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Introduction

Quoting the precious lesson by Anderson [1972], the study of emergent phenomena provides a
bridge between very di�erent scales and is conceptually as fundamental as the search for the
microscopic laws of nature. Condensed matter physics is pretty much about the emergence of order,
symmetry breaking and low energy properties. One intriguing class of systems is represented by
quantum �uids, for which the thermal De Broglie wavelength is larger or comparable to the mean
inter-particle distance and the quantum statistics of the particles becomes relevant. Spectacular
phenomena like super�uidity and superconductivity are in fact characterized by the onset of some
kind of order on macroscopic scales.

A peculiar class of quantum �uids is provided by light in nonlinear media and examples of
symmetry breaking include lasing and polariton condensation. Since the �rst realizations in the
1960s, the laser represents a fundamental mechanism in both theoretical physics and in everyday
life applications. Polariton �uids, on the other hand, have been developed in the last two decades
as a very convenient paradigm for enhancing the e�ective interactions of the photons via strong
radiation-matter coupling. The dynamics and the coherence properties of quantum �uids of light
and matter have been modeled in a few simple regimes, but many central questions remain open
concerning vortical or turbulent �ows, the role of dissipation, super�uidity in spatially inhomoge-
neous con�gurations, coupled laser oscillators and nonlinear physics in topological systems.

In this Thesis we apply several theoretical techniques developed in the �elds of Quantum and
Nonlinear Optics, Statistical Mechanics and Condensed Matter to the study of a few relevant exam-
ples of �uids of light. While the original results presented here are of analytical or computational
origin, the experimental aspects of the available platforms are thoroughly discussed all over the
manuscript.

One main approach underlying most of the Thesis is to describe a quantum �uid via a classical
�eld; this is possible when the �uid possesses a high degree of coherence, as a result of the transition
to a lasing state or because the �uid is coherently created by an external drive. These two scenarios
of a resonant drive or of an incoherent one display di�erent features and motivate the division of
the Thesis in Part I (Chapters 1,2) and Part II (Chapters 3,4). In both cases, focusing on the
coherent component of the dynamics of the quantum �uid allows to obtain an e�ective description
of many interesting phenomena without the formidable e�ort of dealing with the full quantum
problem. The starting point of such a semiclassical analysis will typically be a generalized nonlinear
Schroedinger equation: the Gross-Pitaevskii equation for weakly interacting quantum gases and
its driven-dissipative extensions and the Complex Ginzburg Landau equation for the dynamics of
laser systems will be two important declinations of this concept.

Another element which plays a major role is dimensionality. Basically all the devices that we
will review are implementations of one or two dimensional models. Correspondingly, polariton
hydrodynamics will be investigated in one and two dimensions; even more importantly, the low
dimensionality of the lattice determines the lack of long-range order of the �eld emitted from a 1D
laser array or from the edge of a 2D topological device, resulting in a broadening of the linewidth.

In contrast to these unifying methodological elements, whose two main �avors have been
grouped in Part I and II, the range of experimental platforms discussed is quite wide. For this
reason, the division in Chapters has been chosen based on the physical system, while the separation
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between known and original results has been performed via the use of the Sections, the material
contained in a Section marked by an asterisk being mostly due to ourselves1. Having stated the
general scope and features of the Thesis, let's brie�y introduce the contents of the individual parts.

Chapter 1 deals with hydrodynamics and super�uidity of resonantly injected polariton �uids
(Carusotto and Ciuti [2013]). In semiconductor microcavities, a mode of the electromagnetic �eld
can be strongly coupled to the excitonic transitions of the embedded quantum well, resulting in
quasi-particle excitations called exciton-polaritons (Yu and Cardona [2010]). These have bosonic
nature, light mass and short-range interactions. Depending on the pumping scheme, polariton
condensation can be achieved (Kasprzak et al. [2006]), which brings many analogies with the
physics of lasers and atomic Bose-Einstein condensates; alternatively, polaritons can be injected
quasi-resonantly, giving rise to a rich phenomenology which can be described in terms of the
generalized Gross-Pitaevskii equation introduced by Carusotto and Ciuti [2004] and which includes
bistable behaviors and �ow without scattering.

After reviewing these well known results, we report some interesting features of the generalized
Gross-Pitaevskii equation. First, we provide, via a formal argument based on Galilean boosts, a
rederivation of the Doppler shift and of the link between critical velocity and speed of sound. In
particular, under an in�nite excitation spot, the �ow of a polariton �uid against a static defect
and the displacement of a moving defect in a �uid at rest are related by a mathematical boost
and in some sense are the same situation pictured in two di�erent reference frames (Amelio et al.
[2020b]).

The other important �nidings spring from a careful reconsideration of the results by Pigeon
et al. [2011], which suggested that, in analogy to weakly interacting atomic gases, a polariton
�uid ejected from a �nite spot against a static defect would alternate a super�uid, turbulent and
solitonic behaviour for increasing injection velocity. Instead, we show that the dynamics of the
ejected �ow is an extremly nonlinear one and it is not possible to directly control the �ow velocity
via the pump wavevector (Amelio and Carusotto [2020a]). Correspondingly, the �ow against a
defect always features a solitonic pattern, which can be shallower or deeper, but never displays
clean super�uidity and never breaks down in vortical or turbulent dynamics. These numerical
observations call for quantitative tests of the generalized Gross-Pitaevskii description and for a
better understanding of the conditions in which the experiment by Amo et al. [2011] was performed,
where a scenario compatible with the atomic gas predictions was claimed.

Chapter 2 is devoted to the study of the physics of resonantly injected polariton �uids in the
presence of a dark excitonic reservoir. Since such reservoir introduces an important bias when
trying to estimate the polariton-polariton interaction constant from the observed blueshift (Sun
et al. [2017], Estrecho et al. [2019]), we start reviewing the theory of exciton-exciton interactions
(Ciuti et al. [1998]). The experimental e�orts directed at measuring the dispersion of the collective
excitations of the polariton �uids are then summarized, and the experiment by Stepanov et al.
[2019], which is the leading thread of the Chapter, is discussed in details.

In this experiment, the excitation laser is linearly polarized and the detection occurs in the
opposite polarization. The energy and angle resolved photoluminescence from the �uid is collected
as close as possible to the acoustic regime. Looking at the measured dispersion of the excitations
on top of the �uid, as presumably induced by thermal phonons, a much reduced slope is observed
with respect to the standard theory of a fully coherent polariton �uid, where the speed of sound
is determined by the blueshift.

This fact, together with other recent �ndings (Sarkar et al. [2010], Walker et al. [2017]), sug-
gests the existence of dark excitonic states which are populated by polariton-polariton scatterings,
contribute to the blueshift of the �uid and have a slower dynamics than the polaritons, so that
they impact on the dynamics only at frequencies lower than the linewidth. As a consequence, our
theoretical analysis highlights that the speed of sound is mostly determined by the fraction of the
Hartree energy due to polariton-polariton scattering, while exciton-polariton interactions mainly
produce a blueshift of the �uid.

While these concepts are �rst illustrated for a circularly polarized �uid, a careful quantitative
analysis has been performed to include the interplay of the two linear polarizations and to model

1For example, notice that Sec. 2.2, while it refers to (Stepanov et al. [2019]) and reports original experimental
results, does not bear an asterisk because it mainly springs from the work in the lab of Petr Stepanov and Maxime
Richard; our theoretical contribution to that paper is illustrated in Sec. 2.3

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio
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the excitation of the photoluminescence by thermal phonons. Keeping into account all these fea-
tures allows for an estimate of the reservoir parameters and for the polariton-polariton interaction
constant.

In the �nal Section, the in�uence of the resevoir on the super�uid phenomenology of the po-
laritons is highlighted (Amelio et al. [2020b]). In particular, the breaking of the formal Galilean
invariance argument discussed in Chapter 1 entails that the critical velocity is not in general given
by the speed of sound. The two are equivalent for a defect moving in a �uid at rest, while in the
steady state situation of a �uid �owing past a static defect the critical velocity is determined by
the total blueshift.

Chapter 3 addresses the spatial and temporal coherence of 1D non-equilibrium quasi-condensates,
or equivalently of tight binding models of 1D laser arrays.

In the �rst Section the basic concepts underlying laser operation are illustrated. We show
how the celebrated Schawlow-Townes linewidth (Schawlow and Townes [1958]) can be derived in
a simple semi-classical analysis: due to the phase invariance of the laser equations, spontaneous
emission events (or other sources of white noise) lead to a di�usion of the phase of the laser �eld
and an exponential decay of the coherence in time (Henry [1982]). A brief overview of di�erent
laser devices is also provided.

While the Schawlow-Townes treatment is adequate for an e�ectively point-like laser �eld, the
statistical mechanics literature focuses on the spatio-temporal correlation functions of in�nitely
extended non-equilibrium �uids described by the Complex Ginzburg Landau equation (Gladilin
et al. [2014], He et al. [2015], Ji et al. [2015], Squizzato et al. [2018]), of which polariton condensates
are an example. In 1D in particular, any linearization approach is bound to fail due to the absence
of long-range order; conversely, a nonlinear Kuramoto-Sivashinskii equation for the dynamics of the
phase can be derived by eliminating the fast density �uctuations. Then, the renormalization group
approach predicts that the infrared physics falls into the Kardar-Parisi-Zhang (KPZ) universality
class (Kardar et al. [1986]), which was originally proposed to describe the stochastic growth process
of a classical interface.

Our contribution (Amelio and Carusotto [2019]) consists in elucidating the connection between
the Schawlow-Townes linewidth and KPZ physics, or in other words how spatial �uctuations a�ect
the temporal coherence properties. More precisely, the Schawlow-Townes linewidth can be viewed
as a �nite-size e�ect that will dominate at very long times, while KPZ universality is visible at
intemediate times and for large enough systems. Moreover, while when the system size is small
enough the linewidth is the one described by the Bogoliubov-Schawlow-Townes theory, a marked
broadening occurs for large enough systems, where corrections due to the nonlinear phase dynamics
are expected. More speci�cally, the coherence time is expected to scale as the length of the system
in the linear regime and as its square root in the nonlinear one.

Chapter 4 presents the �rst theoretical study of the coherence properties of a topological laser.
First, we review the impetuous development of the topological photonics �eld and how lasing in
the edge modes of a topological lattice for photons has been achieved by several groups in the last
four years (Bahari et al. [2017], Harari et al. [2018], Zeng et al. [2020]).

A theoretical model of a topological laser is provided by the 2D Harper-Hofstadter laser (Longhi
et al. [2018]). The core of this Chapter reports the semiclassical solution of this model in the case
of a class-A device and for small intensity �uctuations (Amelio and Carusotto [2019]). To this
end, the Bogoliubov modes are computed and explained via a dimensional reduction argument
(Loirette-Pelous [2020]). Moreover, the structure of the correlation functions re�ects the fact that
�uctuations travel in a chiral way around the edge of the system.

The linewidth is computed via the Bogoliubov method. We generalize the notion of the trans-
verse Petermann factor and show that it is close to 1, clarifying the nature of topological lasing
as opposed to gain guiding. For large enough arrays, in analogy with the analysis of the previ-
ous Chapter, the �eld on the edge brings the signatures of KPZ universality and of the linewidth
broadening due to the nonlinear phase dynamics.

Then, we demonstrate the robustness of the coherence properties to the presence of static on-
site disorder: more precisely, the disorder threshold for the topological array is roughly set by the
band-gap and is orders of magnitude higher than for a topologically trivial array. The robustness
of the KPZ universality in the correlation functions is instead mostly determined by the density of
states of the edge mode. Remarkably, the coherence time is enhanced by an intermediate amount

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio
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of disorder, since the Bogliubov modes of the Goldstone dome acquire a shorter lifetime and the
nonlinear phase dynamics is hampered.

These results have been derived within a very simple model. We expect that including nonlin-
earities and the carrier dynamics within the tight binding framework should not introduce major
qualitative modi�cations as long as no instabilities arise; the time and length scales entering the
correlation functions will instead change, per example yielding a Henry factor for the linewidth
(Henry [1982]). Finally, the tight binding approximation has no predictive power in determining
whether the emission is single or multi-moded in the very relevant case of semiconductor laser ar-
rays; however, if single moded emission is veri�ed experimentally, our guess is that the qualitative
structure of the correlation functions described here should apply also to that situation.

Other PhD research NOT in this Thesis

Before entering in the core of the Thesis, I would like to brie�y list here also some other research
e�orts which couldn't �nd their place in this manuscript or have not brought to any publishable
results (yet), but still deserve some mention for the amount of time they took during these three
years.

Just before the start and during the �rst year of my PhD I collaborated with Davide Galli and
Luciano Reatto on the study of vortices in Helium via Quantum Monte Carlo techniques: I learned
a lot in this �rst taste of quantum �uids and we also obtained some interesting results on the role
of rotons in quantum turbulence (Amelio et al. [2018]).

At the end of the �rst year, I started a collaboration, funded by the Unitn�College de France
exchange program, with Giacomo Mazza and Antoine Georges on the interplay of strong light-
matter coupling and phase transitions in correlated electronic materials. We investigated several
aspects of the problem, including the dynamics of superradiant excitonic states, some strategies to
cut o� degrees of freedom in the ultrastrong coupling regime, and an Exact Diagonalization study
of the Hubbard and Heisenberg models in a cavity. In spite of the tremendous amount of time
spent in this project (2 months as visitor at College de France and at least one year of e�ective
work), we couldn' t get to any solid results yet, also because of the many subtleties hidden in this
�eld. Still, I am pretty convinced that this experience has been a very good investment in view of
my future research directions.

Finally, I took some steps in the direction of continuing the work by Elia Macaluso and study
bosonic Pfa�an states with Tree Tensor Networks under the supervision of Matteo Rizzi, but the
pandemic plus hacker attacks to our supercomputer plus the writing of this Thesis killed these
attempts quite soon... However, I am happy to have had a taste of these fascinating topics!

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio
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Chapter 1

Gross�Pitaevskii description of

exciton-polariton �uids

The central topic of this Chapter is the discussion of the properties and predictions stemming from
the generalized Gross-Pitaevskii equation that it is used to describe resonantly-driven exciton-
polariton �uids.

We set o� in Section 1.1 by introducing strongly coupled exciton-polaritons in 2D semiconduc-
tor microcavities. As explained in Sec. 1.2, under a proper pump scheme these quasi-particles can
be excited to form coherent �uids, described by generalized Gross-Pitaevskii equations. The basic
properties of a resonantly driven �uid are then reviewed in Sec. 1.3, as a prelude to the original
results of the Chapter: a formal theory of Galilean transformations between di�erent pump con-
�gurations is presented in Sec. 1.4; then, Sec. 1.5 deals with how drive and dissipation (and the
corresponding imaginary poles of the dispersion) a�ect super�uidity; �nally, in Sec. 1.6 the study
of polariton �ows o� �nite pump spots closes the Chapter by reporting some unexpected behavior,
which ultimately calls for new experimental assessment of the validity limits of the generalized
Gross-Pitaevskii approach.

1.1 Strong coupling in semiconductor microcavities

Along the next pages we will see that particles that arise from the strong coupling of matter and
radiation degrees of freedom have very intriguing properties. In this and in the next Chapter we
will mostly concerned with one outstanding platform where the strong coupling regime can be
realized, that is 2D semiconductor microcavities.

The basic idea, sketched in Fig. 1.1.a, is to have a central layer, usually called a quantum
well (QW), in which the interband exciton will be con�ned; this is sandwiched in between two
Distributed Bragg Re�ectors (DBRs), consisting of di�erent layers with alternating refractive index.
The DBRs act as dielectric mirrors and create a cavity for the optical radiation. With a proper
design of the structure, the interband transition occurring in the QW can be set into resonance with
one transverse electromagnetic (EM) cavity mode to give rise to a large Rabi splitting exceeding the
small radiative losses, a regime called of strong coupling. The quasiparticle excitation stemming
out of this interaction is called the exciton-polariton; polaritons can be excited and controlled via
optical means, p.e. by shining a laser on the microcavity, and the interaction between polaritons
gives rise to very rich nonlinear physics, which will be the main topic of the next Sections.

1.1.1 Dielectric mirrors

Let's now review more in details the basic ingredients of a 2D microcavity (Savona et al. [1999],
Kavokin et al. [2007], Liscidini and Andreani [2015]). First, we hint at how alternating dielectric
layers can serve as a mirror. The starting point is Maxwell equations in matter with no free sources,
which can be rearranged so that electromagnetic waves should satisfy the hermitian eigenproblem

9
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Figure 1.1: Semiconductor microcavity. (left) Sketch of a typical microcavity for achieving strong
coupling between the EM �eld con�ned by two dielectric mirrors and excitons con�ned in a QW.
(right) Frequency dependent re�ectance for a simple Fabry-Perot cavity model; the sharp Fabry-
Perot resonance is here centered in the middle of the DBR stop band. Plots respectively taken
from (Kasprzak et al. [2006]) and (Liscidini and Andreani [2015])

∇×
[

1

ε(r)
∇×H

]
=
ω2

c2
H, (1.1)

where ε(r) is the local dielectric constant and we assumed unit magnetic permeability so that H
is the magnetic �eld, subject to the constraint ∇ ·H = 0. In a 2D dielectric mirror the dielectric
constant depends only on the normal coordinate ε(r) = ε(z) and due translational invariance along
the plane the EM modes will be in the form H(r) = H(z)eik‖·r‖ ; it is convenient to consider a
periodic Bragg structure ε(z) = ε(z+a), so that the Bloch theorem allows to label the eigenvectors
by a wavevector qz in the �rst Brillouin zone and a photonic band number, together with the
polarization index. In particular, the periodic ε(z) couples Fourier waves eikzz di�ering by a
multiple of 2π/a; with respect to the light cone in vacuum or in a homogeneous medium, it is
clear that one Fourier wave will be mostly coupled to a wave with opposite group velocity in the z
direction; if two layers of di�erent ε are alternated, the constructive interference of these re�ections
from successive interfaces provides the way to maximize the photonic band gap around a given
frequency ω, goal that is achieved by designing the structure in the so called λ/4 con�guration:
this consists in choosing the thickness of each one of the two layers as c/(ωnl), l = 1, 2. A wave
incident on the structure with frequency falling in the photonic bandgap doesn't �nd any available
state for propagation and it is re�ected; the re�ectivity is closer to one if more and more layers are
stacked. (One can also reason in terms of evanescent waves, related to non-normalizable eigenstates
with complex wavevectors, which allows to compute the penetration length of the re�ected wave.)

Now, two Bragg mirrors of re�ectivity |r(ω)| ' 1 in a given spectral window form a Fabry-Perot
cavity, as sketched in Fig. 1.1.b. The input-output treatment of this structure yields a transmission
coe�cient in the form

tcav(ω) =
1− r(ω)

1− r2(ω)e2ikz(ω)Lz
(1.2)

where Lz is the e�ective length of the cavity (closely related to the thickness of the central struc-
ture) and kz(ω) is determined by the refractive index of the inner layers and by the frequency and
incidence angle of the wave. Equivalently, this expression can be derived by summing the har-
monic series arising from the multiple re�ections inside the two mirrors: any time the constructive
interference condition is matched, a sharp transmission window of Lorentzian shape appears. The
full width at half maximum (FWHM) of the resonance at frequency ωm is denoted γm and the
quality factor of the mode Q = ωm/γm counts the number of optical cycles the trapped radiation
performs before leaking out.

