlation bridges for GWN are identically zero, while their sample counterparts turn out to be
Brownian bridges [178]. The K-S statistic defined in Eq. (3.5) becomes

K̂m,L;N = sup
ρ ∈[0,1]

���̂B′
m,L;N (ϱ)

��� . (3.8)

Given a significance level α , the corresponding critical K-S statistic Kα ;N is evaluated by relying on
Eq. (3.6) and inverting F (Kα ;N ) = 1 – α . By virtue of Eq. (3.8), a sample correlation bridge built out of a
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GWN sequence is fully contained within ±Kα ;N with probability 1–α . Figure 3.4 shows the correlation
bridges corresponding to the correlation integrals of Fig. 3.3. The plots of Fig. 3.4 also show two shaded
areas bounded by ±Kα ;N : the inner one corresponds to the significance level α = 0.05, while the outer
one corresponds to α = 10–9. The sample correlation bridges corresponding to a GWN sequence turn
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Figure 3.4 – Correlation bridges B̂m,L(ϱ) for a GWN sequence (a) and a sequence generated by the Lorenz
system (b). Each correlation bridge is obtained by subtracting the identity line ξ (ϱ) = ϱ from the cor-
responding correlation integral of Fig. 3.3. Shaded areas correspond to the regions bounded by Kα ;N for
α = 0.05 (darker, inner region) and α = 10–9 (lighter, outer region).

out to be fully contained within the α = 0.05 region; on the contrary, the two sample correlation bridges
built out of a Lorenz sequence overcome the boundaries of the α = 10–9 region.

The K-S statistic K̂m,L;N estimates the compatibility of a given input sequence embedded with pa-
rametersm, L with GWN. For this reason, K̂m,L;N is henceforth referred as the sample “gap from noise”.

The first stage of the method discussed in this chapter relies on the gap from noise—and the re-
lated statistical test—to rule out unsuitable embedding pairs (m, L). Under the assumption that a given
input sequence is generated by a chaotic source, the idea is that, given an embedding pair (m, L), if
the corresponding correlation bridge is compatible with a GWN source then the embedding pair (m, L)
is unsuitable to reconstruct the sequence’s underlying dynamics. As discussed at the beginning of
this chapter, this evaluation is carried out on the embedding lattice, i.e. on the set of embedding pairs
{(m, L) |m ∈ [2, 20], L ∈ [1, 20], }. A sample correlation bridge is evaluated for each point on the lattice
and the corresponding gap from noise is computed. In principle, Eq. (3.6) allows to assess a p value
corresponding to the value of K̂m,L;N . However, to avoid the evaluation of the sum in Eq. (3.6), as well
as to improve the robustness of the assessment, the computation of K̂m,L;N is repeatedM times and, for
each point on the lattice, the average gap from noise ⟨K̂⟩m,L;N is calculated, yielding a map of average
gap from noise on the lattice: {⟨K̂⟩m,L;N |m ∈ [2, 20], L ∈ [1, 20], }. In the following, M = 100.
The null hypothesis H0;GWN to be tested is that the input sequence is GWN. Under H0;GWN, provided
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that M ≫ 1, the averages ⟨K̂⟩m,L;N are approximately distributed according to a normal distribution
with mean µK and variance σ 2

K /M by virtue of the central limit theorem, where µK ,σK are given by
Eq. (3.7). Therefore, for each point on the embedding lattice, H0;GWN is tested by computing a p value
out of a N

(
µK ,

σ 2
K
M

)
distribution, finally yielding a map of p values.

Figure 3.5 shows the maps of p values evaluated for the three benchmark sequences, namely a GWN
sequence, a filtered noise sequence, and a Lorenz sequence. In the case of GWN, p values are all above
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Figure 3.5 –Maps of p values evaluated on the embedding lattice underH0;GWN for a GWN sequence (a),
a filtered noise sequence (b), and a Lorenz sequence (c). Black crosses (×) mark points for which the p value
overcomes the αB = 0.01/380 threshold.

the Bonferroni-corrected 1% significance threshold αB = 0.01/380 (the number of lattice points is 380):
the input sequence is statistically compatible with GWN for any choice of the embedding parameters.
The presence of embedding pairs for which the input sequence is incompatible with GWN, i.e. the cor-
responding p value is below αB such as in the case of filtered noise and Lorenz sequence, indicates a
non-GWN source. In the case of filtered noise, pairs with L ≳ 6 are compatible with the GWN hypoth-
esis. This compatibility is due to the loss of correlation between elements of the embedding vectors
when L becomes comparable to the typical autocorrelation time of the sequence: when “sampled” too
slowly, filtered noise looks like GWN. On the contrary, the Lorenz sequence turns out to be incompat-
ible with GWN regardless of the embedding parameters: the corresponding p values are all below the
significance threshold αB.

As a result of this first skimming procedure, embedding pairs (m, L) for which there is compatibility
with GWN are deemed to be unsuitable to embed the input sequence. These embedding lattice points,
marked with a black cross in Fig. 3.5, are ruled out from subsequent evaluations.
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3.2.2 Small-scale behavior of correlation bridges

The second stage of the method consists in testing the finite dimensionality of the dynamical system
generating the input sequence. The corresponding null hypothesis H0;CFD(ν ) is that of a chaotic, fi-
nite dimensional system with correlation dimension ν generating the sequence. In order to test this
hypothesis, we first consider the derivative of (asymptotic) correlation bridges:

dBm,L(ϱ)
dϱ

=
dC ′

m,L(ϱ)
dϱ

– 1 =
∂Cm,L(r)
∂r

dr(ϱ)
dϱ

– 1 , (3.9)

where r(ϱ) is the inverse of the function ϱ(r) = Cm;GNW(r). By using the definition of Cm;GNW(r), i.e.
Eq. (3.3), and by applying the inverse function theorem, the derivative of r(ϱ) can be written as

dr(ϱ)
dϱ

=
(
dϱ(r)
dr

)–1
=
1
2
Γ

(m
2

) ( m
4σ 2

)–m
2 exp

(
mr2

4σ 2

)
r1–m . (3.10)

Under H0;CFD(ν ), according to Grassberger & Procaccia [159, 160], the asymptotic correlation integral
Cm,L(r) grows, for r → 0, as a power of the distance Cm,L(r) = βm,Lrν ; βm,L is an embedding-dependent
constant (see also Sec. 2.4). The derivative of Cm,L(r) is thus given by

dCm,L(r)
dr

= νβm,Lrν–1 =
ν

r
Cm,L(r) . (3.11)

This last expression is only valid as long as m > ν . Combining Eq. (3.9), Eq. (3.10) and Eq. (3.11) finally
yields

dBm,L(ϱ)
dϱ

=
νβm,L

2
Γ

(m
2

) ( m
4σ 2

)–m
2 exp

(
mr2

4σ 2

)
rν–m – 1 . (3.12)

The consequence of the last expression is that, underH0;CFD(ν ) and provided thatm > ν , the derivative
of Bm,L(ϱ) diverges for ϱ → 0. A lack of this divergence implies that the system generating the sequence
under investigation, reconstructed with embedding parameters m, L, is not finite dimensional, either
because H0;CFD(ν ) does not hold, or because ν ⩾ m. While in the former case embedding is useless, in
the latter case it is unsuitable. Therefore, assessing the divergent behaviour of correlation bridges for
ϱ → 0 provides an additional tool to rule out embedding pairs that are unsuitable to reconstruct the
dynamics.

The divergent behaviour, as discussed so far, is a feature of asymptotic correlation bridges. How-
ever, this divergence has to be assessed by relying on sample correlation bridges built out of finite
sequences: a statistical approach has to be followed. Given an input sequence and an embedding pair
(m, L), the number N is supposed to be large enough so that the first sample of the correlation integral,
corresponding to a distance r1, falls within the Grassberger-Procaccia power-law scaling region. The
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corresponding gauge transformed distance ϱ1 provides the first value of the correlation bridge accord-
ing to b1 = B̂m,L;N (ϱ1) = 1/N – ϱ1. A number M of correlation bridges are independently built, yielding
M values of b1. If any of these values is negative or zero, a divergent behaviour is considered disproved.
If all theM collected b1 values are positive, the probability of a divergent behaviour to exist is computed
by relying on Chebyshev’s inequality3, as follows. The sample mean and standard deviation of the M
values b1, denoted with b̄1, sb1 , respectively, are considered. By virtue of Chebyshev’s inequality, we
have

P
(
b1 ⩽ b̄1 – ksb1

)
⩽ P

(
|b1 – b̄1| ⩾ ksb1

)
⩽ 1

k2
,

where k > 0. Because b̄1 is positive, and setting k = b̄1/sb1 , we finally obtain

P (b1 ⩽ 0) ⩽
(
sb1
b̄1

)2
. (3.13)

The last expression makes up a direct way to compute a p value out of the M values of b1. If the
probability of having b1 ⩽ 0 is higher than some significance threshold α , the pair (m, L) is deemed to be
unsuitable to embed the input sequence, as the corresponding reconstructed dynamics is incompatible
with a finite-dimensional system.

The divergent behaviour is a more stringent marker compared to the compatibility with GWN: in-
deed, embedding points for whichH0;GWN is not rejected automatically provide a rejection ofH0;CFD(ν ).
In other words, embedding points excluded through the criterion of Sec. 3.2.1 are necessarily excluded
by Eq. (3.13) as well.

The evaluation of Eq. (3.13) on the embedding lattice for the three sequences considered in Fig. 3.5
is shown in Fig. 3.6. In the case of a GWN sequence, this second skimming stage does not provide
additional information: all embedding points were excluded by the first criterion, and thus the whole
embedding lattice is incompatible with H0;CFD(ν ). As far as filtered noise is concerned, most of the
embedding points that survived the first stage are deemed to be incompatible with H0;CFD(ν ), i.e. the
filtered noise sequence, embedded on those points, is correctly classified as not being finite-dimensional.
Interestingly, in the case of the Lorenz sequence, almost all embedding points with m = 2 are ruled
out because of their incompatibility with H0;CFD(ν ), i.e. the reconstructed state space trajectory does
not appear as being finite-dimensional. Indeed, the system cannot be embedded with m = 2: such
reconstruction would give trajectories with crossings, which is forbidden by determinism, as correctly
detected by the skimming stage discussed in this Section.

3This approach is the most conservative one, as Chebyshev’s inequality provides an upper limit for the p value.
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Figure 3.6 –Maps of the probability evaluated according to Eq. (3.13) on the embedding lattice for a GWN
sequence (a), a filtered noise sequence (b), and a Lorenz sequence (c). Black “+” signs mark points for which
the probability overcomes the 0.01 significance threshold: these embedding points correspond to correlation
bridges that are deemed to be incompatible with H0;CFD(ν ). Black crosses (×) mark those points for which
H0;GWN holds, as in Fig. 3.5.

3.2.3 Uniformity of the estimated ν within an embedding lattice

Correlation bridges can be processed to get an estimate of the correlation dimension ν̂ : this estima-
tion is discussed in Sec. 3.3. The third stage of the method consists in using the estimated ν̂ (m, L) to
assess which embedding pairs are suitable to reconstruct the dynamics of the system generating an
input sequence. This assessment relies on the idea that, if the null hypothesis H0;CFD(ν ) holds, and the
embedding parameters satisfy the relation

τR/T ≲ (m – 1)L ≲ τI /T ,

i.e. the embedding window is smaller than the irrelevance time and larger than the redundance time
of the input sequence, then the estimated correlation dimension ν̂ is expected to be independent of the
embedding pair (m, L). Therefore, while the statistical tests of Sec. 3.2.1 and 3.2.2 allowed us to rule out
embedding pairs, here we can select suitable embedding pairs by identifying a region of the embedding
lattice where ν̂ is uniform. By virtue of Eq. (3.14), this region has to be approximately bounded by two
hyperbolae, corresponding to the irrelevance and redundance times.

Figure 3.7(a) shows the map of the estimated ν̂ for the same Lorenz sequence used in the previous
sections. The estimated ν̂ shown in the map corresponds to the average over M = 100 evaluations
relying on Eq. (3.15). Embedding pairs that were ruled out by the criteria described in the previous
sections are not included in the estimation. Figure 3.7(b) shows the histogram of embedding pairs
corresponding to a given ν̂ (the bin width is 0.2). A clear peak is present in the histogram at ν̂ = 2.0±0.2,
in agreement with the accepted value of correlation dimension for the Lorenz system, namely 2.05 [14].
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Figure 3.7 – (a) Map of the estimated correlation dimension ν̂ computed as the average of M = 100
evaluations of Eq. (3.15). Black “+” signs have the same meaning as in Fig. 3.6. The black, solid line bounds
the plateau corresponding to embedding pairs having ν̂ = 2.0 ± 0.2 making up the peak in the histogram
shown in (b). The black, dash-dotted lines correspond to the hyperbolae that approximately enclose the
plateau, described by L = 20/(m – 1) and L = 80/(m – 1). (b) Histogram of the number of embedding pairs
whose estimated correlation dimension ν̂ falls within 0.2-wide bins. Bin heights and errorbars are sample
mean and standard deviation computed by repeating four times the evaluation of the map in (a). (c) Map
of the estimated MLE λ̂ evaluated by means of the divergence rate method on those embedding points for
which H0;CFD(ν ) holds. The black, solid line bounds the plateau corresponding to embedding pairs having
λ̂ = 0.8±0.1making up the peak in the histogram shown in (d). (d) Histogram of the number of embedding
pairs whose estimated MLE λ̂ falls within 0.05-wide bins. Bin heights and errorbars are sample mean and
standard deviation computed by repeating four times the evaluation of the map in (c).

The embedding pairs corresponding to the histogram peak make up a plateau region highlighted by
means of a black contour within the map. This plateau is in agreement with the uniformity argument
introduced above: its shape is indeed approximately bounded by two hyperbolae, as displayed bymeans
of dash-dotted lines in Fig. 3.7(a). These hyperbolae correspond to τR/T ≈ 20 and τI /T ≈ 80, i.e. τR ≈ 0.6
and τI ≈ 2.4. The sufficient separation between the hyperbolae, as well as their position towards the
middle of the map, suggest that the sampling period was correctly chosen. A too small sampling period
(oversampling) would push the hyperbolae towards the top-right corner of the map. On the contrary, a
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too large sampling period (undersampling) would compress the hyperbolae towards the axis and shrink
the plateau. An example of how maps can provide information on the adequacy of the sampling period
is discussed in Chapter 4, Sec. 4.1.

Figure 3.7 also shows another evaluation carried out, for the sake of comparison, on the embedding
lattice. The maximum Lyapunov exponent (MLE) λ̂ is estimated—by means of the divergence rate
method (see Sec. 2.5)—over all the embedding pairs (m, L) for whichH0;CFD(ν ) holds, i.e. the same pairs
over which ν̂ was estimated. The λ̂ map and the corresponding histogram are shown in Fig. 3.7(c)
and Fig. 3.7(d), respectively. The λ̂ histogram also exhibits a peak at around 0.8 ± 0.1, which is in
agreement with the value 0.9057(8) obtained by means of the standard method (see Sec. 2.5). The set of
embedding pairs corresponding to the histogram peak are highlighted by means of a black contour in
the map of Fig. 3.7(c). The λ̂ plateau, despite sharing roughly half of the embedding points with the ν̂
plateau, is less regular than the latter, thus reflecting the known variability of MLE estimated through
the divergence rate method [133]. Comparing the two plateaus suggests that ν̂ makes up a more reliable
estimator for the selection of suitable embedding pairs.

3.3 Correlation dimension estimator in the GWN gauge

Besides the statistical tests discussed in Sec. 3.2.1 and Sec. 3.2.2, correlation bridges in the GWN gauge
also allow to conveniently estimate the correlation dimension ν of the system generating the sequence
under investigation, provided that H0;CFD(ν ) holds. Given an input sequence and an embedding pair
(m, L), if the corresponding correlation bridge B̂m,L;N (ϱ) exhibits a diverging behaviour at the origin,
then we can expect B̂m,L;N (ϱ) to grow up to a maximum and then decrease. The amplitude and position
of the first maximum of B̂m,L;N (ϱ) provide an estimate ν̂ of the correlation dimension ν . The estimator,
which is derived in this Section, requires that the power-law scaling of Cm,L(r) survives for sufficiently
large values of ϱ.

