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Abstract—In this paper, we target single-anchor localization
schemes for millimeter wave (MMW) systems. The schemes
are designed to be lightweight, so that even computationally-
constrained devices can support them. We identify the main
propagation properties of MMW signals that have an impact
on localization and design three algorithms that exploit these,
namely a triangulation-validation procedure, an angle difference-
of-arrival approach, and a scheme based on location finger-
printing. We evaluate the algorithms by means of simulations,
and draw conclusions on their robustness. We then validate our
results via measurements involving commercial pre-standard 60-
GHz MMW hardware. Our experiments confirm that, by relying
only on a single anchor and without requiring complex signal
processing at the receiver, the algorithms can localize a node with
high probability, and in many cases with sub-meter accuracy. We
conclude by discussing how these algorithms complement each
other in terms of robustness and localization success probability.

Index Terms—Millimeter wave; localization; simulation; ray
tracing; measurements; pre-standard hardware; 60 GHz

I. INTRODUCTION

Recent studies on the propagation characteristics of mil-
limeter-wave (MMW) frequencies (in the 30 to 300 GHz
range) [1], [2], as well as advances in the design of RF circuits
at these frequencies, have proven that MMW is a feasible
communication technology, with the potential to relieve the
impending crunch in the microwave spectrum and support new
communication services for mobile users [3].

Moreover, the characteristics of radio propagation at MMW
frequencies have interesting implications for the localization
of radio terminals. Among the most significant, it has been
shown that reflections do not lead to a substantial amount of
scattering [4], and that the directivity of a transmitted beam
is maintained after reflections with negligible scattering [5].
As a consequence, the equality of the angles of incidence
and departure upon reflection, as predicted by Snell’s law,
holds in this case. Further investigations indicate that MMW
propagation follows a quasi-optical pattern, in that the line-of-
sight (LoS) component is predominant even in the presence of
obstacles [6]. In addition, according to the Friis equation, the
path loss can easily exhibit 30 to 40 dB more attenuation over
typical link distances because of the short wavelength, and
in some bands the channel presents further absorption peaks
(e.g., at 60 GHz, due to oxygen absorption) [7]–[9]. Although
such attenuation figures could be limiting for outdoor com-
munications, they could turn out to be beneficial for indoor
applications due to the possibility of confining the propagation
of MMW signals inside a building or a room [10]. Finally,

the higher path loss necessitates the use of narrow and very
directional beams. These can be realized through high-gain
horn antennas, as well as phased antenna arrays, which can
be practically assembled within laptops or smartphones thanks
to the order-of-millimeter wavelengths.

The MMW features briefly reviewed above require to re-
think localization methods for indoor users employing MMW
communication technologies, and to understand whether well-
known methods would be sufficient [11] or rather new schemes
are required. Recent work [12] shows that indoor positioning
continues to be a very active field of research. Precise location
estimation indoors has a wealth of possible applications, such
as augmented reality, tracking of patients in hospitals, per-
sonalized shopping, and so on. Moreover, precise knowledge
of the terminals’ positions could substantially improve the
performance of physical- and MAC-layer communication pro-
tocols by supporting the management of the highly directional
transmissions required in the MMW band [13].

In addition, to make localization a widespread service,
accessible also for terminals with limited computational ca-
pabilities or strong energy constraints, the devised MMW
localization algorithms must be lightweight and should not
require a vast amount of signal processing to achieve sufficient
accuracy. Indeed, the localization process can be aided in part
by the anchor access point, which can relieve part of the en-
vironment estimation mechanism by broadcasting constraints
such as room boundaries (walls, ceiling height, etc.) as well as
its own position. However, even in this case, the localization
algorithm should ideally have low computational complexity
and should rely only on the information that can be directly
passed on by a node’s receiving hardware.

In this paper, we investigate localization schemes for MMW
systems that specifically exploit the features of MMW prop-
agation to provide accurate localization. We achieve this
objective via three algorithms which offer different tradeoffs
between precision and environment awareness requirements.
All algorithms are designed to work with a single anchor
node. This approach is promising in MMW scenarios, where
the predominant power comes from the LoS component [6]
unlike, e.g., in the case of ultra-wideband (UWB) signals in
the 1-10 GHz band [14]. In addition, this relieves the need to
deploy multiple anchors, and leverages instead on the richness
of indoor multipath propagation [15] and on the capability to
discriminate multipath components. Note that, even when the
PHY layer cannot be modified to make AoA information avail-



able, sector information for highly directional antenna arrays
can be passed up to the MAC layer easily [13], making AoA
practically available to higher-layer protocols. The feasibility
and practicality of our schemes is demonstrated by means
of simulations and validated via a number of experiments
involving pre-standard commercial MMW systems operating
in the 60 GHz band.

This paper is organized as follows. The next section presents
a review of indoor localization schemes. Section III describes
the three proposed algorithms. Section IV discusses simulation
results and draws initial conclusions on the performance of
the algorithms. Section V presents an experimental campaign
involving actual pre-standard MMW hardware, and presents
the corresponding set of measurements to characterize the
performance of our localization algorithms in real-world envi-
ronments. Finally, we draw concluding remarks and propose
future extensions in Section VI.