1.1.2 Wannier excitons in GaAs

Then, we discuss the interband exciton arising in semiconductor materials with a direct band gap.
In the particularly relevant case of gallium arsenide GaAs (Blakemore [1982], Schlesinger [2001]),
the crystal structure, depicted in Fig. 1.2.a, is of the zinc-blende type, that is a bipartite version
of the diamond lattice, with Ga (As) belonging to the III (V) group of the periodic table. This
structure can also be thought as two interpenetrating fcc solids, with the nearest neighbours of
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Figure 1.2: GaAs electronic states. (a) Unit cell of the zinc-blende crystal structure of GaAs. (b)
Single electron bands of GaAs computed via a pseudo-potential method. (c) Sketch of excitonic
hydrogen-like levels n = 1, 2, 3 emerging as narrows peaks below the single particle continuum in
the excitation spectrum of a direct gap semiconductor. (d) Typical QW for GaAs, with external
layers containing aluminium to give type-I band alignment, i.e. lower (higher) edge of the valence
(conduction) band. Plots respectively taken from (Du et al. [2013]), (Schlesinger [2001]), (Yu and
Cardona [2010]) and (Wikipedia � Quantum well).

each atom forming a regular tetrahedron. The band structure, or more precisely the single particle
energies versus momentum along two crystal axes, is plotted in Fig. 1.2.b for the bulk material at
the temperature T = 300K. The band gap reaches its minimum of 1.42 eV at the Γ point and the
bandgap decreases with increasing temperatures, since the lattice expands. The conduction band
features an e�ective mass of 0.067me at the Γ point, with me the mass of the free electron, and has
s-wave orbital symmetry. The valence band instead is p-symmetric and splits in a heavy hole and
a light hole branches, with e�ective masses of 0.50me and 0.076me respectively and total anglular
momentum jh = 3/2, jzh = ±3/2 and jh = 3/2, jzh = ±1/2. (There is also another sub-branch
jh = 1/2 which lies deeper in energy by a spin-orbit splitting of 0.34 eV.)

In order to obtain the spectrum of the semiconductor at low temperatures, as probed p.e. by
optical spectroscopy, the single particle approach is not enough. Nonetheless, the many electron
problem can be simpli�ed by considering an hole in the valence band and an electron in the
conduction one, interacting by an e�ective potential that keeps into account Coulomb screening by
the other electrons. In semiconductors, this gives rise to hydrogen-like bound states with a Bohr
radius extending typically over many unit cells: such states are called Wannier-Mott excitons (Yu
and Cardona [2010]) and their spectrum is sketched in Fig. 1.2.c.

Such an excitation can be then spatially con�ned in a layer sandwiched between two layers with
some di�erent alloy composition. To this end, the band gap of the central layer has to be smaller,
so that it provides an e�ective well potential for the exciton. It is convenient to adopt the envelope
approximation and consider the electron-hole pair frozen in the 1s bound state and in the lowest
subband along z, while translational symmetry along the plane allows for a parabolic dispersion
of the center of mass degree of freedom.

For example, in GaAs structures the exciton binding energy is of the order of a few meV, the
precise value depending on the temperature and thickness of the structure, and the Bohr radius is
∼ 10nm. In order to obtain a quantum well, the GaAs layer is sandwiched between two AlxGa1−xAs
regions, as illustrated in Fig. 1.2.d. While the heavy hole and light hole are degenerate at k = 0
in the bulk, this degeneracy is lifted when the hole is con�ned in the QW, with the heavy hole
being energetically favourable by typically a few meV. In the following we restrict to heavy holes
excitons with Jz = ±1 ≡ σ, to satisfy the selection rule for optical excitation.

1.1.3 Exciton-polaritons

Having hinted at the microscopic aspects of the semiconductor 2D microcavities, it is now possible
to write down a simpli�ed Hamiltonian to grasp the basic features of light matter interaction in
the strong coupling regime. Non-interacting excitons in the envelope approximation and in the the
�rst QW subband are described by

HX =
∑
k‖σ

ωX(k‖)b̂
†
k‖σ

b̂k‖σ, (1.3)
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Figure 1.3: Polariton dispersion.
Sketch of how the coupling of exci-
ton and photon modes yields an upper
and lower polarion branch. The Rabi
coupling determines the width of the
avoided crossing splitting. Plot taken
from (Snoke and Littlewood [2010]).

where the excitons can be considered as a bosonic excitation as long as their density is low enough
not to resolve the two fermionic constituents (Hop�eld [1958], Keldysh and Kozlov [1968]). Since
the exciton mass is quite heavy for our purposes, it is possible to consider a dispersionless line
ωX(k‖) = ωX .

On the other hand, the parameters are tuned so that a speci�c photonic branch âk‖σ is nearly
resonant with the exciton line; focusing only on these modes, the cavity Hamiltonian reads

HC =
∑
k‖σ

ωC(k‖)â
†
k‖σ

âk‖σ. (1.4)

If one injects photons with small incidence angle, the condition k‖Lz � 1 allows to approximate
the polarization unit vectors as perpendicular to the z axis and take the dispersion independent of
the polarization σ, neglecting the so-called TE/TM splitting (Shelykh et al. [2009]). For a perfect
and in�nite planar cavity the dispersion looks like a rounded light-cone

ωC(k‖) =

√
ω2

0 +
c2

n2
k‖

2 ' ω0 +
~

2m0
k2
‖, (1.5)

where for the M -th transverse mode one has the k‖ = 0 frquency ω0 = πc
nLz

M and the photon

e�ective mass m0 = ~ω0

c2/n2 .
The excitation of an exciton corresponds to an optically active transition with dipole moment

d. Since the exciton is con�ned in a region of a few nanometers, it is possible to resort to the
dipole approximation very much used in quantum optics and neglect the spatial dependence of the
electric �eld over the scale of the dipole moment. Keeping only nearly resonant terms, the so-called
rotating wave approximated (RWA) coupling term reads

HLM = ~ΩR
∑
k‖σ

â†k‖σ b̂k‖σ + h.c. , (1.6)

where the Rabi frequency is given by ΩR = dE0/~ with E0 =
√

~ω0

εV with V the e�ective volume
of the cavity. From this expression it is evident that for achieving strong light matter coupling it
is necessary to con�ne the electromagnetic �eld within the cavity and con�ning the exciton at one
anti-node of the EM �eld.

The Hamiltonian HX+HC+HLM can be easily diagonalized by the rotation p̂LPk‖σ = cos θb̂k‖σ+

sin θâk‖σ, p̂
UP
k‖σ

= cos θâk‖σ−sin θb̂k‖σ. The new bosonic operators create and annhilate excitations
called exciton-polaritons (Hop�eld [1958]). The dispersion of the coupled system consists of two
branches ωLP (k‖), ωUP (k‖) arising from the avoided crossing of the light-cone with the exciton
line, as depicted in Fig. 1.3. The excitonic versus photonic character of a polariton of given
wavector is given by the Hop�eld coe�cients characterizing the above rotation. In experiments the
microcavity can contain NQW quantum wells located at di�erent anti-nodes of the �eld. Repeating
the diagonalization of the light-matter Hamiltonian in this case, one sees that the photon �eld
couples only with the symmetric combination of the exciton operators, with the other NQW − 1
�elds remaining dark. The Rabi coupling to this bright exciton is enhanced by a factor

√
NQW ,

so that having multiple QWs is a practical strategy to have a stronger coupling. For instance, the
microcavities used in (Bajoni et al. [2007], Stepanov et al. [2019]) consist in a λ/2 AlAs region
stacked in between two DBRs made of 16 and 20 λ/4 pairs of Al0.2Ga0.8As/AlAs layers; in total
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12 GaAs QWs are embedded in the central AlAs and the innermost DBR AlAs layers, at the
anti-nodes of the cavity �eld.

This very simple treatment can now be enriched if one reintroduce by hand two essential
ingredients: losses and interactions. Losses arise both from the leaking of photons out of the cavity
and from the decay of the exciton due to scattering with electrons, phonons and impurities. A
formal treatment of the coupling of the cavity to the external EM environment and of the electronic
decay and dephasing channels requires the use of a master equation with Linblad terms accounting
for losses and dephasing (Gardiner and Zoller [2004], Walls and Milburn [2007]). Nonetheless,
for many puposes it is su�cient to deal with a Hamiltonian containing complex eigenfrequencies
ω → ω − iγ2 .

Having introduced losses, we can now de�ne the strong coupling regime via the condition
ΩR � γ. Physically, this means that energy is exchanged over many cycles between the photon
and exciton �elds before being lost in the EM or electronic environment. Within this regime, in a
spectroscopic experiment we are able to resolve the avoided crossing splitting between the photon
dispersion and the exciton line.

The picture presented so far holds as far as the system is probed linearly, i.e. the density
of excited polaritons is low enough. However, the electronic constituents of the overall neutral
polaritons start to see each other for close-by quasiparticles: at high polaritons densities, achieved
for strong pumping, polariton-polariton interactions need to be taken into account. A detailed
discussion of these issues is postponed to the next Chapter, where the polarization dependence of
the interactions and the subtle problem of determining the coupling constant will play a central
role. For our purposes, here it is su�cient to add to the Hamiltonian the quartic local Hartree
term

∑
σσ′ gσσ′

∫
d2x b̂†xσ b̂xσ b̂

†
xσ′ b̂xσ′ .

With the further approximation that we focus on the lower polariton branch and on just one
polarization, all the complex physics of the undriven polariton �eld is summarized in the bosonic
Hamiltonian

HLP =

∫
d2k

(2π)2

[
ωLP (k)− i

2
γ(k)

]
p̂†kp̂k + g

∫
d2x p̂†xp̂xp̂

†
xp̂x ; (1.7)

this equation describes the polariton excitations considered in the rest of this Chapter. Notice
that one of the limits of exploiting photons in many Quantum Technologies, including Quantum
Computation, is the fact that in the vacuum two photons interact very weakly via the QED one-loop
vertex containing four electronic propagators; this vertex is then negligible at optical frequencies,
which are well below the Compton scale. However, dressing the photon with matter degrees of
freedom endows it with the possibility of exerting a strong interaction on another polariton. The
quest for strong photon-photon nonlinearities, with the ultimate goal of reaching a perfect photon
blockade (Imamo	glu et al. [1997]), has motivated a tremendous amount of work in the solid state,
atomic and superconducting qubits communities over the last two decades.

In the following Section we will discuss di�erent strategies to excite polaritons. Clearly, many
of the approximations illustrated above are well motivated only retrospectively, because one drives
the microcavity in regimes in which we have good theoretical control.

1.2 Polariton �uids

In this Section we will sketch three di�erent schemes to macroscopically populate a state in the
lower polariton band: via incoherent pumping, by resonant driving and through optical parametric
conversion (Carusotto and Ciuti [2013]). The basic mechanism underlying the �rst two of these
is bosonic stimulated scattering and in all the three cases the bosonic nature of the polaritonic
excitations allows to write down a generalized Gross-Pitaevskii equation (GPE) (Pitaevskii and
Stringari [2016]), which is the starting point for studying collective e�ects in polariton �uids.

Let' s start with incoherent pumping. This relies on exciting in uncontrolled way many high
energy excitonic and electronic states of the microcavity, which will then relax into the bottom of
the LP band (Porras et al. [2002]). In practice, excitation is usually performed by shining a laser
with frequency above the conduction band edge or via electrical injection of carriers. A �rst stage
of the relaxation process via scattering with optical and acoustic phonons leads to an accumulation
of incoherent polaritons around the in�ection point of the LP band. At this point polaritons can
further relax into the bottom of the LP band. If driven by scattering with phonons, this process
is usually very slow because of the small phase space of the �nal polariton states. However, for
high enough polariton densities, polariton-polariton scattering is fast enough to create a �nite
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Figure 1.4: Polariton condensation. (left panel) The incoherent optical pumping scheme is
sketched: a high frequency laser excites electronic states in the conduction band, which relax
in polariton states at large wavevector. Further relaxation into the bottom of the LP band is only
e�ective for high polariton densities, based on stimulated polariton-polariton scattering. This is
further demonstrated in the right panel, where the far-�eld emission of the microcavity is plotted
below threshold, at threshold and above threshold, showing macroscopic occupation of the k‖ = 0
LP state. Plots are taken from (Kasprzak et al. [2006]).

population around the k = 0 polariton states. This spontaneous seed can then trigger stimulated
polariton-polariton scattering into itself. For strong enough pumping these processes result in the
formation of a non-equilibrium Bose-Einsten condensate, corresponding to a coherent macroscopic
polariton population in the bottom of the LP band. The phase of the condensate is spontaneously
selected based on the random phase of the initial seed. This physics was �rst experimentally
demonstraed by Kasprzak et al. [2006] and it is summarized in Fig. 1.4.

With respect to atomic BECs which need to be cooled down below the µK range, polariton
condensation has the advantage of taking place at much higher temperatures. This is due to the
very light mass of the lower polariton as inherited from the con�ned photon, which typically is of
the order of mLP ∼ 10−4me: indeed, the critical temperature for having a quantum degenerate
system is reached when the thermal De Broglie length ~ 2π

mkBT
approaches the average distance

between the particles. This allows to have Bose condensation 1 at temperatures of a few Kelvin
(19K in the aforementioned experiment), or even at room temperature if one uses materials with a
large enough exciton binding energy (Ardizzone et al. [2019], Su et al. [2020]). In this perspective,
polariton condensates harness the best features of their matter and radiation constituents: they are
interacting as material particles, but on the other hand they are very light and allow for all-optical
control and imaging.

The emergence of coherence in a fully quantum model and the excitations of the non-equilibrium
�uid were �rst studied by Szyma«ska et al. [2006]. A simpler mean-�eld model that captures many
features of this polariton laser has been proposed byWouters and Carusotto [2007] and it is based on
the single-particle wavefunction ψ(x) describing the macroscopically occupied state and on the the
incoherent density of polaritons nR(x) populating the in�ection point states. The corresponding
generalized GPE plus the rate equation for the reservoir density read

i~∂tψ =

[
~ωLP0 − ~2

2mLP
∇2 + g|ψ|2 − i~γ

2
+ i

~R
2

(
1− 2i

gR
~R

)
nR

]
ψ, (1.8)

∂tnR = P − (γR +R|ψ|2) nR, (1.9)

where R is the stimulated scattering rate, gR takes into account the variation of the QW refrac-
tive index due to the presence of incoherent excitons, P measures the injection rate of incoherent
polaritons and it is closely related to the pump strength, γR describes the rate of polariton recom-
bination out of the condensed state. Notice that the parabolic approximation with e�ective mass
mLP for the LP dispersion holds because only states at its bottom are considered.

1in 2D condensation is well de�ned only for �nite pump spots.
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Two very important features typical of lasing and Bose-Einstein condensation are captured
by equations (1.8,1.9): the existence of a threashold under which the steady-state condensate
wavefucntion is zero and the symmetry under global phase shift ψ(x, t) → eiφψ(x, t). Above
threashold, in order to have a steady-state lasing state it is then necessary to spontaneously break
this U(1) invariance; nevertheless, this microscopic symmetry survives through the Goldstone mode
in the spectrum. These issues will be considered in full details later on in the subsection 3.2.1; in
particular we refer to Fig. 3.2 and surroundings for the discussion of the collective excitations.

These two important features are missing if the microcavity is instead driven resonantly. In this
case a laser is tuned at a frequency ωp close to the bottom of the LP band and with an incidence
angle corresponding to the in-plane wavevector kp. The use of a single-particle wavefunction in
this case is justi�ed because the polaritons are created by the laser in the same state and with a
phase inherited by the one of the laser. The appropriate generealized GPE here is (Carusotto and
Ciuti [2004])

i~∂tψ(r, t) =

(
~ωLP0 − ~2

2m
∇2 + g|ψ|2 − i~γ

2

)
ψ + F (r)eiωpt, (1.10)

where the driving term F (r) includes the spatial dependence of the laser �eld, its amplitude and
the coupling with the microcavity states. As it is apparent, due to this pump term the global phase
shift ψ(x, t)→ eiφψ(x, t) is not a symmetry of Eq. (1.10), leading to completely di�erent features
of the excitation spectrum and super�uid properties. Resonantly injected �uids will be the main
topic of the rest of this Chapter and of the following one, so we posticipate the discussion of their
basic features to the next Section.

Even though we will not focus on it in this Thesis, for completeness we brie�y mention a
third commonly used experimental setup, usually referred to as optical parametric oscillation
(OPO). One can resonantly drive the microcavity with parameters (ωp,kp) corresponding to the
in�ection point of the LP band: in this region it is possible to satisfy the condition of phase-
matching for four-wave mixing processes (Boyd [2019]), for which two pump photons (ωp,kp) are
converted in a signal (ωs,ks) and an idler (ωi,ki) photons while conserving energy and momentum,
2ωp = ωs+ωi, 2kp = ks+ ki. This polariton-polariton scattering process can be stimulated by an
external probe laser at the signal frequency and momentum or by the spontaneous accumulation
of signal and idler polaritons which in turn triggers the nonlinear process and leads to a polariton
condensate via breaking of the U(1) symmetry (Baumberg et al. [2000]). Mathematically, this
physics can be described by a resonantly driven generalized GPE with complete LP dispersion
ωLP (−i~∇) and where the formation of the signal and idler beams are signaled by instabilities of
the single-mode steady-state wavefunction (Carusotto and Ciuti [2005]).

1.3 Collective physics of resonantly driven polaritons

In this Section we will be concerned with the theoretical study of resonantly driven GPE Eq. (1.10)
in the case of a plane wave pump �eld F (r, t) = F0e

ikp·r−iωpt. Since we will rely a lot on these
results in the course of the thesis, we will discuss in great details the bistability of the steady-state
solutions, the spectrum of the collective excitations and the super�uid behaviour in the presence
of defects.

1.3.1 Bistability

As a �rst step, for any shape of the laser spot, one can adopt the transformation ψ(r, t) →
e−iωptψ(r, t) and move to a rotating frame where the steady-state �eld is time independent. In
this frame, the GPE reads

i~∂tψ(r, t) =

(
∆− ~2

2m
∇2 + g|ψ|2 − i~γ

2

)
ψ + F (r), (1.11)

where we introduced the detuning ∆ = ~ωLP0 − ~ωp. Since, as we will show below, a Galilean
symmetry argument allows to reduce the general case kp 6= 0 to the treatment of kp = 0 (Amelio
et al. [2020b]), we will start considering a uniform pump F (r) = F0. The staedy-state solutions
then are also uniform with amplitude ψ0 which satisfy
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Figure 1.5: Bistability and Bogoliubov spectra. Left panel: typical µ versus IF diagram in the
optical limiter (upper) and bistability (lower) regimes. Right: Bogoliubov spectra, showing Reω
(upper) and Imω (lower) as function of kx at the various working points highlighted on the diagrams
on the left. Plot taken from (Carusotto and Ciuti [2013]).

0 =

(
∆ + g|ψ0|2 − i

~γ
2

)
ψ0 + F0. (1.12)

Squaring this equation one can study the blueshift or Hartree interaction energy of the polariton
�eld µ = g|ψ0|2 in terms of the e�ective pump intensity IF = g|F0|2:[

(∆ + µ)2 +

(
~γ
2

)2
]
µ = IF . (1.13)

This is a third order equation for µ and it is easily shown that IF (µ) is monotonic for µ ≥ 0 as long
as ∆ > −

√
3

2 γ, so that in this optical limiter regime for any value of F0 there is only one stable ψ0.

