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Abstract. Steganographic systems use Syndrome Trellis Coding (STC)
to control the selection of embedding positions in a cover, subject to a set
of stochastic constraints. This paper reports observations from a series of
experiments on the ability of Syndrome Trellis Coding to approximate
independent Bernoulli random variables. We find that approximation
errors are generally small except for some outliers at boundary positions.
Bivariate dependencies between embedding changes do reveal the use
of the code and its parameters. While risky outliers can be hidden by
permuting the cover before coding, or avoided by using the proposed
“outlier corrected” variant OC-STC, the aggregate bivariate statistics are
invariant to permutations and therefore constitute a potential security
risk in the presence of powerful attackers.

1 Introduction

Syndrome coding is a key element of modern steganography. It allows the trans-
mission of steganographic messages without the need to share with the recipient
the location of the embedding changes in a cover. The most popular form of
syndrome coding is known as Syndrome Trellis Coding (STC) [7]. STC is specif-
ically suited for separating the concerns of where to embed and how to embed,
combined with unparalleled computational efficiency and marginal coding loss.
Indeed, since the introduction of STC, the research community has adopted the
convention to test new embedding functions with simulated embedding rather
than meaningful payloads, thereby relying on STC’s ability to substitute random
changes with a close to optimal encoding of payload bits [1,|7,/15]. In particular,
the wide acceptance of and reliance on STC calls for a closer inspection of the
statistical properties of the code, specifically its reference implementation [3].
That is where this paper seeks to contribute to the state of knowledge.

In a nutshell, STC takes as inputs the cover, a vector of change probabilities
per cover element, and a message. It produces a vector of positions where the
cover must be changed in order to embed the message. A common abstraction is
that (binary) STC outputs a realization of a vector of independent Bernoulli ran-
dom variables. However, the structure of the code and constraints to the solver
clearly invalidate this assumption. Our objective in this research is to character-
ize this discrepancy with statistical means. In other words, our guiding questions
are: how close does STC come to realize the prescribed change probabilities? If



there is measurable discrepancy, does it follow systematic patterns? And how do
the code parameters influence the magnitude and pattern of the discrepancy?

We take an experimental approach, drawing on 150 million encodings under
controlled conditions. We report observations made on the level of aggregate
moments, univariate statistics, and indicators of bivariate dependency. A main
finding is that the standard way STCs are presented in academic publications
and reference implementations produces violates the embedding constraints at
the beginning of the trellis. We propose a modified construction, called OC-STC,
which avoids these outliers.

To be clear, theory predicts that some discrepancy is unavoidable. Even if
characteristic patterns are statistically identifiable, we are not aware of an im-
mediate path to mount steganalytic attacks even in the presence of outliers.
This is because real-world attackers do not enjoy the same amount of control
over related encodings as in our simulations. Moreover, standard constructions
use a key-dependent pseudo-random permutation to shield the coding layer from
the scrutiny of computationally bounded steganalysts. Nevertheless, we deem it
worthwhile to explore this relevant building block of steganographic systems,
with an eye on potential weaknesses in more exotic constructions, such as public
key steganography [2], or as a second line of defense against side channels which
reveal the stego key to the attacker [11}13].

This paper is organized as follows. The next Section [ recalls known theory.
Section 3| describes the analytical approach and justifies parameter choices. The
results are reported in Section [d] further structured in sub-sections per level of
analysis, each of which includes a brief discussion. Section [5] proposes and briefly
evaluates the construction of OC-STC. General observations and limitations are
summarized in the concluding Section [f]

2 Background

Without loss of generality, we consider the spatial domain representation of
natural gray scale images as communication channel. In this domain, positions
are referred to as pixels. Even though images are two-dimensional, we index
pixels column-wise by a single integer 1.

Steganography by cover modification takes a cover image of length n, de-
noted as @ = (2;);e1..n, and modifies it to obtain a stego image y = (¥:)ic1...n-
The stego image contains the desired message m = (m;);ec1...an, Where the em-
bedding rate « is the ratio between message and cover length. For the sake
of simplicity, we assume « to be chosen such that o' is an integer. Further,
let cover & be arbitrary but fixed. Slightly overloading notation, we interpret
x and y as integer vectors when they refer to the cover and stego image, and
as binary vectors in relation to coding. This implicitly assumes a mapping be-
tween images and their (binary) steganographic semantic. Using LSBs to carry
steganographic semantic is one popular approach, but more sophisticated (and
more secure) embedding operations are possible.
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Fig. 1. System model of the embedding process.