Let us consider the asymptotic correlation bridge Bm,L(ϱ) and its first derivative given by Eq. (3.12).
Let ϱ0 be the smallest value of ϱ for which this derivative vanishes, and r0 the corresponding “original”
distance. The inverse function theorem implies that, if ϱ0 yields a vanishing derivative in Eq. (3.12),
then r0 satisfies the equation

dϱ(r)
dr

=
dCm,L(r)

dr
. (3.14)

We now consider the ratio between the first maximum of Bm,L(ϱ) and ϱ0:

Bm,L(ϱ0)
ϱ0

=
Cm,L(r0)
ϱ0

– 1 .
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Equation (3.11) provides a way to express Cm,L(r0):

Cm,L(r0) =
r0
ν

dCm,L(r0)
dr

.

By using this last expression, as well as Eq. (3.14), the ratio between the first maximum of Bm,L(ϱ) and
ϱ0 can be written as

Bm,L(ϱ0)
ϱ0

=
1
ν

r0
ϱ0

dϱ(r0)
dr

– 1 ,

which is recast—by defining x ≡ (mr2)/(4σ 2), x0 ≡ (mr20 )/(4σ
2)—into

Bm,L(ϱ0)
ϱ0

=
2
ν

x0
ϱ0

dϱ(x0)
dx

– 1 .

The GWN gauge transformation for m > 1, namely ϱ = γ (m2 , x)/Γ
(m
2
)
, as well as the corresponding

derivative dγ (s,x)
dx = xs–1e–x , are inserted in the last expression, leading to

Bm,L(ϱ0)
ϱ0

=
2
νϱ0

xm/2
0 e–x0

Γ
(m
2
) – 1 .

Finally, the last expression can be inverted to get ν :

ν =
2

Bm,L(ϱ0) + ϱ0

xm/2
0 e–x0

Γ
(m
2
) . (3.15)

Equation (3.15) is obtained in the asymptotic limit N → ∞. By replacing the asymptotic parameters x0,
ϱ0, Bm,L(ϱ0) with the corresponding sample values, a sample estimate ν̂ of the correlation dimension is
provided. This estimator ν̂ is exploited to build embedding lattice maps as discussed in Sec. 3.2.3.
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4. Testing the new approach

This chapter is complementary to the previous one. In Chapter 3, a method for the identification of suit-
able embedding choices (m, L) to embed an input sequence was thoroughly described in its theoretical
aspects. This method, which, for the sake of brevity, is henceforth referred to as the “embedding lat-
tice method”, is here applied to different synthetic and experimental benchmark sequences. The goal of
these tests is to provide further insight on the kind of information delivered by the method, as well as on
its limitations. Throughout this chapter, the results of the application of the embedding lattice method
are displayed by means of diagrams of the kind shown in Fig. 3.7(a), which are henceforth referred to
as embedding lattice maps. These maps encapsulate the information provided by two statistical tests,
namely the compatibility of the input sequence—as a function of the embedding points (m, L)—with the
null hypotheses of a GWN source (H0;GWN) and of a chaotic, finite dimensional source (H0;CFD), as well
as the estimated ν̂ value provided by the estimator in Eq. (3.15). Besides the color-scale representation
within embedding lattice maps, values of ν̂ are also collected within histograms such as the one shown
in Fig. 3.7(b). These ν̂ histograms allow a prompt identification of ν̂ plateaus.

Section 4.1 presents the application of the embedding latticemethod to a surrogate Lorenz sequence,
which has the same Fourier components as the Lorenz sequence used to generate Fig. 3.7 despite being
stochastic: in this way, the dependence of the method outcomes on the spectrum of the input sequence
is discussed. Afterwards, the information provided by the embedding lattice method concerning the
adequacy of the sampling period used to record an input sequence is discussed by considering data
generated by a Ueda oscillator. Furthermore, a sequence generated by a Rössler system is analyzed:
the corresponding results highlight the difficulties in dealing with systems that are almost periodic.
In relation to this issue, a model to predict the estimated ν̂ in the case of sequences having a high
degree of (though not perfect) periodicity is provided in Sec. 4.2. As a last example, in Sec. 4.1 the
embedding lattice method is also applied to experimental data corresponding to the recorded intensity
of an NH3 laser. Finally, Sec. 4.3 provides a qualitative analysis of the effects of observational noise on
the embedding lattice maps.
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4.1 Application to synthetic and experimental sequences

As a first test, it is interesting to investigate what is the role of the Fourier spectrum in determin-
ing the shape of embedding lattice maps. In other words, the aim of the following first example is
to understand how much extra information do the map convey with respect to spectral analysis. To
this purpose, we consider the same Lorenz sequence of Chapter 3 and we compute a surrogate [179]
sequence out of it. Surrogate generation is a widespread tool to build sequences that preserve some
properties of a given original sequence, but are otherwise stochastic [180]. This possibility is quite
useful when null hypothesis distributions are unknown and significance has to be estimated by relying
only on the data themelves (for a recent review, see Ref. [181]). In this example, a surrogate sequence
is generated according to a “phase randomization” algorithm [180] that can be summarized as follows
(see diagram in Fig. 4.1). First, the discrete Fourier transform {ỹk} is computed—by means of a Fast

Figure 4.1 – Diagram of the “phase randomization” surrogate generation algorithm.

Fourier Transform (FFT) algorithm—out of the “original” input sequence {yn} of length ℓ. Thereupon,
the corresponding phases arg [ỹk] are replaced by i.i.d. random variates distributed uniformly within
[–π ,π ), while the amplitudes |ỹk | are unchanged. This procedure yields new Fourier components {ỹ′k}
having the same amplitude but randomized phases with respect to the original ones. Finally, the inverse
Fourier transform is evaluated out of {ỹ′k}. The resulting “surrogate” sequence {y

′
n} thus shares the same

power spectral density and—by virtue of the Wiener-Khinchin theorem—the same autocorrelation as
the original sequence {yn}. Nevertheless, because its Fourier phases are randomly assigned, the surro-
gate sequence is stochastic.
A comparison between the original Lorenz sequence and a phase-randomized surrogate allows test-
ing whether the method described in Chapter 3 can distinguish a chaotic source from a stochastic
one having the same spectrum. The embedding lattice map—obtained by means of the embedding lat-
tice method—for a surrogate Lorenz sequence is shown in Fig. 4.2. The map is definitely different from
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Figure 4.2 – Results of the analysis by means
of the embedding lattice method applied to a
surrogate Lorenz sequence. (a) Map over the
embedding lattice of the estimated ν̂ . Black
crosses (×) correspond to embedding points
compatible with the null hypothesis H0;GWN.
Black “+” marks denote embedding points
that are incompatible with the null hypothesis
H0;CFD. (b) Histogram of the number of embed-
ding pairs whose estimated correlation dimen-
sion ν̂ falls within 0.2-wide bins. Bin heights
and errorbars are sample mean and standard
deviation computed by repeating four times the
evaluation of the map in (a).

the one corresponding to the original Lorenz sequence and shown in Fig. 3.7. Most of the embedding
lattice points (L ≳ 5) are not compatible with theH0;CFD null hypothesis, i.e. the sequence embedded on
those (m, L) is not statistically compatible with a finite-dimensional system. In other words, the embed-
ding lattice method correctly identifies (for L ≳ 5) the surrogate Lorenz sequence as stochastic, despite
its power spectral density and its autocorrelation are identical to the same functions estimated out of
the original Lorenz sequence. This result highlights the capability of the embedding lattice method to
discriminate deterministic and stochastic sources beyond their similarity in autocorrelation (or power
spectrum), a crucial issue introduced in Chapter 1 through the comparison illustrated in Fig. 1.5.

The second example considered here relies on sequences generated by a Ueda oscillator. The aim
of this example is to show how the embedding lattice method can provide information on the adequacy
of the sampling period used to record a sequence. To this purpose, a “Ueda sequence” is synthesized by
sampling the y-coordinate of a Ueda oscillator1. A first sequence is tentatively sampled by setting the
integration time step—and thus the sampling period—to δ t = 0.5. The embedding lattice map provided
by the embedding latticemethod for this first sequence is shown in Fig. 4.3(a), while Fig. 4.3(b) shows the
corresponding histogram of ν̂ values. The ν̂ histogram exhibits a growing profile that leads to a sharp
peak at large dimension (ν̂ ≃ 5). This peak, however, corresponds to a plateau that is not well described

1See Chapter 1, Eq. (1.3) for the system’s equations. Here the system parameters are set to A = 7.5, k = 0.05.
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Figure 4.3 – Results of the analysis by means of the embedding lattice method applied to a Ueda sequence
sampled with δ t = 0.5 (a,b) and with δ t = 0.05 (c,d). (a) Embedding lattice map of estimated ν̂ . The black
solid line identifies the embedding points corresponding to the peak at ν̂ = 5.0±0.1 within the histogram in
(b). (b) Histogram of the number of embedding pairs whose estimated correlation dimension ν̂ falls within
0.2-wide bins. (c) Embedding lattice map of estimated ν̂ . The black solid line identifies the embedding
points corresponding to the peak at ν̂ = 2.5 ± 0.2 within the histogram in (d). The black, dash-dotted lines
correspond to the hyperbolae approximately bounding the plateau and defined by L = 70/(m – 1) and L =
150/(m–1). (d) Histogram of the number of embedding pairs whose estimated correlation dimension ν̂ falls
within 0.2-wide bins. In both maps (a,c), black “+” marks denote embedding points that are incompatible
with the null hypothesis H0;CFD. In both histograms (b,d), bin heights and errorbars are sample mean and
standard deviation computed by repeating four times the evaluation of the maps in (a,c).

by two bounding hyperbolae. The growing histogram shape is generated by two possible mechanisms:
on the one hand, the system might indeed have a large (≳ 5) dimensionality, but the currently used
embedding lattice is not wide enough to correctly resolve the plateau (i.e. the sequence is oversampled).
On the other hand, the opposite situation of an undersampled sequence might hold. In this case, the
irrelevance time is already overcome for small embedding windows (m – 1)L ≲ 10: over most of the
embedding lattice, the sequence then appears as noise-like and thus with a high dimensionality.
The first scenario is tackled by either widening the embedding lattice (a computationally demanding
approach) or by downsampling the sequence. Following the latter strategy leads to an embedding lattice
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map that is essentially the one of filtered noise. The first scenario is thus rejected.
The possibility of an undersampled sequence is instead dealt with by analyzing a Ueda sequence whose
sampling period is set to δ t = 0.05, i.e. one tenth of the previously used sampling period. This second
sequence, sampled 10 times faster, yields the embedding lattice map of Fig. 4.3(c) and the corresponding
ν̂ histogram of Fig. 4.3(d). In this case, the peak at ν̂ = 2.5 ± 0.2 corresponds to a ν̂ plateau within the
map of Fig. 4.3(c) that is bounded by two hyperbolae and thus complies with the irrelevance-redundance
argument discussed in Sec. 3.2.3. The two hyperbolae shown in Fig. 4.3(c) correspond to τR ≈ 3.5 and
τI ≈ 7.5. While this τI implies, for a sampling period equal to 0.05, an embedding window (m–1)L ≈ 150,
the undersampled sequence generated with δ t = 0.5 would have an irrelevance embedding window of
≈ 15, thus compressing the plateau towards the bottom-left corner of the map, as in Fig. 4.3(a). Finally,
these results are consistent with the known properties of the Ueda oscillator: the correlation dimension
ν̂ = 2.5 ± 0.2 corresponding to the peak in Fig. 4.3(d) is in agreement with the value reported in the
literature, i.e. ν = 2.68 ± 0.13 [14].

At this point, one might wonder whether increasing the sampling frequency could yield a (spu-
rious) plateau also in the case of filtered noise. Two filtered noise sequences are considered, each
synthesized by generating ℓ = 105 standard normal random variates and by piping the resulting white
noise sequences into a digital first-order low-pass filter with cut-off frequency f3dB. The first sequence
is assumed2 to be sampled with sampling frequency T–1 = 20f3dB and the second one with sampling
frequency 10T–1 = 200f3dB. The embedding lattice maps obtained by means of the embedding lat-
tice method and the related histograms are shown in Fig. 4.4(a,b) and Fig. 4.4(c,d) for the T–1 and the
10T–1 sequences, respectively. An increased sampling frequency yields an expansion of the region of
the embedding lattice containing embedding pairs that are not incompatible withH0;CFD. Accordingly,
the histogram of ν̂ gets more populated, but no significant peak appears. In conclusion, despite the
increased sampling frequency, maps of filtered noise do not provide any plateau, contrary to what
happens in Fig. 4.3(c) for the Ueda oscillator.

In order to further test the reliability of the embedding lattice method, we now consider a “standard”
Rössler sequence, namely a sequence synthesized by sampling the x-coordinate of a Rössler system3

integrated by setting the system’s parameters to a = 0.2, b = 0.2, c = 5.7 and with integration time step
δ t = 0.125. Moreover, a corresponding (phase-randomized) surrogate sequence is also generated. The
resulting embedding lattice maps, as well as the related ν̂ histograms, are displayed in Fig. 4.5. Despite
the existence of sharp peaks at ν̂ = 1.6 ± 0.1 and ν̂ = 1.9 ± 0.1 within the histograms of the original and
surrogate sequence, respectively, the corresponding plateaus within the maps are not bounded by hy-

2What really matters, here, is only the ratio between the sampling frequency and the filter cut-off frequency, and not their
absolute values.

3See Chapter 1, Eq. (1.4) for the system’s equations.
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Figure 4.4 – Results of the analysis by means of the embedding lattice method applied to a filtered noise
sequence sampled with sampling frequency T–1 (a,b) and 10T–1 (c,d), respectively. (a,c) Embedding lattice
maps of estimated ν̂ . In (a), black crosses (×) identify embedding points for which compatibility with
the GWN null hypothesis H0;GWN holds. In both maps, black “+” marks denote embedding points that
are incompatible with the null hypothesis H0;CFD. In both cases, no plateau region can be identified. (b,d)
Histogram of the number of embedding pairs whose estimated correlation dimension ν̂ falls within 0.2-wide
bins. In both histograms, bin heights and errorbars are sample mean and standard deviation computed by
repeating four times the evaluation of the maps in (a,c).

perbolae. On the contrary, the plateau shapes are “rectangular”, exhibiting an almost constant ν̂ values
independently of L. Consequently, the maps do not provide evidence of an underlying chaotic, finite-
dimensional system. While this result is expected for the surrogate sequence, in the case of the original
one the underlying system is known to be chaotic with correlation dimension ν̂ = 1.99 ± 0.08 [14]:
the embedding lattice method fails in correctly characterizing the source. This outcome reflects the
known difficulties in searching optimal embeddings for the “standard” Rössler attractor [132, 133], as
well as concerning the determination of its correlation dimension with conventional approaches [14].
These difficulties arise from the high degree of periodicity and long autocorrelation time of the tra-
jectories generated by the Rössler system. Because of these features, the “standard” Rössler sequence
can be modeled as a perturbed periodic signal, for which an approximated value of the estimated ν̂ is
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Figure 4.5 – Results of the analysis by means of the embedding lattice method applied to a Rössler “stan-
dard” sequence (a,b) and to a corresponding surrogate sequence (c,d). (a) Embedding lattice map of esti-
mated ν̂ . The black solid line identifies the embedding points corresponding to the peak at ν̂ = 1.55 ± 0.05
within the histogram in (b). (b) Histogram of the number of embedding pairs whose estimated correlation
dimension ν̂ falls within 0.05-wide bins. (c) Embedding lattice map of estimated ν̂ . The black solid line
identifies the embedding points corresponding to the peak at ν̂ = 1.9 ± 0.1 within the histogram in (d). (d)
Histogram of the number of embedding pairs whose estimated correlation dimension ν̂ falls within 0.05-
wide bins. In both maps (a,c), black “+” marks denote embedding points that are incompatible with the
null hypothesisH0;CFD. In both histograms (b,d), bin heights and errorbars are sample mean and standard
deviation computed by repeating four times the evaluation of the maps in (a,c).

computed in Sec. 4.2 below. The discussion reported in Sec. 4.2 also provides an explanation for the
rectangular plateau of Fig. 4.5.
The long autocorrelation time of the Rössler system can be reduced by tuning the parameters so as to
yield the so-called “funnel” attractor: a = 0.343, b = 1.82, c = 9.75, and the integration time step is set
to δ t = 0.05. A comparison between the “standard” and the “funnel” attractors is shown in Chapter 1,
Fig. 1.8. The funnel configuration provides a smoother spectrum and thus a shorter autocorrelation
time. The results of the embedding lattice method on the funnel Rössler sequence, again evaluated
both for the original sequence and for a surrogate one, are shown in Fig. 4.6. As for the standard
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Figure 4.6 – Results of the analysis by means of the embedding lattice method applied to a Rössler “funnel”
sequence (a,b) and to a corresponding surrogate sequence (c,d). (a) Embedding lattice map of estimated ν̂ .
The black solid line identifies the embedding points corresponding to the peak at ν̂ = 1.7 ± 0.2 within the
histogram in (b). The black, dash-dotted lines correspond to the hyperbolae approximately bounding the
plateau and defined by L = 25/(m–1) and L = 80/(m–1). (b) Histogram of the number of embedding pairs
whose estimated correlation dimension ν̂ falls within 0.1-wide bins. (c) Embedding lattice map of estimated
ν̂ . No plateau region can be identified. (d) Histogram of the number of embedding pairs whose estimated
correlation dimension ν̂ falls within 0.1-wide bins. In both maps (a,c), black “+” marks denote embedding
points that are incompatible with the null hypothesis H0;CFD. In both histograms (b,d), bin heights and
errorbars are sample mean and standard deviation computed by repeating four times the evaluation of the
maps in (a,c).

