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Abstract—We consider the problem of estimating the trajectory
of a submerged source emitting acoustic signals without using any
anchor nodes or receiving array. This approach is required for
several applications, including the localization of acoustic sources
such as marine mammals or underwater vehicles, for which the
cost of covering a broad area with multiple receivers would
be excessively high. Since multi-lateration is impossible in this
scenario, we perform localization by incorporating bathymetry
information. Specifically, we assume that the receiver retains
knowledge of the environmental parameters that affect the signal
propagation, and that the bathymetry of the area is sufficiently
diverse to induce distinguishable channel impulse responses for
different source locations. Our method compares the channel
estimates obtained from the received acoustic signals against a
database of channel responses, pre-computed through an acoustic
ray tracing model. The set of possible node locations that result
are then organized in trellis form to obtain a final estimate of
the source’s trajectory via a path tracking method similar to the
Viterbi algorithm. Our results show that the proposed approach
can estimate node locations and paths with very small error,
provided that the receiver has sufficiently accurate and up-to-
date environmental information.

I. INTRODUCTION

Several applications in the field of ocean exploration, in-
cluding, e.g., natural habitat preservation, control of secure
areas, and environmental monitoring often require to estimate
the location of a target emitting acoustic signals. For sporadic
targets, whose appearance at a given location and time is
not certain, many receivers should be deployed in order to
cover a large area, and thus achieve a high probability to
detect and localize the target. Example applications are the
localization of marine mammals or underwater vehicles. In
these cases, the required equipment is deployed sparsely and
for long periods of time, in order to balance a sufficient target
detection probability with long term deployment constraints.
As a result, the signals are practically detected only by a single
receiver. While several localization methods exist to estimate
the position of a submerged device [1], most of them require
the presence of several anchor nodes [2], or prescribe message
exchanges between the device and the anchors [3]. Conversely,
in our setting, detections are to be made by a single receiver.
Because the source is unknown and is not cooperative, the
effective result is that current methods would only detect the
signals and avoid source localization [4].

In this paper, we extend the state of the art and propose
an approach to localize a source emitting acoustic signals via
a single receiver moored at a fixed location. Our approach
is inspired by indoor fingerprinting localization approaches,
e.g., [5], and hinges on the spatial diversity of the sea bottom

bathymetry. Specifically, we target those environments where
the bathymetry and the sound speed profile (SSP) in the water
column induce different channel impulse responses (CIRs)
for different emitter-receiver location pairs. This is often the
case for shallow-water environments with a diverse non-flat
bathymetry, but also for deeper waters where sea bottom hills,
mountains, or steep slopes may exist. While we rely on a
sufficiently up-to-date, high-resolution environmental informa-
tion, we note that obtaining such information is feasible. In
particular, fixed receiver deployments are typically carried out
only after having accurately profiled the sea bottom. This
makes it possible to choose the location of the receiver such
that the surrounding bathymetry is diverse. In addition, the
moored receiver can be equipped with cost-effective tempera-
ture sensors along its mooring cable, so as to obtain concurrent
sound speed estimates.

Our method is based on the modeling of expected acoustic
CIRs for different possible locations of the source around
the moored receiver. We then assume that the source would
emit signals while staying stationary or slowly moving relative
to the receiver. Such signals can be the clicks of dolphins,
the vocalization of marine mammals, or periodic heartbeat-
like pings from an underwater vehicle. We measure the CIR
for each received signal, and compare it to the pre-computed
modeled CIRs. Thus, we determine the location by the source
location of the modeled CIR that best fits the measured one.
The result is a sequence of location estimates whose size
equals the number of detected emissions. We then create a
trellis of possible locations, which are chosen by the output of
the cross correlation for the modeled and measured channels
and to satisfy an assumed maximum node speed. The final
location path of the source is obtained via a process similar
to the Viterbi algorithm.

To the best of our knowledge, ours is the only method
for the localization of a non-cooperative source from a single
reception element. The specific contributions of this paper are:
• A novel approach to estimate the trajectory of a sub-

merged source using a single receiving element;
• A tracking approach to estimate the path of a mobile

source in the same conditions.
Our numerical results, which are based on real bathymetry
information, show that the proposed approach can estimate
the source path with a significantly small error.

The remainder of this paper is organized as follows: Sec-
tion II provides an account of related work; Section III
details the localization algorithm; Section IV presents our
performance evaluation; Section V concludes the paper.