II. RELATED WORK

In this section, we survey related work on localization by
subdividing the material into a general review of range-based
and range-free schemes (Section II-A), a focus on recent
advances in indoor localization (Section II-B), and a review
of multipath-aided localization (Section II-C).

A. Classic localization schemes

Trilateration and multilateration are among the most com-
mon range-based location estimation techniques [11]. Trilater-
ation requires to measure the distance of the node from a set
of anchor points (a minimum of 4 to localize a node in the 3-
dimensional space) and to find the intersection of the spheres
that result. The distance can be obtained by measuring the time
of flight of signals, or otherwise estimated from the received
signal strength (RSS) [16], provided that a precise path loss
model is available. Multilateration relies on the knowledge
of the Time Difference-of-Arrival (TDoA) at the node for
a set of signals transmitted by different anchors. Computing
the TDoA across different pairs of anchors identifies a set
of hyperboloids, whose intersection yields the location esti-
mate. Trilateration and multilateration heavily depend on the
accuracy of the ranging process [17]: inaccurate ranging may
hinder the identification of a unique intersection point, or even
of any intersection at all.

Triangulation [11], in 2D, works by measuring the angles
to the node from two anchors located at opposite ends of a
baseline segment of known length. The location of the node
is estimated as the third vertex of the resulting triangle. In
3D, an additional anchor is required to compute the altitude
of the node. Any errors on the estimation of the angles reflect
negatively on accuracy, especially if the distance between the
node and the anchors is large. Additionally, triangulation fails
if the node is aligned with the anchors.

Localization based on location fingerprinting (FP) [11],
[18] relies on the fact that radio waves emitted from one or
more anchors yield a unique radio “fingerprint” at any given
location: such fingerprint can be identified and employed to
infer the location itself. While the definitions of fingerprint

vary widely depending on the scenario and radio technology
employed [11], the approach per se is often dismissed due
to the heavy preliminary measurements required to construct
a fingerprint database, and to the strong dependence of the
localization error on the number of fingerprint measurements.
Recent work has revived FP by suggesting that the database
construction task can be crowdsourced [19].

The type of data available to the node to be located deter-
mines which method to apply. For example, trilateration would
be applicable whenever the user can accurately estimate the
distance between itself and a set of anchor nodes; conversely,
triangulation may be preferable when the Angle-of-Arrival
(AoA) of each multipath arrival from each anchor is known.

B. Recent advances in indoor localization

Recent work reconsidered WiFi-based indoor localiza-
tion [20]–[22] via triangulation and multilateration-based
schemes which assume a high density of Access Points (APs)
and does not require to carry out any preliminary fingerprint
measurement. In [23] the authors develop a localization system
exploiting only one AP, where part of the complexity of the
scheme is delegated to the user to be localized. The user is
assumed to know his own orientation in space and the distance
covered while moving by means of a digital gyroscope and ac-
celerometer. In [24], a method is developed for the estimation
of the TDoA based on the interference between Orthogonal
Frequency-Division Multiplexing (OFDM) symbols from two
different transmitters. In [25], the authors evaluate perfor-
mance of RSS-, TDoA- and AoA-based localization schemes
with MMW signals, assuming the presence of several anchor
nodes deployed over a circumference around the receiver.
It is observed that the AoA approach achieves the smallest
localization error because of the broad AoA spectrum diversity
originating from the circular geometry. In [26], an approach is
proposed to harness the multipath propagation of WiFi signals
for the purpose of locating a signal source, and simultaneously
mapping the surrounding environment (to some extent). The
approach is demonstrated using a USRP implementation of
the algorithm and the related antenna array signal processing.
The shorter wavelength of MMW with respect to microwave
frequencies in the 1-10 GHz range makes it possible to pack
a large number of antennas in a relatively small space. This
means that both standard and massive MIMO approaches
become feasible for localization [27].

C. Multipath-aided localization in UWB channels

UWB communications [28] have also been investigated
in the scope of localizing static and mobile nodes, due
to the possibility to separate multipath components in the
channel impulse response. Building on the observation that
deterministic multipath components typically constitute up to
90% of the UWB channel impulse response energy [14], the
authors in [29] employ a single anchor node, and extract
Time-of-Arrival (ToA) information from the AoA spectrum
and estimate the distance from the anchor and the reflection
points via a complex maximum likelihood approach. The
case of multiple anchors is also considered in [30]. The



knowledge of the floor plan is assumed in order to identify
the location of VAs. In [31], Simultaneous Localization and
Mapping (SLAM)-based approaches, which aim at relieving
this assumption, achieved a median error below 5 m.

Unlike most previous work, we target a MMW scenario and
design practical localization algorithms that can be applied
to signals transmitted by pre-standard 60-GHz hardware. Our
algorithms work under different assumptions, including the
availability of floor plan information or lack thereof, and the
presence of precise or imprecise AoA estimates, and are by
design less complex than ML approaches.