When ∆ < −
√

3
2 γ instead, for IF ∈ [I1

F , I
2
F ] there are three values of µ satisfying Eq. (1.13), but it

will turn out that at most two of them are dynamically stable. This result, depicted in Fig. 1.5.a,
indicates that, if the driving laser is blue-detuned at least by

√
3

2 γ, there is a range of values of the
pump intensity for which the polariton �eld con�guration is bistable (Boyd [2019]). In practice
one has to deal with a hysteresis cycle: ramping on the pump the polariton state follows the lower
bistability branch; when IF passes I2

F the laser gets resonant with the blue-detuned polariton state
so that µ jumps up; when ramping down instead, the pump power µ follows the upper bistability
branch before jumping down.

Bistable behaviors have indeed been found in a number of experiments (Baas et al. [2004],
Sarkar et al. [2010], Paraïso et al. [2010], Rodriguez et al. [2017], Stepanov et al. [2019]), although
it turns out to be very di�cult to obtain quantitative agreement with theory, likely because of the
sensitivity of this phenomenon to external noise sources. We also mention that, while bistability
holds rigorously in this mean-�eld treatment, strictly speaking the full quantum theory forbids
bistability, because of the �nite tunneling rate between the two candidate bistable states (Vogel
and Risken [1988], Vicentini et al. [2018]). In practice, the auto-correlation time diverges with the
number of photons and the size of the spot, so that within an observation window of �nite duration
the phenomenology gets hysteretical (Rodriguez et al. [2017]).

1.3.2 Bogoliubov excitations

We now move to consider the dynamics of small excitations on top of the uniform steady-state.
This is done by inserting ψ(r, t) = ψ0 + δψ(r, t) in Eq. (1.11) and keeping terms of the �rst order
in δψ:

i~∂tδψ(r, t) =

(
∆− ~2

2m
∇2 + 2g|ψ0|2 − i

~γ
2

)
δψ + gψ2

0δψ
∗. (1.14)

Because of the last term, arising from the nonlinearity, this linear problem is not diagonalized
just by exploing translational invariance and expanding in Fourier waves eik·r−iω(k)t. Instead,
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since each plane wave is coupled to its complex conjugate, one has to consider the general ansatz
δψ(r, t) = ueik·r−iω(k)t + v∗e−ik·r+iω∗(k)t (Pitaevskii and Stringari [2016], Carusotto and Ciuti
[2004]) and diagonalize the 2× 2 Fourier-Bogoliubov blocks

~ω
(
u
v

)
=

[
−i~γ

2
+

(
∆ + ~2

2mk2 + 2µ µ

−µ −∆− ~2

2mk2 − 2µ

)](
u
v

)
≡ L (k)

(
u
v

)
. (1.15)

The excitations have dispersion

~ω±(k) = −i~γ
2
±

√(
∆ +

~2

2m
k2 + 2µ

)2

− µ2 (1.16)

and are depicted in Fig. 1.5.b for di�erent values of µ and both in the optical limiter and bistable
regimes. In the former case and for ∆ > 0, the Bogoliubov excitations are always dynamically
stable, i.e. Imω± < 0 and the particle (hole) branch, de�ned by the condition |u| > |v| (|u| < |v|)
has positive (negative) real part. When this is the case the dispersion does not cross the ω = 0
line and it is said to be gapped; also the hole fraction of particle-like excitations will be small and
vice versa. In particular, in the linear regime of small pump intensities µ � γ, the nonlinearity
doesn't play any role, the particle branch starts at ∆ and the Bogoliubov modes closely follow the
polariton modes of the undriven cavity,

The situation is much richer in the second regime, for which ∆ < −
√

3
2 γ. For small pump

intensities (point A of Fig. 1.5.b), we recover the bare LP band, which is the linear regime explained
above. At very high pump intensity (point D), for which ∆ + µ > 0, the polariton band is blue-
shifted because of interactions and the dispersion is gapped. When the special condition ∆+µ = 0
is met (point C), the dispersion is acoustic:

ω±(k) = ±cs|k| − i
γ

2
(1.17)

with the speed of sound de�ned by
mc2 = µ. (1.18)

We will return on this regime later. For slightly lower intensities, the particle and hole branches
stick together and an imaginary part develops (point C ′) around k = 0, which �nally becomes an
instability when at the turning point IF = I1

F . Other instabilities at �nite wavevector develops at
the end of the lower bistability branch via the same sticking mechanism (points B,B′). The central
bistability branch is characterized by the unphysical property dµ

dIF
< 0 and it is always unstable.

The symmetric structure of the spectrum is explained by noticing that the Bogoliubov matrix
L (k) is characterized by particle-hole and parity symmetries, that combine in

PL (k) = −L (k)P (1.19)

where

P = K

(
0 1
1 0

)
(1.20)

and K stands for complex conjugation. For a generic eigenvector |ωk〉 = (u v)T of L (k) of
eigenvalue ω, this symmetry implies that

L (k) P|ωk〉 = −ω∗P|ωk〉 , (1.21)

i.e. that P|ωk〉 = (v∗ u∗)T is itself an eigenvector of L (k) of eigenvalue −ω∗. This imposes the
presence of pairs of eigenvectors with the same imaginary part and opposite real parts, correspond-
ing to complex dispersions of the form ω±(k) = ±ε(k)− iγ(k)/2, or to two purely imaginary and
in principle unrelated eigenvalues ω±(k) = −iγ±(k)/2.

Because of this connection and of the form of the ansatz for δψ, the positive and negative
excitations cannot be excited independently: when an external probe is present both branches are
in general visible in the spectrum. This can be easily understood from the linear kernel obtained
by inverting the Bogoliubov matrix and we will see some examples of this procedure later.
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1.3.3 Landau criterium

It is now time to introduce a notion of super�uidity. In equilibrium quantum �uids there exists a
particularly precise de�nition, stating that a super�uid yields no resistence to a transverse probe,
or in the linear response language the transverse current-current correlation function is zero. This
de�nition may apply to polariton condensates, but it has been shown rigorously by Juggins et al.
[2018] that such correlation function is certainly nonzero in coherently driven �uids. The funda-
mental di�erence with standard BECs is that the polaritons are injected with the phase of the
laser, so that there is no U(1) spontaneous symmetry breaking; on the contrary, the phase is �xed
and this rigidity prevents the formation, under the pump spot, of any current which is not directly
imprinted by the drive, such as the currents involved in vortices. It is nevertheless possible to
measure how much a resonantly injected polariton �ow gets distorted in passing around an ob-
stacle, and how strong is the drag force exerted on it. As shown below, a regime can be clearly
identi�ed when this distortion and drag force are strongly suppressed. This is phenomenolgical
sense in which the polariton community uses the word super�uidity for resonantly driven �uids.

The study of the collective excitations provides a good starting point for discussing the super-
�uid properties of equilibrium quantum �uids. According to the Landau criterion (Landau et al.
[1981], Pitaevskii and Stringari [2016]), a standard super�uid is able to �ow without friction at
speed v around a static defect until it is energetically favourable to create excitations in it, i.e. if
ω(k) + k · v ≥ 0, where ω(k) is the excitation dispersion of the �uid at rest. This provides the
well-known expression for the critical velocity,

vc = min
k

ω(k)

k
. (1.22)

For a weakly interacting �uid of bosons with acoustic dispersion ω(k) = cs|k| at low momenta, the
Landau criterium yields vc = cs, where the equilibrium analogue of Eq. 1.18 typically holds for cs.

Alternatively, a weak defect is able to move through a super�uid without friction if the disper-
sion ω(k) of elementary excitations in the latter has no intersection with a straight line ω = −v ·k.
For particles with a parabolic dispersion and local interactions, equivalence of the two points of
view is ensured by the Galilean invariance.

This formulation applies well to super�uids of material particles with a long lifetime of the
collective excitations, i.e. where the imaginary part Im[ω(k)] of the dispersion relation is much
smaller than the real part Re[ω(k)] and can be neglected at long wavelength. However, subtleties
arise in the case of driven-dissipative �uids, e.g. the polariton ones, where the real and imaginary
parts of the dispersion ω(k) may have comparable magnitudes. The importance of this e�ect for
incoherently pumped polariton condensates was �rst discussed by Wouters and Carusotto [2010],
who suggested a generalized form of the Landau criterion for driven-dissipative systems in terms of
real frequencies and complex momenta. In particular, for a polariton super�uid �owing against an
obstacle it was shown that a pattern forms when the velocity of the �uid is larger than the critical
velocity, thus showing clear super�uid-like features even in the presence of drive and dissipation.
In the case of coherent pumping, for which a phenomenological way of assessing super�uidity is
by computing the drag force, a pioneering discussion of the e�ect of drive and losses was reported
in (Berceanu et al. [2012]).

In spite of these issues, the naive application of the Landau criterium provides very good
indications about the behaviour of polariton �ows injected by a coherent spatially in�nite pump.
This was �rst discussed in (Carusotto and Ciuti [2004]), using the version of Landau criterium for
a moving �uid against a shallow static defect. Their results, depicted in Fig. 1.6, show how the
intersection of the dispersion with the ω = 0 plane allows to predict the distribution in Fourier
space of the scattered wave. Also, the regime of panels (e,f) is what one would call super�uid and
it translates to a very small perturbattion of the real space pro�le of the �ow (not shown here).
On the experimental side, this physics has been beautifully demonstrated by Amo et al. [2009] by
making use of a defect centered under a large pump spot.

To derive the dispersion curves shown on the left side of Fig. 1.6, let' s study via simple algebra
how the kp 6= 0 case of the GPE (1.10) gets mapped to the kp = 0 one. The ultimate origin of this
connection will be clari�ed in the next Section via a Galilean transformation. The GPE (1.10) with
F (r, t) = F0e

ikp·r−iωpt can be treated by making the transformation ψ(r, t)→ ψ(r, t)eikp·r−iωpt to
yield

i~∂tψ(r, t) =

(
∆ +

~2

2m
(k̂ + kp)

2 + g|ψ|2 − i~γ
2

)
ψ + F0, (1.23)
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Figure 1.6: Scattering from a static defect. On the left sides, the dispersion relation along the
ky = 0 cut is plotted for di�erent values of the pump intensity and of kp,x. On the right side
the far-�eld emission of the scattered part of the polariton wave is reported, as computed via
Eq. (1.36). In particular, the �rst row (a,b) shows the linear with the usual Rayleigh ring. In the
third row (e,f) the super�uid regime is depicted. Plot taken from Carusotto and Ciuti [2004].

where k̂ ≡ −i∇. The search for a �uniform� steady-state leads to the condition

0 =

(
∆ +

~2

2m
k2
p + g|ψ0|2 − i

~γ
2

)
ψ0 + F0, (1.24)

which is the same of Eq. (1.12) provided that one considers a new and more proper de�nition of
detuning ∆p ≡ ∆ + ~2

2mk2
p = ωLP (kp)− ωp, which quite naturally is the detuning not with respect

to the bottom of the LP band, but rather relatively to ωLP (kp). The discussion of the bistability
diagram is then inherited from the previous paragraphs.

Moving to the Bogoliubov spectra, one can plug the ansatz ψ(r, t) = ψ0 + ueik·r−iω(k)t +
v∗e−ik·r+iω∗(k)t into Eq. (1.23) and obtain the linearized eigenproblem

~ω
(
u
v

)
=

[
−i~γ

2
+

~2

2m
kp · k +

(
∆p + ~2

2mk2 + 2µ µ

−µ −∆p − ~2

2mk2 − 2µ

)](
u
v

)
≡ L (k)

(
u
v

)
.

(1.25)
The dispersion is now

~ω±(k) = −i~γ
2

+
~

2m
kp · k±

√(
∆p +

~2

2m
k2 + 2µ

)2

− µ2, (1.26)

with the Doppler term ~
2mkp · k which tilts the dispersion. Apart from this shear mapping and

with the sagacity of using ∆p instead of ∆, all the needed knowledge has already been explained
in Fig. 1.5 and in the relative discussion. This Doppler shift is in perfect analogy with standard
quantum �uids and it allows to use interchangeably the two formulations of the Landau criterium,
for a moving defect in a �uid at rest or for a �uid �owing against a static defect.

1.4 Galilean boosts and polariton �uids*

(this Section closely follows Section II of Amelio et al. [2020b])
In the �rst half of this Section we will illustrate a mathematical mapping that relates the GPE

dynamics of polariton �uids driven with di�erent pump wavevectors. As a corollary, if the relative
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velocities and the polariton densities are the same, the two cases of polaritons injected against a
static defect and of a defect moving in a �uid at rest turn out to be the same situation depicted
in two di�erent systems of coordinate. Because of its formal analogy, we call this transformation
a Galilean boost, even though it does not correspond to a physical change of reference frame.

The starting point is the GPE Eq. (1.10) for the �eld ψlab(x, t) expressed in the coordinates of
laboratory frame

i∂tψlab(x, t) =

(
ω0 −

~
2m
∇2 + g|ψlab|2 + Vext(x)− iγ

2

)
ψlab + Flab(x, t), (1.27)

where g = g/~ and ~Vext(x) is the static potential acting on the polaritons, including static defects.
Now we develop the aforementioned formal Galilean boost and with some abuse of notation

employ the terminology commonly adopted for physical Galilean transformations. For instance,
when within this analogy we refer to the �frame of reference moving at velocity vG with respect to
the lab�, we have in mind the change of coordinates y = x−vGt (the lab is just one chosen frame),
while the time variable remains the same in the two coordinate systems. The chosen convention
for the sign of vG is such that a �uid moving at velocity vG in the laboratory frame is seen as at
rest in the boosted one. The Galilean transformation is given by the unitary operator

Ûlab→G = ei
p̂vGt−x̂mvG

~ = ei
p̂vGt

~ e−i
x̂mvG

~ e+i
mv2

Gt

2~ , (1.28)

so that applied on the wavefunction reads

ψG(y) = [Ûlab→Gψlab](y) = e−i
myvG

~ e−i
mv2

Gt

2~ ψlab(y + vGt) . (1.29)

Galilean invariance of the conservative part of the GPE evolution (1.27) is then guaranteed
by the parabolic form of the kinetic energy according to elementary quantum mechanics (Cohen-
Tannoudji et al. [1991]), so that in our terminology the (undriven) polariton �eld is Galilean
invariant; instead, the covariance of the driving term is to be discussed in a moment. For usual
polariton systems resulting from the strong coupling of a cavity photon mode to an excitonic
transition this parabolic approximation is accurate for the typical �ow speeds considered in the
experiments (Carusotto and Ciuti [2013]).

The pump and loss terms can be treated by taking a step back and considering the Hamiltonian
that generates the GPE (1.27); in particular the pump term in this Hamiltonian reads Ĥdrive

lab =∫
dxFlab(x, t)Ψ̂

†(x) + h.c., which transforms as

Ĥdrive
G = Ûlab→GĤ

drive
lab Û†lab→G =

∫
dyFlab(y + vGt, t)e

−imyvG
~ e−i

mv2
Gt

2~ Ψ̂†(y) + h.c.. (1.30)

The dynamics in the boosted frame is then described by the same GPE

i∂tψG(y, t) =

(
ω0 −

~
2m
∇2 + g|ψG|2 + Vext(y + vGt)− i

γ

2

)
ψG + FG(y, t), (1.31)

provided the pump term is covariantly transformed according to

FG(y, t) = Flab(y + vGt, t)e
−imyvG

~ e−i
mv2

Gt

2~ . (1.32)

Note that this transformation involves a shift of the wavevector proportional to the velocity as
well as an overall frequency shift mv2

Gt/(2~). The loss term remains unchanged thanks to the
spatio-temporally local form that we have assumed from the outset.

Eqs. (1.27) and (1.31) describe the same dynamics, the observables in the two frames be-
ing linked by the usual Galilean prescriptions: |ψlab(x, t)|2 = |ψG(y, t)|2 for the density and
vflowlab (x, t) = vflowG (y, t) + vG for the �ow velocity, de�ned in terms of the wavefunction as usual
as vflow = ~ Im[ψ∗∇ψ]/(2m |ψ|2). Note that the overall phase factor in Eq. (1.32) is needed to
ensure that the density (and thus the bistability properties, the acoustic shape of the dispersion
etc.) is independent of the Galilean frame.

For a plane-wave coherent drive with frequency ωp and wavevector kp the detuning ∆p =
~ω0 + ~2k2

p/2m− ~ωp pops out again quite naturally in the frame comoving with the �uid at the
�ow velocity imprinted by the pump vp = ~kp/m. Our approach then gives a formal insight on
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the algebraic trick used in the previous Section to treat the case kp 6= 0. Notice that for �nite
pump spots the Galilean arguments still hold: per example, they relate a stationary spot centered
at wavevector kp is related to a spot with spatial envelope moving at velocity −~kp/m and carrier
centered, in a given instant, at zero wavevector. The second situation is not so relevant for our
discussion, so we always consider pump spots that can be considered spatially �uniform� (where
the quote marks mean apart from the plane wave factor).

Before proceeding, it is important to stress that the Galilean transformation discussed here is
useful to mathematically relate the dynamics of �uids injected with di�erent speed, but it does
not correspond to a physical change of reference frame, for instance an experimentalist running
parallel to the cavity mirrors. Indeed, for a medium with a refractive index di�erent from unity,
light propagation in a physically boosted Lorentz frame at velocity vL is a�ected by the celebrated
Fresnel drag e�ect (Jackson [1975], Landau et al. [1984], Jones [1972], Artoni et al. [2001], Carusotto
et al. [2003]), which changes the dispersion relation to the same order in vL/c as the Doppler shift:

ω′(k′) = ω(k′) +

(
1

n2
cav

− 1

)
vL · k′ + ... (1.33)

where the apex refers to quantities measured in the Lorentz frame and ncav is the refractive index
inside the cavity.

In conclusion, despite the covariance of the pump term, the Galilean invariance of the (undriven)
polariton �eld allows to state that the critical (relative) speed depends on the density but not on
the reference frame, as a corollary of what shown in the previous section; importantly, this does
not assume to work at the acoustic point. More precisely, in the approximation of an in�nite
uniform excitation spot, the pattern created by scattering against a defect (hence the super�uidity
threshold) depends only on density and on the relative velocity between the defect and the �uid:
the �ow against a static defect and the defect moving through the �uid at rest correspond to the
same dynamics viewed in two di�erent Galilean frames.

1.5 Driven-dissipative aspects of polariton super�uids

(this Section closely follows Section III of Amelio et al. [2020b])

Now we turn to a formal study of the density pattern created when a polariton �uid is coherently
excited into motion against a static obstacle by a monochromatic pump of frequency ωp and in-
plane wavevector kp, with a special focus on the e�ects due to drive and dissipation. The Galilean
argument just discussed entails that these results extend straightforwardly to the case of a defect
moving in a �uid at rest.

