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Abstract Black holes in f (R)-gravity are known to be unstable, especially the rotating ones.
In particular, an instability develops that looks like the classical black hole bomb mechanism:
the linearized modified Einstein equations are characterized by an effective mass that acts
like a massive scalar perturbation on the Kerr solution in general relativity, which is known
to yield instabilities. In this note, we consider a special class of f (R) gravity that has the
property of being scale-invariant. As a prototype, we consider the simplest case f (R) = R2

and show that, in opposition to the general case, static and stationary black holes are stable,
at least at the linear level. Finally, the result is generalized to a wider class of f (R) theories.

1 Introduction

The challenging questions left unanswered by general relativity (GR), like the physical inter-
pretation of singularities or the consistent quantization of the field equations call for exploring
more general constructions. A well-known extension of GR is the so-called f (R) gravity,
where the Einstein–Hilbert Lagrangian L = √

gR is replaced by a generic function of the
Ricci scalar R, i.e., L = √

g f (R). This wide class of theories has been explored in many
contexts, from black hole physics to cosmology, especially inflation and dark energy (see
[1,2] for general reviews).

A very general feature of f (R) gravity is that it can be mapped to a standard scalar-tensor
theory of gravity by means of a conformal transformation [3]. The field equations in f (R)

usually have higher-than-second-order derivatives and are difficult to solve. By changing
frame, however, the extra degree of freedom is encoded in a dynamical scalar field with a
potential that depends on the analytic form of f (R) and the equations of motion are again
of second order at most. One very relevant example is given by the so-called Starobinsky
inflationary model f (R) = R + R2/(6M2), where M is the inflationary mass scale. When
mapped to the Einstein frame, the theory becomes equivalent, in the high energy limit, to
the Higgs inflation model, where the standard model Higgs field is nonminimally coupled to
gravity and acts as the inflaton field [4,5].
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Modified f (R) gravity counts numerous analytic black hole solutions, but their stability
is difficult to assess as the perturbation equations are in general of fourth order. Nevertheless,
there are ways to overcome this difficulty, as suggested in [6], where the stability of the Kerr
metric was investigated in the case when f (R) is an analytic function of R. The main result
of this work is that rotating black holes are unstable due to the presence of a massive graviton
that generates a black hole bomb. The effective mass of the graviton depends explicitly on
the analytic form of f (R), namely

M2 = f ′(R) − R f ′′(R)

3 f ′′(R)
, (1)

where the prime indicates the derivative of f with respect to R and the quantity is computed
for R = 0, since the Kerr black hole is Ricci flat [6]. For analytic forms of f , that is

f (R) = α0 + α1R + α2R
2 + O(R3) (2)

the effective mass M is always nonzero and proportional to α1/α2. In particular, the presence
of a linear term in the expansion is crucial to have a nonzero mass. However, for the class of
models of the form f (R) = Rn (n > 1) the effective mass vanishes if R = 0 for n �= 2 and
for any R for n = 2. Since this class contains the Kerr metric as exact solution, in this note
we investigate whether the instability persists in this class of models.

Such a class of modified gravity has attracted some attention, especially the case R2 since
it is manifestly scale-invariant. Static and rotating black holes both asymptotically flat or
(anti)de Sitter ((A)dS) where investigated in many papers, see, e.g., [7–14]. The conformal
factor � that maps the f (R) theory from the Jordan frame to its scalar-tensor counterpart
in the Einstein frame is proportional to f ′(R) [1,2]. Therefore, if α1 = 0 [that is, there is
no linear term in expansion (2)] and the solution has R = 0 the mapping is not possible. In
other words, these theories do not have a scalar-tensor interpretation. In particular, this holds
for f (R) = R2, but it might hold for all scale-invariant gravity models [15].

The plan of the present work is the following: in Sect. 2 we quickly review the linearization
of the Einstein equations in the case f (R) = R2. In Sect. 3 we discuss the static black hole
solutions (both flat and asymptotically (A)dS) and then we examine the rotating case in Sect.
4. Finally, we draw some conclusions and open issues in Sect. 5.