Rössler system, the results corresponding to the surrogate sequence (Fig. 4.6(c,d)) yield no evidence
of an underlying chaotic system. On the contrary, the embedding lattice map is qualitatively similar
to the one for filtered noise shown in Fig. 4.4(c): indeed, the surrogate sequence is stochastic, albeit
with a finite autocorrelation time. The original sequence, on the other hand, provides an embedding
lattice map that—as expected for a chaotic source—exhibits a plateau corresponding to a peak in the ν̂
histogram centered at ν̂ = 1.7 ± 0.2. The plateau turns out to be approximately bounded by two hy-
perbolae corresponding to a redundance time τR ≈ 1 and an irrelevance time τI ≈ 4. The embedding
lattice method thus correctly identifies the sequences as generated by a chaotic system.
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As a last example, the embedding lattice method is applied to an experimental benchmark sequence,
namely the intensity sequence recorded out of a 81.5 µm NH3 laser. The sequence is briefly introduced
in Chapter 1, and an excerpt of the sequence is shown in Fig. 1.9. The embedding lattice map result-
ing from the application of the embedding lattice method is shown in Fig. 4.7(a); the histogram of ν̂ is
displayed in Fig. 4.7(b). A peak at ν̂ = 2.0 ± 0.2 within the histogram of Fig. 4.7(b)—corresponding to
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Figure 4.7 – Results of the analysis by means
of the embedding lattice method applied to
an experimentally recorded laser intensity se-
quence. (a) Embedding lattice map of esti-
mated ν̂ . The black solid line identifies the
embedding points corresponding to the peak at
ν̂ = 2.0 ± 0.2 within the histogram in (b). The
black, dash-dotted lines correspond to the hy-
perbolae approximately bounding the plateau
and defined by L = 10/(m–1) and L = 40/(m–
1). Black “+” marks denote embedding points
that are incompatible with the null hypothesis
H0;CFD. (b) Histogram of the number of embed-
ding pairs whose estimated correlation dimen-
sion ν̂ falls within 0.2-wide bins. Bin heights
and errorbars are sample mean and standard
deviation computed by repeating four times the
evaluation of the map in (a).

a plateau approximately bounded by two hyperbolae—hints at an underlying chaotic source. Indeed,
the ν̂ estimate of the correlation dimension is in agreement with the value provided in the literature
of ν ≃ 2.0 ÷ 2.3 [40]. The two hyperbolae reported in the map of Fig. 4.7(a) correspond to estimated
redundance and irrelevance times of τR/T ≈ 10 = 0.4 µs and τI /T ≈ 40 = 1.6 µs, respectively.
To further check these results, the MLE of the laser intensity sequence was estimated on the 72 em-
bedding pairs (m, L) that belong to the plateau. The divergence rate method (see Sec. 2.5) provides a
nonzero value of the MLE for 48 of these embedding pairs. The average over these 48 evaluations pro-
vides an estimated MLE λ̂ = (0.025 ± 0.007) T–1 = (0.63 ± 0.18)MHz; this estimate is in agreement with
the value obtained by Kantz & Schreiber [5].
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4.2 Estimated correlation dimension in the case of noisy, periodic sig-
nals

The aim of this Section is to provide insight on the results shown in Fig. 4.5 for the “standard” Rössler
sequence, which is characterized, to a first approximation, by an almost-periodic behaviour. To this
purpose, the value taken on by the correlation dimension estimator of Eq. (3.15) in the case of periodic
signals contaminated by observational noise is investigated. The “periodic signal + noise” model con-
sidered here is a proxy for a quasiperiodic signal: periodicity fluctuations are generated, in this model,
by amplitude fluctuations. The sequence {yn} considered here is thus

yn = sin(φ0 n) +
εn√
2
, (4.1)

where the noise terms εn contaminating the signal are i.i.d. normal random variates with vanishing
mean and standard deviation equal to ε . The factor

√
2 is introduced so as to provide a signal-to-noise

ratio equal to ε–1.

Distances between embedding vectors built out of the sequence in Eq. (4.1) embedded with param-
eters m, L are given, according to Eq. (3.1), by

d2i,j =
1
m

m–1∑
k=0

{
2 cos

[
φ0

(
i + j
2

+ kL
)]

sin
[
φ0

i – j
2

]
+
εi+kL – εj+kL√

2

}2
.

By expanding the squared parenthesis {. . . }2, the expression for d2i,j is recast into a sum of three terms:

d2i,j =
4
m

sin2
[
φ0

i – j
2

] m–1∑
k=0

cos2
[
φ0

(
i + j
2

+ kL
)]

+

+
2
√
2

m
sin

[
φ0

i – j
2

] m–1∑
k=0

cos
[
φ0

(
i + j
2

+ kL
)] (

εi+kL – εj+kL
)
+

+
1
2m

m–1∑
k=0

(
εi+kL – εj+kL

)2 .

Let us now consider the three terms separately. The first term is henceforth referred to as D1. Because
the indexes i, j are uniformly distributed, the sum of squared cosine elements is, if m is large, approxi-
mately equal tom/2. Small scale contributions to the correlation integral, then, are given by the sin2( · )
factor when its argument is close to an integer multiple of π . In this approximation, D1 ≈ 2 sin2(φ), and
thus φ ≈ arcsin

(√
D1/2

)
: by assuming again a uniform distribution of φ, the cumulative distribution of
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D1 is evaluated through a change of variable and is given by

CD1 (D1) =
2
π
arcsin

(√
D1

2

)
.

The factor 2/π ensures normalization (D1 is bounded within [0, 2]).
The noise elements εn are supposed to be normally distributed according to εn ∼ N (0, ε2). Consequently,
because the variances of sin( · ) and cos( · ) factors are equal to 1/2, the second termmaking up d2i,j , which
is referred to as D2, is approximately normally distributed according to

D2 ∼ N
(
0,
4ε2

m

)
.

Finally, the third term D3 is a χ 2 random variable with m degrees of freedom:

D3 ∼
ε2

m
χ 2m .

By taking the limit m ≫ 1, the term D2 becomes negligible due to the 1/m factor in its variance.
In the same limit of large m, the expected value of χ 2m/m is approximately unitary, the corresponding
variance vanishes, and thus D3 tends to a constant equal to ε2. Therefore, if m ≫ 1, the squared
distances d2i,j can be written as

d2i,j ≃ D1 + ε2 .

By applying again a change of variable, the corresponding cumulative distribution is finally given by

C(r) =
2
π
arcsin

(√
r2 – ε2

2

)
.

According to the argument presented in Sec. 3.3, the correlation dimension ν of the sequence yn is
estimated by

ν =
d log[C(r)]
d log(r)

����
r=r0

=
d log

(
arcsin

√
r2–ε2
2

)
d log(r)

��������
r=r0

=

=
r20√

r20 – ε2
√
2 + ε2 – r20 arcsin

√
r20–ε2
2

. (4.2)

Here, as in Sec. 3.3, r0 is the value of r such that ϱ0 = ϱ(r0) is the position of the first maximum of the
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corresponding correlation bridge (see Eq. (3.14)). The value of r0 can be estimated by considering the
gauge transformation ϱ(r) given by Eq. (3.4) and corresponding to the cumulative distribution of a χ 2m
random variable. In the m ≫ 1 limit, by virtue of the central limit theorem, this distribution can be
approximated as a normal distribution:

ϱ(r) =
1

Γ
(m
2
) γ (

m
2
,
mr2

4σ 2

)
≈ Φ

(
mr2
2σ 2 –m
√
2m

)
= Φ

(
r2 – 2σ 2

2σ 2
√
2/m

)
,

where the function Φ(z) is the (cumulative) standard normal distribution. Because the distribution is
significantly different from zero only for r ≃

√
2σ , the replacement r2 – 2σ 2 ≈ 2

√
2σ (r –

√
2σ ) is carried

out, leading to

ϱ(r) ≈ Φ

(
r –

√
2σ

σ /
√
m

)
.

In the m ≫ 1 limit, the last expression converges to a Heaviside theta centered in
√
2σ . The corre-

sponding derivative is a Dirac delta centered in
√
2σ . Consequently, r0, namely the root of Eq. (3.14), is

equal to
√
2σ regardless of the underlying correlation integral Cm,L(r).

The value of σ , in the case of the “periodic signal + noise” model of Eq. (4.1), is straightforwardly
given by σ 2 = (1 + ε2)/2. Therefore,

r0 =
√
1 + ε2 ,

and Eq. (4.2) provides the corresponding correlation dimension:

ν =
4
π
(1 + ε2) . (4.3)

This last expression holds for m ≫ 1. In this limit, it provides the height of a plateau within the
embedding lattice that is expected to be “rectangular”, i.e. corresponding to a constant ν̂ independently
of L.
Finally, it is worth remarking that, by virtue of the central limit theorem, the result of Eq. (4.3) can be
extended to noise characterized by any distribution—not necessarily Gaussian—having vanishing mean
and standard deviation equal to ε .

The validity of Eq. (4.3) is numerically tested by generating a synthetic sequence according to
Eq. (4.1). In Fig. 4.8, evaluations of ν by means of the embedding lattice method applied on the syn-
thetic sequence are shown as a function of the noise standard deviation ε . The analytical expression
of Eq. (4.3) is also displayed: the numerically estimated values are in good agreement with the ana-
lytical expression, thus supporting the validity of the model. In addition, a fit with a quadratic func-
tion ν (ε) = (4/π )(a + bε2) is carried out and shown for comparison. The fit parameters turn out to be
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a = 0.985 ± 0.006 and b = 1.02 ± 0.03, again in agreement with Eq. (4.3).
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Estimates
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Figure 4.8 – Estimation of ν out of a sinuoidal signal
contaminated by Gaussian white noise as a function
of the noise standard deviation ε . Black dots and the
related errorbars are numerical estimates obtained by
analyzing a synthetic sequence described by Eq. (4.1).
Each data point is the result of the average over 11
evaluations of ν̂ obtained, according to Eq. (3.15), by
setting m = 5000 and L = 5 . . . 15. Errorbars corre-
spond to the standard deviation of the 11 evaluations.
The red, solid line shows to the analytical expression
of Eq. (4.3). The blue, dashed line corresponds to a fit
as described in the main text.

The observation of a rectangular (i.e. L-independent) plateau for m ≫ 1 for the Rössler system, as
shown in Fig. 4.5, can now be interpreted by means of the model discussed in this Section. According
to this model, the rectangular plateau is typical of quasiperiodic systems, here simulated as periodic
signals with added noise. Indeed, the Rössler sequence corresponding to the results of Fig. 4.5 exhibits
a spectrum that contains a sharp line at frequency f0 = 0.02T–1, where T is the sampling period, super-
imposed to a broader background. The periodic oscillation corresponding to f0 is taken as the “signal”,
while the background is considered as a “noise” perturbation4. The FFT amplitude is shown in Fig. 4.9.
The “noise” standard deviation ε is estimated as follows. First, the squared FFT amplitudes falling
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| (
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u
.)

f (T
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)

"Noise"
"Signal"

Figure 4.9 – FFT amplitude of the “standard” Rössler
sequence analyzed in Sec. 4.1. Frequencies are mea-
sured as multiples of the inverse sampling period T–1.
Following the almost-periodic model presented in this
Section, the sharp spectral line at f0 ≈ 0.02 T–1 is as-
sumed to be the periodic “signal”, while the remaining
broadband spectrum is considered as the “noise” per-
turbation.

in the “noise” and “signal” categories, respectively, are summed up. Thereupon, ε is evaluated as the
square root of the ratio between the two. The resulting ε turns out to be ε ≃ 0.47. According to the
model discussed in this Section, i.e. following Eq. (4.3), this value of ε corresponds to an “effective”

4It is worth remarking that the sequence is purely deterministic; however, according to the almost-periodic model dis-
cussed in this Section, the spectrum of the Rössler sequence is interpreted as the sum of a periodic oscillation and a noise
contribution.



70 Effect of observational noise: a qalitative analysis

correlation dimension ν ≃ 1.55, which is in good agreement with the plateau value obtained for the
standard Rössler sequence and shown in Fig. 4.5(a,b).

4.3 Effect of observational noise: a qualitative analysis

In this Section, the effect of observational noise on the embedding lattice maps obtained bymeans of the
embedding lattice method is qualitatively investigated. As a reference, the Lorenz sequence analyzed in
Chapter 3 is considered. The corresponding “noise-free” embedding lattice map is shown in Fig. 3.7(a).
The sequence is contaminated with observational GWN having progressively higher power, and thus
yielding progressively smaller signal-to-noise ratios (SNR). More precisely, the input sequences {sn} are
given by

sn = xn + εn ,

where xn are the elements of a Lorenz sequence5, while the noise elements εn are i.i.d. random variates
distributed according to

εn ∼ N
(
0,σ 2

ε
)
.

Given the standard deviation σx of the Lorenz sequence {xn}, the SNR is then defined (in decibels) as

SNR = 20 log10

(
σx
σε

)
[dB] .

The sequences considered here have SNR equal to 40 dB, 20 dB, 15 dB, 6 dB, 0 dB, –6 dB. The corre-
sponding embedding lattice maps, the corresponding ν̂ histograms, as well as an excerpt of the {sn}
sequences, are shown in Fig. 4.10.

Figure 4.10 – (Figure is displayed in two dedicated pages below). Embedding lattice maps, ν̂ histograms,
and excerpts of the input {sn} sequences corresponding to a Lorenz sequence contaminated by observational
GWN. Within maps, black crosses (×) correspond to embedding points compatible with the null hypothesis
H0;GWN; black “+” marks denote embedding points that are incompatible with the null hypothesis H0;CFD.
Histograms are built with bin width 0.2; bin heights and errorbars are sample mean and standard deviation
computed by repeating four times the evaluation of the respective maps. (a) SNR = 40 dB. (b) SNR = 20 dB.
(c) SNR = 15 dB. In the maps of (a,b,c), black solid lines enclose the embedding regions corresponding to
the peak within the corresponding histograms. The histogram peak provides ν̂ = 2.0 ± 0.2 in (a) and (b),
ν̂ = 2.2 ± 0.2 in (c). Within the maps in (a,b,c), the black dash-dotted lines correspond to the hyperbolae
approximately bounding the plateau and defined by L = 20/(m – 1) and L = 80/(m – 1). (d) SNR = 6 dB. (e)
SNR = 0 dB. (f) SNR = –6 dB. For the sequences in (d,e,f), no plateau can be identified.

5The sequence corresponds to the x-coordinate of a Lorenz system. See Chapter 1, Eq. (1.2) for the system’s equations;
here parameters are set to σ = 10, r = 28, b = 8/3, and the integration time step is δ t = 0.03, as in Chapter 3.
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Figure 4.10 – Full caption reported in main text. (a) SNR = 40 dB. (b) SNR = 20 dB. (c) SNR = 15 dB.
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Figure 4.10 – Full caption reported in main text. (d) SNR = 6 dB. (e) SNR = 0 dB. (f) SNR = –6 dB.
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The noisy Lorenz sequences having SNR≳ 15 dB provide maps that are essentially unchanged with
respect to the noiseless case (Fig. 3.7). These maps exhibit a ν̂ plateau that is approximately bounded
by two hyperbolae and that corresponds to ν̂ ∼ 2. The embedding lattice method is thus resilient down
to a SNR given by SNR ≈ 15 dB. The presence of observational noise has the expected effect of slightly
increasing the estimated dimension: the peak in the ν̂ histograms “drifts”, for decreasing SNR, towards
higher ν̂ values. However, the predominant effect of observational noise on the maps is the reduction in
the number of embedding points that are compatible with the null hypothesisH0;CFD of a chaotic, finite
dimensional system. When the SNR is reduced to ≲ 6 dB, most embedding points are deemed to be
incompatible with this null hypothesis (black “+” marks within the maps): the embedding lattice maps
resembles the one obtained for filtered noise (see Fig. 4.4). In other words, for sufficiently high noise
power, the embedding lattice method excludes most embedding points because the corresponding state
space reconstruction is deemed to be infinite dimensional (i.e. noisy, though not white). Finally, when
the power associated to the noisy contribution becomes too large (SNR < 0 dB, Fig. 4.10(f)), the majority
of embedding points yields statistical compatibility with a GWN sequence, as one might expect6.