III. MILLIMETER WAVE LOCALIZATION SCHEMES

In this section, we describe our three MMW localization
algorithms. Our indoor localization scenario consists of a rect-
angular room bounded by four walls, the floor and the ceiling.
We set up a three-dimensional Cartesian coordinate system
centered in one of the corners of the room, and described
by the canonical vectors of the three axes ex = (1, 0, 0),
ey = (0, 1, 0) (oriented orthogonally along the floor sides),
and ez = (0, 0, 1) (oriented along the height of the room),
such that any point q = qxex + qyey + qzez can be mapped
to a triple (qx, qy, qz). The room boundaries and any other
obstacles containing radio-reflective surfaces are grouped in
the reflective objects set Z . Obstacles are represented as three-
dimensional polyhedra with flat polygonal faces, straight edges
and sharp vertices. We treat each face as an oriented surface
S, represented by its normal vector n, which can be found as

n =
(p2 − p1)× (p3 − p1)

‖(p2 − p1)× (p3 − p1)‖
, (1)

where p1, p2 and p3 are points of the surface, ‖ · ‖ denotes
the Euclidean norm, and × the cross-product. We assume that
a single MMW AP is installed in the room at the location
ptx and is employed as an anchor node for localization
purposes. We also assume that the AP broadcasts information
about its position and the characteristics of the objects in
Z to the node(s) to be localized. This is in line with our
working assumption that localization must be attainable even
by devices with limited computational power or hard energy
constraints. The algorithms are designed to leverage on the
reflections of the AP signal off indoor boundaries in order
to compute location estimates. The input to all algorithms is
the Angle-of-Arrival (AoA) spectrum Pp(α), which records
the distribution (over the azimuthal plane) of the amplitude of
multipath components at a given location p, as a function
of the azimuth α, assumed to be measured relative to a
reference angle α0. Pp(α) is processed to yield a compact
representation of different multipath components (MPCs) at
p. In particular, a peak on the reception pattern is identified
with an MPC [15]. Note that an MPC can be either a LoS
path or a path that incurred (possibly multiple) reflections off
one or more surfaces of the elements of Z . We collect the
MPCs in a 2×Np matrix M(p), where Np is the number of
detected MPCs in Pp(α). The first row of M(p) contains the
amplitude of each MPC sorted in decreasing order; the second
row contains the AoA of the MPC, relative to α0. In this way,

each column M
(p)
:,k of M(p) (where the semicolon notation :,k

denotes all elements of the corresponding dimension, and in
this case it means all rows of column k) can be seen as a vector
in polar coordinates, departing from p, where M

(p)
1,k and M

(p)
2,k

denote the amplitude and phase of the vector relative to α0,
respectively. We also assume that the room geometry (i.e., ptx

and Z) are known to the user to be localized. All algorithms
developed in this paper localize a node on the azimuthal plane,
but can be easily extended to the 3D case.

A. Virtual anchors

Each MPC belonging to the AoA spectrum Pp(α) perceived
at location p can be modeled as emitted by a virtual anchor
that would be the source of a LoS signal reaching p along
the same AoA of the MPC. The position of the virtual
anchor can be determined by mirroring the position of the
AP with respect to the surfaces the signal has reflected off.
Call A = {a0,a1, . . . } the set containing the positions of
the possible virtual anchors, and call Ā = {A0, A1, A2, . . . }
a partition of this set. We let A0 = ptx, whereas each set
Ai, i = 1, 2, . . . contains the virtual anchors that have been
mirrored i times with respect to any surface of the objects
in Z . Note that A and Ā have countably infinite cardinality,
as there is no limit to the number of times the AP can be
mirrored. However, in practice the MMW signal of the AP will
fade quickly as it propagates and reflects off the surfaces: this
is a substantially different aspect with respect to, e.g., UWB
systems at lower frequencies. Therefore, it makes sense to
truncate A by considering a maximum reflection order µ [15].
To this end, we define Aµ =

⋃µ
i=0Ai. Fig. 1 shows two virtual

anchors ai and aj corresponding to a first- and a second-order
reflection, respectively, hence ai ∈ A1 and aj ∈ A2.

B. The Triangulate-Validate (TV) algorithm

With this algorithm, a node at an unknown position p
estimates its position via a number of triangulation steps
followed by a validation of the estimated locations. The
algorithm assumes that the nodes have measured the AoA
spectrum Pp(α) and have derived the matrix M(p). We recall
that the knowledge of ptx, Z and α0 is also assumed. If the
association between the anchors in A and the MPCs in M(p)

were known, it would be possible to directly triangulate the
position of p. As this association is unknown a priori, we
estimate it via the procedure explained in the following, which
is designed to be less complex than a ML approach [29].

With reference to the pseudo-code in Algorithm 1, we
start by considering virtual anchors up to a reflection order
µ (line 2). While a high value of µ would yield a richer
virtual anchor set Aµ, a low value is more meaningful for
triangulation: in fact, reflections weaken the signal, and virtual
anchors of higher order can be quite far from the receiver. In
turn, this distance would translate into a large triangulation
error in the presence even of only small errors in the AoA
spectrum. In addition, a signal at MMW frequencies is rarely
distinguishable from noise after more than two reflections,
hence we set µ=2 in the following.
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Figure 2. The geometry of Angle
Difference-of-Arrival localization.