2 Linearized equations in pure quadratic gravity

Before discussing the linearized equations, we first need to find the unperturbed ones by
varying the action with respect to the metric:

S = α

36

∫
d4x

√−g R2 (3)

where α is a dimensionless coupling, owing to the scale-invariance of the model (in vacuum).
The result is

2RRμν − 1

2
gμνR

2 + 2
(
gμν� − ∇μ∇ν

)
R = 0 . (4)

The linearization is achieved by replacing in (4) the perturbed metric tensor

gμν = ḡμν + hμν , (5)
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where ḡμν represents a nondynamical background solution and hμν the perturbation.1 The
Ricci scalar and the Ricci tensor expanded to the lowest order read, respectively

R = R̄ + δR + O(δR2) , (6)

Rμν = R̄μν + δRμν + O(δR2
μν) , (7)

where

δR = �̄h − ∇̄ρ∇̄σ hρσ − hρσ R̄
ρσ , (8)

δRμν = 1

2

(
�̄hμν + ∇̄μ∇̄νh − ∇̄μ∇̄ρhνρ − ∇̄ν∇̄ρhμρ

)
. (9)

To proceed further, it is convenient to distinguish between the cases R̄ = 0 and R̄ �= 0, that
is between Ricci flat or asymptotically locally (A)dS background solutions, respectively. As
mentioned in Introduction, the subspace of asymptotically flat solutions cannot be mapped
to the Einstein frame. In fact, the conformal transformation from Jordan to Einstein frame
for a general f (R) theory is given by [1,2]

g̃μν = �2gμν , (10)

where �2 = f ′(R). When f (R) = R2, �2 = αR/(9M̃2), which vanishes when R = 0
preventing the mapping.2 Therefore, to determine the stability of this class of solutions
we have no choice and we need to perturb the higher-order equations in the Jordan frame.
However, in the Ricci flat case, this is not as difficult as it appears. Indeed, after inserting (5)
and (7) in (4) and setting R̄ = 0, one finds

(2R̄μν + 2ḡμν�̄ − 2∇̄μ∇̄ν)δR = 0 . (11)

By using the trace of (11), one finally arrives to the simple equation

�̄δR = 0 . (12)

Thus, we see that for Ricci flat backgrounds we have no propagating tensor degrees of
freedom, which means that the tensor perturbations are not dynamical at the linear level. So
the problem of the stability of asymptotically flat black holes is reduced to that of a massless
scalar field on a fixed background.

In the case R̄ �= 0 instead, we have nontrivial equations for both tensor and scalar pertur-
bations. In fact, by inserting (5) and (7) in (4), we find

δRμν − hμν� + 1

3M2

(
ḡμν� + ḡμν�̄ − ∇̄μ∇̄μ

)
δR − 1

2
ḡμνδR = 0 , (13)

where M is defined by (1) and � is implicitly given by

R̄μν = 1

4
ḡμν R̄ ≡ ḡμν� , (14)

By taking the trace of equation (13) and using the definitions of M and � we get once again
a massless scalar equation

�̄δR = 0 . (15)

Thus, the stability of asymptotically (A)dS black holes is determined by both scalar and
tensor perturbations.

1 From now on barred quantities denote background fields.
2 Here, M̃ is an arbitrary mass scale necessary to keep the conformal factor dimensionless.
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3 Stability of static spherically symmetric black holes

It is well known that in f (R) gravity there is no corresponding Birkhoff theorem [2] so the
static spherically symmetric solution is not unique. The most general spherically symmetric
static solution takes the form

ds2 = −α(r)dt2 + β(r)dr2 + r2d�2 , (16)

where, for a given α(r), one can find a corresponding function β(r) by using solution gener-
ating techniques. For instance one can impose constant curvature [16]. In this work we focus
on the analytic solutions with α(r) = 1/β(r) which correspond to a line element similar to
the Reissner–Nordström one [8]

ds2 = −
(

1 − 2M

r
+ K

r2

)
dt2 +

(
1 − 2M

r
+ K

r2

)−1

dr2 + r2d�2 , (17)

where both M , K must be regarded as mere integration constants. In particular, the parameter
K is not associated with an electromagnetic stress tensor since we are considering vacuum
solutions.3 These black holes have the interesting property that, although their temperature is
nonzero, when associated with the usual surface gravity, the Wald entropy is exactly zero [8].
As mentioned above, in the Ricci flat case we only have the scalar perturbation δR, which
can be written as