6This compatibility exactly holds for any (m, L) in the limit SNR → –∞.
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5. Improved estimator for correlation
dimension

A relevant task in nonlinear time series analysis is the discrimination of chaos from noise. As shown
in an example within Chapter 4, the method discussed in Chapter 3 is a viable tool to carry out this
task. Further insights into the crucial issue of distinguishing stochastic sources from deterministic ones
are provided by the analysis of the asymptotic behaviour of the so-called time-dependent divergence

exponent. As discussed in this chapter, the results of this analysis are two-fold: on the one hand, the
asymptotic behaviour of the divergence exponent indeed discriminates between stochastic sources and
chaotic ones; on the other hand, in the case of chaotic sequences, the analysis also yields a precise
estimation of the correlation dimension. Therefore, the investigation presented in this chapter provides
an alternative way to estimate ν̂ , thus possibly improving the third stage of the method described in
Chapter 3.

The time-dependent divergence exponent is an embedding-dependent metric. This metric is com-
monly used in the so-called divergence rate method to estimate the maximum Lyapunov exponent out
of a scalar sequence, as introduced in Sec. 2.5. To this purpose, one processes the divergence exponent
in the “short time” region where, in the case of a chaotic source, it exhibits a linear growth. However,
relevant information on the source of the sequence under investigation can be extracted from the—
usually overlooked—asymptotic behaviour of the divergence exponent. More in detail, the dependence
of the asymptotic value of this metric on one of the parameters used in its estimation, namely the “start-
ing percentile” p, is characteristic of the class of systems that generate the input sequence [175]. Two
classes of systems are considered here, namely GWN and chaotic sources: in both cases, approximate
expressions for the dependence of the asymptotic value of the divergence exponent on the starting
percentile can be derived. Therefore, the analysis of this dependence provides a marker to identify
GWN or chaotic sequences. Furthermore, in the case of a chaotic source, this dependence is linear in
log p, and the corresponding slope is determined by the correlation dimension of the underlying sys-
tem. By virtue of this property, the assessment of the asymptotic value of the divergence exponent out
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of a scalar sequence makes up an alternative tool to precisely estimate the correlation dimension of a
system.

Section 5.1 introduces the definition of the divergence exponent and its asymptotic behaviour, as
well as the procedure used in the present work to estimate it out of a scalar sequence. The case of
a GWN sequence is presented in Sec. 5.2, along with examples concerning other kinds of noise. Sec-
tion 5.3 deals with the case of a chaotic source, introducing the novel estimator of correlation dimen-
sion. Thereupon, the application to benchmark synthetic and experimental sequences is illustrated in
Sec. 5.4. The improved estimator of correlation dimension is mapped, in Sec. 5.5, on the embedding lat-
tice as an alternative implementation of the third stage of the method for the identification of suitable
embedding parameters. The improved estimator yields results that are compatible–though superior in
precision—with those obtained with the estimator stemming from the gauge transformation of corre-
lation integrals.

5.1 Time-dependent divergence exponent and its plateau

The input to the following discussion is, as usual, a scalar sequence {yn}. The divergence rate exponent is
a state space metric. Therefore, given a choice of embedding parametersm, L, a sequence of embedding
vectors Yn = (yn, yn+L, . . . , yn+(m–1)L) is built out of the input scalar sequence. We start by considering
a pair of embedding vectors, namely Yi,Yj , and the corresponding Euclidean distance ζi,j in the m-
dimensional space, ζi,j ≡ ∥Yi,Yj ∥. The two vectors are chosen such that their time separation |i – j|
is much larger than the autocorrelation time of the sequence (see below for a formal criterion). After
k time steps, the two vectors evolve into Yi+k ,Yj+k and the corresponding distance becomes ζi+k,j+k .
As introduced in Sec. 2.5, the divergence rate method relies on the estimation of the time-dependent
divergence exponent Λ(k; r) [172], namely the expected value defined by

Λ(k; r) ≡ E

[
log

(
ζi+k,j+k

ζi,j

)����
ζi,j⩽r

]
.

The parameter r , or shell radius, defines a maximum distance such that only initially close vectors
(ζi,j ⩽ r) are included in the evaluation. Typically, r is defined as follows [133]: given the distribution
fζ (ζ ) of Euclidean distances between embedding vectors, a starting percentile p (p ∈ [0, 1]) defines a
maximum distance r(p) according to the implicit relation

ˆ r(p)

0
fζ (ζ )dζ = p . (5.1)
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It is straightforward to see that p → 1 ⇐⇒ r → ∞. By explicitly taking into account the dependence
of r on p, the time-dependent divergence exponent Λ(k; r) is rewritten as Λ(k; p).
For chaotic systems, Λ(k; p) grows linearly with k as a consequence of the exponential divergence of
orbits. As described in Sec. 2.5, the slope of this linear growth provides an estimate of the maximum
Lyapunov exponent, which is the goal of the divergence rate method. On the other hand, for large
enough k, the growth stops and Λ(k; p) saturates to an asymptotic “plateau” Λpl defined as

Λpl(p) ≡ lim
k→∞

Λk;p , (5.2)

where the dependence on p is retained. Indeed, the method discussed in this chapter relies on the
dependence of Λpl on p to provide information on the dynamical system generating the input sequence.
Below, Sec. 5.2 and Sec. 5.3 provide a derivation of this dependence in the case of GWN and in the case
of a chaotic source, respectively.

So far, the discussion was carried out by assuming an infinitely long sequence. The assessment of
the plateau Λpl out of a finite sequence containing ℓ elements is carried out according to the following
procedure [133, 175]. An embedding pair (m, L) and a starting percentile p are given. First, the sequence
of embedding vectors Yn is built out of the scalar sequence yn according to (m, L). Then, five steps are
implemented.

1) The shell radius r̂(p) for the given starting percentile p has to be estimated. To this purpose, a
sample distribution of Euclidean distances is built by randomly picking η pairs of embedding vectors
and thereupon collecting the corresponding η Euclidean distances. The distance value that ranks—
in ascending order—at the ρ = pη position is selected as r̂(p). Vice versa, one can first fix the
desired rank ρ, randomly extract ρ/p distances, and finally determine r̂(p) as the distance value
corresponding to the rank ρ. In the following, this second procedure is used.

2) Given the delay k ∈ N+, a setS ofN pairs of embedding vectors Yi,Yj is randomly extracted without
replacement. Pairs have to comply with three requirements:

• because the number of available pairs is ∼ ℓ2/2, the number of selected pairs has to be N ≪ ℓ2;

• temporally correlated pairs have to be excluded from the selection (see also Sec. 2.5): the in-
dexes i, j have to comply with |i – j| ⩾ c0, where c0 is equal to the second zero of the autocor-
relation function multiplied times m(L + 1) [133, 175];

• vectors within a pair have to be closer than the shell radius r̂ , i.e. ∥Yi – Yj ∥ ⩽ r̂(p).

3) An estimate of the time-dependent divergence exponent Λ̂(k) is assessed upon the set S by taking
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the following sample mean:

Λ̂(k) ≡
⟨
log

( ∥Yi+k – Yj+k ∥
∥Yi – Yj ∥

)⟩
. (5.3)

An example of the assessment of Λ̂(k) is shown in Chapter 2, Fig. 2.6. The evaluation of Λ̂(k) is
carried out over values of k that are multiples of a delay δk, which is usually set to unity.

4) The region where Λ̂(k) reaches its saturation (plateau) value is defined as the set K of k values
satisfying k ⩾ kmin. A sample plateau value Λ̂pl;S is computed by fitting a straight line on the points
(k, Λ̂(k)) for which k ∈ K :

Λ̂pl;S ≡ s2Λpl;S

∑
k∈K

Λ̂(k)
s2Λ

, (5.4a)

s2Λpl;S ≡
(∑
k∈K

1
s2Λ

)–1
. (5.4b)

In the last expressions, sΛ is the sample standard deviation compute over theN elements contributing
to the sample mean of Eq. (5.3).
So far, the setK was assumed to belong to the plateau. The appropriateness of this assumption—i.e.
the quality of the straight line fit defined by Eq. (5.4)—is checked by relying on a χ 2 test. The number
of degrees of freedom is Q–1, where Q is the number of k values within the rangeK , and the sample
statistic for the test is

χ̂ 2 =

(∑
k∈K

Λ̂2(k)
s2Λ

)
–
Λ̂2
pl;S

s2pl;S
.

Given a significance level α , if χ̂ 2 overcomes the χ 2Q–1 critical value corresponding to α , then the
null hypothesis of K belonging to the plateau is rejected.

5) The major source of error on Λ̂pl;S is not given by the statistical fluctuations of Λ̂(k)—accounted
for by s2Λpl;S

—but rather by the bias in Λ̂(k) due to the uncertainty in the assessment of r̂(p). This
issue is shown in Fig. 5.1: independent evaluations of Λ̂(k), each relying on an independent assess-
ment of r̂(p), provide systematically lower (or higher) values of Λ̂(k), and thus mutually inconsistent
estimated plateaus Λ̂pl;S . To overcome this isseu, rather than generating a single set S, the steps
1)–4) have to be repeated M times, each time independently generating a set Sh and evaluating the
corresponding plateau according to Eq. (5.4). The sample mean and standard deviation over these
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M evaluations yield the “final” value of the plateau and its uncertainty:

Λ̂pl ≡ 1
M

M∑
h=1

Λ̂pl;Sh , (5.5a)

s2Λpl
≡ 1

M – 1

M∑
h=1

(
Λ̂pl;Sh – Λ̂pl

)2
. (5.5b)

 4.1

 4.6

 300  350  400  450  500

Λ(k)

k

Figure 5.1 – The variability of Λ̂(k) due to statistical
fluctuations and due to the uncertainty in the assessment
of r̂(p) are compared. Data points correspond to five in-
dependent evaluations (each one plotted with a differen
color) of Λ̂(k), carried out on k ∈ [300, 500]. Each eval-
uation is obtained by setting p = 10–4 and by indepen-
dently estimating r̂(p). For the sake of clarity, errorbars
are reported only once every 20 data points. Horizontal
black lines correspond to the sample plateau value Λ̂pl;S
according to Eq. (5.4)a evaluated on each independent set
of data points. The related uncertainty sΛpl;S is evaluated
according to Eq. (5.4)b and is shown by means of an er-
rorbar just beside the corresponding horizontal line. Be-
cause kmin ≈ 420, these evaluations are carried out over
the range k ∈ K = [450, 500]. The large black square dot
and the related errorbar correspond to the sample mean
and standard deviation (namely Eq. (5.5)) over ten eval-
uations of Λ̂pl;S , including the five shown here. For all
these ten evaluations, the χ̂ 2 sample statistic is compati-
ble with the null hypothesis ofK belonging to a plateau.

Before analyzing the cases of a noisy or a chaotic source, and for reasons that will become clear
later, the following function is defined:

I (P) ≡ E
[
log

(
ζi,j

)
|ζi,j⩽r(p)

]
=
1
p

ˆ r(p)

0
log(ζ )fζ (ζ )dζ , (5.6)

where the shell radius r(p) is defined by the implicit expression of Eq. (5.1). Let us now assume that
the dynamical system that generates the sequence under investigation is ergodic or, alternatively, that
sequence elements taken at a sufficiently large time separation are uncorrelated. If either of these
conditions holds, in the k → ∞ limit, the distribution of the “delayed” distances ζi+k,j+k coincides with
fζ (ζ ) regardless of p, and thus regardless of the initial distance ζi,j . Consequently, if k → ∞, the expected
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value of log
(
ζi+k,j+k

)
turns out to be

lim
k→∞

E
[
log

(
ζi+k,j+k

)
|ζi,j⩽r(p)

]
=
ˆ ∞

0
log(ζ )fζ (ζ )dζ = I (1) .

This last expression, together with Eq. (5.6), allows us to write the plateau Λpl(p), defined in Eq. (5.2),
as the following difference:

Λpl(p) = I (1) – I (p) . (5.7)

As one might expect, Λpl(1) = 0. The smaller p, the smaller is the contribution of I (p), and thus the
larger is the value attained by the plateau.

5.2 Plateau behaviour in the case of noise sources

The first kind of sequence that we consider is GWN: sequence elements are i.i.d. random variates dis-
tributed as yn ∼ N (µ,σ 2). Because sequence elements are independent, the plateau starts exactly at
kmin = (m–1)L+1: for any value of k ⩾ kmin, the divergence exponent Λ(k) is equal to its plateau value
Λpl. The independence of yi, yj for any i , j also implies that the generic distance ζ is given by

ζ =

[
m–1∑
h=0

(
yi+hL – yj+hL

)2] 1
2

=
(
2σ 2x

) 1
2 , (5.8)

where σ 2 is the variance of the sequence elements {yn}, the factor 2 is due to the difference between two
normal random variables, and x is itself a random variable distributed according to a χ 2 distribution
with m degrees of freedom. The corresponding probability density function is

fχ 2
m
(x) =

1
2

m
2 Γ

(m
2
) e– x

2 x
m
2 –1 .

Because the divergence exponent depends on the ratio between two distances, the variance σ 2 is
immaterial. Therefore, without loss of generality, we can set σ 2 = 1/4 so that ζ =

√
x/2. By defining

t ≡ x/2 = ζ 2, θ ≡ r2, and s ≡ m/2, the implicit expression relating the shell radius to the starting
percentile, i.e. Eq. (5.1), becomes

p =
1

Γ(s)

ˆ θ

0
e–tts–1dt =

γ (s,θ )
Γ(s)

, (5.9)

where γ (s,θ ) is the lower incomplete Gamma function. Inverting Eq. (5.9) would provide an expression
for θ as a function of p and m.
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The change of variables defined above transforms the integral I (p) of Eq. (5.6) into the following one:

I (p) =
1

2pΓ(s)

ˆ θ

0
e–tts–1 log(t)dt =

1
2γ (s,θ )

∂γ (s,θ )
∂s

.

The limit p → 1, which corresponds to a diverging shell radius r → ∞, also gives θ → ∞. In this limit,

lim
θ→∞

γ (s,θ ) = Γ(s) ,

and therefore
I (1) =

1
2
ψ (s) ,

whereψ (s) = d
ds log[Γ(s)] is the digamma function. By joining together the last expressions for I (p) and

I (1), the plateau value for a GWN sequence Λpl;GWN(p; s) is written as

Λpl;GWN(p; s) =
1
2

{
ψ (s) –

∂

∂s
log [γ (s,θ )]

}
.

It is worth recalling that r , and thus θ , is a function of p and s; by virtue of Eq. (5.9), θ , p, and s satisfy
the equation

γ (s,θ ) = pΓ(s) .

In order to provide an explicit expression ofΛpl;GWN(p; s) as a function of p, the relationshipγ (s,θ ) =
pΓ(s) has to be inverted. However, this inversion has no analytical solution. An approximated solution,
as well as its throughout derivation, is provided in Ref. [175]. The plateau in the case of GWN sequences
turns out to be given by

Λpl;GWN(p; s) = Λ′ –
1
2s

log(p) + δΛ(p; s) , (5.10)

where Λ′ is a constant term and δΛ(p; s) is a correction to the linear behaviour in log(p), which vanishes
when p → 0 (i.e. when θ → 0). The constant term Λ′ is defined as

Λ′ =
1
2
ψ (s) +

1
2s

{1 – log [Γ(s + 1)]} .