The role of coding is to determine the position of embedding changes between
the stego and cover image. It is convenient to represented the set of changes by
a binary vector ¢ = (¢;)i=1..n € {0,1}", where ¢; =1 < z; # y; . An objective
of the coding process is to minimize the statistical distinguishability due to the
embedding changes between cover and stego images. This is connected to the
protection goal of “undetectability” of stego images among cover images. Quan-
tifying this distinguishability would require full knowledge of the distribution of
cover objects, which is infeasible [9, Ch. 7], so that heuristic distortion measures
are used as an approximation. As a result, coding techniques generally aim at
embedding the desired message and, at the same time, minimizing some kind
of analytically tractable distortion measure. In our work, we study the case of
Syndrome Trellis Coding (STC), a state-of-the-art technique solving the coding
task while minimizing a distortion measure that is assumed to be additive over
all pixels in an image.

In the rest of this section we formalize the additive distortion measure consid-
ered in the context of our system model (Section , present the basic concepts
of STC (Section , and recall the calculation of the optimal change probabil-
ities induced by the distortion model and the payload size (Section .

2.1 System Model

The process of embedding message m into cover @« is presented in system model
Fig. First, the cost map @ = (9i)i=1..n is derived from the cover over the
additive distortion model. The additive distortion model assigns each pixel with
a positive scalar g;, representing the cost of changing the pixel at position . This
can be done by means of different heuristics, such as WOW [10] and HILL [12]. In
the case of basic (single layer) STC [6], the following simplifications are assumed
in the computation of distortion:

— Pixel i’s contribution to the global distortion is given by c;p;.
— The global distortion d is the sum of individual distortions: d = > | ¢;0; -

Both cover and cost map are permuted under the same permutation o. The
permutation can be thought of as an interleaving method which distributes mes-
sages bits over cover positions approximately equally. This increases the chance



of successful embedding in the presence of dense local constraints. The conven-
tion to use a key-dependent pseudo-random permutation also improves security.
It obscures the relationship between cover position and message position for
steganalysts who do not know the key and cannot recover the embedding path.

We assume a payload limited sender. The optimal change probabilities p are
calculated from the cost map o(@) and payload size an as detailed in Sect.

The encoding operation takes the message m, permuted cover o(x) and per-
muted cost map o(@) as inputs and returns a vector of changes ¢, representing
the modifications that have to be applied to the permuted cover. Via the embed-
ding operation the permuted cover o () is modified according to change vector
¢, returning the permuted stego o(y). Before communicating the stego, it is
permuted back to the order of the cover object. To extract the message m, the
recipient would permute the stego and multiply it with the parity-check matrix.

As our main concern is to examine the encoding operation, namely STC, we
observe the change vector ¢, which implicitly assumes knowledge of the embed-
ding path given by permutation o.

2.2 Syndrome Trellis Coding

We use syndrome coding for encoding. In syndrome coding, message m is derived
as a syndrome via the stego y and parity-check matrix H, Hy = m. STC [6]
is a special case of syndrome coding where the matrix H is constructed by
concatenating and shifting a submatrix He {0, 1}h><“71 multiple times, to create
a sparse and systematically constructed parity-check matrix H,

0...0 0
£l 0.0
N 0
0..0 H
IH — 0...0 0...0 ) , (1)
0.0 0.0
0 H .
H -

where constant h is called constraint length. This construction allows the use of
the Viterbi algorithm [14] to efficiently find a change vector ¢ which minimizes
distortion d and implies m as syndrome, i.e., H(x & ¢) = m over GF(2).

The algorithm traverses a trellis diagram of size 2" x n(a + 1). Accordingly,
the computational complexity is in O(n) for a constant submatrix H of height
h. Regarding the constraint length h, the computational complexity is in O(e?).
Thus, STC is only feasible for small constants h, usually 7 < h < 13.

For a fixed cover x of length n and message m of length an, the relevant
parameter influencing the execution of the STC is the code parameter h, and
more specifically, the submatrix H. Due to its impact on the computational
complexity and the probability of finding valid stego objects, H has to be chosen
carefully, as described in [6, Sect. 5.2].