In order to determine the density modulation pattern of the �uid �owing around a weak defect
at rest, we adopt the method explained in Carusotto and Ciuti [2004] and linearize the GPE (1.10)
on top of the homogeneous solution at the pump's wavevector kp and frequency ωp, via the ansatz

ψ(x, t) = ei(kp·x−ωpt)
[
ψ0 +

∫
dk δψke

ik·x
]
, (1.34)

with δψ of the same order of the weak defect potential δVdef . Importantly, since the defect produces
a static perturbation on the �uid, the wavefunction (1.34) keeps a monochromatic form at the pump
frequency ωp.

Inserting this ansatz into the GPE (1.27) and keeping the terms of the �rst order in δVdef , one
�nds that the di�erent Fourier components δψk are decoupled and each of them satis�es(

ω0 +
~(kp + k)2

2m
+ 2g|ψ0|2 − ωp − i

γ

2

)
δψk + ψ2

0 δψ
∗
−k = −δVdef(k)ψ0 . (1.35)

Then, by combining this equation with the complex conjugate one and solving the matrix inversion
problem, we obtain for an arbitrary (real) potential

δψk = χ
V

(k)ψ0δVdef(k) (1.36)

where the response function to an external potential is de�ned as

χ
V

(k) = [L (k)]−1
11 − [L (k)]−1

12 (1.37)
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Figure 1.7: (a) Evolution of the four complex poles of the one-dimensional response function
χ
V

(k ∈ C) for di�erent values of the �ow speed kp > 0 . The residue theorem is to be applied
to the upper (lower) half�plane for x > 0 (x < 0). (b) Spatial pro�le of the density modulation
induced by the defect (located at x = 0) for di�erent values of kp. More precisely, the renormalized
density perturbation g[n(x)−n0]

δVdef
is reported. (c) Ratio |Re[k]/Im[k]| between the real and imaginary

part of the poles as a function of kp and for di�erent dissipation rates; the horizontal dashed line
indicates

√
3. (d) Drag force as a function of the �ow speed for di�erent loss rates γ. Across (a�d)

the pump frequency is kept at the sonic resonance point ∆p = gn0, unless di�erently speci�ed the
damping is set to γ/gn0 = 0.2, and no incoherent reservoir is present.

and the 2× 2 Bogoliubov matrix reads

L (k) =

(
η(kp + k) + gn0 − iγ/2 gψ0

2

−gψ0
∗2 −η(kp − k)− gn0 − iγ/2

)
. (1.38)

Here, k = kp + k is the (real-valued) total momentum and the detuning function

η(k) = ω0 + ~k2/2m+ gn0 − ωp . (1.39)

The perturbed wavefunction in real space is �nally obtained from (1.36) by means of the Fourier
transform (1.34). The Bogoliubov dispersion relation ω(k) corresponds to the eigenvalues of the
matrix (1.38), i.e. the zeros of det [ω −L (k)] on the manifold k ∈ RD, ω ∈ C.

While these complex frequency modes allow to study dynamical excitations, it was hinted at
in Wouters and Carusotto [2010] that the response of the steady state to static external perturba-
tions is most conveniently characterized in terms of modes with a real frequency and a complex
momentum. In classical electromagnetism (Tait [1972]), such waves naturally appear when dealing
with monochromatic light incident on an absorbing medium. In our context, this point of view is
implicitly assumed upon using the residue theorem to evaluate the Fourier integral (1.34): since
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the defect is at rest, it generates a static perturbation in the �uid at ω = 0, whose peak wavevectors
k are determined by the zeros of det L (k), i.e. the poles of χ

V
(k) as a function of k ∈ CD.

In the simplest case of a one-dimensional geometry and a delta-like potential at rest giving
a momentum-independent δVdef(k) = δVdef , the position of the poles in the complex k plane are
shown in Fig. 1.7(a) for di�erent values of the pump wavevector kp > 0 (that is, of the speed ~kp/m
of the �uid) and a resonant laser frequency ωp = ~k2

p/(2m) + gn0 + ω0 such that the Bogoliubov
dispersion is gapless and has a sonic behaviour with a well-de�ned speed of sound cs.

With the residue theorem technique, evaluation of the Fourier integral (1.34) for x > 0 (x < 0)
only picks the poles in the upper (lower) complex half-plane. For the x > 0 region, a single pole
is present and this has a vanishing real part. It corresponds then to the exponentially decaying
perturbation that is visible in Fig.1.7(b) in the x > 0 downstream region. The faster the �ow, the
closer the pole to the real axis, so the slower the exponential decay.

The behaviour is richer in the x < 0 upstream region: for small speeds kp, the two poles have
again a vanishing real part and the perturbation displays a monotonic decay. Around ~kp/mcs '
0.75 the poles merge in the complex k plane at a �nite Im[k] and then separate again along a
direction parallel to the real axis. For su�ciently large speeds, their real part exceeds the imaginary
one so that the perturbation in the �uid starts displaying a clear oscillatory character upstream of
the defect.

As the association between the real part of the wavevector and the transferred momentum
suggests, this change in behaviour is expected to result into a sharp change in the value of the drag
force exerted by the moving �uid onto the defect, de�ned as (Astrakharchik and Pitaevskii [2004],
Wouters and Carusotto [2010], Berceanu et al. [2012])

Fd = −
∫

dx∇Vdef(x) |ψ(x)|2. (1.40)

A plot of Fd as a function of the �uid speed is shown in Fig.1.7(d) for the sonic case and
qualitatively agrees with this prediction.

In particular, the position of the threshold position is consistent with the naive Landau criterion
based on comparing the �ow speed with the speed of sound. The velocity-independent value of
the friction force at high speeds is typical of one-dimensional super�uids and was �rst anticipated
by Astrakharchik and Pitaevskii [2004] for conservative atomic systems. Finally, the smaller the
loss rate γ, the sharper the transition from a frictionless super�uid behaviour at slow speeds to a
�nite friction force at fast speeds.

While this picture is qualitatively accurate, establishing a precise relation between the location
of the threshold and the behaviour of the poles in the k-complex plane requires a bit more careful
analysis. As one can see in the lower half-plane of panel (a), the k vectors aquire a real part in fact
at a smaller value kp ≈ 0.75 than the threshold that is visible in the force plot around kp ≈ 1. To
explain this feature, one can see in panel (c) that the di�erent curves of Re[k]/Im[k] for di�erent
values of the loss rate cross at a single value close to

√
3 2 for a value of the pump wavevector

~kp ' mcs ' 1 that approximately corresponds to the threshold for the drag force shown in panel
(d). This suggests that the threshold is not determined by the point where the k vectors aquire a
real part, but rather by the point when the real part exceeds (by a factor

√
3) the imaginary part.

1.6 Hydrodynamics from a �nite pump spot*

(this Section closely follows Amelio and Carusotto [2020a])

In this Section we discuss, within the Gross�Pitaevskii framework, super�uidity, soliton-like
patterns, and instabilities in a non-equilibrium polariton �uid injected by a spatially localized and
continuous-wave coherent pump and �owing against a defect located outside the pump spot. In
the case of resonant and continuous-wave (as opposed to pulsed) excitation, the use of �nite laser
spots is necessary to avoid the �xing of the polariton �eld phase that occurs in the pumped region
and thus open to the possibility of observing nontrivial phenomena including vortical or turbulent
states (Amo et al. [2011]) and even analogue Hawking radiation close to the trans-sonic horizon of
the �ow (Gerace and Carusotto [2012], Nguyen et al. [2015]).

2 Indeed, at ~kp ' mcs ' 1 the pole condition in terms of z = k/kp simply reads z4 + iaz + a2, whose solution

satisfy |Re[z]/Im[z]| →
√

3 as a ≡ ~γ
mc2s

→ 0.

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Hydrodynamics from a �nite pump spot* 24

Most studies on polariton hydrodynamics have been so far guided by the analogies to equilib-
rium super�uids such as liquid Helium and Bose-Einstein condensates of ultracold atoms (Carusotto
and Ciuti [2013]): along these lines, Bose�Einstein condensation (Kasprzak et al. [2006]), super-
�uidity (Amo et al. [2009]) and turbulence (Amo et al. [2011], Sanvitto et al. [2011], Nardin et al.
[2011]) have been experimentally explored in polariton �uids in the last decade. In the resonant
case, the starting point is once again the GPE (1.11) where, in order to escape the phase locking
induced by the external laser and the consequent impossibility of generating vortices3, it is nec-
essary to consider a driving �eld with a spatially �nite support. Outside the pump spot, one has
F (r) = 0 and it is convenient to also consider a hydrodynamic velocity � density formalism,

∂tn + ∇ · (nv) = −γn (1.41)

m∂tv + ∇
(

∆ +
m

2
v2 + gn− ~2

2m
√
n
∇2
√
n

)
= 0 (1.42)

where n(r, t) = |ψ(r, t)|2 and v(r, t) = ~
m∇ arg[ψ(r, t)] are the local density and velocity of the

�uid. Without loss of generality, in this Section we always take g = ~2/m = 1meVµm2. These
equations correspond to density and energy conservation respectively, and, exception made for the
decay term γ, they are locally identical to the ones used for conservative atomic BECs (Pitaevskii
and Stringari [2016]). Of course, the calculation of an actual �ow pro�le using Eqs. (1.41,1.42)
requires that these local equations in the undriven region are supplemented with proper boundary
conditions to match the �ow in the driven region. These boundary conditions are responsible for
the unexpected behaviours that are illustrated below.

Because of this connection to the equilibrium equations, most of the previous work on soliton
formation, vortex nucleation and turbulence when the polariton �ow exits the pump spot and
impacts against a static defect has been permeated by the equilibrium approach and has tended to
highlight the similarities with the physics of ultracold gases rather than the di�erences (Carusotto
and Ciuti [2013]). In particular, for equilibrium quantum �uids �owing against a static obstacle it
is known (Winiecki et al. [2000], Neely et al. [2010], Kamchatnov and Pitaevskii [2008]) that, for
increasing �ow velocity, three regimes are scanned, going from a super�uid to a turbulent regime
and again to soliton nucleation.

A similar behavior was observed for polaritons in the experiment by Amo et al. [2011]. However,
that observation was backed by a �awed numerical study (Pigeon et al. [2011]) which con�rmed the
equilibrium scenario of the three phases, so that a critical quantitative analysis of the experimental
data was never performed. In our work we reopen this issue and by solving carefully the GPE we
question this theoretical equilibrium prediction.

More speci�cally, we show that according to the resonantly driven GPE the super�uid-turbulent-
soliton picture is replaced by a crossover from a shallow to a deep soliton-like perturbation. In
particular, a clean super�uid �ow around the defect is never reached in our simulations. This is
explained in terms of the properties of one-dimensional �ows, in particular their weak dependence
on the pump parameters: acceleration of polaritons by the quantum-pressure-driven density gra-
dient outside the pump spot is shown to quickly induce a transition from sub- to super-sonic �ow
in the close vicinity of the pump spot. This feature restricts our possibility to explore the super-
�uid hydrodynamics in the undriven region outside the pump. Such complex and highly nonlinear
behaviours call for quantitative experimental tests of the underlying Gross�Pitaevskii equation.

The role of disorder in inducing non-stationary behaviours with moving phase singularities is
also highlighted and the possibility of forming shock-wave-like patterns around a circular laser spot
is �nally investigated.

1.6.1 Outward 1D polariton �ow from a localized pump spot

In this paragraph we discuss a �rst application of the GPE formalism to one-dimensional geometries
under a coherent drive with a �nite pump spot. In almost all works so far on super�uidity and
vortex nucleation in polariton �uids (Amo et al. [2011], Pigeon et al. [2011]), the �uid was quasi�
resonantly driven using a �nite but large pump spot, and it was often implicitly assumed that the
�ow velocity of the polariton �uid is controlled by the wave vector of the pump v = ~kp/m.

3 When the polaritons condense spontaneously instead, vortices have been generated by a probe pulse in the
OPO scheme (Sanvitto et al. [2010]) or under pulsed non-resonant pumping (Lagoudakis et al. [2011]), and their
dynamics has been imaged in real time.
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Figure 1.8: Panel (a) Numerical GPE calculations of the one- dimensional polariton �ow pro�le
under a spatially localized pump spot (grey�shaded area). Solid and dotted red lines respectively
indicate the local speed of sound cs(x), which is a measure of density, and the local �ow veloc-
ity v(x). Green lines show the prediction of the local density approximation (1.45,1.46). The
dashed black line indicates the asymptotic velocity v∞ given by Eq. (1.50). Panel (b): frequency-
momentum spectrum obtained from the Fourier transform of the wavefunction evolution in response
to a weak δ�like perturbation localized at t = 0 and xε = 25µm (blue arrow in panel a). The red
curves represent the bare polariton dispersion (dotted), a rigidly blueshifted polariton dispersion
(dashed) and the acoustic Bogoliubov dispersion (solid line), computed using the local values of
the speed of sound c̄s = cs(xε) and �ow velocity v̄ = v(xε). Panel (c): space�time evolution of the
density modulation nε(x, t)−n(x) induced by a small gaussian perturbation of width 1µm around
xε = 25µm at t = 0. The solid green line indicates the light�cone emerging from the perturbation's
location, also computed using the local values of the speed of sound c̄s = cs(xε) and �ow velocity
v̄ = v(xε). Parameters: ∆ = −0.5meV, ~γ = 0.02 meV and g = ~2/m = 1meVµm2. The drive is
de�ned in Eq. (1.43) with

√
gF0 = 10meV

1
2 , xpe = 8.0µm, σpe = 0.25µm and kp = 0. Numerical

calculations were performed by means of the 4th order Runge�Kutta method in a simulation box
of size Lx = 1280µm with a grid of 212 points and periodic boundary conditions.

In the following we show that the physics of polariton �uids driven by spatially localized pumps
can be signi�cantly more complicate than that: in spite of the simplicity of the con�guration,
intriguing features are found for the polariton �uid that propagates away from the pump spot,
namely a quick transition to a super-sonic �ow and an unexpectedly weak dependence of the �ow
pro�le on the pump intensity and wavevector. Polariton wire devices (Wertz et al. [2010]) appear
as ideal candidates where to experimentally investigate this physics in a quantitative way.

We consider 1D systems and pump con�gurations F (x) of the kind

F (x) = F0e
ikpx

[
1− exp

{
− (|x| − xpe)2

2σ2
pe

}]
Θ(xpe − |x|), (1.43)

where Θ(X) is the Heaviside step function, equal to 0 (1) for X > 0 (X < 0). The parameters
xpe and σpe respectively determine the position and the sharpness of the pump edge, so that F (x)
is a plane wave with wavevector kp in the central region, and smoothly decays to zero outside
of [−xpe, xpe]. To avoid artifacts, the numerical integration box is chosen to have a much larger
extension −L/2 < x ≤ L/2 with periodic boundary conditions.

Local density approximation and local speed of sound

The qualitative physics of one-dimensional polariton �ows under such a spatially �nite coherent
pump is represented in Fig.1.8(a), which displays the stationary solution of the GPE evolution
Eq. (1.11). The solid lines indicate the spatial pro�le of the �ow velocity v(x) de�ned above and
the dotted lines indicate the local speed of sound

cs(x) =

√
g|ψ(x)|2

m
(1.44)

which serves as a convenient proxy for the polariton density |ψ(x)|2.
Within the pumped region indicated by the gray shading, the polariton �uid is well described

by the usual theory by Carusotto and Ciuti [2004]. In the undriven region, the density and �ow
pro�le show a rapid crossover through a trans-sonic point towards a ballistic �ow at large distances.

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Hydrodynamics from a �nite pump spot* 26

Because of polariton losses, the density then slowly decreases to zero, while the �ow speed tends
to an asymptotic value v∞.

In analogy with the Thomas�Fermi approximation of atomic BECs (Pitaevskii and Stringari
[2016]), for su�ciently smooth �ow pro�les the last �quantum pressure� term in eq. (1.42) can
be neglected, which gives explicit equations for the steady-state �ow pro�le in one-dimensional
con�gurations within a local density approximation (LDA)

d(gn)

dx
= −mv dv

dx
, (1.45)

dv

dx
= − γ

1− mv2

gn

(1.46)

From the second equation, we immediatly see that the Thomas�Fermi approximation breaks down
in the neighborhood of the trans-sonic point where mv2 = gn and the derivative of the velocity
diverges. On the other hand, when these equations hold, the current pro�le satis�es the modi�ed
continuity equation

j(x) ≡ nv = j(x0) e
−γ

∫ x
x0

dx′
v(x′) (1.47)

which includes the e�ect of the polariton decay.
The last equation suggests that away from the pump spot the steady�state wavefunction can

be approximated by a decaying plane wave

ψ(x) ∼ e−
γ x

2v∞ ei
mv∞

~ x, (1.48)

with the real part of the Laplacian in Eq. (1.11) requiring

∆ +
m

2
v2
∞ −

~2

8m

γ2

v2
∞

= 0 ; (1.49)

the presence of ∆ in this equation (and the very existence of a steady-state in the frame rotating
with frequency ωp) has the physical meaning that the pump �xes the time dependence of the �eld
also in the undriven region. While the last term plays an important role for ∆ & 0, it is fully
negligible when the laser frequency is well above the bottom of the polariton band (−∆ � ~γ)
and the asymptotic speed

∆ +
m

2
v2
∞ ' 0. (1.50)

is correspondingly large. This shows that the asymptotic �ow velocity v∞ is �xed (in modulus)
by the (assumed negative) laser detuning according to energy conservation; in contrast, the pump
wavevector does not play any role in determining v∞.

The quantitative accuracy of the LDA past the trans-sonic point is con�rmed in Fig.1.8(a).
Comparing the LDA predictions (1.45-1.46) to the numerical solution of the GPE, one sees that
the agreement is excellent far in the downstream region and, as expected, a signi�cant discrepancy
only occurs in the vicinity of the trans-sonic point where the LDA equation (1.46) has an unphysical
divergence.

The physical meaning of the speed of sound cs in our context is highlighted in the plots shown
in panels (b-c). As reviewed in Sec. 1.3, the Bogoliubov dispersion in the driven region is generally
not an acoustic one (Carusotto and Ciuti [2004, 2013]), unless the pump power, wavevector and
detuning are precisely tuned to ful�ll the resonant condition

∆ +
~2

2m
k2
p + gn = 0 (1.51)

The situation is di�erent far in the undriven region where, for su�ciently small losses γ, the
wavefunction ψ(x) is locally well approximated by a plane�wave

√
n̄ exp[ik̄x] with slowly varying

density n̄ and wavevector k̄ that automatically satisfy the resonance condition (1.51). Within the
LDA, this is straightforwardly derived by inserting the plane wave ansatz into the GPE (1.11) and
taking the small γ limit. Here the bar stands for averaging over a region broader than the healing
length

√
~2/(mgn), but smaller than the typical decay length ~k̄/(mγ). In this case, in fact, one

recovers an acoustic dispersion similar to the one of equilibrium �uids. This statement is veri�ed in
panels (b) and (c) respectively in the frequency-momentum plane and in the physical space-time.
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Figure 1.9: Steady-state solutions of Eq. (1.11), for a pump with support in the grey�shaded
region. Continuous lines indicate the �ow velocity, while the dotted ones indicate the local speed
of sound as de�ned in (1.44). Within each panel, the curves in di�erent colors refer to the di�erent
sets of pump parameters as indicated in the inset. The horizontal black dashed lines indicates the
asymptotic �ow velocity v∞ =

√
2 |∆|/m. A detailed explanation of the speci�c physics underlying

each panel is given in the text. The grey shaded region indicates the extension of the pump spot,
whose pro�le is given by (1.43) with xpe = 8.0µm and σpe = 0.25µm. If not otherwise speci�ed,
∆ = −0.5meV, ~γ = 0.02 meV, kp = 0. Units in the legends are meVµm−1 for the pump amplitude
F0 and µm−1 for the pump wavevector kp. In (d), the decay rate is set to ~γ = 0.1 meV.