δR(t, r, θ, φ) = e−iωt Al(r)Ylm(θ, φ) (18)

where ω is in general a complex number, and l,m are the usual indices of the spherical
harmonics. By defining the tortoise coordinates dr∗ = α(r)−1dr and a new radial function
ul(r) = α(r)

r Al(r) we can turn Eq. (12) into the Schrödinger-like equation for the radial part

(−∂2
r∗ + V (r)

)
ul = ω2ul , (19)

where

V (r) =
(

1 − 2M

r
+ K

r2

) (
l(l + 1)

r2 + 2M

r3 − 2K

r4

)
. (20)

In general, if V (r) is positive, the operator on the left-hand side of (19) is positive definite
and self-adjoint.4 This implies [18] �(ω) ≤ 0 (the imaginary part of ω) and the scalar field
modes remain bounded at any t . The potential defined in (20) is always positive definite in
the causal region outside the black hole horizon whenever M2 > |K |, a condition that we
impose to avoid the appearance of naked singularities. We conclude that static spherically
symmetric black holes with line element (17) are stable in R2. In particular, by taking the
limit K → 0, we conclude that the Schwarzschild solution is also stable in R2.

We now consider the case when R̄ �= 0. This choice corresponds to asymptotically (A)dS
solutions. Again the solution is not unique, so we impose α(r) = 1/β(r) and find the line
element [8]:

ds2 = −
(

1 − 2M

r
− �

3
r2

)
dt2 +

(
1 − 2M

r
− �

3
r2

)−1

dr2 + r2d�2 (21)

3 A similar behavior is present in the case of cosmological solutions: by imposing the flat Robertson Walker
metric one finds a scale factor that interpolates between a radiation-dominated Universe and a de Sitter space.
4 Self-adjointness is defined with respect to the usual inner product in L2 Hilbert space, see, e.g., [17].
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where M , � must be regarded, again, as integration constants. By repeating the same proce-
dure of the previous case we find a Schrödinger equation with potential

V (r) =
(

1 − 2M

r
− �

3
r2

) (
l(l + 1)

r2 + 2M

r3 − 2

3
�

)
, (22)

which is again always positive5 in the causal region between the black hole horizon and the
cosmological horizon. We conclude that the Schwarzschild-(A)dS solution is stable against
linear scalar perturbation (15).

As we have discussed in the case of R̄ �= 0 we also have a tensor perturbation obeying (13).
To analyze this case, we rely on the decomposition of the tensor hμν in terms of odd hodd

μν and
even heven

μν perturbations based on their behavior under parity transformation [20,21]. In the
case of odd perturbations (13) simplifies because the scalar δR transforms as an even-parity
perturbation and does not contribute to odd ones. Hence, the equation reduces to the same
equation one finds for first-order tensor perturbations in GR with a cosmological constant.
After an involved calculation one arrives to the Regge–Wheeler potential [22]

VRW(r) =
(

1 − 2M

r
− �

3
r2

) (
l(l + 1)

r2 − 6M

r3

)
. (23)

Note that this form of the potential only holds for l > 1. In fact, the perturbations with
l = 0, 1 are gauge modes so they are not relevant for the stability analysis [23]. Thus, even if
the potential has a zero at r = 6M

l(l+1)
, it is hidden behind the black hole horizon for l > 1, so

it does not spoil the positive definiteness of VRW outside the horizon. Hence, it is guaranteed
that the frequency of the modes satisfies �(ω) ≤ 0.