The strict minimization of global distortion d leads to different behavior of
STC for different cost maps g. For instance, embedding in a cover with only



few low-distortion pixels produces embedding changes at these few pixels with a
high probability, whereas for a cover with similar distortions for all pixels, such
high probabilities are less likely. As we aim to include behavior under different
circumstances in our experiments, variance in distortion is of interest.

2.3 Optimal Change Probabilities

As presented in |4 Sect. IT], choosing embedding changes by additive distortion
minimization must follow a particular form of Gibbs distribution. This especially
assumes independence between embedding changes at different pixels. For our
set of assumptions presented in Sect. the general results of [4] can be sim-
plified. In accordance with [5/7], we calculate the independent optimal change
probabilities p; for each pixel ¢ with cost o; as

e*AQi
C14e e

where A is a scaling variable that needs to be chosen such that the overall entropy
fits the length of the message, > ., , H(p;) = na, where (binary) entropy is
defined as H(p;) = —p;logs(pi) — (1 — pi)logs (1 — p;). The scaling is based on
the assumption that the message has full entropy.

By characterizing optimal embedding in terms of probability theory, let C' =
(Ci)i=1..n be the random vector of embedding changes, whose sample space is
{0,1}". Thus, C follows a multivariate Bernoulli distribution, which reduces to a
product of univariate Bernoulli distributions due to the assumption of mutually
independence of the embedding changes p;. The pmf of C is then given by

Pole)= [ )" @—-p)'— . (3)

i=1,...,n

Optimal coding would produce change vectors indistinguishable from this
distribution model. A common conjecture is that STC can approximate optimal
coding the better the more computational complexity is spent on coding via the
choice of the constraint length h [15].

3 Experimental Approach

The goal is to observe STC’s behavior in determining the change vector with
respect to the optimal embedding change distribution Pc. Supposing to embed
N different messages for cover & and coding parameter h, this results in N change
vector samples (c(l), . ,c(N)), i.e., N realizations of the random vector C. As
shown in Section [2.3] each of these vectors is supposed to follow the distribution
specified in (3)). We then define the relative frequency distribution Pl {0,1}" —
[0,1], where PL(c) is given by the relative frequencies of occurrence of ¢ in the
observed N change vectors.



3.1 Levels of Analysis

In principle, P%(c) should be compared with Pe(¢). However, there are 2 differ-
ent possible realizations ¢ of the random vector C, so that statistical observation
of the whole vector would require an infeasible large sample size N > 2™. Instead,
we study different projections of the sample space with reduced dimensionality,
of which we can derive theoretical distributions. In particular, we consider the
following levels of analysis:

Count of Embedding Changes. First, we observe the scalar random variable A
based on the count of embedding changes A = " | C;. Realizations of A are
denoted by a. Under the assumption of optimal coding, A is the sum of inde-
pendent Bernoulli variables with different parameters p;, thus it should follow a
Poisson binomial distribution. Deviations from this distribution lead to the con-
clusion that at least one of the underlying assumptions (independence among
pixels or observed relative frequency equal to p;) is violated.

We expect to observe deviations, as embedding changes are not independent
due to the structured dependencies implied by parity-check matrix H. Still, it is
interesting to look at the influence of coding parameter i on this statistic. We
expect results closer to the optimum for larger coding parameters h.

As a follow-up, we look into statistics that allow us to differentiate between
the assumptions of empirical results fulfilling the correct individual probabilities
and them being independent.

Single-Pizel Embedding Changes. Secondly, we observe the univariate random
variables C; given by the i-th components of C. Realizations of C; are denoted by
¢;. Under optimal coding, they should follow a univariate Bernoulli distribution
with probability p;.

We expect to observe slight deviations and look into the structure and dis-
tribution of deviations, and the influence of coding parameter h.

Pair of Pizels Embedding Changes. Thirdly, we observe the bivariate random
variables C; ; = (C;, C;) given by pairs of components of C. Realizations of C; ;
are denoted by ¢; ; = (¢;, ¢;). Under optimal coding, their components should be
independent and we will evaluate such assumption via y2-tests for independence.

Computational Performance. Finally, since the statistical properties of STC de-
pend on the choice of h, it is instructive to also evaluate the computational cost
associated with this code parameter.