Panel (b) shows the spatio-temporal Fourier transform of the wavefunction (i.e. the spectral
distribution of the emission) after this has been suddenly perturbed at t = 0 at the position
xε = 25 µm far in the downstream region. Speci�cally, the plot displays the (logarithm of the
modulus of the) Fourier transform of the perturbation ψε(x, t)−ψ(x) in the momentum�frequency
plane. To reduce the spectral broadening due to the spatial inhomogeneity, the emission from a
region around the excitation point has been selected by using a spatial �lter of Gaussian shape with
standard deviation 10µm. Except for the fringes visible at positive wavevector (due to interference
with the perturbation that is re�ected o� the high-density region) and the obvious broadening γ,
the distribution follows the expected equilibrium-like Bogoliubov dispersion shown as a solid line.
The distinction from the bare polariton dispersion (dotted line) and from a rigidly shifted parabolic
dispersion (dashed line) are apparent, which puts the concept of speed of sound on solid grounds.

Further evidence in this direction is shown in panel (c) where we show the temporal evolution
of the density modulation nε(x, t)/n(x) − 1 in response to a localized perturbation at t = 0 and
x = 25 µm. To focus on the low-wavevector modes and improve the visibility, a spatially smooth
perturbation of Gaussian shape with standard deviation 1 µm has been used. As expected, the
perturbation peaks along the light�cone corresponding to the values of the speed of sound and the
speed of �ow extracted at the excitation position, v̄ = v(xε) and n̄ = n(xε). Higher-wavevector
Bogoliubov modes propagate at a faster group velocity, so to have well visible fringes outside of

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Hydrodynamics from a �nite pump spot* 28

the light-cone and only a small signal inside the light-cone. Of course the physical meaning of the
sound velocity breaks down in the vicinity of the pump edge, where the �ow parameters feature
large variations on the scale of the healing length and the local density picture is no longer valid.

Before proceeding, it is important to remind a di�erent con�guration where the usual concept
of speed of sound was recovered in spite of the driven-dissipative condition, namely the time-
dependent experiments by Nardin et al. [2011]. Here, a pulsed excitation is used to inject a
polariton cloud with a given wavevector, that is then left free to evolve according to the undriven
GPE. As the experiments have demonstrated, in this case the speed of sound de�ned in (1.44) is
a useful concept to characterize the Bogoliubov dispersion on top of the (decaying) polariton �uid
in a sort of temporal LDA.

Weak dependence of the �ow pro�le on the pump parameters

In spite of the complex physics determining it, a most remarkable feature of the polariton �ow
outside a localized pump spot is its weak dependence on the speci�c parameters chosen for the
pump. A �rst illustration of this physics is given in Fig.1.9.a which shows how the �ow pro�le
right outside the pumped region features small variations across a wide range of very di�erent
excitation powers and pump wavevectors. This can be clearly seen by looking at the position x∗

of the trans-sonic point such that cs(x∗) = v(x∗), which does not display major variation for all
choices of parameters. Further to this point, the velocity displays a monotonic growth towards the
asymptotic value v∞: within the local density approximation, this follows by energy conservation
the decrease of the polariton density and, thus, of the interaction energy,

m

2
v(x)2 = −∆− gn(x). (1.52)

On the other hand, the extension of the sub-sonic cs(x) > v(x) �ow region remains quite limited
even with a very strong drive and very long lived polaritons and, most importantly, the complex
shape of the �ow pro�le in this region is determined by the matching of the asymptotic long-
distance �ow at wavevector k∞ = mv∞/~ with the one in the pumped region, whose wavevector
kp and intensity are �xed by the pump via the usual nonlinear equations for spatially homogeneous
con�gurations (Carusotto and Ciuti [2004]). For instance, depending on the relative value of kp
and k∞, the velocity pro�le shows a monotonic (red and blue lines) pro�le for kp < k∞ or a
non-monotonic one (green line) one for kp > k∞: to understand this last behaviour, one needs to
remind that at intermediate distances the local �ow speed is smaller than the asymptotic speed and
grows towards it according to (1.52), while in the pumped region it has to match the (larger) pump
wavevector kp. These two conditions impose the existence of a minimum of the �ow velocity in
the vicinity of the pump edge. A further mathematical interpretation of this variety of behaviours
is found in the denominator of the expression (1.46): imagining to integrate the steady�state with
initial condition at large x, solutions that are initially close will strongly deviate from each other
as the trans-sonic point x∗ is approached and the denominator tends to 0.

The speci�c e�ect of interactions is illustrated in Fig.1.9.b, where we �x the pump wavevector to
a value close to the asymptotic velocity for the chosen pump frequency and we vary the pump power
from the linear regime of very weak pumping towards high intensities well above the bistability
loop. In the linear regime (red lines), the density is so low so that v sticks to v∞ as soon as
the �ow exit the driven spot. The oscillations in the velocity and density pro�le in the pumped
region are due to partial re�ection of polaritons at the edge of the pumped region. As it was
also experimentally observed by Nguyen et al. [2015], these oscillations disappear in the strongly
nonlinear regime where super�uidity sets in (green and blue lines). In this regime, the speed right
outside the pump spot is strongly reduced by the higher density according to (1.52) and recovers
the asymptotic value only at large distances.

To better understand the peculiar hydrodynamic features in the sub-sonic region, in Fig.1.9.c
we report results for varying decay rate while the pump wavevector and the (relatively strong)
intensity are kept constant. No appreciable change is found in the pumped region where the
system is far on the upper bistability branch and the density is �xed by the interplay of pump
intensity and density-dependent detuning (Carusotto and Ciuti [2004, 2013]). Even though the
size of the subsonic region up to the trans-sonic point at x∗ indeed increases with decreasing γ,
the dependence is a very slow one and sub-sonic �ows of macroscopic size are hardly obtained.

This observation is corroborated by comparison with the magenta curves for the conservative
γ = 0 limit (in the undriven region). In this case absorbing boundary conditions were implemented
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at large distances by means of a smooth imaginary potential. These dissipationless curves suggest
that the �ow outside the pump spot tends to self�regulate itself to the maximal velocity that can
be supported without creating scattering, so to asymptotically have v → cs. Even though the
trans-sonic point x∗ is now at in�nity, the �ow is only barely sub-sonic in most of the space. Since
the non-dissipative condition allows for spatially uniform �ows at large distances, the long-distance
limit of the speed is now cs ∼ v ∼ v∞/

√
3, with v∞ computed from Eq. (1.50). Note in particular

how the quick decay of the density right outside the pump spot is not an e�ect of losses (that are
not present here), but originates from hydrodynamics e�ects dominated by the quantum pressure
term.

This crucial result is con�rmed by the comparison with the curves for non-zero losses shown
in the same panel: the transition from the pumped region in the vicinity of the trans-sonic point
depends only weakly on γ and is qualitatively similar to the γ = 0 conservative case. This indicates
the crucial role of the quantum pressure term that was neglected in Eq. (1.46) and that is responsible
for the fast, almost γ-independent drop of the density right outside the pump spot. In contrast,
the long-distance behaviour beyond the trans-sonic point is dominated by the decay rate γ and is
well captured by the local density picture of Eqs. (1.45-1.46).

Finally, in Fig. 1.9.d we show the result of simulations varying the detuning ∆ and keeping
�xed the decay rate, the pump wavevector and the inner polariton density (by adjusting the laser
strength). For negative enough values of the detuning, the asymptotic velocity is well captured
by v∞ (dashed red and green lines). For ∆ = 0, it is instead determined by the decay rate and is
equal to

√
γ/(2m). Even though both the density and the speed of sound cs increase with more

negative detunings, the behaviour of the �uid in the outer region is dominated by the even faster
growing asymptotic speed, so the size of the sub-sonic region actually decreases with the pump
intensity.

The calculations discussed here illustrate the dependence of the outward �ow on the di�erent
pump parameters. From this, one can extract physical insight on the behaviour of the system and
anticipate the most favourable regimes to observe a given e�ect. In particular, if one wants to
study super�uidity using a defect located outside the pump spot, it looks bene�cial to have x∗

as large as possible so to maximize the size of the sub-sonic region. To this purpose, the most
favourable regime (for a given γ) appears to be at small negative ∆.

1.6.2 Super�uidity and instabilities in two-dimensional �ows

The features pointed out in the previous paragraphs in the simplest one-dimensional geometry
have profound consequences on the hydrodynamics of two-dimensional driven�dissipative �uids
generated by a laterally very wide pump (in the y direction) which induces an e�ectively one�
directional �ow directed along the x direction. Translational invariance along y is broken by a
static obstacle inserted in the �ow.

While the usual behavior discussed in theoretical literature (Carusotto and Ciuti [2004, 2013])
and reviewed in Sec. 1.3 is numerically observed for obstacles located in the pumped region, the
small extension of the sub-sonic region and the quick quantum-pressure-driven density drop dis-
cussed above entail that defects located outside the pump always produce a solitonic pattern. As
a result, super�uidity or vortex nucleation are hardly found, even for very small dissipation, being
replaced by a smooth deep�to�shallow perturbation crossover as the pump power is increased. A
time-dependent behaviour is recovered when a realistic amount of static disorder is included in
the model: the ensuing spatial motion of the phase singularities that appear in the low-density
region around the solitonic troughs is responsible for a localized loss of coherence. Remarkably,
this non-stationary behaviour turns out to be facilitated by the presence of a incoherent reservoir.

Here we consider a pump pro�le that is a function of x only and does not depend on the lateral
coordinate y, F0 = F0(x). The defect is located completely outside of the driven region. The main
feature that one can observe in Fig.1.10 is that a (possibly shallow) V-shaped, soliton-like density
modulation always appears past the defect and extends to the edge of the cloud in the downstream
direction. Such a breaking of super�uidity occurs even for weak dissipation, high powers, small
defect size, and small distance of this latter from the pumped region. For the case shown in panel
(a), the density depletion along the slice marked by the dashed magenta line [shown in panel (b)]
is as high as 25% even though the defect is fully in the region of locally sub-sonic cs > v �ow
delimited, in the absence of defect, by the green dash-dotted line. Furthermore, in contrast to the
conservative case of atomic super�uids (Winiecki et al. [2000], Neely et al. [2010]), no turbulent
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Figure 1.10: Panel (a): Steady-state density pro�le [in units of the corresponding blue-shift gn(r)]
of a two-dimensional �ow under a coherent pump pro�le of the form (1.43). The vertical black
dotted line indicates the edge of the pump spot at x = xpe, while the green dash-dotted line
indicates the trans-sonic point x = x∗ in the absence of the defect. Note that the density is heavily
saturated in the pumped region, where the blueshift attains values as high as 0.7 meV. A cut of the
density along the vertical dashed magenta line at x = 23µm is shown in panel (b). Parameters:
∆ = −0.1 meV, F0 = 0.5 meVµm−1, ~γ = 0.04 meV, kp = 1.0µm−1, xpe = 8.0µm and σ = 0.25µm.
The defect is of e�ectively in�nite strength Vd = 20 meV, has radius rd = 1µm and is centered
outside the pump spot at xd = 9.25µm. Panel (c): cuts of the density along the same vertical
magenta line at x = 23µm for di�erent pump powers. Panel (d) the same cuts when various
parameters are varied with respect to the curve in (c) for F0 = 10 meVµm−1. Given the small
polariton decay rate ~γ=0.02 meV used in (c,d), these simulations had to be performed in a large
box of sides Lx = 640µm, Ly = 80µm with a grid of 211 × 28 points.

state with a time-dependent vortex nucleation has been found. Note that this last prediction is
not in contrast with the experiment by Nardin et al. [2011], which was performed in a completely
di�erent regime where the coherent pump had a pulsed character and the polariton phase was
afterwards free to evolve.

Whereas panels (a,b) show the breaking of super�uidity in an experiment with realistic param-
eters of state-of-the-art samples, panels (c,d) aim at demonstrating that, as soon as dissipation is
present, no clean super�uidity is possible for a defect located outside the pump spot. As a �rst
step, in panel (c) we plot sections of the steady-state density for an extremely small decay rate
and a series of di�erent values of the pump strength. The cuts are taken far downstream from the
defect (along the same line as in the top panel). In agreement with our discussion in Sec.1.6.1, the
density does not appear to change much even under a very large (possibly unrealistic) increase of
the pump power. Note that the very small value of the decay rate used in this panel requires to
perform the simulation in a large box to avoid numerical artifacts 4.

We now try to convince the reader that the con�guration plotted as a solid blue line in the
middle panel is optimal to achieve super�uid-like features given the constraints imposed by the
presence of dissipation at a given decay rate. To this purpose, in panel (d) we present cuts of the
density pro�le at a given x normalized to their large y value for di�erent choices of parameters
that di�er from the reference one by the variation of a single parameter. Speci�cally, the blue
solid line is the reference, the red dashed line is for a larger detuning (∆ = −0.6 meV instead of
∆ = −0.1 meV) for which the �ow gets more quickly supersonic, the cyan dotted line is for a larger
dissipation (~γ = 0.08 meV instead of ~γ = 0.02 meV) which again reduces the size of the subsonic
region, and the green dashed�dotted line is for a defect located farther away from the pump (at
xd = 12.25µm instead of xd = 9.25µm), that is closer to the trans-sonic point. As discussed in
Sec. 1.6.1, the dependence on kp is a very weak one and thus not worth being illustrated here.

Building on these numerical results, we can trace back the imperfection of the super�uid be-
haviour to the relatively quick decay of the polariton density outside the pump spot studied in
Sec.1.6.1. In order to assess whether a defect is able to generate a density perturbation in a
spatially inhomogeneous �ow, it is in fact not enough to apply the Landau criterion for super�u-
idity at the defect's location only (which would in any case be questionable in our case, given the
strong density gradient in the subsonic region), but one has to look for all points where the �ow

4The vortical, non�stationary phases reported in (Pigeon et al. [2011]) are likely due to interference of the back�
scattered �ow by the pumped region through the periodic boundary conditions. Simulations with small decay are
in fact very sensitive to scattering e�ects and we have encountered similar problems when smaller boxes were used.
Notice that the box used here is 16× 4 times larger than the one used in (Pigeon et al. [2011]) and with the same
numerical grid spacing.
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Figure 1.11: (a) Time averaged polariton density and (b) �rst�order coherence function in the
presence of static disorder. This has the Gaussian distribution described in (1.54) with correlation
length σW = 0.5µm, and amplitude W0 = 0.06 meV. Pump parameters: ∆ = −0.4 meV, kp = 0
and F0 = 0.25 meVµm−1. The strong defect is of radius rd = 2µm and is located at xd = 10.5µm.

is supersonic: even though locally in the subsonic region there are no on-shell phonon modes that
can be excited by the defect, the perturbation can in fact �tunnel� across the forbidden subsonic
region before getting �on-shell� again in the supersonic region. This mechanism of tunnel-assisted
radiation is well known in electromagnetism, e.g. in the theory of the Cherenkov emission from
particles moving through vacuum holes drilled in material media (Jelley [1958]).

For our case of polariton super�uids, this mechanism is illustrated by the green line in Fig.1.10(a)
which shows, for each value of x, the position along y of the density minima. Since the defect is
located upstream of the trans-sonic point, the perturbation is initially evanescent and does not
propagate in the lateral direction. Only later, well in the downstream supersonic region, it trans-
forms into the usual, laterally expanding V-shaped structure.

The calculations above have shown how the presence of dissipation makes a super�uid �ow
more fragile: no matter the pump parameters and the spatial position of the defect outside the
pump spot, this latter is generally able to induce a signi�cant perturbation in the �ow. However, it
turned out hard if not just impossible to observe vortex nucleation and the polaritons �ow remains
generally stationary in time at all points.

Since experiments (Amo et al. [2011]) have instead observed a loss of coherence, it is important
to assess the importance of other e�ects on the dynamical stability of the polariton �ow. In what
follows we will characterize non-stationarity in terms of a �rst�order coherence function

g(1)(r) =
|〈ψ(r)〉t|√
〈n(r)〉t

, (1.53)

which uses the phase of the pump as a reference. As usual, perfect coherence corresponds to having
g(2) = 1.

Fig.1.11 shows the spatial pro�les of the time-averaged density (measured in terms of the local
blue-shift g〈n(r)〉t) and of the g(1) coherence function in the presence of a static disorder modeled
as a Gaussian-distributed random real potential W (r) with 〈〈W (r)〉〉 = 0 and

〈〈W (r)W (r′)〉〉 = W 2
0 e
− (r−r′)

4σ2
W , (1.54)

where 〈〈...〉〉 stands for average over disorder, σW is the correlation length of the �eld and W0 its
amplitude, chosen of magnitude comparable to the decay rate.

As expected, the density pro�le (slighty saturated in the left part of the �gure) is perturbed
by the presence of disorder. But even more importantly, the �uid often fails to converge to a
stationary state and keeps displaying irregular oscillations in time. Further insight in this behaviour
is obtained by looking at the time evolution of the phase shown in the Movie M1 included as
supplemental material of (Amelio and Carusotto [2020a]): here, one can see how the disorder
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Figure 1.12: Main (b) panel: density pro�le under a long-tailed coherent pump as described in
Eq.(1.55) with xpe = 8µm (indicated by the vertical black dotted line) and ζ = 0.25µm. The
defect is centered at xd = 11µm and has a radius rd = 2µm. Parameters F0 = 3.0 meVµm−1,
~γ = 0.05 meV, ∆ = −0.4 meV and kp = 0. Upper (a) panel: cuts of the local blueshift along the
y = 0 (solid blue) and y = 20µm (red dashed) lines.

perturbs the phase fronts and makes them perform small oscillations. This time dependence has the
strongest impact in the neighborhood of the vortex-like phase singularities induced by the disorder,
in particular in the low density region around the solitonic troughs. Since the phase displays a
singular 2π variation around the phase singularity, any minor modi�cation of the wavefunction in
this vicinity will result in a dramatic suppression of the g(1) phase coherence.

As a general trend, we have found that a stronger disorder is required to break the stationary
state for stronger decay rates. For instance, for a doubled decay rate ~γ = 0.04 meV close to
experimental parameters, no instability is generated for static disorder of amplitude up to around
W0 = 0.1 meV. Also, having a short correlation length σW enhances the instabilities. While a
stronger pump intensity typically leads to a reinforced stability, no instability can ever occur for
weak pumps in the linear regime where the wavefunction smoothly tends to its steady-state. Of
course, the vanishing speed of sound in the linear regime prevents a super�uid behaviour, so that
any defect produces a sizable density modulation.

Finally, we mention that the e�ect of disorder in generating vortical behaviour has been exper-
imentally investigated by Grosso et al. [2011], who observed the evolution of the injected �uid but
did not consider the issue of reaching a steady state.