On the other hand, by defining P ≡ [pΓ(s + 1)]1/s, the correction term δΛ is approximately given by

δΛ(p; s) = –
P
2

s
(s + 1)2

–
P2

4
s(2s + 3)

(s + 1)2(s + 2)2
–
P3

12
s(9s2 + 34s + 29)

(s + 1)3(s + 2)(s + 3)2
+ O(P4) . (5.11)

This third-order approximation of the correction term δΛ holds for P ≲ 1, namely for starting per-
centiles p ≲ Γ–1(m2 + 1).
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To test the results presented so far, the plateau Λ̂pl is estimated out of a GWN sequence (length ℓ =
105 points) for different starting percentile p. The estimation is carried out according to the procedure
described in Sec. 5.1 and by setting the related parameters to N = 50, M = 10, k ∈ [20, 40], δk = 1.
Two sets of estimated Λ̂pl(p) are shown in Fig. 5.2, corresponding to the embedding choices (5, 1) and
(10, 1). Moreover, the exact (numerically-evaluated) expression of Eq. (5.10), as well as its approximation

 0

 1

 2

 3

10
−4

10
−3

10
−2

10
−1 1

(a)

Λ
p
l(
k
)

p

m = 5
m = 10

−0.1

 0

 0.1

(b)

∆Λ
p
l(
k
)

−0.1

 0

 0.1

10
−4

10
−3

10
−2

10
−1 1

(c)

∆Λ
p
l(
k
)

p

Figure 5.2 – (a) Plateau value Λpl as a function of the starting percentile p for a GWN sequence. The
embedding choices (5, 1) and (10, 1) are shown. Data points correspond to numerical evaluations of Λ̂pl
as described in Sec. 5.1. Solid lines correspond to the exact expression of Λpl;GWN of Eq. (5.10) and numer-
ically calculated for m = 5 and m = 10, respectively. Dash-dotted and dashed lines correspond to the
approximated expressions of Λpl;GWN provided by the linear approximation (Λpl;GWN ≃ Λ′ – 1

m log(p)) and
the third-order approximation obtained by inserting Eq. (5.11) in Eq. (5.10), respectively. The cases m = 5
(m = 10) is plotted in purple (orange). The third-order approximation (dashed lines) is, in both cases, al-
most undistinguishable from the exact expression (solid lines). (b) Deviations ∆Λpl of data points and of
the third-order approximation (dashed line) from the exact expression of Λpl;GWN given by Eq. (5.10) in the
case m = 5. (c) Same as (b), but in the case m = 10.

relying on Eq. (5.11), are displayed as solid and dashed lines. The discrepancy between the exact and
the approximated curve is shown in Fig. 5.2(b): the approximation is good up to p ≳ 0.1. Finally,
Fig. 5.2(a) also shows the zeroth-order approximationΛpl;GWN(p; s) ≃ Λ′ – 1

m log(p): this approximation,
corresponding to δΛ ≃ 0, fails for p ≳ 10–2.

We now briefly discuss the behaviour of the plateau Λpl in the case of noise sources different from
GWN. First, we consider noise sources that arewhite but not Gaussian. By virtue of the central limit the-
orem, ifm is large enough, the distribution of the sequence elements {yn} does not matter in determining
the plateau value: the distances defined by Eq. (5.8) are approximately normally distributed, regardless
of the distribution of {yn}. Therefore, the results presented so far hold for white noise with any distri-
bution, not only Gaussian. Figure 5.3 shows the same analysis of Fig. 5.2(a) for uniform white noise,
i.e. a sequence of i.i.d. realizations of a random variate distributed uniformly between [0, 1] (ℓ = 105).
The sequence is embedded with (m, L) = (5, 1). Again, data points are estimated according to Sec. 5.1;
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Figure 5.3 – Plateau value Λpl as a function of the start-
ing percentile p for a uniform white noise sequence em-
bedded with (m, L) = (5, 1). Data points correspond to
numerical evaluations of Λ̂pl as described in Sec. 5.1. The
solid line corresponds to the exact expression of Λpl;GWN
of Eq. (5.10) and numerically calculated for m = 5. The
dash-dotted and dashed lines correspond to the approxi-
mated expressions of Λpl;GWN provided by the linear ap-
proximation (Λpl;GWN ≃ Λ′ – 1

m log(p)) and the third-
order approximation obtained by inserting Eq. (5.11) in
Eq. (5.10), respectively, with m set to 5. The third-order
approximation (dashed line) is almost undistinguishable
from the exact expression (solid line).

parameter settings are the same as in the case of GWN. The plot turns out to be indistinguishable from
the one in Fig. 5.2(a) for a GWN sequence embedded with the same embedding parameters: data points
are well described by the numerically-evaluated curve given by Eq. (5.10), as well as by its third-order
approximation provided by Eq. (5.11).

The second non-GWN source considered is filtered noise. Two sequences (ℓ = 105) are generated by
piping i.i.d. normal random variates through a first-order digital low-pass filter with cut-off frequency
f3dB = 0.1 T–1 and f3dB = 0.02 T–1, respectively (T is the sampling period). The same plateau analysis
of Fig. 5.2 is carried out on both these sequences, thus producing the plots of Fig. 5.4 (f3dB = 0.1 T–1)
and Fig. 5.5 (f3dB = 0.02 T–1). For both filtering setups, data points corresponding to the assessment of
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Figure 5.4 – Plateau value Λpl (a) and corresponding deviations ∆Λpl (b,c) as a function of the starting
percentile p for a filtered noise sequence. The sequence corresponds to GWN filtered by means of a first-
order digital low-pass filter with f3dB = 0.1 T–1, where T is the sampling period. The embedding choices
(5, 1) and (10, 1) are shown. The figure description is the same as in the case of GWN shown in Fig. 5.2.

Λ̂pl out of the scalar sequences deviate from the theoretical predictions for GWN. In other words, the
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Figure 5.5 – Plateau value Λpl (a) and corresponding deviations ∆Λpl (b,c) as a function of the starting
percentile p for a filtered noise sequence. The sequence corresponds to GWN filtered by means of a first-
order digital low-pass filter with f3dB = 0.02 T–1, where T is the sampling period. The embedding choices
(5, 1) and (10, 1) are shown. The figure description is the same as in the case of GWN shown in Fig. 5.2.

dependence of Λ̂pl on p is sensitive to the finite autocorrelation of noise sources. As one might expect,
the discrepancy between data points corresponding to filtered noise and the theoretical predictions for
GWN is larger if the typical autocorrelation time of the input sequence is longer. Indeed, the difference
between data points and theoretical prediction is almost double in Fig. 5.5(b) with respect to Fig. 5.4(b),
as a consequence of the longer autocorrelation time of the sequence filtered with f3dB = 0.02 T–1 with
respect to the sequence filtered with f3dB = 0.1 T–1.
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5.3 Plateau behaviour in the case of chaotic, finite-dimensional sources

The case of a chaotic dynamical system being the source that generates the sequence yn is now exam-
ined. To evaluate the plateau value Λpl;chaos, we can assume the distribution of distances fζ (ζ ) to be
determined (at small distances, ζ → 0) by the Grassberger-Procaccia power-law scaling (see Sec. 2.4):

Cζ (ζ ) ≃ βζ ν ,

The exponent ν is the correlation dimension and β is an embedding-dependent constant. Differentiating
the last expression provides the probability density function of distances:

fζ (ζ ) =
dCζ (ζ )
dζ

≃ νβζ ν–1 .

It is worth remarking that this expression for fζ (ζ ) holds only in the small-scale regime.
According to its definition in Sec. 5.1, given a value of the starting percentile p, the shell radius r(p) is
determined by

C [r(p)] = p =⇒ r(p) ≃
(
p
β

) 1
ν

.

This expression for r(p) allows evaluating directly the integral I (p) defined in Eq. (5.6). This (approxi-
mated) evaluation reads:

I (p) ≃ 1
ν
[log(p) – log(eβ)] .

Again, the validity of the last expression is limited to the small scale regime, where the Grassberger-
Procaccia scaling holds. Therefore, because p → 1 corresponds to r → ∞, I (1) cannot be written as
– log(eβ)/ν , and the constant I (1) remains, in general, unknown. Nevertheless, provided that m > ν ,
and in the small scale regime, the plateau value of a chaotic system can be written as

Λpl;chaos(p) ≃ Λ′ –
1
ν
log(p) , (5.12)

where the constant Λ′ is given by I (1)+ log(eβ)/ν . Therefore, in the case of a chaotic source, the plateau
value is given by an embedding-dependent constant minus a term which is linear in log(p) and whose
slope is determined solely by the correlation dimension of the system, and not by the embedding choice,
as long as m > ν . This behaviour clearly differs from the GWN case thus allowing to distinguish the
two classes of systems. Moreover, the log(p) dependence given by Eq. (5.12) makes up a tool to estimate
the correlation dimension of a system out of an input sequence, for example by means of a linear fit.

As a first example, a sequence corresponding to the x-coordinate of a Lorenz system1 is considered.
1See Chapter 1, Eq. (1.2) for the system’s equations. Here, the system parameters are set to σ = 10, r = 28, b = 8/3 and the
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The sequence is embedded with (m, L) = (4, 6) and (8, 6), respectively. These embedding choices were
selected according to the results of the method discussed in Chapter 3 (see Fig. 3.7). While (8, 6) is
roughly in the middle of the region corresponding to the set of “suitable” embedding parameters, (4, 6)
is just outside that region. The results of the assessment of the plateau values Λ̂pl according to the
procedure described in Sec. 5.1 are reported in Fig. 5.6. The figure also shows, by means of dashed
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Figure 5.6 – Plateau value Λpl as a function of the start-
ing percentile p for a Lorenz sequence. The embedding
choices (4, 6) and (8, 6) are shown. Data points correspond
to numerical evaluations of Λ̂pl as described in Sec. 5.1
(N = 500, M = 10, k ∈ [450, 500], δk = 1). The solid
lines each correspond to a fit with a straight line (log(p) is
the independent variable) on the data points plotted with
the same color. The slopes of the straight lines provide an
estimate of the correlation dimension, which is reported
in the figure. Dashed lines correspond to the exact ex-
pression of Λpl;GWN given by Eq. (5.10) and numerically
calculated for m = 4 and m = 8, respectively (line colors
match the color of data points corresponding to the same
embedding dimension).

lines, the expected plateau values in the case of GWN sequences: data are definitely not compatible
with a GWN source. In addition, linear fits are carried out the sets of data corresponding to both
embedding choices. The resulting values of ν are reported in the figure and provide a precise estimate
of the correlation dimension, which is in agreement with the accepted value for the Lorenz attractor
given by ν = 2.049 ± 0.096 [14].

Going back to the results for filtered noise shown in Fig. 5.4 and Fig. 5.5, one might argue whether
those values of Λ̂pl can be interpreted as corresponding to a chaotic source. Assuming that no other
analysis (e.g. by relying on the method discussed in Chapter 3) is performed, the only way to answer
this question is to check whether the slope of the Λ̂pl vs log(p) curve is embedding-independent, as
predicted by Eq. (5.12). In the case of the data of Fig. 5.4, a straight line fit on the data corresponding
to m = 10 provides a slope which differs by a factor ∼ 1.6 from the slope corresponding to m = 5.
Similarly, in Fig. 5.5 the ratio between the slopes provided by fitting is ∼ 1.4. Consequently, one can
conclude that those data do not correspond to an underlying chaotic source.

integration time step is δ t = 0.03.
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5.4 Application to synthetic and experimental sequences

In this Section, the plateau analysis relying on the Λ̂pl assessment protocol of Sec. 5.1 and on the results
of Sec. 5.3 is further tested on a synthetic and an experimental sequence. The first sequence corresponds
to the y-coordinate of a Ueda oscillator2. According to the results concerning this sequence that are
presented in Chapter 4, and in particular in Fig. 4.3(c,d), three embedding choices are identified: (m, L) =
(2, 1), which was deemed to be an unsuitable embedding choice, (6, 8) and (10, 12), both supposed to be
suitable to reconstruct the system’s dynamics. The plateau analysis is carried out by setting N = 500,
M = 10, k ∈ [2000, 3000], δk = 5. The results of the analysis for the Ueda sequence are shown in
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Figure 5.7 – Plateau value Λpl as a function of the start-
ing percentile p for a Ueda sequence. The embedding
choices (2, 1), (6, 8) and (10, 12) are shown. Data points
correspond to numerical evaluations of Λ̂pl as described
in Sec. 5.1. The solid lines each correspond to a fit with
a straight line (log(p) is the independent variable) on the
data points plotted with the same color. The slopes of the
straight lines provide an estimate of the correlation di-
mension, which is reported in the figure. Dashed lines
correspond to the exact expression of Λpl;GWN given by
Eq. (5.10) and numerically calculated for m = 2, m = 6
and m = 10, respectively (line colors match the color of
data points corresponding to the same embedding dimen-
sion).

Fig. 5.7. In the case of the embedding parameters set to (2, 1), despite data are fit by a straight line, the
corresponding ν = 2.02±0.02 turns out to be equal to the embedding dimensionm = 2. This results hints
at the fact that the condition m > ν is not satisfied, i.e. m = 2 is insufficient to reconstruct correctly the
dynamics, and Eq. (5.12) does not hold. On the other hand, selecting the embedding parameters equal to
(6, 8) or to (10, 12) provides consistent, embedding-independent estimates of the correlation dimension.
By virtue of these estimates, one can correctly conclude that the source of the input sequence is indeed
chaotic, with ν ≃ 2.7. Finally, the values of ν estimated through fitting are in agreement with the value
reported in the literature equal to 2.675 ± 0.132 [14].

The second sequence considered as example is the intensity sequence experimentally recorded out
of a 81.5 µm NH3 laser. The sequence was introduced in Chapter 1 and already analyzed in Chapter 4
(see Fig. 4.7). The sequence is embedded according to two different choices of parameters (m, L), namely
(5, 5) and (8, 3). Both choices belong to the region of suitable embedding parameters identified in Chap-

2See Chapter 1, Eq. (1.3) for the system’s equations. Here the system parameters are set to A = 7.5, k = 0.05, and the
integration time step is set to δ t = 0.05.
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ter 4 and highlighted in Fig. 4.7. The results of the plateau analysis for the laser sequence are shown in
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Figure 5.8 – Plateau value Λpl as a function of the start-
ing percentile p for an experimentally recorded laser in-
tensity sequence. The embedding choices (5, 5) and (8, 3)
are shown. Data points correspond to numerical evalu-
ations of Λ̂pl as described in Sec. 5.1 (N = 500, M = 10,
k ∈ [450, 500], δk = 1). The solid lines each corre-
spond to a fit with a straight line (log(p) is the indepen-
dent variable) on the data points plotted with the same
color. The slopes of the straight lines provide an estimate
of the correlation dimension, which is reported in the fig-
ure. Dashed lines correspond to the exact expression of
Λpl;GWN given by Eq. (5.10) and numerically calculated
for m = 5 and m = 8, respectively (line colors match the
color of data points corresponding to the same embedding
dimension).

Fig. 5.8. Both choices of embedding parameters yield a linear dependence of Λ̂pl on log p, thus support-
ing the hypothesis on an underlying chaotic source. The corresponding values of ν , which are reported
in the figure, are compatible with each other and in agreement with the estimates of Chapter 4.
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5.5 Closing the circle: application of the improved estimator in the
identification of suitable embedding regions

The main result of Sec. 5.3, namely Eq. (5.12), makes up a tool to estimate the correlation dimension of
a system out of a scalar sequence. As shown in Sections. 5.3, 5.4, this estimator—henceforth referred to
as ν̂pl—provides a precise value of ν , with an uncertainty in the range 1÷ 2 %. Therefore, the purpose of
the present Section is to investigate the possibility of using this estimator to improve the assessment of
suitable embedding pairs discussed in Chapter 3. In particular, ν̂pl can be used as a replacement for the
estimator—henceforth referred to as ν̂gauge—provided by Eq. (3.15) and used to build embedding lattice
maps. It is worth noting that the two estimators ν̂pl and ν̂gauge are derived from the very same property,
namely the Grassberger-Procaccia power-law scaling of correlation integrals at small distances, while
differ in how the exponent ν corresponding to this scaling is retrieved: the two estimators are thus
expected to provide compatible results.