3.2 Selection of Distortion Profiles from Real Cover Images

In principle, STC can take arbitrary change probabilities p as input. For better
validity in the application domain steganography, we use the probabilities pro-
duced by a typical distortion model applied to real cover images. However, to
limit the computational effort, we use small patches sized 64 x 64 pixels. To reflect



the heterogeneity of real covers, we select covers with diverse distortion maps
from a standard benchmark database used in steganography research. Therefore,
we compare covers by their distortion profile, which is given by a sorted n-tuple
of costs sort (o) [§].

We use WOW as distortion model. Since we are not interested in the se-
curity against signal-based steganalysis, this choice is not crucial for our results.
The same holds for potential singularities at the patch boundaries.

We systematically select a set X of 1000 different 64 x 64 covers from the
10000 512 x 512 images in BOSSBase v1.01 as follows. The 10000 images
are cropped at random offsets to form 10000 64 x 64 patches. The distortion
profile for each of the 10000 64 x 64 patches is calculated and scaled linearly to
have coinciding maxima. Scaling allows easy comparability and does not harm
the profiles’ information on STC’s behavior, as STC’s behavior is invariant to a
linear scaling of costs. The first cover is a randomly selected patch. The set of
covers is incrementally expanded by the 64 x 64 patch with the largest product
of distances to each element of the set of covers. We define the distance of two
distortion profiles as the integral of absolute difference. Fig. 2] shows the first
and last four 64 x 64 patches selected as covers by this process.

1

first four

0.5

last four

0 sorted position

Fig. 2. WOW distortion maps (left) and profiles (right) of the first four (blue lines)
and last four (red dashed lines) systematically selected covers.

3.3 Experimental Setup

To gather empirical data, we use our set of covers X and fix an embedding rate
of a = 0.5. As the reference implementation of STC [3] supports submatrices for
constraint lengths h € {7,...,13}, we use the following submatrices,

A~ T A T ~ T
_ (1011011 _ (1010011111 _ (1011001000101
]H7_<1110001> ’ ]Hlo_(1100111001> ’ H13_(1111101001011> , (4)
which correspond to the submatrices defined in [3] for h € {7,10,13}.

For each cover € X and h € {7,10,13}, N = 50000 random messages are
embedded using a fixed permutation o. This results in a set of change vectors



Zy ={cU )} j=1...N ber cover. Recall that each c is ordered along the embedding
path and thus assumes knowledge of permutation . We use a C implementation
of the Viterbi algorithm that has been tested to be functionally equivalent to
the MATLAB reference implementation in . Our implementation and analysis
does not support multi-layered constructions of STC .

4 Results and Discussion

We report and discuss results by level of analysis (cf. Sect. .

4.1 Count of Embedding Changes

As explained in Section[3.1] the count of embedding changes A under the assump-
tion of optimal coding follows a Poisson binomial distribution . Its probability
mass function (pmf) is given by

Pa(a) = > II» IT G=»p) - ()

ce{0,1}": a=), ¢, i:c;=1  jic;=0

For a fixed cover x, we choose an asymmetric 95% confidence interval [amin, Gmax)
around the expected value Ep[A] = 371" p; such that 5, _ . Pa(a) ~ 0.025
and >, . Pa(a) ~ 0.975. Then, we observe the ratio of change vectors with
embedding change counts within the confidence interval. The histogram over
these ratios is presented in Fig.

Discussion. We see that for larger constraint lengths h, a higher percentage of
cases falls into the confidence interval. Specifically, the ratio for h = 13 is 92%.
This comes sufficiently close to 95%, which is the expected value if the true data
generating process was Poisson binomial distributed.
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Fig. 3. Histogram of per-cover ratio of embedding change counts within the 95% con-
fidence interval.
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Fig. 4. Exemplary comparison of optimal change probabilities p; and observed fre-
quencies p;,n, at h =7 (left) and h = 13 (right) for all pixels of a cover, annotated with
positions during encoding. Points on the main diagonal refer to pixels with observed
frequencies p;n that exactly meet the optimal change probabilities p;. This example
refers to image 5729 of the BOSSBase dataset, cropped with offset (258, 53).