1.6.3 Solitonic and shock-wave-like patterns

In this last subsection, we complete our discussion by considering additional con�gurations whose
interesting features may be of importance to understand experimental observations.
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Figure 1.13: Polariton density pro�le under the linear pump spot of Eq.(1.43) [upper panel (a)]
and under the circular pump spot of Eq.(1.56) [lower panel (b)]. Black dots indicate the edge
of the pumped region, while the green points indicate for each x the position of the density
minima. Parameters: ∆ = −0.2 meV, ~γ = 0.08 meV, F0 = 0.5 meVµm−1, kp = 0, rpe = 10µm,
σpe = 0.25µm and xd = 12.5µm.

Long-tailed pump spot

We will start from the case of a pump pro�le whose intensity is mostly concentrated in a small
region of space, but also presents a long tail extending outside the main spot. Unless speci�c e�orts
are made to restrict the light intensity to a �nite spot, in any experiment di�raction is in fact likely
to be responsible for a weak light intensity to be present in the whole space.

This physics is illustrated in Fig.1.12. We focus on a model con�guration where the pump spot
is uniform along y, but displays along x a sharp jump around xpe and a slowly decaying tail for
x→∞,

F (x) =
F0

π

[
π

2
+ atan

(
xpe − x

ζ

)]
. (1.55)

In contrast to pump con�gurations with a �nite spatial support, the fact that the pump wavevector
is now locking the velocity at all points facilitates the observation of a robust super�uidity. This
robustness is illustrated in the �gure by the absence of a density modulation around the defect,
even though this latter is located well outside the high-intensity part of the pump spot delimited
by the vertical black dotted line.

As another interesting feature, we notice clear vertical fringes in the right part of the �gure.
Such fringes were clearly visible in the experiment (Stepanov et al. [2019]) as reported in Fig. 2.6
of the next Chapter, but do not appear when the pump has a �nite support or has a fast decaying,
e.g. Gaussian, tail. Rather than shock waves, a natural interpretation for these fringes involves
the interference between the tail of the coherent pump with the polaritons that are simultane-
ously ejected from the high-density region according to the outward �ow mechanism discussed in
Sec.1.6.1. An evidence for this mechanism is provided by the approximate

√
−∆ dependence of

the fringe wavevector on the detuning ∆ for vanishing pump wavevector kp = 0 (not shown). Note
that a related but di�erent mechanism for controlling super�uid and turbulent behaviours was
investigated by Pigeon and Bramati [2017] using a support �eld on the downstream side.

Circular spot geometry

We conclude our discussion with some remarks on the experimentally relevant case of a �nite
circular laser spot,

F (r) = F0e
ikpx

[
1− exp

{
− (r − rpe)2

2σ2
pe

}]
(1.56)

for r < rpe and 0 for r > rpe. In this geometry, illustrated in Fig.1.13, reaching the super�uid
regime for a defect located outside the pump spot is even more di�cult than in the linear geometry
of Fig. 1.10. This is a direct consequence of the geometrical spreading of an outgoing circular wave,
which results in a reinforced decay of the density along the radial direction.
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Another interesting consequence of the radial �ow is the di�erent shape of the solitonic dark
lines. These are illustrated in the top and bottom panels of Fig.1.13 for the two cases of a linear
or a circular pump [Eqs.(1.43) and (1.56)], in the absence of disorder. The black dots indicate the
geometrical boundary of the pump spot, while the green points mark for each x the position of
the density minimum. While the solitonic troughs start from the defect with a similar aperture
in the two cases, their shape becomes markedly di�erent further downstream. For a linear pump
spot (upper panel), the rapid growth of the �ow speed over the speed of sound leads to solitonic
lines that asymptotically approach the x direction. For a circular pump spot (lower panel), the
solitonic lines eventually approach the radial direction of the �ow (cyan dashed lines) and have the
quite rectilinear shape observed in the experiments (Amo et al. [2011]).

1.7 Conclusions

To summarize, we have reviewed the microscopic aspects of exciton-polaritons in semiconductor
microcavities in Sec. 1.1, the generation of polariton �uids under incoherent, resonant and para-
metric pumping in Sec. 1.2 and the basic properties of uniform resonantly injected �uids in the
Gross�Pitaevskii framework in Sec. 1.3. In the original part of the Chapter, we have discussed
some general properties of the generalized, driven-dissipative GPE.

First, we have shown in Section 1.4 how a formal Galilean transformation relates the two
situations of a �uid �owing against a static defect and of a defect moving in a �uid at rest. As
a result, the dispersions of the Bogoliubov excitations are related by a simple Doppler shift and
the density modulation pattern are identical in the two cases, as it normally happens in Galilean
invariant �uids of material particles in free space.

Then, in Sec. 1.5 the e�ect of driving and dissipation has been considered in 1D, where our
analysis of the complex momentum poles complements the usual loose formulation of the Landau
criterium.

In Section 1.6 we have reported some unexpected predctions of polariton hydrodynamics when
the polaritons are injected by a spatially localized coherent pump. In contrast to the case of a
spatially homogeneous pump considered in (Carusotto and Ciuti [2004]), the combination of the
driven-dissipative condition and of the quantum pressure term beyond the local density approxi-
mation are responsible for a quick drop of the polariton density right outside the pump spot; an
experiment currently running in Alberto Bramati's lab aims at exploring this feature. Importantly,
this e�ect strongly reduces the spatial extension of the subsonic �ow region and suppresses its su-
per�uidity features. In particular, a sizable soliton-like density modulation appears downstream of
a static defect located outside the pump spot even when this is located still in the subsonic region.
Finally, the impact of a static disorder on the dynamical stability of the �ow and on the develop-
ment of turbulent behaviors is highlighted. Qualitative comparisons with available experimental
data are drawn.

Our results highlight the importance of a new generation of experiments aimed at going beyond
the pioneering experimental studies of polariton super�uidity (Amo et al. [2009, 2011], Sanvitto
et al. [2011], Nardin et al. [2011]) and exploring polariton hydrodynamic e�ects in a quantitative
way. In particular, new experiments are needed to �rmly assess the mechanisms at play in realistic
microcavity devices and possibly isolate phenomena that are not yet included in present non-
equilibrium Gross-Pitaevskii equation models, due e.g. to the exciton reservoir and its spatial
dynamics (Caputo et al. [2017]), interaction with the static disorder, and polariton scattering on
phonons (Savenko et al. [2013]). This analysis will be of paramount importance in view of using
polariton �uids as a platform for quantum simulation of the physics of quantum �uctuation e�ects
such as analog Hawking radiation from a trans-sonic horizon (Gerace and Carusotto [2012], Nguyen
et al. [2015]).
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Chapter 2

Excitations and super�uidity of resonantly

driven polariton �uids in the presence of a

dark excitonic reservoir

In this Chapter we move to consider the physics of resonantly driven polariton �uids in the presence
of a dark excitonic reservoir. Indeed, the fully coherent model illustrated in the previous Chapter
does not account for all the experimental observations, in particular with respect to spin-dependent
bistability (Sarkar et al. [2010]), soliton formation following pulsed excitation (Walker et al. [2017])
and measurments of the polariton-polariton coupling from the blueshift (Sun et al. [2017]).

Our work takes inspiration from the measurement of the collective excitation reported in the
experiment by Stepanov et al. [2019], which lies at the heart of the Chapter. The speed of sound
extracted from the data turned out to be signi�cantly lower than the theoretical prediction based
on the fully coherent theory; this suggested us to take into consideration the presence of a reservoir,
which relaxes on a slow timescale and contributes to the blueshift but not to the speed of sound:
the re�ned theory is in very good agreement with the measured dispersion relations. However, this
work also opened a few conceptual questions concerning the super�uid behavior of the polariton
plus reservoir model and in particular the relation with the experiments by Amo et al. [2009],
where the critical velocity was consistent with the fully coherent theory. These issues are discussed
and resolved below.

In Section 2.1 we review the theory of the spin dependent polariton-polariton interaction con-
stant and the attempts to measure it. In Sec. 2.2 we explain the aforementioned experiment in
great detail. Coming now to our contributions, in Sec. 2.3 the model including the dark excitonic
reservoir is introduced and the collective excitations are derived. Finally, in Sec. 2.4 super�uid-
ity in the presence of a defect is investigated, showing that in general the critical velocity is not
determined by the speed of sound.

2.1 The polariton-polariton interaction constant

In the previous Chapter we analyzed the nonlinear physics of polariton �uids by restricting to a
single polarization, which allowed us to focus on the spin-diagonal component of the polariton-
polariton coupling constant. Also, both in the derivation of the steady-state and of the Bogoliubov
spectra the interaction constant entered only via the combination µ = gn or IF = F 2

0 /g. In an
experiment one has easy access to the blueshift µ while is much harder to count the polaritons
and have a direct estimate of |ψ|2. Also, one can measure the power of the laser outside of the
cavity, but F0 includes also a radiative coupling factor between light external to the cavity and the
polariton �eld, which is non-trivial to estimate. Similarly, studying the dispersion of the excitations
of the microcavity gives access to µ (with some important caveats which will be one main topic
of the follwing Sections), but not to g or n separately. Because of this experimental di�culty,
the community has not reached a strong consensus on the magnitude of g yet. Moreover, in the

35



The polariton-polariton interaction constant 36

following Section we will need to consider a linearly polarized excitation scheme: in this spin basis
the interaction is no longer diagonal and some considerations about the spin dependence of the
coupling constant are needed.

Therefore, the goal of this Section is �rst to review the microscopic theory of the polarization
dependent interaction constant and then to brie�y discuss recent experimental e�orts towards its
measurement.

2.1.1 Theory of exciton-exciton interactions

A clean theoretical treatment of the spin dependence of exciton-exciton interactions was �rst
provided by Ciuti et al. [1998]. Here they consider excitons made of a hole from the heavy-hole
valence band and a conduction band electron. Neglecting higher order many-body e�ects leading
to an electron-hole exchange interaction, the electron and the hole are e�ectively distinguishable
particles: as a result, the orbital and spin parts of the exciton wavefunction are factorized; plus,
the spin wavefunction is just the tensor product of the electron and hole spins, so that a basis for
the exciton spin consists of the 4 states |Jz = ±1〉 = |sez = ∓1/2, jhz = ±3/2〉 and |Jz = ±2〉 =
|sez = ±1/2, jhz = ±3/2〉. Importantly, only the �rst two states allow for dipole transitions, while
the other two are optically inactive.

With very good approximation, the orbital part of the exciton wavefunction is just the 1s
hydrogen-like bound state in the 2D QW times a center of mass plane wave. Indeed, the exci-
tons that are in strong coupling with photons in typical experiments with polaritons have very
small kinetic energy with respect to their binding energy, so that the exciton-exciton scattering
processes are not energetic enough to excite the relative electron-hole coordinate component of the
wavefunction and can be considered elastic collisions.

Denoting 〈re, rh, sze, jzh|k, 1s, Jz〉 the wavefunction of a single-exciton, when the scattering of two
excitons |k, 1s, Jz〉 and |k′, 1s, J ′z〉 is studied the initial and �nal states need to be anti-symmetrized
according to the fermionic statistics of their electron and hole component, yielding the Slater de-
terminants 〈re1, rh1, re2, rh2, s

z
e1, j

h1
z , sze2, j

h2
z |k,k′, Jz, J ′z〉 in the �rst quantization formalism. The

interaction is provided by the Coulomb attraction or repulsion between the charged fermions and
the matrix element between an inital and �nal 2 exciton state consists of 4 terms, corresponding
to the �classical� electrostatic direct interaction term, to the electron exchange and hole exchange
terms and to the exciton exchange term. It is clearly seen the electron exchange and hole exchange
terms are dominating and have a further spin dependence, which is tabulated in (Ciuti et al.
[1998]). In particular, circularly polarized excitons Jz = J ′z = ±1 can scatter only into circularly
polarized excitons Jz = J ′z = ±1; on the other hand, excitons excited in an elliptical polarization
of the Jz = ±1 states can scatter into the dark states with Jz = ±2. This physics gives rise to spin
relaxation phenomena, as �rst experimentally probed by Amand et al. [1997], and to a density
dependent contribution to the exciton homogeneous linewidth.

For small exciton densities, the exciton can be bosonized and the matrix element between
two excitons is extrapolated to have in the excitonic Hamiltonian the quartic local Hartree term∑
σσ′ g

XX
σσ′

∫
d2x b̂†xσ b̂xσ b̂

†
xσ′ b̂xσ′ with a theoretical estimate of

gXXT ≡ gXX+1,+1 = gXX−1,−1 ∼ 6Eba
2
B (2.1)

for the diagonal interaction coupling (Tassone and Yamamoto [1999]). The polariton-polariton
coupling is then obtained multipling by the fourth power of the excitonic Hop�eld coe�cient and
dividing by the number of quantum wells: gσσ′ = gXXσσ′ |X|4/NQW . According to Ciuti et al. [1998],
gXXS ≡ gXX+1,−1 = 0. However, while all experiments con�rm that gXXT � |gXXS |, a more advanced
analysis suggests a contribution arising from the bi-exciton state which can yield a weakly attractive
gXXS < 0 (Wouters [2007], Shelykh et al. [2009], Takemura et al. [2014]).

2.1.2 Measuring the coupling constant

For realistic values aB = 10 nm and Eb = 10 meV the estimate of Eq. (2.1) yields gXXT ∼ 6µeV µm2.
As reviewed in (Estrecho et al. [2019]), in the literature one can �nd experimental measurements
of g spanning 4 orders of magnitudes (in Fig. 5 of that work the di�erent experimental g's are
properly plotted as a function of the Hop�eld coe�cient and rescaled by NQW ; below, if not
explicitly written, we report the not rescaled measured g's).

When polaritons are incoherently created (as explained in Sec. 1.2) the reservoir of intermediate
carrier and exciton states contributes a large part of the blueshift; for this reason, in (Sun et al.
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[2017]) the excitation laser is shined on a ring with a radius of a few tens µm, so that the fast
polaritons reach the center of the ring and get spatially separated from the much heavier excitons,
which decay before travelling a few µm. The polariton density is calibrated both by directly
counting the transmitted photons and by comparison with the critical density for Bose-Einstein
condensation. In spite of these precautions, the value of the extracted from the blueshift was
g ' 1700µeV µm2, dramatically larger than the theoretical estimate.

On the other hand, if polaritons are resonantly injected one doesn't have to deal with interme-
diate electronic states, but counting the number of polaritons in the microcavity is more involved,
since they are mixed with photons of the laser and a spectral separation is not possible. To avoid
this inconvenience, in (Walker et al. [2017]) they use a waveguide geometry so that the number of
polaritons is given by the intensity transmitted by the waveguide, with the input laser �eld being
spatially separated. The interaction energy is then measured from the width of the soliton created
by a phase defect of the input laser. If the experiment is performed in continuous wave, a value of
g ∼ 30µeV µm2 is found; however, repeating the experiment with short pulse yielded g ∼ 0.3µeV
µm2.

A tentative explanation of these results was attempted in the same works by introducing a
reservoir of dark excitonic states which is replenished by polaritons; the reservoir has a slow
dynamics and it has no time to get populated during a short laser pulse. A similar model was
�rst considered in connection to polarization dependent bistable behaviour (Sarkar et al. [2010],
Wouters et al. [2013]), where it was explicitly checked that the reservoir is unpolarized in spite of
the degree of polarization of the emission, since spin relaxation typically occurs on the scale of a
few picoseconds. These states presumably arise from disorder-induce localization of the excitons,
with some estimates having been provided by Krizhanovskii et al. [2001]; it is however important
to stress the very strong sample dependence of the reservoir characteristics.

Following these advances, the strategy of (Sun et al. [2017]) was re�ned by using pulsed exci-
tation: the experimental estimate of g is then consistent with microscopic theory (Estrecho et al.
[2019]), provided a correction from the saturation of the exciton oscillator strength at high densities
is also included. We recall also the method by Delteil et al. [2019], who measured the polariton
g(2)(τ) correlation function and extracted a lower bound for g consistent with theory from a 5%
anti-bunching induced by polariton-polariton repulsion; this measurement intrinsically avoids prob-
lems with any excitonic reservoir. As detailed in the next Sections, an explicit correction of the
contribution of the excitonic reservoir is instead provided by us in (Stepanov et al. [2019]), to yield
gNQW = 8± 2µeV µm2.

2.2 Measuring the collective excitations of a polariton �uid

In the previous Chapter we discussed super�uidity starting from the elementary excitations of the
super�uid. Interestingly, in the early days of quantum �uids things went the other way round.
For liquid 4He super�uid behaviour was �rst discovered by Kapitza and London made the con-
nection with Bose-Einstein condensation . Landau then developed his hydrodynamical model and
conjectured the linear dispersion of the excitations, while a fully microscopic theory in the limit
of weak interactions and small thermal and quantum depletion of the condensate was provided by
Bogoliubov.

For polariton �uids, a �rst study of the Bogoliubov dispersion relation in the high density
regime µ > ~γ was conducted by Utsunomiya et al. [2008] on an incoherently pumped condensate.
A marked deviation from the non-interacting parabolic dispersion obtained by blue-shifting the
bare LP band was demonstrated, as shown on the left of Fig. 2.1. Notice that the condensate is
created with circular polarization and the detection is co-polarized; the cross-polarized spectrum
instead appears as a small rigid blue-shift of the free parabola. One important feature missing in
these data is the signal from the hole branch, also called ghost branch, possibly overcome by the
large signal due to the condensate and noise due to the excitonic reservoir. These di�culties were
partially overcome using pulsed excitation by Pieczarka et al. [2015], who managed to �nd a clear
signal from the ghost branch.

Other interesting investigations have been carried out by Ballarini et al. [2020], where an
asymmetric dispersion is measured on top of the outward �ow from a non-resonant pump spot
and the transition to the acoustic regime is clearly demonstrated; by Pieczarka et al. [2020], who
found the possible signatures of quantum depletion in the ghost branch of a polariton condensate.
The more important open issue though is the lack of a measurement of the di�usive part of the
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Figure 2.1: Measuring the Bogoliubov spectrum. (left) Spectrally and angularly resolved photolu-
minescence from a polariton condensate (Utsunomiya et al. [2008]). The white solid line denotes
the bare LP dispersion; this is replotted in black after being blue-shifted by ∼ 1 meV to fall at
the center of the spectral peak at k = 0. The Bogoliubov prediction is the magenta line instead.
(center and right) Plots from (Kohnle et al. [2011]): the four-wave mixing technique is sketched,
highlighting the coupling in the Bogoliubov problem between the normal branch at ±k2 and the
ghost at ∓k2; this coupling is signi�cant only in the high density regime, so that a pulse at k2

excites a signal at k2 only above a certain pumping threashold Pth. This is recoved in the experi-
mental data, showing the spectrally resolved and angularly selected at −k2 emission for di�erent
excitation intensities.

dispersion relation, de�ned as the region where the real branches stick together and a Goldstone
dome appears in the imaginary part; probably this is due to the fact that with typical parameters
this occurs in a quite small window of wavevectors.

While the above mentioned works provide a good characterization of the excitations of inco-
herently driven polariton condensates by looking to the energy of emitted photons, in the case
of resonanly injected �uids this is much more challenging because of the driving laser itself who
overcome the signal of the Bogoliubov signal around the relevant spectral range; moreover, due
to elastic Rayleigh scattering with imperfections of the microcavity, the laser light appear in the
far-�eld detector as a very bright line spanning all k's.