As a test bench, we consider the same Lorenz sequence analyzed in Chapter 3 and in Sec. 5.3 above3.
An embedding latticemap of estimated correlation dimension is built by relying on the results of Sec. 5.3
as follows. For each embedding choice (m, L), the plateau level Λ̂pl, defined as in Eq. (5.5), is computed
according to the procedure of Sec. 5.1 for different values of the starting percentile p: p = 10–4, 3 · 10–4,
10–3, 3 · 10–3, 10–2, 3 · 10–2, 10–1, 3 · 10–1. In all these evaluations, the other parameters of the algorithm
are set to N = 500, M = 10, k ∈ [450, 500], δk = 1. As a result, for each embedding point (m, L), a set of
(p, Λ̂pl) pairs are available, where each value of Λ̂pl is also characterized by a corresponding uncertainty
sΛpl (see Eq. (5.5)). Thereupon, a linear fit is carried out on the points (log(p), Λ̂pl) according to Eq. (5.12):
the slope of the straight line provides an estimate of ν̂pl for that embedding point.
In analogy with the method of Chapters 3 and 4, all estimates of ν̂pl are displayed by means of an
embedding lattice map, which is shown in Fig. 5.9(a). For the sake of comparison, the embedding
lattice map of Fig. 3.7(a) is also reported in Fig. 5.9(c). Related histograms of the estimated ν̂ are shown
in Fig. 5.9(b) and Fig. 5.9(d). For some embedding points, marked by black triangles within the map
and corresponding to large embedding windows, the ν̂pl estimate is unavailable. This unavailability
is not due to a skimming procedure, such as the one described in Sec. 3.2.2 that yields the black “+”
marks in Fig. 5.9(c): black triangles mark embedding points for which the algorithm did not deliver, for
some values of p, the evaluation of Λ̂pl within a maximum computational time limit of 6 hours (see the
discussion on computational cost below).

To some extent, the results of the two estimators—namely ν̂pl and ν̂gauge—reported in Fig. 5.9(a) and

3The sequence is synthesized by integrating a Lorenz system (see Eq. (1.2)) with parameters σ = 10, r = 28, b = 8/3, with
integration time step δ t = 0.03, and by sampling its x-coordinate with sampling period T = δ t. The sequence length is ℓ = 105
points
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Figure 5.9 – (a) Embedding lattice map of estimated ν̂pl according to the procedure discussed in the present
Section. The black solid line identifies the set of suitable embedding points corresponding to the peak at
ν̂pl = 2.0 ± 0.1 within the histogram in (b). The black, dash-dotted lines correspond to the hyperbolae
approximately bounding the set of suitable embedding points and defined by L = 10/(m–1) and L = 60/(m–
1). Black triangles mark embedding points for which no evaluation is available because the algorithm
exceeded the maximum computational time limit. (b) Histogram of the number of embedding pairs whose
estimated correlation dimension ν̂pl falls within 0.1-wide bins. No errorbars are provided: because of the
high computational cost, only one evaluation of the map in (a) was carried out. The range ν̂pl = 2.0 ± 0.1,
which includes embedding points within the set bounded by a black contour in (a), is highlighted by a
gray shaded area. (c) Embedding lattice map of estimated ν̂gauge built according to the method discussed in
Chapter 3. Black “+” marks denote embedding points that are incompatible with the null hypothesisH0;CFD.
The black solid line identifies set of suitable embedding points corresponding to the peak at ν̂ = 2.0 ± 0.2
within the histogram in (d). The black, dash-dotted lines correspond to the hyperbolae approximately
bounding the the set of suitable embedding points and defined by L = 20/(m – 1) and L = 80/(m – 1).
(d) Histogram of the number of embedding pairs whose estimated correlation dimension ν̂gauge falls within
0.2-wide bins. Bin heights and errorbars are sample mean and standard deviation computed by repeating
four times the evaluation of the map in (c). The range ν̂pl = 2.0 ± 0.2, which includes embedding points
within the set bounded by a black contour in (c), is highlighted by a gray shaded area.

Fig. 5.9(c), respectively, are compatible. In both cases, a region of suitable embedding points bounded
by two hyperbolae is found, corresponding to a peak in the related ν̂ histogram. The related value of ν ,
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which is assessed as ν = 2.0 ± 0.1 for the ν̂pl estimator, is compatible with the former figure of 2.0 ± 0.2
provided by the ν̂gauge estimator. However, the ν̂pl estimator is superior in precision and accuracy: the
corresponding peak in the histogram in narrower compared to the one for the ν̂gauge estimator, and the
region of suitable embedding points in the map is flatter.
A relevant difference between the maps is in the position of the region of suitable embedding points, or,
equivalently, on the estimated irrelevance and redundance times corresponding to the two bounding
hyperbolae. While the hyperbolae in the case of the ν̂gauge estimator correspond to (m – 1)L = 80 and
(m–1)L = 20, for the ν̂pl estimator the embedding windows defining the bounding curves are (m–1)L =
60 and (m–1)L = 10. In other words, the method relying on ν̂pl requires a smaller embedding window to
achieve a good estimate of the correlation dimension. A comparison between the regions highlighted by
a black contour in Fig. 5.9(a) and Fig. 5.9(c) is shown in Fig. 5.10. The region of suitable embedding points
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Figure 5.10 – Comparison of the regions of suit-
able embedding points provided by the two esti-
mators ν̂pl and ν̂gauge. The blue shaded area corre-
sponds to the embedding lattice region highlighted
by a black solid line in Fig. 5.9(a), i.e. the region
of suitable embedding choices according to the ν̂pl
estimator. The yellow shaded area corresponds
to the analogous region in Fig. 5.9(c) yielded by
the ν̂gauge estimator. The green shaded area corre-
sponds to the overlap between the blue and yellow
regions. Black triangles and “+” marks have the
same meaning as in Fig. 5.9.

of the ν̂pl estimator (blue) and the same region for the ν̂gauge estimator (yellow) partially overlap (green).
More in detail, the overlapping set corresponds to 55% and 65% of the region of suitable embedding
points for ν̂pl and ν̂gauge, respectively. Interestingly, the region of embedding points for which the
ν̂pl estimator cannot be evaluated because of a exceedingly long computational time (black triangles)
partially overlaps with the region corresponding to black “+”marks, i.e. the set of embedding points that
are deemed to be incompatible with the null hypothesis of a finite-dimensional system by the method
discussed in Chapter 3. The reason behind this failure, which concerns both methods, might lay in
the excessive spreading of embedding vectors within the embedding space as a consequence of a too
large embedding window. If there are too few embedding vectors close to each other, the small-distance
features of the system are poorly sampled. Therefore, the method discussed in Chapter 3 will fail in
recognizing the system as finite dimensional, as it occurs for (m – 1)L ≳ 250 (top-right of the map).
Under the same circumstances, the method discussed in this chapter will be hampered as well: for small
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enough values of the shell radius r , the search for embedding vectors such that ∥Yi – Yj ∥ < r will take
a very long time, as it happens for (m – 1)L ≳ 200. To summarize, when large embedding windows are
examined, and thus the small-distance regime is poorly sampled, the method discussed in Chapter 3
fails in identifying the system as finite dimensional; on the other hand, the method discussed in this
chapter fails—at least for small p—to deliver an estimate of the correlation dimension in a reasonable
time.

As far as the points atm = 2 andmarked with a “+” are concerned, the method of Chapter 3 provides
a correct classification by marking these embedding points as incompatible with a finite-dimensional
system. Indeed, Lorenz system’s trajectories reconstructed with m = 2 will have crossings, which are
forbidden by determinism, and thus the system cannot be embedded with m = 2. On the contrary,
the ν̂pl estimator provides a finite dimension ≲ 2 for the points with m = 2. This outcome might
be mistakenly mixed up with the histogram’s peak at ν̂pl ≃ 2, and it does not rule out, in principle,
those unsuitable embedding choices. Consequently, a correct use of the ν̂pl estimator still requires the
preliminary skimming of embedding points discussed in Sec. 3.2.1 and Sec. 3.2.2.

A relevant issue that hinders the use of ν̂pl concerns its computational cost. The computational time
required by the two methods to deliver a map of correlation dimension on the embedding lattice was
evaluated by running the related algorithms on a workstation hosting an Intel®Xeon®E5-2650 CPU, 48
GB RAM, running Ubuntu Linux 16.04 LTS 64-bit. The code was written in C++ [182] and parallelized
as much as possible by means of the OpenMP library [183]. Random number generation, as well as
the evaluation of Gamma functions, were carried out by means of the GNU Scientific Library [184].
Executable files were assembled via the GNU Compiler Collection (gcc), version 5.4.0 [185]; the opti-
mization flag was set to -O3. Execution time was assessed via the time utility provided by the Linux
bash shell.
The method of Chapter 3 takes 10.8 ± 0.1 minutes (mean and standard deviation over 4 repetitions) to
provide a single map of the kind shown in Fig. 5.9(c). On the other hand, the method discussed in this
chapter takes 171 hours (only one calculation was performed) to provide a single map of ν̂pl like the
one shown in Fig. 5.9(a). This estimate does not include the points marked by the black triangles, for
which the program fails to provide a Λ̂pl value (for some values of p) within 6 hours. Therefore, there
is a significant difference in computational cost between the two methods, which can be quantified in
about three orders of magnitude in execution time.

Finally, it is worth highlighting another issue related to the ν̂pl estimator. To properly assess the
plateau value, the value of kmin has to be properly chosen: this choice requires at least a preliminary
inspection of the Λ̂(k) curve, and thus an additional stage prior to the actual execution of the algorithm.

In conclusion, the correlation dimension estimator ν̂pl, which relies on the asymptotic behaviour
of the time-dependent divergence exponent, is more precise than the estimator ν̂gauge introduced in
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Chapter 3. However, its implementation is far more demanding from a computational point of view.
Therefore, ν̂pl might be a good alternative to ν̂gauge for the third stage of themethod for the identification
of suitable embedding parameters, to be used when a preliminary (and inexpensive) analysis based on
ν̂gauge already gave positive results.
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6. Chasing chaos in experimental recordings

The goal of the present chapter is to discuss the issue of searching chaos in experimental recordings. As
introduced in Chapter 1, the detection of chaotic behaviour in nature is a pivotal problem in nonlinear
science. In many research fields, most notably in neuroscience, the identification of chaos is still an
open point, and conclusive evidence of existence or absence of chaos is lacking. The difficulties arising
in this quest concern, for example, low signal-to-noise ratio, insufficient length of analyzed sequences,
nonstationarity, as well as the inadequacy of acquisition devices. Here, the possible use of the approach
described in the previous chapters as a chaos detection method is discussed.

The discussion relies on two examples: in the first example, I will analyze signals generated by
an implementation of Chua’s circuit, while in the second one I will discuss the case of brain activity
recorded via magnetoencephalography (MEG). Electronic circuits and the human brain can be regarded
as opposite within the spectrum of nonlinear—and potentially chaotic—systems. Systems belonging to
the former class are easy to tune and control, and the effective degrees of freedom involved in the
dynamics are straightforwardly identified with electric potentials and currents. The situation is re-
versed in the case of the human brain: no direct control or tuning of the system is possible, and the
observability of its “degrees of freedom” is technologically limited.

Despite the two dynamical systems seem apparently unrelated, networks of coupled Chua’s circuits
were studied as models to simulate phenomenological aspects of the human brain. More in detail, an
array of Chua’s circuits was claimed to exhibit transitions between dynamical regimes similar to those
observed through EEG in epileptic seizures [186]. More recently, experimental investigations were
carried out on a small network of Chua oscillators to demonstrate the capabilities of such configuration
in implementing information processing functions [187]. Both these examples stem from the idea that
“mesoscopic” complex behavior (e.g. in the human brain) can be qualitatively modelled by means of
networks of interacting dynamical units, also called “cellular neural networks” [188, 189].
It is worth remarking that, while Chua’s circuit was chosen as example in the present chapter, a possible
future investigation—beyond the present work—could concern the study of models of neuron dynamics
such as the FitzHugh-Nagumo oscillator [190], for which a more direct relationship with the human
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brain can be drawn. The FitzHugh-Nagumo system, which can be driven into a chaotic regime by
applying an external periodic forcing, was extensively studied in the framework of synchronization: the
study of coupled FitzHugh-Nagumo oscillators can provide information on the dynamics of ensembles
of biological neurons [191, 192, 193].

Chua’s circuit is here implemented by means of standard, off-the-shelf electronic components, as
described in Sec. 6.1. Assembly of the circuit and data acquisition were carried out within the NSE
laboratory I amworking in. On the other hand, MEG recordingswere extracted from the public database
of the Human Connectome Project [194, 195], as in two works from our research group in which brain
networks were investigated [196, 197]. Data collected from the circuit and from MEG recordings were
analyzed by means of the method discussed in Chapter 3. Results concerning the electronic system
(Sec. 6.1) are substantially different from those obtained for brain signals (Sec. 6.2). In particular, while
the outcomes of the analysis performed on the circuit’s recorded potentials provide evidence for an
underlying chaotic dynamics, such evidence is lacking in the case of brain activity. Some comments
concerning this difference, as well as some observations on the detection of chaos in experimental
recordings, are reported at the end of Sec. 6.2.

6.1 An implementation of Chua’s circuit

Chua’s circuit is an autonomous oscillating circuit [48] that, in its standard form shown in Fig. 6.1,
relies on an inductor and two capacitors to generate oscillations, and on an active component, “Chua’s
diode”, to provide nonlinearity by virtue of the piecewise-linear I-V characteristic of the diode. The

Figure 6.1 – Standard form of Chua’s
circuit. The rightmost element, namely
Chua’s diode, is characterized by the
piecewise-linear I-V curve I = g(V1)
sketched in the graph: Chua’s diode is the
circuit’s sole nonlinear element.

system’s equations are readily obtained through standard circuit analysis [47]:

C1
dV1

dt
=

1
R
(V2 – V1) – g(V1) , (6.1a)

C2
dV2

dt
=

1
R
(V1 – V2) + IL , (6.1b)

L
dIL
dt

= –V2 , (6.1c)
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where g(V1) is the current flowing through Chua’s diode when a potential difference V1 is applied
across it. The term g(V1) is the only nonlinearity of the system. In the present investigation, Chua’s
diode is practically implemented by means of two negative impedance converters [198]. Moreover, the
discrete inductor L is replaced by a gyrator circuit. The gyrator relies on two operational amplifiers
to provide an inductor-like impedance –iωL, with L = 20mH, out of a C = 20 nF capacitor, having
impedance i/ωC. As a result, in the present example, Chua’s circuit is built out of four operational
amplifiers, three capacitors and a handful of resistors: the complete circuit diagram, which also reports
the nominal values of components, is shown in Fig. 6.2. Upon delivering suitable power supplies to the

Figure 6.2 – Implementation of
Chua’s circuit used in the present ex-
ample. The leftmost network con-
taining two op-amps corresponds to
a gyrator circuit that provides an
equivalent impedance –iωL with L =
20mH. The rightmost network con-
taining two op-amps corresponds to
Chua’s diode. R is given by a vari-
able resistor.

operational amplifiers, the circuit oscillates autonomously. Adjusting the resistor R allows to achieve
different dynamical regimes. Figure 6.3 shows sequences of the potentials V1 and V2 recorded in two
noticeably different regimes, namely a periodic limit cycle—Fig. 6.3(a)—and an “irregular” aperiodic
evolution—Fig. 6.3(b). While it is well known that the latter regime corresponds to chaos, for the time
being such knowledge is neglected. It is worth noting that the values of R giving rise to the two regimes
in Fig. 6.3 are approximately 1.8 kΩ and 1.7 kΩ for the periodic and the aperiodic evolution, respectively.
The transition between the two different regimes occurs due to a variation of ∼ 5% of the resistance R.
Moreover, reducing R below approximately 1.6 kΩ yields again a limit cycle: in other words, the value
of R is critical in determining the dynamical regime, and an irregular evolution it is achieved only for
a range of R values between 1.6 kΩ and 1.8 kΩ.

For each of the two dynamical regimes shown in Fig. 6.3, sequences of both potentials V1 and
V2 are recorded for 0.5 s (105 samples, T = 5 µs). In the following, for the sake of this example, no
knowledge is assumed about the two dynamical regimes, and the sequences corresponding to V1 and
V2 are independently analyzed, thus neglecting the information provided by Eq. (6.1).

The method discussed in Chapter 3 is applied to the four sequences, thus generating the embedding
lattice maps shown in Fig. 6.4 and in Fig. 6.5 for the sequences in Fig. 6.3(a) and Fig. 6.3(b), respectively.
The outcomes of the analysis concerning the first dynamical regime, which are shown in Fig. 6.4, are
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Figure 6.3 – Recorded voltages V1 and V2 for two different values of R. (a) R ≃ 1.8 kΩ, the system oscillates
periodically. (b) R ≃ 1.7 kΩ, the system’s oscillations are aperiodic.

straightforwardly interpreted. The estimated ν̂ attains, independently of the embedding parameters, a
value close to unity, compatibly with a periodic limit cycle. This outcome simply confirms, on the one
hand, what we could have expected for a periodic signal, and, on the other hand, it validates the ability
of the method to correctly identify periodic signals.