We start by considering M
(p)
:,1 and M

(p)
:,2 which, due to

the sorting of M(p), correspond to the MPCs with highest
amplitude. Before using them to triangulate a position, we
need to transform these entries into vectors departing from
the position of any anchor, expressed relative to the reference
Cartesian coordinate system of the room. This yields two
vectors u1 = −QM

(p)
:,1 and u2 = −QM

(p)
:,2 , where Q is the

coordinate transformation (line 3). We now make an initial
guess that the anchors from which u1 and u2 emanate are
two points ai, aj ∈ Aµ and triangulate a location over the
azimuthal plane by solving the following linear system in two
unknowns t1 ≥ 0 and t2 ≥ 0 (line 6):

ai + u1t1 = aj + u2t2 . (2)

Call pk, k ≥ 0 the position found. If pk is valid with
respect to some logical constraints (e.g., it is inside the
room, not within any of the obstacles in Z , and does not
coincide with ptx, line 7), we validate the position by basically
measuring how compatible the remaining MPCs are with the
positions of other virtual anchors in Aµ. We assign a weight
wk > w` to all anchors of partition subsets Ak and A`,
0 ≤ ` < k ≤ µ, Ak, A` ⊂ Aµ. This reflects the fact that
the validation involving virtual anchors closer to p should be
given greater importance. We now choose vmax further MPCs
M

(p)
:,m, 3 ≤ m ≤ vmax + 2, to be involved in the validation

process. For each MPC, we consider all virtual anchors in
T = Aµ \ {ai,aj} and associate a cost ck to pk as follows:

ck =

vmax+2∑
m=3

min
a∈T

[
cos−1

(
− um ·

a− pk
‖a− pk‖

)]2
wω(a) , (3)

where um = −QM
(p)
:,m and ω(an) = ` if an ∈ A`. We note

that for a given m, the argument of the sum is identically zero
if there exists an anchor a ∈ T that lies exactly on the line
leaving pk with direction M

(p)
:,m, whereas it increases if the

minimum angle between any anchor a ∈ T and M
(p)
:,m, with

corner in pk, increases. The square operation penalizes larger
discrepancies more than smaller ones (lines 8 to 14). After
computing the argument of the min in (3) the anchor a that
minimizes the argument is removed from T (line 13).

The TV steps are repeated for all possible associations of
M

(p)
:,1 and M

(p)
:,2 to the anchors in the set Aµ, returning a total

of K estimates pk, k = 1, . . . ,K, and their related costs ck

Algorithm 1: The Triangulate-Validate algorithm.

1 Function TRIANGVAL (Pp(α), ptx, Z , α0, µ, vmax)
2 Aµ ←

⋃µ
`=0 DETERMINEANCHORS(`,ptx,Z)

3 Map M(p) to canonical base, compute u1, u2

4 k ← 0
5 foreach pair (ai,aj),ai,aj ∈ Aµ, i 6= j do
6 pk ← point such that ai + u1t1 = aj + u2t2
7 if ISVALID(pk,Z) then
8 T ← Aµ \ {ai,aj}
9 ck ← 0

10 for m = 3 to vmax + 2 do
11 um ← −QM

(p)
:,m

12 ck ← ck + mina∈T COST(pk,a,um)
13 T ← T \ {arg mina∈T COST(pk,a,um)}
14 k ← k + 1

15 return p̂ =
∑K
k=1 c

−1
k pk/

∑K
k=1 c

−1
k

(line 5). Note that K ≤ |Aµ|(|Aµ| − 1) since the algorithm
fails if a triangulated position is found to be outside the room,
or if the received AoA spectrum contains fewer than 3 MPCs.
The final estimate of p returned by the TV algorithm is a
weighed average of the positions pk found along the process
(line 15). In lines 12 and 13, the function COST(pk,a,um),
returns the argument of the min function in (3).

C. The Angle Differences-of-Arrival (ADoA) algorithm

The TV algorithm requires the knowledge of the reference
angle α0, or equivalently, of the coordinate transformation
matrix Q introduced in Section III-B. As this is not necessarily
a feasible assumption, and the measurement of α0 (e.g., as
provided by a smartphone’s digital compass) may be affected
by a significant error, we developed a second algorithm based
on the Angle Differences-of-Arrival (ADoA) among MPCs.
This algorithm is slightly more complex than TV, but is
immune both to errors in α0 and to variations thereof across
the room area.

We start by defining the angles δ1 = M
(p)
2,2 −M

(p)
2,1 and

δ2 = M
(p)
2,3 −M

(p)
2,1 . The ADoA algorithm is described in

terms of the following geometrical problem, for which we
refer to Fig. 2: given two points ai and aj in a 2D space, find
the locus of the points p such that the angle âipaj (where p
is the corner), is constant and equal to the angle δ1 defined
above. This locus is a circumference, of which the segment
aiaj is a chord. We assume the angle âipaj to be positive
if ai follows aj in a counterclockwise direction within the
space of a semi-circumference and |âipaj | < π, where the
| · | operator in this case represents the absolute value of the
angle measure. With reference to Fig. 2, that depicts a typical
ADoA localization scenario, consider the circumference C1.
Given the angle âipaj , we have âio1aj = 2 âipaj , where
âio1aj is the central angle that insists on the same chord aiaj .
If âipaj > π/2, âio1aj is concave, hence |âio1aj | > π. In
this case, we wrap the angle back into the interval [−π, π) via



Algorithm 2: The Angle Difference-of-Arrival algorithm.