4.2 Single-Pixel Embedding Changes

According to , individual pixel changes C; should follow a Bernoulli distribu-
tion with the pmf

Pe,(ei) = (pi)" (1 —pi)' 7 . (6)

The optimal change probability at any pixel i is given by Pc, (1) = p;. For a fixed
cover x, let the observed frequency p; , at any pixel ¢ with constraint length h
be defined by p; p, = % {ce Zp:c =1}

The univariate Bernoulli distributions Pg;(¢;) and If’gl (¢;) are compared
based on their success ratios p; and p; p, as they fully define the distributions.
For a fixed cover & and constraint length A and all pixels i, an exemplary vi-
sual comparison of p; and p; is given in Fig. @ To quantify the divergence
between p; and p;p we calculate the Hellinger distance, Dyeltinger (Pi, Dih) =

\/\/1 —pi /1= Din + /Pi /Di,rh + 1.

In Fig. 4] the pixels with the 20 highest Hellinger distances are annotated
with their position during encoding (i.e., in the permuted order). We observe
that most of the marked pixels are located at the beginning and the end of the
change vector.

To generalize from this cover-specific observation, we look at the mean Hellinger
distance per pixel over all covers. As visible in Fig. [5] the concentration at be-
ginning and end can be observed across covers & and constraint lengths h.

Another way of looking at this result is by aggregating the difference p; , —p;
over all pixels of all covers and presenting it in a histogram, as shown in Fig. [6}
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Fig.5. Mean Hellinger distance per pixel, in order of coding, coding length h =
7 (left), 10 (middle), 13 (right).
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Fig. 6. Histogram of difference between observed frequency and optimal change prob-
abilities p; n — p; over all pixels of all covers.

Discussion. High Hellinger distances at the borders of the change vector (as
shown in Fig.[5)) can be explained by the construction of the parity-check matrix
Hin . Consider the case of @ = 0.5. The first message bit depends only on the
first 2 bits of the permuted stego object o(y). This means that only these two
bits can be changed to embed the first message bit. Assuming that (the binary
representation of) x1, xo and my are uniformly distributed, the probability of
introducing an embedding change at one of these positions is 50 % even though
the sum of the optimal change probabilities p; + ps can be much lower. A similar
border effect happens, albeit to a lesser extent, at other positions j < h.

To recall, the calculation of optimal change probabilities p; is based on the
assumption of embedding at the entropy limit. However, STC is only able to
embed as close to this limit as it is constrained by the parity-check matrix H,
specifically its constraint length h. Thus, a positive deviation of the mean of
differences from zero is expected. Smaller h values impose greater restrictions
on coding and thus imply higher observed frequencies, as a consequence. These
expectations coincide with the findings presented in the example in Fig. {4l as
well as the overall positive mean deviation (Fig. [6]).



4.3 Pair of Pixels Embedding Changes

According to the distribution of optimal embedding changes P, pairwise pixel
changes C; ; follow a bivariate Bernoulli distribution with pmf

Pciyj(ci,j) _ (pgf?]p))(l—ci)u—cj) (pgfjl))u—ci)cj <p§}79)>ci(1—cj> (PE},-U)CiCj ’ (7)

where the co-occurrence probabilities pz(?cj) describe the probability of the em-
bedding changes at pixels ¢ and j being equal to ¢; and c;, respectively. Due to

their pixel changes’ mutual independence, can be rewritten as

Pe, ,(cij) = (pi)” (1 —p) )T A —p))' T, (8)

consistently with . Similar to @, from the observed pairwise pixel changes
¢;,; we can compute the relative co-occurrence frequencies ﬁgcﬁj), determined by
the ratio of change vectors in which the embedding changes at pixels i and j are
equal to ¢; and c;. The empirical distribution 13(’5] can then be expressed as a

bivariate Bernoulli distribution with the pmf

~ (1—¢i)(1—cy) (1—ci)c; ci(l—cj) cic
h N 3 N 3 R 3 R 3
Pg, (eiy) = (5)) o) )T T )T o)

We examine dependencies between pixels ¢ and j under frequency distribution
Pgw‘ by computing p-values of the x-squared independence test on C; and C;.

First, we observe dependencies in relation to the first pixel ¢ = 1 by collecting
the p-values for all j # ¢. This is repeated for all covers and depicted as a mean
p-value map in Fig. [7| (first row).