Figure 6.5 shows the results concerning the “irregular” dynamical regime. To build the map in
Fig. 6.5(a) for the potential V1, the corresponding sequence was first downsampled by selecting one
sample out of three (i.e. the new sampling period is T = 15 µs). The map obtained without downsam-
pling exhibits the same hyperbolic-like transition from ν̂ ≈ 1 to ν̂ ≈ 4, although shifted towards the
top-right corner, at m, L ≈ 17. The aim of downsampling is to “center” this possibly interesting transi-
tion region within the embedding lattice. Equivalently, one could have extended the embedding lattice
to m, L ≈ 35.

Compared to maps in Fig. 6.4, embedding lattice maps in Fig. 6.5 show more complex features.
First of all, both maps exhibit a hyperbolic-like profile of ν̂ , as expected in the case of chaotic sources.
Interestingly, in both maps, the embedding points corresponding to m = 2 are ruled out by the analy-
sis because of their incompatibility with the null hypothesisH0;CFD of an underlying finite-dimensional
source: the same result was found for the Lorenz sequence (see Fig. 3.7(a)), the Ueda sequence (Fig. 4.3(c)),
the Rössler sequence (Fig. 4.6(a)) and the sequence of laser intensity (Fig. 4.7(a)). In the case of V2, the ν̂
histogram exhibits a peak at ν̂ = 2.0 ± 0.2, and the corresponding region within the embedding lattice
is approximately bounded by two hyperbolae. These results support the hypothesis of a chaotic sys-
tem generating the sequence V2. However, the same is not true for the sequence V1. In this case, the
peak within the ν̂ histogram corresponds to ν̂ ≃ 1, which would rather suggest a periodic regime. This
hypothesis, however, does not agree with the fact that embedding points with m = 2 are ruled out by
the algorithm, as well as with the fact that ν̂ > 1 are estimated for m ≳ 10, L ≳ 10.
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Figure 6.4 – Embedding lattice maps, ν̂ histograms, and excerpts of the input sequences corresponding
to the signals V1 (a) and V2 (b) generated by Chua’s circuits upon setting R ≃ 1.8 kΩ. Histograms are
built with bin width 0.1; bin heights and errorbars are sample mean and standard deviation computed by
repeating four times the evaluation of the respective maps. The histogram peaks at ν̂ = 1.1 ± 0.1 and the
related flatness of the map reflect the fact that the system’s dynamical regime is a (one-dimensional) limit
cycle.

More realistically, the ν̂ estimator of Eq. (3.15) used to build the maps in Fig. 6.5 might fail to provide
reliable values of the system’s correlation dimension out of the sequence V1. To check if this is the
case, the improved estimator introduced in Chapter 5 is used. As discussed in Sec. 5.5, although com-
putationally demanding, it is worth evaluating ν by means of the improved estimator to obtain a more
reliable map, given that we already have some evidence hinting at an underlying chaotic dynamics.

Similarly to the example of Sec. 5.5, an embedding lattice map of estimated correlation dimension
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Figure 6.5 – Embedding lattice maps, ν̂ histograms, and excerpts of the input sequences corresponding to
the signals V1 (a) and V2 (b) generated by Chua’s circuits upon setting R ≃ 1.7 kΩ. Within maps, black
crosses (×) correspond to embedding points compatible with the null hypothesis H0;GWN; black “+” marks
denote embedding points that are incompatible with the null hypothesisH0;CFD. Histograms are built with
bin width 0.2; bin heights and errorbars are sample mean and standard deviation computed by repeating
four times the evaluation of the respective maps. In (b), the black solid line encloses the embedding region
corresponding to the peak at ν̂ = 2.0± 0.2 highlighted by a gray shaded area within the related histogram.
The black dash-dotted lines correspond to the hyperbolae approximately bounding the region of suitable
embedding points and defined by L = 40/(m – 1) and L = 150/(m – 1).

ν̂pl is built by evaluating the dependence of the asymptotic divergence exponent on the starting per-
centile p, according to the results of Sec. 5.3. The analysis discussed in Chapter 5, and in particular the
evaluation of sample plateau levels Λ̂pl described in Sec. 5.1, is carried out on the two input sequences
(V1 and V2) analyzed in Fig. 6.5. The plateau level Λ̂pl, defined in Eq. (5.5), is computed for different
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values of the starting percentile p: 3 · 10–3, 10–2, 3 · 10–2, 10–1, 3 · 10–1. In all these evaluations, the other
parameters of the algorithm are set to N = 500,M = 10. For the V1 sequence, k ∈ [450, 500], δk = 1; for
the V2 sequence, k ∈ [1800, 2000], δk = 5. As it was done in Sec. 5.5, for each embedding choice (m, L),
a linear fit carried out on the points (log(p), Λ̂pl) according to Eq. (5.12) provides an estimate of ν̂pl for
that (m, L).
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Figure 6.6 – Embedding lattice maps—and related histograms—of correlation dimension ν̂pl estimated by
means of the improved estimator discussed in Chapter 5. (a,b) V1 sequence. (c,d) V2 sequence. Within
maps, black solid lines identify the sets of suitable embedding points corresponding to the peaks at ν̂pl =
2.3±0.1within the related histograms. Black, dash-dotted lines correspond to the hyperbolae approximately
bounding the sets of suitable embedding points: hyperbolae are defined by L = 10/(m–1) and L = 90/(m–1)
in (a), while L = 30/(m – 1) and L = 110/(m – 1) in (c). Black triangles mark embedding points for
which no evaluation is available because the algorithm exceeded the maximum computational time limit.
Histograms (b,d) report the number of embedding pairs whose estimated correlation dimension ν̂pl falls
within 0.1-wide bins. The ranges ν̂pl = 2.05 ± 0.10 and ν̂pl = 2.3 ± 0.1, which include embedding points
within the sets bounded by black contours in (a,c), are highlighted by a gray shaded area in both histograms.

The embedding lattice maps of the estimated correlation dimension ν̂pl obtained through the im-
proved estimator are shown in Fig. 6.6(a) and Fig. 6.6(c) for the V1 and V2 sequences, respectively, while
the related ν̂pl histograms are shown in Fig. 6.6(b) and Fig. 6.6(d). Both embedding lattice maps exhibit
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a region of suitable embedding points bounded by a pair of hyperbolae. The related estimates of cor-
relation dimension are in reasonable agreement and equal to ν̂pl = 2.05 ± 0.10 and ν̂pl = 2.3 ± 0.1. In
conclusion, both sequences V1 and V2 provide reliable evidence of an underlying chaotic source. The
related correlation dimension is estimated, by averaging the two values for V1 and V2, as ν = 2.18 ± 0.14,
in agreement with values reported in literature [199].

6.2 Magnetoencephalographic recordings

In the present Section, a very different system, namely a human brain, is investigated. As in the previ-
ous Section, the method presented in Chapter 3 is applied to sequences generated by the system with
the purpose of characterizing it and, possibly, find evidence of an underlying chaotic dynamics. As
discussed in Chapter 1, the search for chaotic regimes within human brain activity yielded conflicting
results. While the present Section is definitely not intended to settle this issue, its aim is to highlight
differences with respect to the case of a small circuit. In particular, while chaos can be robustly identi-
fied out of a tabletop setup such as the one in Fig. 6.2, attempting a similar identification out of brain
activity is shown to be far less rewarding.

Data under investigation are time series of brain activity reconstructed out of magnetoencephalo-
graphic (MEG) recordings. MEG data considered in the following are a portion of the dataset employed
by our research group to investigate brain connectivity [196] and its dependence on geometric dis-
tance [197]. The dataset was downloaded from the public database of the Human Connectome Project
(HCP)1 [194, 195]. A single MEG resting state acquisition—corresponding to one randomly chosen
subject out of the 20 used in Ref. [197]—is selected.

MEG recordings pick up brain activity by measuring magnetic fields generated by neural currents.
Detectable fields, which are of the order of 10–12 ÷ 10–14 T, are the result of thousands of neurons fir-
ing [99]. MEG devices record these magnetic fields by means of 200 ÷ 300 superconducting sensors:
field sources (currents) are reconstructed at various brain locations out of the recorded fields by esti-
mating an approximate solution to the (unsolvable) inverse problem [100]. Details of this preprocessing
stage in the case of the present dataset can be found in Ref. [197] (section “Dataset and preprocessing”
therein). The outcome of source reconstruction are sequences of current dipole amplitudes comprising
75000 elements each and sampled with sampling period T = 4ms (sequence duration is 5 minutes).
Each sequence s(i) is associated to one location (or source) within the human brain. Four among the
72 brain locations used in the study of Ref. [197] are considered here: the corresponding anatomical
regions are shown in Fig. 6.7. These four locations are selected as representative of four different ar-
eas of the brain concerning different tasks. According to a standard atlas [200], these four regions are

1Ethical approval and consent needed for study and dissemination are provided by the HCP (see also Ref. [197]).
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Figure 6.7 – Anatomical position of
the four brain regions considered in the
present example. Colors correspond to
those used in a standard atlas [200]
and are representative of the region’s
functional group: (a) and (d) are “task-
negative” regions, (b) is part of the vi-
sual cortex, (c) is part of the motor/so-
matosensory cortex.

conventionally classified in terms of the related functions: (a) is “task-negative”, i.e. activates during
resting-state; (b) is part of the visual cortex; (c) is part of the motor/somatosensory cortex; (d) is again
task-negative. The set is thus supposed to cover several possible dynamical regimes within the brain.

The method of Chapter 3 is first applied to the whole sequences s(a), . . . s(d) corresponding to 5
minutes of resting-state brain activity reconstructed at the four locations (a)-(d). The results of this
analysis are shown in Fig. 6.8, where embedding lattice maps are reported alongside the corresponding
histograms of ν̂ and the plots of the sequences.

Figure 6.8 – (Figure is displayed in a dedicated page below). Embedding lattice maps, ν̂ histograms,
and input sequences corresponding to brain activity reconstructed out of MEG resting-state recordings of
5 minutes length. Within maps, black “+” marks denote embedding points that are incompatible with the
null hypothesis H0;CFD. Histograms are built with bin width 0.05; bin heights and errorbars are sample
mean and standard deviation computed by repeating four times the evaluation of the respective maps.
Each panel (a)-(d) corresponds to the sequence associated to the brain region marked with the same letter
in Fig. 6.7. Sequence plots report the whole, 5-minutes-long sequences.

The embedding lattice maps of Fig. 6.8 do not provide evidence of an underlying chaotic system.
Despite the presence of peaks within the ν̂ histograms, the corresponding embedding points do not
make up a region of the embedding lattice delimited by two hyperbolae. Indeed, for those embedding
points that are compatible with H0;CFD, ν̂ appears essentially embedding-independent. Moreover, re-
gions (a) and (b) provide an estimated ν̂ lower than 1, which is meaningless. In the case of region (c),
the histogram exhibits a peak at ν̂ ≈ 2.6; however, for embedding choices having m ≲ 10, the se-
quence appears to be incompatible with a finite-dimensional source, independently of L. This result
is in contradiction with the fact that m > D is sufficient to provide estimates of a system’s correlation
dimension [126]. A similar argument applies to the map corresponding to region (d), which would ap-
parently yield ν̂ ≈ 1.5.
A possible interpretation for the maps in Fig. 6.8(c) and Fig. 6.8(d) relies on the model of an almost-
periodic signal discussed in Sec. 4.2: the model would explain both the values of ν̂ , in terms of an
effective signal-to-noise ratio, as well as the rectangular shape of the corresponding regions of the em-
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Figure 6.8 – (Full caption reported in the main text). Each panel (a)-(d) corresponds to the sequence
associated to the brain region marked with the same letter in Fig. 6.7.
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bedding lattice. However, this interpretation has to be discarded: the sequences associated to the brain
regions (c) and (d) do not exhibit any significant peak in their spectra, and thus cannot be modelled as
almost-periodic signals.
Another possible explanation for the results shown in Fig. 6.8 is that those maps exhibit spurious esti-
mates of ν because the corresponding sequences are nonstationary. Indeed, by looking at the sequences
plots within the figure, one can identify several “bumps” of activity that are well distinguished from the
lower amplitude of most remaining parts of the recordings. These events, which are more clearly visible
in Fig. 6.9, might be due to artifacts (e.g. head movements), or related to a strong sporadic increase in
the activity of the related brain region. As an attempt to circumvent this problem, 1 minute out of 5 is
extracted from the sequences so that the “bumps” described above are avoided. Figure 6.9 highlights the
time interval corresponding to the extracted segments, which is chosen between t = 210 s and t = 270 s.
The same time interval is selected from all sequences, yielding four segments s′(a), . . . s

′
(d).
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Figure 6.9 – Sequence s(b) corresponding to brain
region (b)—see Fig. 6.7. The segment highlighted
in red corresponds to 1 minute, from 210 s to 270 s,
without any “bump” in activity such as those oc-
curring at t ≈ 200 s and t ≈ 280 s.

The analysis carried out on the whole sequences—and whose results are shown in Fig. 6.8—is then
repeated on the four segments. The results of this second analysis are shown in Fig. 6.10, again display-
ing embedding lattice maps alongside the corresponding histograms of ν̂ and the plots of the sequences.
In this case, the interpretation of the outcomes is quite straightforward: according to the method de-

Figure 6.10 – (Figure is displayed in a dedicated page below). Embedding lattice maps, ν̂ histograms, and
input sequences corresponding to brain activity reconstructed out of MEG resting-state recordings. The
sequences considered here correspond to 1 minute (between 210 s and 270 s) selected out of the 5 minutes
available—see Fig. 6.9. Within maps, black crosses (×) correspond to embedding points compatible with
the null hypothesisH0;GWN; black “+” marks denote embedding points that are incompatible with the null
hypothesis H0;CFD. Histograms are built with bin width 0.25; bin heights and errorbars are sample mean
and standard deviation computed by repeating four times the evaluation of the respective maps. Each figure
panel (a-d) corresponds to the brain region marked with the same letter in Fig. 6.7. Sequence plots report
the whole, 1-minute-long sequence segments.

scribed in Chapter 3, the sequence segments considered here are essentially noise. For almost every
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Figure 6.10 – (Full caption reported in the main text). Each figure panel (a-d) corresponds to the brain
region marked with the same letter in Fig. 6.7.
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embedding choice, sequences turn out to be incompatible with the null hypothesisH0;CFD of an under-
lying finite-dimensional source. This result supports the hypothesis that the maps of Fig. 6.8 provided
a spurious finite correlation dimension due to nonstationary fluctuations within the sequences.

While conclusive evidences of a chaotic source are provided by analyzing sequences recorded out of
the implementation of Chua’s circuit, in the case ofMEG recordings such evidence is absent. As amatter
of fact, the 1-minute-long segments analyzed in Fig. 6.10 are compatible with a stochastic source. This
outcome might indeed be due to a stochastic evolution of a human brain in resting state. On the other
hand, the detection of an underlying deterministic dynamics might be hindered by other factors, most
notably the fact that electromagnetic fields generated by a human brain are an indirect measure of the
generating dynamics. Fields recorded by MEG devices correspond to the superposition of the activity
of thousands of neurons: the possible deterministic dynamics of single units or small sets of neurons
is washed out by the overwhelming background. This problem also concerns electroencephalography
(EEG): large portions of the brain have to be synchronized, thus yielding a small number of effective
degrees of freedom out of a huge number of units, in order to produce observable fields that faithfully
represent the ongoing dynamics.

Although Takens’ theorem tells us that any observable signal can be used to study a system, this is
not true in experimental practice: the unavoidable presence of noise can hide signals and render them
undetectable by analytical algorithms; at the same time, nonstationarity can lead analytical algorithms
astray. These issues are not critical if direct access to a system’s degrees of freedom is available, as
shown for the electronic circuit in Sec. 6.1, where noise is certainly present but does not prevent the
identification of chaos. On the contrary, indirect, noisy and nonstationary measurements can provide
spurious or no results at all.
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7. Conclusions

The analysis of nonlinear dynamical systems relies on the possibility of reconstructing proxy state space
evolutions out of recorded scalar sequences, a possibility granted by Takens’ theorem. Time-delay
embedding is a viable and widespread method to carry out this reconstruction, although its correct
implementation is not trivial. As discussed in Chapter 2, no definitive answer to the issue of optimal
embedding exists. Throughout the present thesis work, the issue of optimal embedding was tackled by
proposing a new method in the attempt to overcome the drawbacks of traditional approaches. First of
all, our approach does not provide—as it is conventionally done—a single choice of embedding parame-
tersm, L. More realistically, a set of statistically equivalent choices is identified. This identification pro-
ceeds by first ruling out those choices that yield a bad reconstruction, either because the reconstructed
state space trajectory turns out to be compatible with a Gaussian white noise source, or because it is
incompatible with a finite-dimensional system. The use of statistical testing as a criterion to exclude
embedding choices that are not suitable to reconstruct the dynamics is one of the perks of the method,
as it bypasses the issue of choosing and trimming thresholds. In the method’s last step, the correlation
dimension ν is estimated for the embedding pairs m, L that survived the previous skimming steps: the
uniformity of this estimate is taken as a marker of good embedding choices.