II. RELATED WORK

Several approaches for acoustic localization under water
have been proposed so far [6], [7]. One of the most common
range-based systems is long baseline (LBL), which employs
trilateration, and thus requires three or more anchor nodes of
known position to be present in the area. Most commercially
available LBL systems require round-trip time measurements,
and hence the interaction between the mobile node and the
anchors. This may pose issues in terms of acoustic bandwidth
utilization and energy consumption. LBL systems usually
achieve good accuracy, but require a considerable anchor
node deployment effort. In comparison, short baseline (SBL)
systems can be operated completely from a vessel, either
anchored or navigating, by lowering different transponders
from different points on the vessel.

If the size of the supporting vessel is exceedingly small
and the baseline between transponders becomes too short,
ultra-short baseline (USBL) systems are preferred. A USBL
device consists of a single array of transponders separated by
a distance of up to a few centimeters. The array enables the
estimation both of the range and of the angle of arrival (AoA).
However the accuracy of AoA estimation is directly dependent
on the number of hydrophones and on the array size, which
might be an issue for some applications. In many cases, USBL
systems are complemented by means to measure the SSP, and
thus improve the accuracy of range estimation by accounting
for the refractive properties of the underwater channel [8].

The transmission of acoustic signals under water is typi-
cally subject to significant multipath distortion. The wealth
of multipath arrivals that results can be exploited in passive
systems in order to improve the localization accuracy [8],
or to localize the source with multiple receivers through an
acoustic propagation model [9]. Model-based range-bearing
localization with two anchor nodes was introduced and eval-
uated by [10]. Along the same line, some systems have been
proposed that attempt to localize a node based on a collection
of acoustic channel fingerprints measured in the localization
area [1]. Similarly, [5] proposes to localize based on the
matching of a received fingerprint against a set of fingerprints
measured by an array of receivers. However, the practical
application of systematic fingerprint measurements beyond
controlled environments seems limited due to the rapidly
changing nature of underwater acoustic channels.

Matched-field processing, a method based on full acoustic
field propagation modeling in an underwater waveguide, has
also been applied to underwater localization [11]. In this
context, it was proposed to leverage the azimuthal asymmetry
of the environment [12]. Specifically, a vertical 21-element
array is employed to localize a node in 3D, by assuming full
knowledge of the environment within the reception range of
the array. Matched-field localization is still attracting some
interest [13], mainly focused on 2D localization performance
improvement.

Unlike in most of the works above, in this paper we propose
a system for the localization of a non-collaborative source

that is emitting acoustic signals using only a single receiving
element. Based on the knowledge of the local bathymetry
and SSP, we create a model of multipath propagation in the
localization area without any substantial offline preparation
phase. Unlike in [5], this process does not require any explicit
measurements. We then track the path of the source by
leveraging the channel response differences induced by bottom
reflections of the acoustic signals from different locations. The
above procedure is carried out witho no need for any receiver
array.

III. ALGORITHM DESCRIPTION

A. Preliminary assumptions and input data

We consider the problem of localizing an acoustic source
that moves in the proximity of a moored receiving element.
We assume an underlying algorithm for the detection and
estimation the signals emitted by the source. Moreover, we
assume that no prior information is available about the location
and the instantaneous speed of the source. Our algorithm starts
by an initial survey to measure the bathymetry of the area
surrounding the moored receiver with a fine resolution. The
meter-long resolution obtained by a 400-kHz multibeam sonar
is more than sufficient in this respect. We further require
periodic direct or indirect measurements of the local SSP.

We assume that the source operates at a given depth range
between zs

min and zs
max, and that it moves at a maximum speed

vs
max. We also assume that the maximum distance traveled

by the source between two subsequent signal transmissions is
known to the receiver. While our method also works without
such knowledge, the availability of this information greatly
reduces complexity. At different locations indexed by n =
1, . . . , NL, the source emits acoustic signals that are detected
by the receiver along with all the significant multipath arrivals.
The locations are expressed in terms of a cylindrical coordinate
system as xs

n = (us
n, b

s
n, z

s
n) where, at location index n, us

n ∈
[0, umax] is the great-circle distance in meters between the
receiver and the source, bsn ∈ [0◦, 360◦) is the bearing of the
source with respect to the receiver (i.e., the angle at which
the receiver sees the source, measured clockwise from due
north) and zs

n ∈ [zs
min, z

s
max]. We define the source path as the

ordered source location sequence {xs
1, . . . ,x

s
NL
}.