The even modes are trickier. In fact equation (13) describes the tensor perturbation
heven

μν coupled to the scalar perturbation δR; hence, it cannot be rewritten in the form of
a Schrödinger-like equation. It is convenient in this case to perform a conformal transfor-
mation to the Einstein frame. There is no trouble in doing so since the conformal factor is
well-defined for R �= 0 backgrounds. Thus, by means of conformal transformation (10), it
is straightforward to show that action (3) is equivalent to

S =
∫

d4x
√−g̃

(
M̃

2
(R̃ − 2�) − 1

2
g̃μν∂μφ ∂νφ

)
, (24)

where it is understood that all quantities with a tilde are evaluated in the Einstein frame and
differ from those in the Jordan frame. Here, the scalar field φ ∝ ln f ′(R) appears explicitly
as a dynamical term in the Lagrangian. Since we are interested in the linearized equations,
we expand (24) up to second order and find

S(2) = S(2)
EH − 1

2

∫
d4x

√−ḡ ḡμν∂μ(δφ)∂ν(δφ) , (25)

where S(2)
EH is the Einstein–Hilbert action expanded to the second order6 and δφ is the

linearized scalar degree of freedom obtained by expanding φ = φ̄ + δφ. From the definition

5 There is one exception for the monopole perturbation l = 0 in the case � > 0. For this choice of parameters
the potential turns negative at rh < r0 < rc between the black hole and cosmological horizon. However, this
does not imply instability because the potential is still bounded from below and we can still have �(ω) ≤ 0.
Actually, Schwarzschild-De Sitter solution was proven to be stable also at nonlinear level against a massless
scalar wave [19], so the negativity of V (r) in this case causes no trouble.
6 Until the end of the section all quantities are evaluated in the Einstein frame, we omit the tilde to avoid
cumbersome notation.
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of conformal transformation (10) one can see that the background quantities are the same up
to a multiplicative factor. However, for first-order perturbations the conformal transformation
acts as a field redefinition. Hence, the equations of motion will be written in terms of new
fields in the Einstein frame related to old ones in the Jordan frame through (10). Variation of
(25) with respect to δφ and hμν (the linearized tensor perturbation) gives the set of decoupled
linearized equations

δRμν = �hμν , (26)

�̄δφ = 0 , (27)

where δRμν , � and hμν are defined in Einstein frame and differ from those in the Jordan
frame. We see that the problem of tensor perturbation is reduced once more to linearized
GR with a cosmological constant. Thus, in the case of even perturbations the potential is the
well-known Zerilli potential [21]

VZ = 2α(r)

r4T 2

[
r2

(
(l + 2)(l − 1)

2

)2 (
l(l + 1)

2
+ 2M

r

)

+9M2
(

(l + 2)(l − 1)

2
+ M

r
− �r2

3

)]
, (28)

where

T = 3M

r
+ (l + 2)(l − 1)

2
. (29)

This potential is always positive, so we have �(ω) ≤ 0. Thus, we conclude that
Schwarzschild-(A)dS solutions are stable against scalar and tensor perturbation in R2 gravity.

4 Stability of stationary black holes

As before, for stationary black holes, it is again to discuss the two cases R̄ = 0 and R̄ �= 0
separately. We begin with the former and we consider the Kerr metric, as it is an analytic
solution of R2 gravity [9]. The Kerr line element describes a rotating black hole in Boyer–
Lindquist coordinates

ds2 = − �

ρ2 (dt − a sin2 θdφ)2 + ρ2

�
dr2 + ρ2dθ2 + sin2 θ

ρ2 [adt − (r2 + a2)dφ]2 , (30)

where � = r2 − 2Mr + a2 and ρ2 = r2 + a2 cos2 θ . Here M is a length representing the
mass parameter of the black hole and a the angular momentum per unit mass.