Our approach provides, at the same time, some information on the sequence source and—if the lat-
ter is chaotic—a set of optimal embedding choices to reconstruct the dynamics. Therefore, the approach
makes up not only an optimal embedding criterion, but also a tool to characterize nonlinear systems. For
example, in Chapter 4, by analyzing synthetic sequences, it was shown that the method can distinguish
chaotic sequences from stochastic ones having the same power spectrum (or autocorrelation). Identifi-
cation of chaotic sources was successfully shown for various synthetic and experimental sequences. As
an exception, the case of a standard Rössler sequence presented some difficulties caused by the system
being almost periodic, an issue that prompted the modelling of correlation dimension of noisy periodic
signals.

Concerning the last stage of the method, two estimators of ν are proposed in this thesis: a computa-
tionally inexpensive—though less precise—one, which can provide a preliminary assessment of ν , and
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a more precise one, introduced in Chapter 5, which can be used to improve the initial assessment. The
improvement granted by the more precise estimator can be quite crucial for a robust characterization
of dynamical systems, as shown in Chapter 6 for the analysis of experimentally recorded sequences. In
the analysis of recordings from an electronic circuit, the preliminary evaluation that relies on the less
precise ν estimator suggested the existence of an underlying chaotic source, but only the application
of the more precise estimator led to a definitive characterization.

An interesting result of our approach concerns the role of the embedding window (m – 1)L. As
mentioned in Chapter 2, the embedding window is considered as a relevant parameter to the purpose
of optimal embedding, but most existing criteria neglect its role. Sets of suitable embedding choices
identified by our approach, on the other hand, correspond to embedding windows that are intermediate
between two extrema, which are taken as estimates of the irrelevance and redundance times of the input
sequence. This condition makes up a further check of the quality of the method’s outcomes and allows
discarding spurious results.

The approach described in this thesis work was applied to two sets of experimentally recorded
sequences, the first one concerning an electronic circuit and the second one corresponding to brain
activity measured via magnetoencephalography. Besides providing further examples of the method’s
capabilities, these two tests allow to make some considerations. On the one hand, chaos is robustly
identified when a system is characterized by few effective degrees of freedom and sufficiently high
signal-to-noise ratio, as in the case of Chua’s circuit implemented in Sec. 6.1. The opposite is true for
complex systems having many more degrees of freedom: subsets of constituent units have to act syn-
chronously in order to overcome the noisy background, which is partially contributed by the incoherent
superposition of the motion of all the other units. A further complication is given by the nonstationar-
ity of systems such as the human brain: as opposite to an electronic circuit, one has to be more careful
in recording, preprocessing and selecting data, otherwise analytical algorithms might end up providing
spurious results.

As a final remark, a feature of the method described in this thesis work is that it provides a “snap-
shot” of the system generating an input sequence in terms of an embedding lattice map. This approach
focused on “mapping” the system onto the embedding lattice can be extended also to other metrics
beyond the statistical tests and the estimation of ν employed in this work. Analyzing a system recon-
structed through many different choices of embedding parameters provides a more complete view of
its features, in analogy with pictures of an elaborate object taken from different positions. This idea
is in line with the concept expressed above that, rather than seeking a single choice m, L that pro-
vides the best reconstruction of the dynamics, a set of statistically equivalent choices exists, and the
ascertainment of this set is, at the same time, a way to study the properties of the source itself.
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Pertaining this thesis

A. Perinelli and L. Ricci,
Identification of suitable embedding dimensions and lags for time series generated by chaotic, finite-
dimensional systems,
Phys. Rev. E 98 (2018), 052226, doi:10.1103/PhysRevE.98.052226

In the field of nonlinear dynamics, many methods have been proposed to tackle the issue of
optimally setting embedding dimension and lag in order to analyze sampled scalar signals.
However, intrinsic statistical uncertainties due to the finiteness of input sequences severely
hinder a general solution to the problem. A more achievable approach consists of assessing
sets of dimension and lag pairs that are equivalently suitable to embed a time series. Here
we present a method to identify these sets of embedding pairs, under the hypothesis that the
time series of interest is generated by a chaotic, finite-dimensional dynamical system. We
first introduce a “distance gauge transformation” based on the analytical forms of correlation
integrals corresponding to a Gaussian white noise source. We show that in this new distance
gauge, correlation integrals generated by chaotic, finite-dimensional systems are character-
ized by distinctive features, whose absence is a marker of the unsuitability of the underlying
embedding choice. By means of a new estimator of the correlation dimension that relies on
the new distance gauge, sets of suitable embedding pairs are finally identified by looking at
the uniformity of the estimation. The method is completely automatic and was successfully
tested on both synthetic and experimental time series. It also provides a tool to estimate the
redundance and irrelevance timescales of the system that underlie the time series as well as a
lower constraint to the sampling rate. The method is suitable for applications in research fields
where a chaotic behavior has to be identified, such as neuroscience, geophysics, and economics.

L. Ricci, A. Perinelli and M. Franchi,
Asymptotic behavior of the time-dependent divergence exponent,
Phys. Rev. E 101 (2020), 042211, doi:10.1103/PhysRevE.101.042211
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The divergence rate method, which is used to determine the maximum Lyapunov exponent
out of time series, is based on the evaluation of the time-dependent divergence exponent. For
chaotic systems and in the small time regime, this exponent grows linearly in time. The asymp-
totic regime is instead characterized by a time-independent behavior due to the system even-
tually losing its memory of the starting conditions. The amplitude of this “plateau”-like di-
vergence exponent depends both on the choice of the embedding dimension and lag and on
the maximum distance of nearby starting trajectories in a way that is characteristic of the
underlying dynamical system. In this paper, upon introducing the basic mathematical tools,
we address the plateau evaluation for two classes of time series, those generated by a white
noise source and those generated by a finite-dimensional chaotic system. The different behav-
ior provides a novel tool to distinguish purely stochastic sources from deterministic ones, as
well as to provide a precise estimate of the correlation dimension in the latter case. The method
is also sensitive to correlated noise sources.

A. Perinelli and L. Ricci,
Embedding-Dependent, Full Scale Characterization of Sample Correlation Integrals,
in Chaos 2018 - Book of Abstracts - 11 th Chaotic Modeling and Simulation International Con-
ference: Springer proceedings in complexity. - ISBN: 978-3-030-15296-3. Proceedings of: Chaos
2018 - 11 th Chaotic Modeling and Simulation International Conference, Rome, Italy, 05th-08th June
2018. (2018), p. 89-89..

Parallel to the thesis

Spike train sequences

L. Ricci, M. Castelluzzo, L. Minati and A. Perinelli,
Generation of surrogate event sequences via joint distribution of successive inter-event intervals,
Chaos 29 (2019), 121102, doi:10.1063/1.5138250

The study of many dynamical systems relies on the analysis of experimentally-recorded se-
quences of events for which information is encoded in the sequence of interevent intervals.
A correct interpretation of the results of the application of analytical techniques to these se-
quences requires the assessment of statistical significance. In most cases, the corresponding
null-hypothesis distribution is unknown, thus forbidding an evaluation of the significance. An
alternative solution, which is efficient in the case of continuous signals, is provided by the gen-
eration of surrogate data that share statistical and spectral properties with the original dataset.
However, in the case of event sequences, the available algorithms for the generation of surro-
gate data can become cumbersome and computationally demanding. In this work, we present
a new method for the generation of surrogate event sequences that relies on the joint distribu-
tion of successive interevent intervals. Our method, which was tested on both synthetic and
experimental sequences, performs equally well or even better than conventional methods in
terms of interevent interval distribution and autocorrelation while abating the computational
time by at least one order of magnitude.
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A. Perinelli, M. Castelluzzo, L. Minati and L. Ricci,
SpiSeMe: A multi-language package for spike train surrogate generation,
Chaos 30 (2020), 073120, doi:10.1063/5.0011328

Many studies in nonlinear science heavily rely on surrogate-based hypothesis testing to provide
significance estimations of analysis results. Among the complex data produced by nonlinear
systems, spike trains are a class of sequences requiring algorithms for surrogate generation
that are typicallymore sophisticated and computationally demanding thanmethods developed
for continuous signals. Although algorithms to specifically generate surrogate spike trains
exist, the availability of open-source, portable implementations is still incomplete. In this
paper, we introduce the SpiSeMe (Spike Sequence Mime) software package that implements
four algorithms for the generation of surrogate data out of spike trains and more generally
out of any sequence of discrete events. The purpose of the package is to provide a unified and
portable toolbox to carry out surrogate generation on point-process data. Code is provided in
three languages, namely, C++, Matlab, and Python, thus allowing straightforward integration
of package functions into most analysis pipelines.

L. Minati, H. Ito, A. Perinelli, L. Ricci, L. Faes, N. Yoshimura, Y. Koike and M. Frasca,
Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights From
Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons,
IEEE Access 7 (2019), 174793–174821, doi:10.1109/ACCESS.2019.2957014

Natural and engineered networks, such as interconnected neurons, ecological and social net-
works, coupled oscillators, wireless terminals and power loads, are characterized by an ap-
preciable heterogeneity in the local connectivity around each node. For instance, in both ele-
mentary structures such as stars and complex graphs having scale-free topology, a minority of
elements are linked to the rest of the network disproportionately strongly. While the effect of
the arrangement of structural connections on the emergent synchronization pattern has been
studied extensively, considerably less is known about its influence on the temporal dynamics
unfoldingwithin each node. Here, we present a comprehensive investigation across diverse sim-
ulated and experimental systems, encompassing star and complex networks of Rössler systems,
coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model
neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal net-
works. We systematically consider a range of dynamical measures, including the correlation
dimension, nonlinear prediction error, permutation entropy, and other information-theoretical
indices. The empirical evidence gathered reveals that under situations of weak synchroniza-
tion, wherein rather than a collective behavior one observes significantly differentiated dy-
namics, denser connectivity tends to locally promote the emergence of stronger signatures of
nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-
dimensional signals were observed; however, when the coupling is stronger, this relationship
may be lost or even inverted. In systems with a strong stochastic component, the generation of
more temporally-organized activity could be induced. These observations have many poten-
tial implications across diverse fields of basic and applied science, for example, in the design
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of distributed sensing systems based on wireless coupled oscillators, in network identification
and control, as well as in the interpretation of neuroscientific and other dynamical data.

Networks out of time series

A. Perinelli, D. E. Chiari and L. Ricci,
Correlation in brain networks at different time scale resolution,
Chaos 28 (2018), 063127, doi:10.1063/1.5025242

Assessing brain connectivity makes up a major issue in the field of network dynamics and
neuroscience. Conventional experimental techniques are based on functional imaging and
magnetoencephalography, allowing to reconstruct the activity of relatively small brain vol-
ume elements. A common approach to identify networks consists in singling out sets of ele-
ments that maintain a correlated activity over time. Despite the general consensus that these
networks are detectable on a time window of 10 s, no study is presently available on the dis-
tribution and thus the reliability of this time scale. In this work, we describe a new method to
assess time scales on which correlations between network elements occur and to consequently
identify the underlying network structures. The analysis relies on the evaluation of quasi-zero-
delay cross-correlation between power sequences associated with distinct volume elements. By
changing the width of the running window used to analyze successive segments of time se-
ries, the behavior of cross-correlation at different time scales was investigated. The onset of
connectivity was estimated to be observable at about 30 s. The method was applied to a set
of volume elements that are supposed to belong to a known resting-state network, namely the
Default Mode Network. Fully connected networks were identified, provided that a sufficiently
long time scale is considered. Our method makes up a new tool for the investigation of the
temporal dynamics of networks.

A. Perinelli, D. Tabarelli, C. Miniussi and L. Ricci,
Dependence of connectivity on geometric distance in brain networks,
Scientific Reports 9 (2019), 13412, doi:10.1038/s41598-019-50106-2

In any network, the dependence of connectivity on physical distance between nodes is a di-
rect consequence of trade-off mechanisms between costs of establishing and sustaining links,
processing rates, propagation speed of signals between nodes. Despite its universality, there
are still few studies addressing this issue. Here we apply a recently–developed method to infer
links between nodes, and possibly subnetwork structures, to determine connectivity strength
as a function of physical distance between nodes. The model system we investigate is brain
activity reconstructed on the cortex out of magnetoencephalography recordings sampled on
a set of healthy subjects in resting state. We found that the dependence of the time scale of
observability of a link on its geometric length follows a power-law characterized by an expo-
nent whose extent is inversely proportional to connectivity. Our method provides a new tool to
highlight and investigate networks in neuroscience.
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A. Perinelli and L. Ricci,
NetOnZeroDXC: A package for the identification of networks out of multivariate time series via zero-
delay cross-correlation,
SoftwareX 10 (2019), 100316, doi:10.1016/j.softx.2019.100316

The identification of networks is an issue that is relevant in many research fields. Assessing
links between nodes of a network by analyzing time series associated to those nodes is a cru-
cial topic in fields as diverse as neuroscience and climate research. In this work we present
NetOnZeroDXC, a package that implements a recently published method for the assessment
of networks out of multivariate time series. The method relies on the computation of zero-delay
cross-correlation between pairs of time series. The software implements the various stages of
the algorithm in a general way, thus making up a novel tool that can be used for network
analysis in different fields.

A. Perinelli, D. Tabarelli and L. Ricci,
Are observable links between brain nodes due to geometric proximity?,
in Second International Summer Institute on Network Physiology (ISINP). Proceedings of: ISINP,
Como, 28 July 2019 - 02 August 2019. (2019), .

Bioinformatics

M. Castelluzzo, A. Perinelli, S. Detassis, M. A. Denti and L. Ricci,
MiRNA-QC-and-Diagnosis: An R package for diagnosis based on MiRNA expression,
SoftwareX 12 (2020), 100569, doi:10.1016/j.softx.2020.100569

The possibility of using microRNA (miRNA) levels as diagnostic and prognostic tools to detect
different pathologies requires the implementation of reliable classifiers, whose training and use
call for quality control of data corresponding to miRNA expression. In this work we present
the MiRNA-QC-and-Diagnosis package. The package provides a set of functions for the R
environment that implement the required quality control steps and thereupon allow to train,
use and optimize a Bayesian classifier for diagnosis based on themeasuredmiRNA expressions.
The package thus makes up a complete and dedicated analytical toolbox for miRNA-based
diagnosis.

Experimental design & measurement

N. Pace, L. Ricci, M. Scotoni, A. Perinelli and J. Jovicich,
Characterization of time-varying magnetic fields and temperature of helium gas exit during a quench
of a human magnetic resonance system,
Biomedical Physics & Engineering Express 5 (2019), 045021, doi:10.1088/2057-1976/ab2300
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The quench of a human magnetic resonance imaging system is a critical event that may occur
spontaneously, as an accident or purposely in response to an emergency. Although a magnet’s
quench presents its own risks, little experimental data is available in this respect. In this
study, the programmed quench of a human MRI scanner was used to measure the induced
time varying magnetic fields (dB/dt) inside the bore in order to evaluate cardiac stimulation
risks during a quench. Additionally, we measured the exit temperature of the helium gas, to
evaluate potential implications in quench pipe design. The maximum dBdt was 360mT s1 at
the center of the magnet, far below the cardiac stimulation threshold (20 Ts–1. The helium
exit temperature reached 35K, perhaps implying further considerations about quench pipe
designs. Replication of similar experiments on programmed quenches, specially in high-field
MRI systems, will be useful to further characterize quench risks.

A. Perinelli, F. Finotti, A. M. Tonelli, L. Ricci and R. Albatici,
Experimental apparatus for the determination of thermal conductivity and humidity in building mate-
rials by means of electrical permittivity measurements,
Tema 5 (2019), 29–41, doi:10.17410/tema.v5i2.226

Relationship between thermal conductivity and electrical permittivity for different building
materials is defined. A novel test apparatus for laboratory activity has been designed and
realized based on a special capacitive sensor where the material sample acts as dielectric. The
first measurement approach has been refined by considering parallel measurements consisting
in the comparison of the frequency of two oscillators. Electrical permittivity shows to be well
correlated to the moisture content and variation of the material under investigation.
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