As a preliminary step, the receiver sets up a database of
modeled CIRs, computed at all points of a cylindric grid
designed to span the ranges U = {δu, 2δu, . . . , umax}, the
bearing angles B = {δb, 2δb, . . . 360◦}, and the depth values
Z = {zs

min, z
s
min + δz, . . . , zs

max}. The set of grid points is
then defined as G = U ×B×Z , where we denote guibizi ∈ G
as the ith grid point, i = 1, . . . , NG, where NG = |G|.
B. Source Location Estimation

For each grid point guibizi , the receiver models the expected
CIR using a propagation model. In the present work, we
employed the Bellhop ray tracing software [14, Ch. 3], [15]
for this purpose. Bellhop provides a list of expected multipath
arrivals, along with the complex amplitude, the delay, the
reception angle, and the list of bottom and surface reflections



incurred by each arrival. This information is employed to con-
struct two modeled responses, namely a partial CIR h

(1)
uizi(t),

with only the specular and surface-reflected arrivals, and the
complete CIR h

(2)
uibizi

(t). As the specular and surface-reflected
arrivals are independent of the bearing of the source relative
to the receiver, and rather depend only on the SSP, on ui and
on zi, the subscript bi has been dropped in h(1)

uizi(t).
From the modeled CIRs, the receiver obtains two separate

fingerprints, h(1)
uizi and h(2)

uibizi
. When the source is at location

xn, its emitted sound is received by the receiver as

rn(t) = hunbnzn(t)⊗ s(t) + ν(t) , (1)

where hunbnzn(t) is the actual CIR, s(t) is the signal wave-
form, ν(t) is the ambient noise, and ⊗ denotes convolution.
From rn(t), the receiver evaluates s(t). This can be done using
a rake receiver [16], blind source separation [17], or cyclo-
stationary analysis [18], to name a few options. Having s(t),
the receiver computes

f (1)
uizi = h(1)

uizi ⊗ s(t) and f
(2)
uibizi

= h
(2)
uibizi

⊗ s(t) . (2)

The receiver then matches rn(t) against the fingerprints f (1)
uizi

and f
(2)
uibizi

corresponding to the grid points in G as follows.
First, to limit the complexity of the search, the receiver
computes a bound on the depth and range of the source. For
example, a bound can be obtained based on a received signal
strength indicator (RSSI) as in [19]. In this work, we exploit
the modeled CIRs h(1)

uizi to compute, for each point in the grid,

C(1)
uizi(n) =

∫ +∞

0

rn(t) f (1)
uizi(t) dt . (3)

Define M(1)(n) as the set of all pairs (uj , zj) correspond-
ing to the peaks of C(1)

uizi(n) that exceed a threshold ΘD,
∀ (ui, zi) ∈ G. Note that we do not limit set M(1)(n) to
contain just the coordinates of the single grid point that yields
the maximum correlation. In fact, in this case the estimation
of the correct distance and depth may be hindered by the
lack of, e.g., the specular arrival, which in turn could be
due to specific bathymetry and SSP patterns. Then, for each
(uj , zj) ∈ M(1)(n), and ∀ b ∈ B, we compute the following
set of correlations

C
(2)
ujb zj

(n, τ) =

∫ +∞

0

rn(t) f
(2)
ujb zj

(t+ τ) dt . (4)

Call ρnxk
= maxτ C

(2)
ujb zj

(n, τ), and define M(2)(n) as the
set of all triples pk = (uk, bk, zk) corresponding to the R(2)

highest values of ρnpk
∀ (uj , zj) ∈ M(2)(n) and ∀ b ∈ B,

where R(2) is a user-defined parameter.
In ideal conditions, e.g., with an extremely dense grid

G, in the absence of noise, and with perfect environmental
information, it would be enough to limit set M(2)(n) to the
coordinates of the point pk = (uk, bk, zk) for which ρnpk

is
highest. However, it is computationally infeasible to have an
exceedingly large set G. Moreover, in any practical scenario,
the grid point closest to the actual position of the source
might not yield the highest correlation, due to noise, outdated
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Figure 1. Trellis employed by the path tracking algorithm for source path
estimation. Each node represents a location estimate. Trellis links exist only
among locations that are closer than the maximum distance covered by the
source when traveling at full speed between subsequent signal transmissions.

environmental information, or a combination of both. For these
cases, in the following we present a filtering scheme that as-
sumes set M(2)(n) to contain multiple estimated coordinates.