1 Function ADOA(P (α), ptx, Z , µ)
2 Aµ ←

⋃µ
`=0 DETERMINEANCHORS(`,ptx,Z)

3 Map M(p) to canonical base, compute ∆, δ1, δ2
4 L ← ∅
5 foreach triple (ai,aj ,ak) ∈ Aµ, i 6= j 6= k do
6 C1 ← DETERMINECIRC(i, j, δ1)
7 C2 ← DETERMINECIRC(i, k, δ2)
8 p← DETERMINEINTERSEC(C1, C2) \ {ptx}
9 if ISVALID(p,Z) then L ← L ∪ {p}

10 return p̂← MEDIAN(L)

the operator W (·). The radius r1 of C1 can be found as

r1 =
‖a− b‖

2 sin(|W (âio1aj)|/2)
. (4)

Finally, given β = r1 cos
(
W (âio1aj)/2

)
and u = (a−b)×

(0, 0, 1), the center of the circumference is found as

o1 = m1 + sgn
(
W (âio1aj)

) βu

‖u‖
, (5)

where sgn returns the sign of the angle, and m1 =(ai+aj)/2
is the middle point of the chord aiaj . The vector

w1 =
(
o1 −m1

)
sgn

(
W (|âio1aj |)

)
(6)

points to the section of C1 defined by the chord aiaj where
the constant angle requirement is satisfied. We now consider
a second chord ajak and the circumference C2 as the locus
of the points q where the angle âjqak = δ2. The radius r2
and the center o2 of C2 can be computed in the same way as
above. The intersection p between C1 and C2 is considered a
feasible location estimate whenever it is located on the sections
of C1 and C2 pointed to by the orientation vectors w1 and
w2. This means that, given the two chord centers m1 and m2,
it must hold that w1 · (p−m1) > 0 and w2 · (p−m2) > 0.

The pseudo-code of the procedure that provides an estimate
p̂ of the location of a node based on ADoA is given in
Algorithm 2. The algorithm starts by determining Aµ, M(p),
δ1 and δ2 (lines 2 and 3). As for the Triangulate-Validate
algorithm, we are initially unable to map each detected MPC
to its related anchor node. Therefore, the ADoA algorithm
collects a set of eligible positions which are the result of the
intersection between the circumferences determined by the
angle differences δ1 and δ2 and the chords aiaj and ajak,
ai,aj ,ak ∈ Aµ. Lines 6 to 8 determine the center and radius
of C1 and C2 via (4) and (5), and compute their intersection
by checking that it is feasible based on the orientation vectors
w1 and w2 (see (6)). The ADoA procedure is repeated for
different triples (ai,aj ,ak) ∈ Aµ (line 5) to yield a number
of possible location estimates. Those positions that are valid
with respect to the same logical constraints introduced for the
Triangulate-Validate algorithm are collected in set L (line 9).
Because resorting to angle differences does not require to
estimate the reference angle α0, it may happen that for some
combinations of anchor nodes, and in the presence of large

Algorithm 3: AoA/ADoA fingerprinting localization.

1 Function FINGERPRINT(Pp(α), D)
2 Compute M(p), extract s(p) and T(p)

3 foreach Pf (α) ∈ D do
4 cf ← LOSCOST(s(p), s(f))

5 P ← CLOSESTPAIRS
(
T

(p)
2,: ,T

(f)
2,:

)
6 foreach pair (i, j) ∈ P do
7 cf ← cf + MPCCOST

(
T

(p)
:,i ,T

(f)
:,j

)
8 return p̂← arg minf cf

AoA estimation errors, the user is localized in an erroneous
position that still satisfies the angle differences. To eliminate
such spurious locations, the estimated position is computed as
the median of L (line 8).

D. Localization based on AoA/ADoA fingerprinting (FP)

We finally present a fingerprint-based localization algo-
rithm. Unlike TV and ADoA, FP does not strictly require that
ptx and Z are known to the node to be localized. We assume
that the area has been previously characterized by creating
a database D of AoA spectra measured at a set of different
locations F = {f1, f2, . . .}. Given a spectrum Pp(α) measured
at location p as an input, the algorithm looks up the most
similar spectrum in D (according to some proximity measure)
and returns its corresponding location. In order to be fair to
the TV and ADoA schemes, we define the fingerprint of an
AoA spectrum in terms of: i) a LoS feature, defined as the
amplitude and AoA of the LoS arrival; and ii) a number of
NLoS features, defined as the amplitude and ADoA (relative
to the LoS AoA) of every other non-LoS (NLoS) MPC in the
pattern. These choices are based on the fact that the strongest
MPC is typically the LoS path [6], [15], and that we wish
to make the feature matching process resilient to position-
dependent errors in the reference angle α0. Given the pattern
Pp(α) and its MPC matrix M(p), we identify the LoS feature
as a vector s(p) = M

(p)
:,1 . By calling Np the number of

columns in M(p), we collect the remaining Np − 1 entries
of M(p) in the NLoS feature matrix T(p) and subtract the
angle of the LoS path M