A way to circumvent these problems was implemented by Kohnle et al. [2011], by resonantly
injecting k = 0 polaritons via pulsed excitation centered at the bottom of the LP band. A short
trigger pulse of �nite k2 is then shined on the sample: as depicted in the central panel of Fig. 2.1,
since in the Bogoliubov nonlinear problem the ueik2·r−iω(k2)t + v∗e−ik2·r+iω∗(k2)t waves are mixed,
the k2 seed stimulates emission of both the normal and ghost branches at −k2, which can be
resolved in the far �eld emission. As shown on the right of Fig. 2.1, the authors were then able
to prove deviations from the free LP dispersion in the high density regime, even though the �nal
results were not very clear because of the temporally inhomogeneous broadening due to the use
of pulsed excitation. (Actually, the proposal of using four-wave mixing to study the Bogoliubov
spectra was �rst advanced by Wouters and Carusotto [2009] for the speci�c goal of probing the
ghost branch of a polariton condensate.) The ghost branch was also found by Zajac and Langbein
[2015], who injected polaritons with negligible detuning |∆| < ~γ, thus probing only the optical
limiter regime physics.

2.2.1 The experiment

(this subsection follows closely the exposition by Stepanov et al. [2019])

A detailed quantitative study of the Bogoliubov dispersion of a resonantly driven polariton
�uid is then the main goal of (Stepanov et al. [2019]); the experiment, which now we illustrate,
was designed by Maxime Richard and carried out by Petr Stepanov and Jean-Guy Rousset. The
theoretical analysis, mostly developed by us, is posponed to the next Section.

The GaAs/AlAs microcavity used in this experiment is identical to that used in Bajoni et al.
[2007] and consists of 12 QWs and features a quality factor Q = 3000. The heavy-hole and light-
hole excitonic transitions energy are at Ehh = 1612.05meV and Elh = 1644meV at T = 30K, and
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Figure 2.2: Fluid components and the detection scheme - a) A polariton �eld (red spot) of wavefunc-
tion ψ0, and of radiative loss rate γc is resonantly excited by the laser of power P. The excitations
δψ(k, ω) on top of the injected wave are shown in yellow in the (k, ω plane, with a typical dispersion
relation (DR) ω(|k|) shown by the black dashed line. The bare quantum well excitonic transition
energy ~ωX is shown as a green dashed line. An illustration of the typical quantum well excitonic
density of state ρR(ω) is shown as a purple line in b). Owing to their e�ective mass di�erences,
ρR's peak value exceeds the polaritonic density-of-state by 5 orders of magnitude. The low energy
tail of ρR(ω) originates from disorder in the quantum well, and can accommodate a reservoir (green
spot) of long-lived excitons (loss rate γR, �uctuations δnR represented in light green). Intercon-
version of polaritons into reservoir excitons and back by optical absorption or scattering, occur at
rates γin and γbk respectively. c) sketch of the experimental set-up used to measure the DR. The
excitation laser light is linearly polarized by a Glan-Thompson polarizer (GT) and passed through
a beam splitter (BS) to excite resonantly the polariton �uid. The cross-polarized re�ected signal is
selected by another GT and passed through a monochromator (M).The polariton emission at the
laser frequency is further rejected by a metallic �lter playing the role of notch �lter (NF) and the
remaining EPL is detected on a CCD camera. Some optical elements are omitted, that provide
resolution on the EPL emission angle θ, and thus on its in-plane wavevector |k| = (ω/c) sin(θ) (~ω
is the photon energy, and c the speed of light in vacuum).

the corresponding Rabi splittings resulting from the strong coupling regime with the cavity mode of
energy Ec0 are ~Ωhh = 15meV and ~Ωlh = 12.5meV respectively. The microcavity is intentionally
wedged in order to tune Ec0 with respect to Ehh. The background index of the microcavity is
nbg = 3.65. The microcavity is placed in the vacuum chamber of a temperature-tunable Helium
�ux cryostat.

The polariton �uid is driven resonantly with a single longitudinal mode CW Ti-Sapphire laser
of 5MHz linewidth, and linearly polarized with a high purity. The laser beam is shaped with
pinholes into a spatially Fourier-limited Gaussian mode of 50µm diameter as measured on the
surface of the microcavity, and a corresponding δθ = ±2◦ angular spread (i.e. δk‖ = ±0.28µm−1)
in momentum space.

A sizable population of excitations is spontaneously created on top of the resonantly driven
polariton �uid by the interaction of polaritons with the thermal bath of acoustic phonons naturally
present within the solid-state microcavity (see the paragraph 2.3.3 below). The temperature is set
at T = 30K, that it is found as a good trade-o� between a su�cient thermal phonon population
and a narrow polariton linewidth. The polaritons involved in these excitations can then relax
radiatively, so that their energy and momentum with respect to the injected wave constitute a
direct measurement of the DR of the excitations. This emission, that we will refer to as excitations
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Figure 2.3: Characterization of WPA - a) Measured cross-polarized polaritonic emission intensity
I0 vs laser power P ; the bistability area is very small, due to the fast duty cycle of the laser. b)
Color-scaled microre�ectivity measured across a region of 50µm in linear size. The black area is
the polariton absorption dip. The white streak is due to residual laser light. The orange dashed
line show the extracted potential V (x, y) across the working point. Angle and energy resolved
cross-polarized EPL measurements Ie(θp, ~ω) in the free-particle regime (c), in the lower branch
of I0(P ) (d), in the upper branch (e). The intensity is color coded on a logarithmic scale. The
hatched rectangles show the spectral range rejected by the notch �lter. The laser energy and
angular spread is shown as a red segment. WPA is characterized by δ = +1.2 5meV.

photoluminescence (EPL), is collected by the detection scheme illustrated in Fig.2.2.c.
The EPL Ie is isolated from the much brighter signal I0 of the (kp, ωp) polaritons and from the

Rayleigh scattered laser light using a two-stage �ltering scheme. The �rst stage builds on the fact
that the injected linearly polarized polaritons can scatter into the cross polarized stated because
of a weak residual birefringence: detecting the EPL in the cross-polarized direction gets rid of
most of the elastically scattered laser light. For the second stage, a narrow band notch �lter was
designed (labelled 'NF' in Fig.2.2.c), made up of a featureless metallic stripe and placed in the
output focal plane of the monochromator. The resulting rejection is such that the EPL signal can
be well identi�ed even as close as 0.1meV from the injection frequency. Fig.2.3.c-e show measured
angle-resolved EPL patterns Ie(θ, ω) obtained with this method.

In order to measure sharply-de�ned dispersion relations, we chose two regions of the microcavity
of ∼ 50µm diameter characterized by a weak disorder amplitude of the potential experienced by
polaritons V (x, y). They are labelled further on as 'working points' (WPs) A and B and are
characterized by a photon-exciton detuning δ = Ec0 − Ehh = +1.25meV and δ = −1.82meV
respectively. The microre�ectivity measurement shown in Fig.2.3.b provides a cross-section of
V across WPA showing that its spatial �uctuations are smooth and small as compared to the
linewidth, de�ned as the full width at half maximum and measured to be ~γc = 0.4meV The
reference free-particle DR at WPA is extracted from the EPL measurement shown in Fig.2.3.c. It
is obtained under weak excitation at normal incidence, with the laser energy ~ωl red-detuned from
the k = 0 lower polariton resonance by ∆ = ~ωl−~ω(0) = −0.5meV. The corresponding extracted
free-particle DR is labeled '0' in Fig.2.4.a.

Having the reference, the laser frequency was shifted to ∆ = −0.79meV on the blue side of
the polariton resonance, in order to access the regime for which the polariton density dependence
n(P ) on the driving laser power P exhibits a bistable behaviour. In the context of the GPE theory
reviewed in Section 1.3, the regime of collective excitations corresponds to the upper bistability
branch: at the lower laser power edge of this branch (just before switch down) sits the gapless
sonic regime, in which the excitations are expected to be phonon-like with a well-de�ned speed of
sound. Higher up along this branch, a gap opens up for increasing P and the DR adopts a more
curved shape. In order to characterize this bistability curve, the un�ltered (kp, ωp) emission I0 is
collected in the cross-polarized direction vs the laser power P . Note that in this measurement the
excitations have a negligible contribution. The measured I0(P ) curve is shown in Fig.2.3.a: the
lower and upper branch are separated by a sharp jump: it is likely that since the laser is chopped
with a 5% duty-cycle to prevent unwanted heating e�ects the bistable region appears closed.

Moreover, under a �nite pump spot there is a current �owing outward (the phase not being
completely �xed by the pump) and the polariton density is not homogeneous: as a consequence,
at the center of the spot the blueshift needs to be larger than |∆| (even at the end of the upper
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branch) to compensate for the outward �ow, so that strictly speaking the acoustic regime will never
be realized. Note that in spite of these limitations, the sonic regime appears to be quite close in
the measurements.

Based on this preliminary calibration measurement, the DR of the collective excitations was ex-
tracted at several laser powers P along the upper branch I0(P ). Due to the stringent requirements
of the driving laser beam shape both in Fourier and real space, a balance was reached by working
with a large laser spot of Gaussian intensity pro�le of 50µm diameter. As a result, for states in
the upper branch of I0(P ), the polariton density is organized into two large spatial structures: The
high polariton density is contained in a large diameter disk-shaped area at the center of the laser
spot, separated from a low density outer region by a sharp switching front, see Fig. 2.6 below.
The nonlinearity thus acts as an e�ective 'top-hat' spatial �lter for the Gaussian pump mode, that
homogenize the high-density region of main interest.

In order to collect EPL only from the high density area, the signal from the outer region was
rejected using an iris of diameter Di matching that of the switching front of typically ∼ 35µm
diameter. While this spatial selection introduces a spurious angular spread ≤ 1.5◦ to the EPL, it
does not prevent resolving the collective features in the dispersion relation, that are visible within
a ∼ 5◦ window as can be seen in Fig.2.4. This �nite angular resolution was taken into account also
in the numerical simulations.

Two raw results of angle- and energy-resolved EPL are shown in Fig.2.3.d and Fig.2.3.e that
correspond to two states on the curve I0(P ) labeled '1' and '2' respectively in Fig.2.3.a: '1' is a
state on the lower branch of I0(P ), while '2' is on the upper branch and as close as possible to the
switch-down point.

Fig. 2.4.a show the resulting DRs for WPA, for the free polariton dispersion (dark green line,
labelled '0'), and three states at increasing blue-shifts (blue, red and magenta lines, labelled '1',
'2' and '3' respectively). The collective excitations DR of '2' and '3' ~ωe(θ) = ~ω − ~ωl, properly
shifted by the laser frequency, are shown in greater detail in Fig.2.4.b and Fig.2.4.d respectively,
and the 95% con�dence interval for the determination of ~ωe shown in Fig.2.4.c and Fig.2.4.e.
The same analysis is shown for WPB, de�ned by excitation incidence angle of −1◦ and by the
detuning ∆ = −0.47meV, in Fig.2.4.f-j. The free polariton DRs from both WPA and WPB are
very well-�tted with the near-parabolic theoretical free polariton DR (light green line) as obtained
from the coupled oscillators model.

Let's start with WPA, for which the laser drive is at normal incidence. Curve '1' shows the DR
of a polariton �uid for which the blueshift with respect to DR '0' amounts to ~ωBS = 0.18meV,
and which is still on the lower branch of I0(P ). Its shape is identical to '0', indicating that in
spite of the Hartree shift, the excitations have mostly single particle features. Curves '2' and
'3' are obtained in the upper branch of I0(P ) and feature a clearly modi�ed shape with respect
to '0', which is an unambiguous signature that the nature of the excitations has changed from
free-particle to collective as a result of strong interaction energy ('2' and '3' are blueshifted by
~ωBS = 0.85meV and ~ωBS = 0.90meV respectively, with respect to '0'). In Fig.2.4.b and 2.4.g,
the low-energy low-angle part of both DR are compared with the theoretical shape expected in
two limiting situations: (i) the DR consists of a rigidly blue-shifted free-particle dispersion (as we
will discuss in the next Section, this situation arise for instance if all the blueshift is due to the
interaction with excitons in the dark reservoir, whose density overcomes the density of polaritons);
(ii) the system consists only of polaritons (without any reservoir fraction) so that the standard
theory described in the previous Chapter applies and the DR has the form given by Eq. (1.16).

In mathematical form, the rigidly blue-shifted DR in case (i) reads

ωRB(k) = ωBS + ω0(k)− i γc
2
, (2.2)

where γc is the polariton radiative loss rate, ~ω0(k) is known from the DR measurement at point
'0', and ωBS is the measured blue-shift. ~ωRB(θ) is plotted as a black dashed line in Fig.2.4.b
and g. The comparison between this model and the measured dispersion '2' and '3' show a clear
mismatch, in which the measured dispersion is steeper. The theoretical shape of the dispersion in
case (ii) is given by Eq. (1.16) that here we rewrite as

ω±(k) = ωp ±
√

(ω0(k) + 2gn− ωp)2 − (gn)2 − i γc
2
, (2.3)

where we use the notation ~g = g (so that gn denotes a frequency, gn an energy) and similarly for
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Figure 2.4: Dispersion relations of the elementary excitations - Measured DR ~ω(θ) as obtained
from the numerical analysis (see below) of the EPL (solid lines) for WPA (a) and WPB (f). Four
states of the �uids are shown according to their position along I0(P ) (plotted in Fig.2.3.a for
WPA): '0' is the free-particle DR (green line), '1' is a lower branch state of I0(P ) (blue), '2' and
'3' are two upper branch states (red and magenta). The free polariton DR calculated via the
Rabi model is the thick light green line underneath the measured one. (b,d) and (g,i) are zoomed
plots of DR '2' (narrow red line) and '3' (narrow magenta line) of WPA and WPB respectively,
shifted according to ~ωe = ~ω − ~ωl to highlight the energy of the excitations themselves. The
95% con�dence interval amplitude (CI) of the measured DRs is shown for each DRs in panels c,h
and e,j for WPA and WPB respectively, with the same color codes. The theoretical DRs in the
rigid blueshift limit Eq. (2.2) (dashed black line) and in the standard theory Eq. (2.3) (blue dashed
line) are shown in (b), (d), (g) and (i). The full vectorial theory developed in Section 2.3 is also
shown as a thick red and magenta lines visible underneath the measured DR; the line thickness
represents the 95% con�dence interval of the �tting procedure with the data. In each panel, the
laser energy and angular spread is shown as a red segment and the vertical blue line shows the
angle of excitation. The hatched rectangle in (a,f) is the spectral range rejected by the notch �lter.

the other coupling that will appear below, with the hope that possible confusion between the two
symbols will not produce any misunderstanding of the physics.

Like in the previous case, the interaction energy gn, is inferred unambiguously from the ex-
perimentally measured blueshift gn = ~ωBS , which �xes also the position on the theoretical curve
I0(P ). These calculated DRs are shown in Fig.2.4.b and g as dashed light blue lines. This time,
both for '2' and '3', the measured dispersions are now clearly not steep enough to match the theory.

The same analysis can be performed also for the other working point WPB at nonzero laser
incidence angle θp = −1◦. In WPB, owing to the microcavity tuning, the interactions are smaller
by a factor ∼ 2 and a smaller laser detuning of −∆ = 0.47 meV is chosen accordingly. The local
disorder is obviously di�erent, but of similar average amplitude and characteristic length, as in
WPA. The measured DRs for WPB are shown in Fig.2.4.f-j with the same labelling conventions
as for WPA. For dispersions '2' and '3', situated on the upper branch of I0(P ), with '2' as close
as possible to the switch down point, an asymmetric shape of the DR is obtained, as expected
for the collective excitations when the �uid is injected at a nonzero velocity. Like in WPA, the
comparison with the two theoretical limiting cases are shown in Fig.2.4.d,i and demonstrates that
the measured DRs do not agree with either of them.
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Figure 2.5: Momentum dependence of the linewidth - Measured excitations linewidth ~γ(θ) versus
angle, as obtained from the numerical analysis of the EPL (narrow solid lines) for WPA (a) and
WPB (b). The full vectorial theory is shown as the thick solid lines. For the experimental data,
the line thickness show the 95%-con�dence interval. The same labelling convention is used as in
Fig.2.4. The solid vertical line show the laser excitation incidence angle, while the dashed one
shows the zero incidence reference (θp = 0◦)

Figure 2.6: Spatial density of the polariton �uid The cross-polarized emission from the polariton
�uid is shown in real space for the states '1' (b), '2' (c) and '3' (d) de�ned in the text. 'LB' ('UB')
stands for the lower (upper) branch of I0(P ). The dashed orange line shows the circular switching
front separating the 'LB' and the 'UB' areas.

The analysis of the raw measurement Ie(θ, ω) also gives access to the excitations spectral
linewidth ~γ. The results are shown in Figure 2.5 for both WPA (a) and WPB (b) together with
the results of the full theory calculation. In the low excitation regime, (solid black line labelled '0'
in WPA), the measured linewidth is essentially angle-independent. This is expected as over such a
small angular range, the excitonic and photonic fraction hardly change vs θ: i.e. the kinetic energy
increase as compared to the Rabi splitting is small (1meV increase between 0◦ and 10◦). For the
measurement of ~γ(θ) in states '2' and '3', both the �nite spatial extension of the high density area
illustrated in Fig. 2.6 and the use of a circular aperture �lter have a signi�cant in�uence: in both
cases, the excitations of the condensate have a �nite transit time either throughout the circular
aperture of the detection or within the switched up area, depending on which one has the smallest
diameter D. The switched-down state '1' features an intermediate inhomogeneity and then an
intermediate k-dependence of the linewidht. The transit time is �xed by the excitation group
velocity via τ(k) = D/vg(θ), which is a decreasing function of θ, regardless of the detailed nature
of the excitation. A complementary view is that the frequency of the excitations is well de�ned but
its momentum is blurred by the �nite spatial spot; also in this case the e�ect on Ie(θ, ω) is more
important for steeper dispersions. In any case, the increase of ~γ versus θ re�ects the presence of
the switching front, and can thus be considered as a characteristic feature of a locally switched-up
polariton �uid driven by a Gaussian laser spot.

The large discrepancy of the measured DR with respect to the standard theory of Eq. (2.3)
is well characterized by looking at the slope at small wavevectors: if the data were taken at the
acoustic point, on could say that the speed of sound of the experimental curve is signi�cantly lower

then the theoretical expectation cs =
√

gn
m =

√
~ωBS
m : the reduction, according to the analysis of
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Figure 2.7: Time-resolved photoluminescence - a) Angle and energy resolved excitation photolu-
minescence obtained under weak picosecond-pulse excitation. The yellow rectangle show a cross-
section at 7◦ which is sent onto the streak camera. The resulting time-resolved trace is shown in
b) in a time energy color plot, and the relevant cross-section I(t), integrated in energy over the
polariton emission linewidth (red rectangle) is shown in c) along with a �t (red line) consisting
of a sum of two exponential decays with characteristic times τ1 = 58 ps (instrument-limited) and
τ2 = 400ps (attributed to the excitonic reservoir).

the next Section and as shown in Fig. 2.12, is of the order of 50%. These �ndings instead suggest
that only a fraction of the blue-shift is due to the polariton �uid gn < ωBS , with the rest of
the blueshift to be attributed to interactions of the polariton with a background which does not
partecipate in the coherent dynamics. Such background suggests the introduction of a reservoir
of dark excitons, whose dynamics is quite slow on the timescales set by the polariton-polariton
interactions so that it can be considered as a static background only contributing by an Hartree
shift.