C. Source Path Estimation

Once the receiver has determined M(2)(n) for n =
1, . . . , NL, it proceeds to find the most likely sequence of
source locations among all possible options. To that end, we
apply a path estimation algorithm, somewhat similar to the
Viterbi algorithm. Our algorithm works on a trellis such as
the one shown in Fig. 1. Each node represents an estimated
location, so that the first column of nodes contains all location
estimates for the first detected signal from the source (set
M(2)(1)), the second column contains the estimates in set
M(2)(2), and the last column those in M(2)(NL). We rely
on the value of the cross correlation between the modeled and
measured channels as a confidence index. In each column i,
the nodes are sorted in order of decreasing confidence, i.e.,
ρip1

> ρip2
> · · · > ρip|M(2)(i)|

.
A link exists between a node in column n and a node

in column n + 1 if the corresponding locations are closer
than the maximum distance the source could cover when
traveling at full speed between the nth and the (n + 1)th
signal detections. Formally, call e`n`n+1 the edge that connects
the `nth estimated position in column n of the trellis and
the `n+1th at stage n + 1. Call A(e`n`n+1

) = p`n and
S(e`n`n+1

) = p`n+1
the ancestor and the successor of edge

e`n`n+1
, respectively. Define the edge weight as

σ(e`n`n+1
) = 1

[
d
(
p`n ,p`n+1

)
≤ vs

max(tn+1 − tn)
]
, (5)

where 1[ · ] is equal to 1 if the argument is true and 0
otherwise, d(x,y) = ‖x − y‖2 is the Euclidean distance
between locations x and y, whereas tn and tn+1 are the
transmission epochs of the nth and (n+1)th detected signals,
respectively. Edges with zero weight are removed from the
trellis. Additionally, if for edge e`n`n+1

it occurs that its
ancestor p`n is not successor of any edge e`n−1`n , or that
its successor p`n+1 is not ancestor of any edge e`n+1,`n+2 , the
edge e`n`n+1 is removed from the trellis as well.

We remark that a conventional Viterbi approach would
include all grid points in G each column. However, this would



make the state space very large, and lead to an exceedingly
high computational complexity, especially if |G| is very large.
In addition, solving through the Viterbi algorithm would re-
quire an estimate for the emission and transition probabilities.
Our heuristic version relies on confidence indices, and allows
to trim the state space according to physical movement con-
straints, which in turn reduces the path estimation complexity.

Let E(n) = {e`n`n+1} be the set of edges that link a node
in column n of the trellis to a node in column n + 1, and
define the following metric for each edge

λ(e`n`n+1) = ρnp`n
ρn+1
p`n+1

σ(e`n`n+1) . (6)

If for any n it should occur that E(n) is empty because all
edges have been filtered out according to the rule above, or
because the transmission has been lost, the trellis would incur a
breakage. To correct for these cases, we define edges between
nodes in columns n− 1 and n+ 1, using the rule in (5).

Define a generic path on the trellis as

Ψ = {ê1, . . . , êNL
} , (7)

such that ê1 ∈ E(1), . . . , êNL
∈ E(NL), and such that S(êi) =

A(êi+1), i = 1, . . . , NL− 1. Define the overall path metric as

Λ(Ψ) =

∏NL−1
i=1 λ(êi)∏NL−2
i=1 ρiS(êi)

, (8)

i.e., as the product of the confidence metrics for all edges that
belong to the path, divided by the confidence of intermediate
nodes in order to avoid accounting for them twice. The path
estimate is finally found as

Ψ̂ = arg max
Ψ

Λ(Ψ) , (9)

where Ψ̂ = {x̂1, x̂2, . . . , x̂NL
}. As a means of measuring the

discrepancy between the actual and the estimated source paths,
we consider the root mean square (RMS) point-wise distance
between corresponding points of the two paths. Formally,

εd
Ψ̂

=

(
1

NL

NL∑
n=1

d(x̂n,x
s
n)2

)1/2

. (10)

For several practical applications, it is sufficient to estimate
at least the bearing of the source relative to the receiver.
We convey the effectiveness of our approach in this respect
through the average bearing estimation error, defined as

εa
Ψ̂

=
1

NL

NL∑
n=1

|b̂n − bsn| . (11)

IV. SIMULATION RESULTS

A. Scenario and parameters

For our simulations, we consider a zone in the San Diego
bay area, off the coast of US’s southern California. We place
the receiver at the coordinates [32.9390◦N, 117.2816◦W ].
This choice is inspired from the actual coordinates of a buoy
released in the area during a recent sea trial. The hydrophone
of the receiver is placed at depth of 10 m. We take a set

of accurate bathymetry data from [20] (revealing that the
average depth in the area is about 50 m), and employ an SSP
sample taken at the observed area. The SSP has a downward-
refractive shape, typical of shallow Californian waters during
warm seasons. We assume that the water surface is flat. The
depth of the source is set to 10 m in all simulations. Yet, the
receiver is unaware of this choice of depth.