(p)
2,1 from all elements of T

(p)
2,: . In the

pseudo-code in Algorithm 3, this corresponds to line 2.
Note that the AoA spectra received at any two different

points typically have one LoS feature, and may have a different
number of NLoS features. For each entry of D measured
at location f (line 3), we execute an adapted instance of
the closest point algorithm [32] which returns the indices i
and j of the NLoS features in T(p) and T(f), respectively,
whose angle differences are most similar. The similarity of
the patterns at p and f is finally conveyed by the cost

cf = −w`a
∣∣s(p)2,1 − s

(f)
2,1

∣∣− 2wp
|s(p)

1,1−s
(f)
1,1|

s
(p)
1,1+s

(f)
1,1

−
∑
∀(i,j)

(
wna

∣∣T(p)
2,i −T

(f)
2,j

∣∣+ 2wp
|T(p)

1,i−T
(f)
1,j |

T
(p)
1,i+T

(f)
1,j |

)
, (7)



where the weights w`a, wna and wp are chosen to give more
importance to the discrepancies in the angle differences of
NLoS paths rather than to the absolute difference among
the angles of the LoS path. This makes fingerprinting-based
localization more robust to possible errors in the reference
angle α0. On the contrary, the amplitude discrepancies of the
paired LoS and NLoS features are given the same weight wp.
The function LOSCOST in line 4 computes the first line in (7),
whereas the function MPCCOST repeatedly called in lines 6
and 7 computes the sum in (7). Finally, the algorithm returns
the estimated position p̂ as the the location of the entry f in
F that has minimum cost (line 8).

IV. PERFORMANCE EVALUATION BY SIMULATION

In order to evaluate the performance of the localization
algorithms in controlled ideal and non-ideal conditions, we
have developed a ray tracer, which is an appropriate tool
given the directionality of MMW transmissions [6], [15] and
the limited amount of scattering generated by reflections [4].
The ray tracer simulates the propagation of MMW given the
location of the transmitter, its transmit beam pattern, and the
boundaries of the propagation area. Given a ray departing from
the transmitter at a given position ptx with a direction u, we
first consider that the ray incurs standard distance-dependent
path loss PL(d) [33] as

PL(d) = PLFS (d0) + 10γ log10

(
d

d0

)
, (8)

where d is the distance from the transmitter, PLFS is the
free space path loss at a reference distance d0 and γ is the
path loss exponent (set to γ = 2 [15] here). Each ray may
bounce off the boundaries of the room as it propagates. These
bounces are modeled using Snell’s law as per [4]. Reflections
have been set to cause a constant power loss at each bounce.
The rays that lead to an actual received power contribution at
the receiver (or eigenrays) are finally identified as those that
propagate sufficiently close to the receiver. The output of the
ray tracer is a list of the eigenrays, which is finally translated
into the AoA spectrum at the receiver at a given position p,
Pp(α), which is the input to all localization algorithms.

A. Simulation scenario and results

Our simulation scenario consists of a rectangular room of
size 8.9× 6.3× 3 m. The reference of the Cartesian coordinate
system is placed on the south-western corner of the room,
where the x axis extends towards east and the y axis towards
north. The walls, floor and ceiling are modeled as uniform
flat surfaces. We set α0 = π/2, i.e., angles are measured in
a counterclockwise direction starting from the south-to-north
direction. The transmitter is located at ptx = (0.2, 0.2, 1) m.
We characterize the performance of the algorithms via the
empirical cumulative distribution function (cdf) of the localiza-
tion error, and in terms of the localization failure probability
Pu. The cdf of the localization error is reported in Fig. 3
for the TV, ADoA and fingerprinting algorithms. For all of
them, we truncate A to Aµ by considering only the virtual
anchor nodes that correspond to up to µ = 2 reflections.
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Figure 3. Localization error cdf for all algorithms for different values of the
MPC AoA estimation error σ.

The fingerprinting database D is populated with simulated
AoA spectra retrieved at the points in the training set F1 =
{(1.85+1.3k, 1.85+1.3n, 1), k = 0, . . . , 4, n = 0, 1, 2}. We
simulate the fact that the measurement of the AoA spectrum by
the node to be localized is not ideal, but rather may be affected
by errors on the reference angle α0 and on the absolute
estimates of the AoA of the MPCs, e.g., as a consequence
of small changes in the propagation environment, or due to
imperfect beamforming of the phased antenna array at the re-
ceiver. This non-ideal behavior is modeled for a given position
p by first estimating the true AoA spectrum, by extracting
the MPC matrix M(p) and by adding a different random
Gaussian-distributed displacement of standard deviation σ to
the elements of M

(p)
2,: . The results in Fig. 3 are provided for

σ=0.05 rad ≈ 2.86◦ and for σ=0.2 rad ≈ 11.45◦.
In the ideal case where σ = 0, both the TV and the