For general f (R) theories Kerr black holes have been proven to be unstable due to super-
radiance [6]. To show how the instability mechanism works we consider an impinging wave
in the form

ψ(t, r, θ, φ) = e−iωt+imφ Alm(r)Slm(θ, φ) , (31)

with complex frequency ω, which scatters with a rotating object. If the condition of superra-
diance holds [24], that is the real part of ω satisfies

�(ω) < m�, (32)

then the scattered wave absorbs energy from the rotating object and it is consequently ampli-
fied. In (32) m is the multipole index of the impinging wave and � the angular velocity of
the rotating object. If a mechanism for trapping the wave in the vicinity of the rotating object
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is provided, then the superradiant modes yield an instability called black hole bomb. It was
shown [25] that in the case of Kerr black holes if a scalar wave � of form (31) with mass μ

and satisfying the usual Klein–Gordon equation

(�̄ − μ2)� = 0 , (33)

scatters on a rotating black hole, it can trigger the black hole bomb mechanism. The conditions
under which this happens are superradiance condition (32) together with [26]

μ2

2
< ω2 < μ2 . (34)

In fact, in this case the scalar wave is trapped and scatters back and forth between the black
hole horizon and the potential barrier generated by the mass of the scalar field. This process
extracts energy from the Kerr black hole until the potential barrier is destroyed. The second
inequality in (34) follows from imposing bound state boundary conditions for the radial part
of the scalar wave

Ãlm ∼ e
√

μ2−ω2r∗ , r∗ → ∞ (35)

where we have defined a new radial function Ãlm = (r2 + a2)1/2Alm and changed the radial
coordinate to the tortoise coordinate dr∗ = (r2 + a2)�−1dr .

In the case of R2 gravity, from (12) we notice that the scalar perturbation δR is massless
so μ = 0. Hence, from (35) it follows that no bound state can be formed: the wave scatters
with the black hole and then escapes to infinity. We can generalize this result to a larger
class of f (R) theories as follows. The definition of the effective mass of the scalar degree of
freedom in f (R) theories is given by (1). Since we are considering the Kerr metric, we have
R̄ = 0 and (1) reduces to

M2 = f ′(0)

3 f ′′(0)
. (36)

Then (36) vanishes in general for any analytic function f (R) expanded as in (2) with α1 = 0
and α2 �= 0. This implies that the Kerr solution is not unstable: for any analytic f (R) with
α1 = 0 and α2 �= 0 the black hole bomb mechanism cannot be triggered. This represents an
exception with respect to the result found in [6] and can be considered the main result of this
work.

Finally, we briefly consider the case R̄ �= 0. As in GR with a cosmological constant, the
stationary solution is given by the class of Kerr-(A)dS black holes. In the case of Kerr Anti-de
Sitter it has been shown [27,28] that in the limit of small black holes the boundary conditions
imposed by the geometry are equivalent to a mirror placed at r0 ∼ �, where �2 = |�|/3.
Hence a trapping potential exists and the scalar wave δR can generate an instability. The
same might hold for Kerr-De Sitter solutions. The cosmological horizon effectively acts as
a mirror and forces the scalar wave to scatter back and forth between the black hole horizon
and the cosmological horizon. In this case, the superradiance condition equivalent to (32) is
given by [29]:

m�c < �(ω) < m�h (37)

where �h is the angular velocity of the black hole horizon and �c is the cosmological horizon
one. However, the only way to confirm the presence of this instability is to explicitly check
the quasi-normal modes of the scalar field and look for those with �(ω) > 0, which is left to
future work.

123



  920 Page 8 of 9 Eur. Phys. J. Plus         (2020) 135:920 

5 Conclusions

In this note, we have re-examined the issue of the stability of black holes in f (R) gravity.
Generically, these are unstable at the linear level because there exist scalar perturbations that
acquire a mass, which triggers the black hole bomb mechanism already known in standard
GR. However, there are classes of scale-invariant modified gravity models, among which the
simplest representative is f (R) = R2, for which any effective mass that appears perturba-
tively would break scale-invariance.7 Thus one might suspect that also these black holes are
unstable. Here, we have proven instead that the scale-invariance protects the rotating asymp-
totically flat black hole from instabilities, at least at the linear level and outside the horizon.
In fact, eventual instabilities inside the black hole, like, for instance, the mass inflation near
the inner Cauchy horizon, must be treated with other methods [31].
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