The fingerprint grid pre-computed by the receiver spans a
total range umax = 1.5 km from the receiver (with a resolution
of 1 m), the whole azimuthal plane (with a resolution of 1◦),
and is computed for all depths between 5 m and 15 m (also
with a resolution of 1 m). Therefore, there are a total of about
6 million points in set G, which would make it impossible
to estimate the most likely path through the regular Viterbi
algorithm by exploring the whole state space. This motivates
the computational complexity reduction efforts described in
the previous section. A simulation starts by deploying the
emitting source at random in the area at a range of 500 m from
the receiver. The source then chooses a bearing at random
and moves along the corresponding direction with constant
speed for the time required to carry out 10 transmissions.
The locations xs

n and xs
n+1 where two subsequent emissions

take place are such that d(xs
n,x

s
n+1) ≤ dmax, where we set

dmax = 50 m.
The signal transmitted by the source, s(t), is chosen to be a

linear chirp signal of duration 100 ms centered at a carrier
frequency of 96 kHz. This is akin to dolphins clicks. For
each emission from a given source-receiver location pairs, the
channel impulse response is computed through Bellhop [15],
using as parameters the SSP and the available bathymetry
samples along the direction from the source to receiver. The
ambient noise at the receiver is modeled as an additive white
Gaussian process, whose power is tuned so as to achieve a
prescribed signal-to-noise ratio (SNR). The received signal
is converted to baseband before cross-correlating it with the
fingerprints.

For the computation of (3) and the formation of set
M(1)(n), we choose ΘD = 0.1 ∀n. A sample result from (3)
is shown in Fig. 2a. We observe a clear peak suggesting that
the source is located at a distance of approximately 450 m from
the receiver, at a depth of 10 m. This is due to the presence
of all expected specular and surface-reflected arrivals in the
received signal. If, e.g., the specular arrival were missing, the
correlation peak at 500 m would not be as high. This is why we
consider all three significant peaks, including those at about
300 m and 600 m, and for all depths where such peaks exceed
ΘD.

To populate set M(2)(n), we set R(2) = 70. A sample
computation of (4) for some range-depth pairs in M(1)(n)
is shown in Fig. 2b. While in this particular case a peak
stands out corresponding to the correct bearing of about 120◦,
often such a favorable result does not occur: the chosen value
of R(2) allows to considerably increase the probability that
the actual bearing is included in M(2)(n), while keeping the
computational effort controlled.

An example of the output of the algorithm for a single step
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Figure 3. Example of cross-correlation results for model-based range-bearing
localization (distances in [km]). Our method successfully rules out spurious
locations and achieves an accuracy of εd ≈ 160 m and εa ≈= 4.4◦.

n and a whole path is provided in Fig. 3. Each panel shows
a view of the area around the receiver, which is located at
the center of panel (a) or towards the bottom-right corner in
panels (b) and (c). Fig. 3a shows the location estimates for
the first signal emission, obtained from the set M(2)(1) as
described above; Fig. 3b shows the location estimates after
filtering out those that are not part of any edge set E(n − 1)
or E(n), ∀n; Fig. 3c shows the final path estimate compared
to the actual path of the source. For the numerical results
discussed in the following, we consider a Monte-Carlo set of
100 source paths, which corresponds to 1000 signal emissions.