ADoA algorithms localize nodes with sub-meter accuracy,
where the 90th percentile of the localization error is about
0.25 m. In this respect, they consistently outperform FP,
which experiences a double maximum localization error and
sub-meter accuracy up to the 65th percentile. For increasing
values of σ, the performance of all algorithms degrades. For
σ = 0.05 rad, ≈90% of TV’s and ADoA’s estimates achieve
sub-meter accuracy. For considerably larger AoA estimation
errors, corresponding to σ=0.2 rad, location estimates become
expectedly less accurate, with a median error of ≈1.7 m for
both ADoA and TV. Setting σ=0.1 rad would translate into a
median localization error around 1 m, and has been omitted for
clarity in Fig. 3. For the TV algorithm, the error increases both
because the triangulation step relies on sufficiently accurate
AoA information, and because the estimated AoAs of the
MPCs do not exactly correspond to the virtual anchors in
Aµ. For the ADoA algorithm, instead, angle differences are
affected by errors of variance 2σ2, and negatively affect the
estimation of the intersection between the circumferences in
Fig. 2. Thanks to the matching operation carried out by the
closest pair algorithm (see Algorithm 3), FP is more robust
to high values of σ, and its performance does not degrade
significantly even for σ=0.2. The localization error incurred
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by TV and ADoA is lower than that of fingerprinting for
σ=0 and σ=0.05 rad, and becomes worse for σ = 0.2 rad.
The localization error of the fingerprinting algorithm can be
improved by increasing the cardinality of the training set. Call
F2 = {(1.2+1.3k, 1.2+1.3n, 1), k = 0, . . . , 6, n = 0, . . . , 3}.
By populating D with the patterns measured at the points of
F1∪F2, the error of the FP algorithm improves to match that
of TV and ADoA for σ=0.05 rad.

Fig. 4 presents the performance of the TV and ADOA
algorithms when the AoA spectra are sampled with a limited
precision ∆α, for σ=0. The results show that increasing ∆α
causes both the average localization error and the localizarion
failure probability Pu to increase. Both the TV and the ADoA
algorithms are affected by the increase of ∆α. Interestingly,
we observe that for ∆α ≤ 10◦ the average localization error
remains lower than 1 m, and Pu < 0.05.

V. EXPERIMENTAL RESULTS

We now present our experimental evaluation of the local-
ization algorithms. We start by describing the measurement
equipment and methodology, and continue by presenting the
measurement campaign and the localization results.

A. Equipment and experimental methodology

In order to evaluate the performance of our localization al-
gorithms in the presence of actual MMW transceivers, we car-
ried out a number of indoor measurements in a 8.9× 6.3× 3 m
room, i.e., the same size considered for the simulations in Sec-
tion IV. This room was chosen so that the LoS MMW signal
and its reflections could be comfortably heard at all locations
in the room. In larger rooms, the signal of the AP would
be excessively attenuated, impeding single-AP localization.
However, it would be easy to extend of our methods to the case
of multiple APs, which would address this issue. The room is
unfurnished, but it does contain fixtures and appliances which
create significant reflections off their surfaces, such as metal
plumbing and heating radiators, wall-mounted rack cabinets,
and floor-mounted cable leads. Our MMW transmitter is a
Dell D5000 wireless docking station, placed at (0.2, 0.2, 1) m;
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as a receiver, we employed the 60-GHz Vubiq development
system, connected to an Agilent MSO-X 3034 oscilloscope
and equipped with a standard 25 dBi-gain horn antenna
mounted on an Arduino-controlled rotating stage. The D5000
periodically carries out a device discovery process according
to the WiGig protocol. The process involves the transmission
of 32 discovery frames, each corresponding to a different
configuration of the station’s 2×8 phased antenna array. An
example of signal received during this process is shown in
Fig. 5. These device discovery frames are sent every 102.4 ms.
More details are provided in [34].

The Vubiq system is employed to reveal LoS receptions as
well as any MPC reflected off the boundaries of the room at
any given position. This is done by redirecting the Vubiq’s
down-converted, 1.8 GHz-bandwidth, modulated signal traces
of the analog I/Q output directly into the oscilloscope, which
stores traces for later analysis. The process makes it possible
to collect the amplitude of each of the 32 discovery frames
over the azimuthal plane, for a number of orientations spaced
by ∆α∗ = 3◦. This value has been chosen in order to achieve
a reasonable tradeoff between measurement time and accuracy,
and because Fig. 4 suggests that neither the localization error
nor Pu would be significantly affected. For every orientation,
the receiver always captures the same number of frames as in
Fig. 5, with different amplitudes that depend on the antenna
patterns used by the D5000 for each frame, and on how the
MMW signal is reflected off the boundaries and obstacles of
the room. From these traces, an AoA spectrum is extracted by
measuring the amplitude of the strongest frame. This yields
robustness against the presence of small sidelobes in the
transmitter’s pattern. Fig. 6 shows one of the experimental
patterns (in gray), measured at position (5.75, 4.45, 1) m (the
point marked by a diamond in Fig. 7). We observe that the LoS
path between the D5000 and the Vubiq has an AoA of 125◦;



Table I
Pu AND PROBABILITY OF SUB-METER ACCURACY FOR ALL ALGORITHMS.