Then, we observe the dependencies between all pixel pairs ¢ # j by collecting
the mean p-value for each i against all j # 4. This is repeated for all covers, and
depicted as a mean p-value map in Fig. [7| (second row).

To get a better understanding of the distribution of p-values, we calculate
the ratio of p-values < 5% per cover. A ratio histogram is presented in Fig.

Discussion. The first row of Fig. [7] indicates low p-values of the independence
test between the first pixel and its neighbors, while p-values increase for more
distant pixels. This can be explained by the construction of parity-check matrix
H in , as it induces linear dependencies. The first ha~! pixels are involved in
achieving parities according to the first h message bits. These dependencies are
a cascading effect, as this relation is true for any pixel. This observation is done
in context of a known permutation. In case of a fixed but unknown permutation,
examining such dependencies potentially allows reconstruction of the embedding
path, yielding the permutation o.

An opposite border effect in the final part of the vector is observable in both
rows of Fig. [7} last pixels tend to be independent from all the other ones. Again,
this can be explained as result of the parity-check matrix H construction in
. The last o' stego pixels only contribute to the last message bit. The only
connection to other pixels is that the previous ha~! pixels (together with the last



h=17

h =10 h =13

1
map pixel j
represents
p-value of
x2-test of
pixel i =1
and pixel j

0.5

. . 0

map pixel j

represents

mean p-value
of x?-tests of

Fig. 7. Mean p-value map of chi-squared tests of first pixel against all other pixels j

(first row), and of each pixel j against all other pixels (second row), j column-wise in

order of coding, mean over all cover objects, h = 7 (left), 10 (middle), 13 (right).

all pixels ¢ # j
and pixel j

T

£ 400 - =7 100 |-

8 [ hA=10

& 200 [ h =13 || 50|

9]

o

0 ! ! ! 0 L il ki
0.1 0.2 0.3 0.4 0.04 0.05 0.05 0.06
per-cover ratio of p-values < 5% (closer look at peak around 0.05)

Fig. 8. Histograms of per-cover ratio of p-values < 5% of all ratios (left), and of ratios
in the local neighborhood of the peak at around 0.05 (right).

message bit) determine whether one of the last a~! pixels has to be changed to
meet the correct parity. Thus, embedding changes at these pixels have only small
cascading effects on the choices at other pixels. These dependency behaviors can
only be observed, when knowledge about the permutation o is given. The count
of pixels with low dependencies equals the width of submatrix H and thereby
contains information about the ratio a.

What matters from a security point of view is that in case of an unknown
but fixed permutation, an attacker can obtain and evaluate a histogram of p-
values, such as the one in Fig. [8] The expected per-cover ratio of pixel pairs with
p-values below 5%, would be 5% for independently chosen embedding changes.
Instead we observe ratios around 5.6%. This not only adds information to the
steganalysis decision, but may reveal information about the embedding path.

Interestingly, in our experiment, the mean ratio in case of h = 10 is higher
than in case of h = 13. In other words, for A = 10 there are on average more pixel
pairs fulfilling the independence test than for A = 13. This can be attributed
to the values in submatrix H in context of the set of distortion profiles, as the
submatrix implies how dependencies are formed and propagated. Clearly, such
analyses should guide the choice of secure submatrices in future work.



The previous discussion focused on the analysis of STC for different con-
straint lengths h. Besides its impact on the achievable security, the constraint
length h has exponential impact on the computational complexity of STC.

4.4 Computational Performance

The empirical measurements in this section confirm the theoretical predictions
(within the tested range) and inform the tradeoff between security and perfor-
mance when choosing h in practice. To give some intuition regarding the com-
putation time, Fig. [0 presents the time per pixel of an STC run given different
scenarios. The computations are done on the LEO3E HPC [16], fitted with Intel
Xeon E5-2650-v3 processors. The performance is evaluated on a single core at
2.3 GHz CPU clock speed and 8 GB RAM.
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Fig. 9. STC computation time per pixel for different embedding ratios «, cover sizes
n, and constraint lengths h.

Running STC, the time per pixel is mostly constant for cover sizes n and, ex-
pectedly, exponential in the constraint length h. Furthermore, the time per pixel
increases slightly for increasing ratios a. These measurements fit the expected
computational scaling due to the trellis size 2" x n(a + 1).