B. Localization accuracy under varying SNR

We start our performance evaluation by running our algo-
rithm in the presence of exact environmental data under differ-
ent SNR values. The complementary cumulative distribution
functions (CCDF) of the distance RMS error (RMSE) and of
the bearing error are shown in Figs. 4a and 4b, respectively.
Thanks to the perfect knowledge of both the bathymetry and
the SSP in the observed area, neither result shows a significant
dependence on the SNR, even after decreasing it to as low as
3 dB, which in turn tends to make additional peaks appear in
the correlation outputs. We observe that the average RMSE
varies from about 120 m for an SNR of 30 dB, up to about
170 m for an SNR of 3 dB, with a median error around
80 m which is remarkably good given the grid resolution
employed and the use of a single receiving element. The
bearing estimation results show even higher accuracy, with
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Figure 4. Accuracy of the path estimation algorithm in the presence of exact
environmental data, for different values of the SNR. Even for low values of the
SNR the arrival structure does not change considerably, and has no significant
effects on the accuracy of our method.
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Figure 5. Accuracy of the path estimation algorithm in the presence of
imperfect bathymetry data. Erroneous bathymetry significantly affects the
algorithm performance. For limited errors (y = 1 m) the results are still
practical for several applications.

a mean estimation error εa < 20◦ even for an SNR of 3 dB,
and a median error of less than 10◦.

C. Localization accuracy under imperfect bathymetry data

We now proceed by evaluating the sensitivity of the algo-
rithm to imperfect environmental information, starting with
bathymetry data. Specifically, we assume that the bathymetry
samples available to the receiver are offset with respect to the
true samples by an error drawn uniformly at random in the
interval [−y, y], where y (in m) is a tunable parameter. For
each erroneous bathymetry draw, we consider a Monte-Carlo
set of 100 source paths and show the CCDFs of the distance
RMSE and of the bearing estimation errors in Figs. 5a and 5b,
respectively. We observe that wrong bathymetry data decreases
the path estimation performance, as expected. However, for a
limited offset on bathymetry samples, up ±1 m, the median
RMS distance error remains below 200 m, which is still a
reasonably good result given the presence of a single receiving
element. Instead, an error of up to ±5 m yields significantly
worse performance. However, this is an extreme case, as such
an error amounts to about 10% of the average sea bottom
depth in the area, and thus causes significant changes in the
structure of the arrivals observed by the receiver.
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Figure 6. Accuracy of the path estimation algorithm in the presence of
imperfect SSP data. An inaccurate or outdated SSP significantly changes the
multipath arrival structure. Still, for c = 0.25 m the achieved accuracy still
has practical utility.

Similar conclusions can be drawn for the bearing estimation
error. Fig. 5b shows that the for y = 1 m, the average
and median error are about 45◦ and 20◦, respectively, and
increase to respectively 75◦ and 55◦ for y = 5 m. Still, we
observe that even such rough estimates can be instrumental
for several applications, including security and environmental
monitoring systems (where a rough estimate can trigger a more
accurate investigation by human personnel or more complex
autonomous vehicles) or fauna and habitat monitoring appli-
cations (where it is often sufficient to find the approximate
path followed by a vocalizing animal).

D. Localization accuracy under imperfect SSP data

We conclude by evaluating the localization accuracy in
the presence of outdated SSP data. Specifically, we add an
offset drawn uniformly at random in the interval [−c, c] to
each SSP sample available to the receiver. While this offset
tends to roughly preserve the general refractive properties
of the simulated medium (i.e., the general behavior remains
downward-refractive), even a small value of c tends to induce
significant changes in the trajectory and delay of different
arrivals. The simulations confirm this, as for c = 0.25 m
we already observe worse RMS distance error performance
(Fig. 6a), with mean and median errors respectively equal to
about 400 m and 250 m. As expected, increasing c tends to
reduce the accuracy. The bearing estimation results confirm
this trend, showing similar average performance for different
values of c, although the median error is limited to about 25◦

for c = 0.25 m. This results emphasizes the need for periodic
SSP measurements performed at the moored receiver.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for anchorless localization
and path estimations of a non-cooperating underwater source
emitting acoustic signals. Our approach relies on a single
receiver element and on the erratic use of acoustic propagation
in shallow waters. Our method is based on the comparison of
the channel estimate taken from a received acoustic signal

against a database of channel fingerprints. The latter are
modeled instead of measured, so that no periodic channel fin-
gerprint acquisition in the area around the receiver is required.
Locations that show a good match between the measured and
modeled channels are setup in a lattice form while limiting
transitions according to an assumed maximal velocity for the
source. The location path is then estimated as the path that
yields the best overall cross-correlation. Our approach makes
it possible to estimate the path traveled by the source with
remarkably good accuracy, given the presence of a single
receiver, and with low complexity. Such accuracy decreases
(but still remains sufficient for a variety of applications) if the
receiver obtains outdated environmental data.
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