TV TV ADoA ADoA FP
µ = 1 µ = 2 µ = 1 µ = 2

Pu 0.16 0.11 0.32 0.09 0
P[error ≤ 1 m] 0.76 0.70 0.82 0.72 0.57

strong reflections are detected with AoAs of 35◦ and 250◦,
and a weaker reflection has an AoA of 300◦. For comparison,
we also plot an AoA spectrum simulated via ray tracing (in
black), which proves the very good agreement of simulations
and measurements.

B. Measurement scenario and experimental results

We carried out AoA spectrum measurements at the 39 grid
points shown in Fig. 7, and at the 5 extra locations marked
with a star. In the figure, the black and gray points respectively
correspond to the sets F1 and F2 discussed in Section IV.
The room was free from in-band interference during the
whole realization of the measurement campaign. We tested
the capability of the TV and ADoA algorithms to correctly
localize a node located at each of the points in Fig. 7. For the
fingerprinting scheme, we used the measurements at the points
in F1 as a training set, whereas those taken at the points in
set F2 were employed to test the algorithm. As in Section IV,
we characterized the performance of the algorithms in terms
of the cdf of the localization error and of the probability Pu
that a user cannot be localized. The TV and ADoA algorithms
were configured to consider virtual anchors corresponding to
up to either µ = 1 or µ = 2 reflections.

Fig. 8 shows the cdf of the localization error for all schemes.
The best performance is achieved by the ADoA algorithm with
µ = 1, for which ≈85% of the measurements have sub-meter
accuracy. However, as reported in Table I, Pu = 0.32 in this
case. By allowing ADoA to process second-order reflections
(µ = 2), only in four cases does the algorithm fail to localize
(Pu = 0.09). Being able to localize in more points, even those
that are not localizable with µ = 1, comes at the cost of larger
estimation errors, as the cdf correspondingly shows sub-meter
accuracy in 75% of the cases. The TV algorithm also shows
lower errors in the µ = 1 case with respect to the µ = 2
case. This is because in the received power patterns, most of
the time, the strongest peaks are relative to the LoS and the
first order reflections. In any event, the probability of being
able to localize a node is better for µ = 2 (Pu = 0.11) than
for µ = 1 (Pu = 0.16). The fingerprinting algorithm shows
a higher localization error, although it achieves Pu = 0. This
is partly due to the choice of the measurement points in F2,
which were taken at a maximal distance from the training set
points in F1 in order to stress the FP algorithm. However, from
the cdf we infer that about 55% of the points are localized
correctly at one of the nearest neighbors in the training set,
whereas others tend to be localized farther due to the similarity
of the measured AoA spectra.

We conclude our analysis by showing the localization error
of TV and ADoA (µ = 2 in both cases) for each measurement
point, and by marking which locations cannot be identified
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by each algorithm. These features are rendered in Fig. 9 as a
circle whose diameter is proportional to the error range. Those
locations where the algorithms fail to estimate a position are
indicated with a cross. Black markers refer to the TV algo-
rithm, whereas gray markers refer to ADoA. Fingerprinting
is not included in this graph due to the poor performance
observed in Fig. 8. We observe that the largest localization
errors are primarily due to the large widths of some arrivals
in the measured AoA spectra, which make it difficult to
accurately estimate the corresponding AoA. Specifically, for
the locations near the transmitter, this is the case for the LoS
AoA. Conversely, the weakness of the received signal and
the presence of mainly second-order reflections in the AoA
spectrum measured at the opposite corner of the room (point
pE) explains why ADoA achieves a large error and TV is
unable to localize. By comparing Fig. 8 and Fig. 3, we can
also conclude that our measurements are affected by non-ideal
conditions (related to the experimental equipment and setup)
that induce an AoA estimation error with standard deviation
on the order of 0.05 rad.

An interesting observation from Fig. 9 is that none of TV
and ADoA is successful at all locations, but they complement
each other in terms of successes and failures. The accuracy
of these estimates depends mostly on AoA diversity, which in
turn depends on the location of the failure. In addition, the
experimental results in Fig. 8 suggest that it would be effi-
cient to implement the algorithms so that they incrementally
increase the cardinality of the anchor set Aµ (and therefore
their complexity) upon localization failures. In fact, for µ=1,
we found that there is a fair chance to be able to localize a
node, and the resulting estimate would help achieve a very
good accuracy; the less accurate but more robust version of
the two schemes (µ=2) may be invoked only in order to deal
with localization failures.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed three different localization
algorithms tailored around the characteristics of MMW propa-
gation: one based on a Triangulate-Validate (TV) procedure, a
second one based on Angle Differences-of-Arrival (ADoA),
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and a third one based on location fingerprinting (FP). We
characterized the performance of the algorithms by simulations
and by a set of measurements involving real MMW hardware
operating in the 60 GHz band. Our results show that unless
a large error affects AoA estimations, our algorithms achieve
sub-meter accuracy with high probability, and feature a very
low probability of failing to localize. We observed that there is
no absolute winner among the three algorithms, in that when
one of them fails to localize, the others tend to succeed. While
FP generally achieves a higher estimation error with respect to
TV and ADoA, these estimates tend to be robust against AoA
estimation errors. Future work includes tests in a time-varying
environment where propagation paths appear and disappear
over time, and the use of a phased antenna array instead of a
horn antenna at the receiver.
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