5 Outlier Correction

Here we propose an improvement to STC which avoids security-critical outliers.
We differentiate between outliers above and below the main diagonal in Fig.
[ Outliers above the main diagonal refer to pixels being changed with higher
observed frequencies than optimal and are denoted as positive outliers. Outliers
below the main diagonal are changed less than optimal and are denoted as
negative outliers. Positive outliers are very risky as they might cause instances
where steganalysis succeeds with certainty. Negative outliers do not impose an
immediate security risk.

Positive outliers are an immediate result of the code construction, as previ-
ously discussed in Sect. Mitigation attempts that modify the costs of the



leading pixels, e.g. by windowing, are futile as this cannot overcome the restric-
tions imposed by the parity-check matrix. A more viable approach would be to
detect risky deviations post-embedding and repeat the embedding with another
cover if necessary. However, this meddles with the separation of duties, makes
embedding time less predictable, and comes close to the (insecure) practice of
steganography by cover selection. We do not recommend this approach.

Alternatively, we suggest to modify the code construction and use a parity-
check matrix Hoe by cropping the first h — 1 rows of H as follows:

L 0e0

(:)A,O H . 0

0.0 0.0 H

0.0 0..00..0

Hoc = : (10)
0..0 0.0
0 H

i 0...0

We refer to this modification as outlier corrected Syndrome Trellis Coding
(OC-STC), noting that it corrects risky (positive) outliers only. The resulting
parity-check matrix differs in one important property: each row of Hoc con-
tains each element of H exactly once. However, cropping the first A — 1 rows
shortens the payload by h — 1 bits. For the sake of presenting the impact of
OC-STC correctly, we recalculate the optimal change probabilities based on the
lowered payload. Therefore, a new scaling X' according to the reduced maxi-
mal message entropy is chosen. OC-STC can be solved in the same time with
the same Viterbi algorithm as STC. Figure [10| demonstrated (by example) that
using parity-check matrix Hpc successfully mitigates positive outliers. A more
thorough investigation is left for future research.
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Fig. 10. Exemplary comparison of optimal change probabilities p; and observed fre-
quencies p;,;, as in Fig. [4] for default STC (left) and the proposed OC-STC (right).



6 Concluding Remarks

The results of the first (to the best of our knowledge) experimental analysis
tailored to explore the statistical properties of Syndrome Trellis Coding (STC)
confirms the trust it enjoys from the community: in general, STC does a good
job. Even though we chose a difficult steganography setup with small covers and
long messages, STC closely approximates the optimal change probabilities, as
supported by the relatively small bias (coding loss) and its balanced distribution
over the dimensions analyzed. Also the computational cost scales as expected.

However, it is worth noting that STC produces outliers at the boundaries of
the cover vector, which seem risky in particular at the leading elements (shielded
in many practical systems only by the key-dependent permutation). Using the
default parity-check matrix construction, the first positions of the embedding
path are prone to be changed significantly more often than optimal or intended.
Our proposed modification OC-STC mitigates positive outliers by using a dif-
ferent construction for the parity-check matrix.

OC-STC, as STC, still produces negative outliers, in the sense of pixels being
changed less frequently than prescribed by the optimal change probabilities.
Negative outliers do not immediately induce a security concern, although it
would be desirable to use all available pixels to their full capacity. This is an
avenue for future work.

Another relevant insight gained from this work is the possibility to evalu-
ate pairwise dependencies in the change vector. This analysis does not require
knowledge of the permutation and is thus possible for attackers as soon as the
permutation is fixed for sufficiently many objects. More research is needed to
assess the practical security loss by using the dependency structure in the ste-
ganalysis decision directly; or by indirectly trying to recover the embedding path
from the dependency structure, exploiting knowledge of the locality of pairwise
dependencies as a result of message encoding with STC (and OC-STC).

Finally, the discovered non-monotonic relation between h and the ratio of
independence-rejected pixels motivates to look deeper into the specifics of how
the choice of submatrix H influences the measurable formation of dependencies.

In conclusion, this research has highlighted that the effect of coding on
steganographic security leaves relevant open questions. It is worth recalling that
the results presented here (and suggested for follow-up work) do not immediately
invalidate research on steganographic security that follows the common practice
of simulating change vectors and thus assumes optimal encoding. Rather, these
results should be seen as upper bounds for the security of steganographic systems
that replace the simulation with STC for real messages.
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