In addition to these indirect signatures visible in the DR, a direct characterization of the
reservoir properties was presented in the paper in the form of a time-resolved photoluminescence
decay measurement. The excitation strategy is similar to that used to measure the free particle
dispersion relation: quasi-resonant laser excitation, red detuned central frequency with respect
to the polariton ground state, weak peak intensity in order to minimize nonlinear dynamics and
small angular spread. The laser consists in picosecond pulses of 0.5meV linewidth (FWHM).
It was checked that the laser high-energy tail has a negligible overlap with the upper polariton
branch. Figure 2.7.a shows the thus obtained time-integrated excitation photoluminescence (EPL)
pattern Ie(θ, ω). The emission at the angle of 7◦, where the contribution from the laser light is
negligible (yellow rectangle in the �gure), was sent into the streak-camera. The corresponding
raw time-resolved trace is shown in Fig. 2.7.b and analyzed in Fig. 2.7.c. By �tting it with a
sum of two exponential decays, two characteristic timescales τres = 58ps and τ2 = 400ps are
found. The �rst one corresponds to the instrumental time-resolution, which is �xed by the (sharp)
spectral resolution of the detection. It thus re�ects a dynamics τ1 much faster than τres, that can be
unambiguously attributed to the polariton state decay. The lifetime τ2, also read as ~γR = 1.6µeV,
is too slow to be photon or polariton related, and corresponds to the typical timescale of long-
lived excitons. The photoluminescence itself from the dark states is explained in the paper by
assuming that dark excitons can scatter back into polaritons with a rate γbk. Alternatively, the
photoluminescence may also be attributed to the fact that in the presence of disorder angular
momentum is not a completely well de�ned quantum number, so that these exciton states are not
perfectly dark.

Another strategy that we proposed here but there was not the technical time to be implemented
in the lab, is to look at the time and energy resolved photoluminescence. As it will be clear after
writing down the model in the next Section, the blue-shift should then consist of a fast polaritonic
decay plus a slow excitonic decay; the fraction of the blueshift which survives the �rst decay is

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Excitations in the presence of a dark reservoir* 45

then a direct measurement of the background blueshift fraction, contributing to the DR just via a
rigid shift but not entering the speed of sound.

2.3 Excitations in the presence of a dark reservoir*

(this Section mostly builds on material contained in Section IV from [Amelio et al., 2020b] and the
Supplementary Information of Stepanov et al. [2019] )

In this Section we state explicitly the model anticipated in the previous Sections, where the
coherent polariton �eld is coupled to a reservoir of dark excitons, and derive how the latter a�ects
the collective excitations of the �uid. For illustrative purpose, we start by discussing the dispersion
relation in the �vanilla� case of polaritons in a given circular polarization; aiming at a thorough
modelization of the experiment by Stepanov et al. [2019], we then consider both polarizations and
study in details the photoluminescence signal as excited by thermal phonons in the microcavity.

2.3.1 Singly polarized model

The recent experimental �ndings by Sarkar et al. [2010], Walker et al. [2017], Stepanov et al.
[2019] reviewed above suggest that an incoherent reservoir of dark-excitons is excited even under a
coherent pump via non-radiative absorption processes. Even though a full direct characterization
of these states is the subject of ongoing research, it is legitimate to assume that the reservoir mostly
consists of excitonic states that are energetically close to bottom of the lower polariton band where
the coherent polariton �uid is located. Since these states are detuned from the center of the exciton
line by the Rabi splitting, they must be trapped around the minima of the disorder potential in
the quantum well. As such, they are spatially localized and attached to the microcavity frame
of reference. The situation would of course be di�erent in the case of an incoherent pumping,
where an important role is played by spatially extended electronic and excitonic states, which
can move in response to the motion of the polariton �uid, e.g. by drag e�ects (Berman et al.
[2010], Chestnov et al. [2019]). Yet di�erent is the physics of atomic or Helium super�uids at �nite
temperature, where a sizable normal component fraction is present in addition to the super�uid:
while an isolated �uid would ful�ll Galilean invariance, the incoherent normal component of a �uid
contained in a tube is able to move but still feels the friction of the walls, which then de�ne a
privileged reference frame (Pitaevskii and Stringari [2016]).

For the system of coherently pumped polaritons under consideration here, the e�ect of the
incoherent reservoir can be theoretically modeled by including the reservoir density nR(x) to the
equations of motion,

i∂tψ =

(
ω0 −

~∇2

2m
+ g|ψ|2 + +gRnR − i

γ

2

)
ψ + F (x, t) (2.4)

∂tnR = −γRnR + γinc|ψ|2 . (2.5)

Here, the decay of coherent polaritons into incoherent excitations occurs at a rate γinc. These
latter give a local contribution ~gRnR = gRnR to the polariton blue-shift, do not move in space
and decay at a rate γR. The total decay of polaritons γ includes the γinc contribution; notice
that since the reservoir density is the sum of the occupation of many scarcely populated states the
stimulated scattering processes into the reservoir are negligible.

At stationarity under a monochromatic pump at ωp, one has ψ(x, t) = ψ0 exp(−iωpt) and,
from (2.5), one gets a time-independent nR(x) = γinc

γR
|ψ0(x)|2. Reinjecting this expression into

(2.4), one simply obtains a renormalized nonlinear coupling strength

geff = g +
γinc
γR

gR . (2.6)

Except for the reinforced interactions and the consequently reinforced blue shift µT = geffn0 =
gn0 + gRnR, the reservoir has thus no e�ect on the stationary state. The usual optical bistability
and optical limiting behaviours are found depending on whether the laser frequency ωp is blue- or
red-detuned as compared to the polariton mode at kp.

Even more importantly for our purposes, super�uidity features the usual behaviours with a
speed of sound de�ned by the total blue-shift as mc2s,T = µT = gn0 + gRnR. Since this reasoning
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requires stationarity of both the polariton ψ(x) and the reservoir nR(x) densities, this result only
holds for static defects that do not induce time-dependent modulations to the �uid density, that is
defects at rest in a (possibly moving) �uid. And, of course, these statements are only relevant if the
�uid is indeed able to reach a dynamically stable steady state: as it was pointed out in (Amelio and
Carusotto [2020a]) and reviewed in Fig. 2.17 of the next Section, the presence of a slow reservoir
can in fact give rise to dynamical instabilities that prevent from reaching the stationary state. In
the experiment by Walker et al. [2017] they could suspect the presence of the reservoir because they
have a good calibration of the number of polaritons in the waveguide and the theoretical estimate
for g; on the other hand the hallmark of the (slow) reservoir is only obtained when comparing with
pulsed excitation, so going beyond stationarity.

For these reasons, the physics gets more interesting if one looks at the dynamics of the exci-
tations on top of the �uid, as �rst noticed in (Stepanov et al. [2019]). In the homogeneous case
under a plane-wave coherent pump of wavevector kp and frequency ωp, the steady-state solution
has the form ψ0(r, t) = ψ0 exp[i(kp · r− ωpt)] and the Bogoliubov theory involves a 3×3 matrix

L (k) =

η(kp + k) + gn0 − iγ2 gψ0
2

gRψ0

−gψ0
∗2 −η(kp − k)− gn0 − iγ2 −gRψ0

iγincψ0 iγincψ0
∗ −iγR

 , (2.7)

where k is again the relative wavevector of the excitation on top of the moving �uid and the
e�ective detuning function is now η(k) = ω0 + ~k2/2m+ gn0 + gRnR − ωp. The �rst and second
columns/rows of L (k) correspond to the polariton modulation δψk and δψ∗−k, while the third
column/row corresponds to the modulation of the reservoir density δnR.

The corresponding eigenvalue problem can be formulated in a physically trasparent way by
de�ning a frequency�dependent e�ective coupling

geff(ω) = g +
γinc

−iω + γR
gR, (2.8)

which allows to eliminate the reservoir and reduce to the usual 2× 2 eigenproblem(
ω − ~kp

m
· k + i

γ

2

)2

= η(k̃)
[
η(k̃) + 2geff(ω)n0

]
(2.9)

with k̃ =
√
k2
p + k2 and where g has been replaced by geff(ω) 1. While this expression is formally

nearly identical to the usual one (1.38), the ω-dependence of the right�hand side has crucial con-
sequences onto the dispersion of collective excitations. Of course, the usual Bogoliubov dispersion
is recovered in the limit where high-ω perturbations are considered, so that geff recovers g. On the
other hand, the static value (2.6) for geff is recovered for stationary perturbations at ω = 0.

Polaritons at rest kp = 0

Let us start from the kp = 0 case. In this case, the Bogoliubov matrix (2.7) is characterized by
particle-hole and parity symmetries, that combine in

PL (k) = −L (k)P (2.10)

where

P = K

 0 1 0
1 0 0
0 0 1

 (2.11)

and K stands for complex conjugation. For a generic eigenvector |ωk〉 of L (k) of eigenvalue ω,
this symmetry implies that

L (k) P|ωk〉 = −ω∗P|ωk〉 , (2.12)

i.e. that P|ωk〉 is itself an eigenvector of L (k) of eigenvalue −ω∗. This imposes the presence
of pairs of eigenvectors with the same imaginary part and opposite real parts. Since the size of
the matrix is three, this guarantees that at least one eigenvalue is purely imaginary. This mode
can be interpreted as a reservoir branch ωR(k) = −iγR(k), while the remaining two eigenvalues,
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Figure 2.8: Dispersion of collective excitations in a polariton �uid at rest kp = 0 [left column,
panels (a,b)] and in motion at vp = 0.8cs,T along the x direction [right column, panels (c,d)] in the
presence of an incoherent reservoir. Upper (a,c) panels show the real part of the dispersion, the
lower (b,d) panels show the imaginary part. The total blue-shift µT is the same in all panels and
pumping is tuned at the resonance point such that ∆p = µT . Other parameters: ~γ/µT = 0.2,
gR = 2g and γR = 2γinc = 0.08 γ which means cs,0 = cs,T /

√
2 and cs ' 0.9cs,0. Note that for a

slightly larger γinc ' 0.05γ or for vp ' 0.9cs,T , the �ow con�guration in the right panels would
become dynamically unstable. The di�erent curves are colored according to their nature at large
wavevector k. The dashed cyan lines in the upper panels indicate the low-k sonic dispersions (2.14)
and (2.21).

corresponding to particle- and hole-like branches have general complex dispersions of the form
ω±(k) = ±ε(k)− iγ(k)/2.

Let us focus on the most relevant resonant case ωp−ω0 = µT = gn0+gRnR where the dispersion
is expected to be gapless and sonic. In this regime, it is possible to obtain some analytical insight
on the eigenvalue problem, which can be recast as(

ω + i
γ

2

)2

=
~k2

2m

[
~k2

2m
+ 2geff(ω)n0

]
. (2.13)

At small k, this yields
ω±(k) = ±csk − iγ/2 (2.14)

with
mc2s = µT +

γ

2γR − γ
gRnR (2.15)

In the fast reservoir limit γR � γ, the contribution of the reservoir is negligible and one recovers
the usual speed of sound

mc2s,T = µT (2.16)

1Of course, the replacement must not be applied to the g appearing in the de�nition of the detuning function η,
which involves the stationary background.
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Figure 2.9: Frequency dependent speed of sound. Dispersion of the collective excitations of a
polariton �uid at the acoustic point and in the presence of reservoir with parameters tuned so to
make clear the distinction between the three de�nitions of the speed of sound: cs is the slope of
the dispersion at k = 0, cs,T takes into account the total blueshift and it is correct in the adiabatic
limit, cs,0 is only due to the self-interaction of the coherent polariton �uid and grasps the correct
slope at frequencies γR � |ω| � gn0. The reservoir parameters are γR � |ω + iγ/2| � µT . For
the parameters in this �gure, µR = g|ψ0|2 = µT /2, cs,0 = cs,T /

√
2 ≈ 0.71cs,T and cs ≈ 0.41cs,T .

in terms of the total blue-shift µT .
In the opposite limit γR � γ, corresponding to the typical experimental conditions where the

reservoir reacts on a much slower timescale (Sarkar et al. [2010], Walker et al. [2017], Stepanov
et al. [2019]), the speed of sound has the smaller value

mc2s,0 = µT − gRnR = gn0 . (2.17)

This means that, out of the total blue-shift µT , only the component (gn0 = g|ψ0|2) due to the
polaritons contributes to the speed of sound, while the one (gRnR) due to the incoherent reservoir
only provides a global blue shift of the pumped mode. As described in the previous Section, this
feature was exactly what motivated us to consider this model in the �rst place, and is illustrated
in the left panels of Fig. 2.8, showing the real and imaginary parts of the dispersion in panels (a)
and (b), respectively. As expected, the cyan dashed lines in panel (a) indicate the sonic dispersion
ωs = ±cs,0k with the speed of sound cs,0 predicted by (2.17) are in excellent agreement with the
exact dispersion at low k's. At higher k's, the dispersion recovers the parabolic single-particle
shape. As one can see in panel (b), the imaginary part of the reservoir mode (on the order of γR)
remains always much smaller than the one of the sonic modes (on the order of γ/2).

While this picture is fully accurate when γ is very much larger than γR, a subtle distinction
must be done when γ is larger but still somehow comparable to γR. In this regime, corrections
in γR/γ are important and one must distinguish the low-k speed of sound set by (2.15) to the
one at higher-k's such that | − iω(k) + γ/2| � γR, for which one instead recovers (2.17). Also in
this case, of course, the sonic behaviour is only visible up to the interaction energy gn0, beyond
which the dispersion recovers a single-particle behaviour 2. The physical explanation is that at
very small frequencies the reservoir can still (weakly) respond, while at higher ω's it behaves as a
completely static background for the coherent �eld �uctuations. In order to clearly see the kink
in the dispersion coming from distinction between cs and cs,0, in Fig. 2.9 we tune γR closer to γ.
These di�erent characteristic velocities are also summarized in Table 2.1, which is reported in the
next Section.

In the intermediate case where γR and γ have comparable values and the blue-shift due to
the reservoir is a signi�cant fraction of µT , the squared speed of sound c2s predicted by (2.15)

2This transition is determined by (the inverse of) the usual healing length,
√

~2/(gn0m) computed including the
polariton density only and the bare coupling g.
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Figure 2.10: Relative phase between the polariton density and reservoir excitations - Blue, left
axis: real part of the particle branch ω+(k). The phase di�erence φ = arg δnR/δ|ψ|2 for the
same excitations is shown in red, (right axis). For the calculation we have chosen ∆ = 0.8 meV,
~2/m = 1.0 meVµm2, gR = 2.0g, ~γR = 0.0016 meV, ~γ = 0.4 meV, and γin = 2γR.

may become negative. This results in a �at Re[ω±(k)] = 0 at small k and a linear shape of the
Im[ω±(k)] starting from −γ/2. For larger k, the slope of the dispersion approaches the real-valued
speed of sound cs,0. A sonic regime with a real-valued cs is nonetheless recovered for a higher value
of the total blueshift µT > |∆|.

It is �nally interesting to analyze how the reservoir in�uences the nature of the eigenmodes of
the Bogolubov excitations. Taking the variation of Eq.(2.5) above we get the relation between the
variation of the polariton density and the one of the reservoir density,

δnR

δ|ψ|2
=

γin

γR − iωa(k)
, (2.18)

that holds for any eigenmode a. Fig. 2.10 shows the argument of this quantity for the case of
the particle branch and at the point with gapless excitation spectrum. We notice that at small
wavevector |Re[ω+(k)]| � |Im[ω+(k)]| ' γ the density �uctuations of the condensate and of the
reservoir are in phase opposition. This is in agreement with the fact that the excitation branch
ω+(k) is a Goldstone mode, so at small k the system tries to keep constant density by making
δnR and δ|ψ|2 oscillate with a relative phase π to compensate each other. At large momentum
|Re[ω+(k)]| � |Im[ω+(k)]| instead, δnR follows δ|ψ|2 in quadrature of phase, with the condensate
density �uctuations driving the reservoir density ones. Given the complex nature of ωa(k), the
transition between the two regimes occurs when the real part of the Bogoliubov energy Re[ωa(k)]
is of the order of the loss rate γ.

Moving polaritons at �nite kp

We conclude this section by extending the analysis to the case of a �nite in-plane momentum
kp 6= 0, which breaks parity. Therefore, the action of the P symmetry only entails

PL (k) = −L (−k)P (2.19)

and relates eigenvectors at opposite k,

L (−k) P|ωk〉 = −ω∗P|ωk〉 , (2.20)

that is P|ωk〉 is an eigenvector of L (−k) of eigenvalue −ω∗. This no longer implies the presence
of a purely imaginary reservoir mode and the three branches are now strongly mixed as one can see
in the right panels of Fig. 2.8. Note that the branches are colored here according to their nature at
large wavevectors, while their mixing at small and intermediate k complicates their classi�cation.
For instance, in the supersonic �ow case considered here, the sonic mode with a wavevector k
directed in the upstream direction (that is, kx < 0) is strongly mixed with the reservoir. In panel
(c), the Doppler-shifted sonic dispersions

ω = ±cs,0k + vp · k− iγ/2 (2.21)
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with the speed of sound (2.17) and the �ow speed vp = ~kp/m (directed along the x axis) are
plotted as a dashed cyan line. Note that this form of the Doppler shift is only accurate for small
values of the momentum k, in contrast to the case with no reservoir where it holds for any k.

While the dispersions shown in Fig. 2.8 are all dynamically stable, it is worth stressing that the
presence of the reservoir can make a uniform �ow at �nite kp dynamically unstable, as signaled by a
positive imaginary part of the dispersion. With respect to panels (c-d) of Fig. 2.8, a slight increase
of γinc and thus of the reservoir fraction, or of the �ow velocity kp will make the �ow unstable
by pushing the peaks in Im[ω] above zero. Similar modulational instabilities in the presence of
a reservoir have been discussed in (Wouters and Carusotto [2007], Bobrovska et al. [2014, 2017],
Baboux et al. [2018].)

2.3.2 Spinorial model

The second step in order to obtain a correct modelization of our experiment is to consider the cou-
pled dynamics of the polaritons in the two linear polarizations. The cavity used in the experiment
has some intrinsic birifringence. In the linear polarization basis |s〉, |f〉, associated to the axis of
the cavity, the Hamiltonian for the lower polariton (LP) branch reads

Hbir =

∫
d2r ψ̂†s

(
ωLP(k̂)− α

2

)
ψ̂s + ψ̂†f

(
ωLP(k̂) +

α

2

)
ψ̂f , (2.22)

where the LP band is taken in the parabolic approximation ωLP(k̂) = ωLP0 − ~
2m∇

2, with m the
e�ective polariton mass and the �eld operators ψ̂s(r), ψ̂f (r) destroy a boson with polarization s,
f respectively at spatial position r.

As it can be determined by re�ectivity measurements using a weak polarized beam, the bire-
fringence splitting is α ∼ 0.1 ± 0.05 meV; in the core part of the experiment, the excitation laser
is pumped with a linear polarization x rotated by an angle Θ ' −19◦ with respect to the s axis,
i.e. we have (

ψ̂s
ψ̂f

)
=

(
cos Θ sin Θ
− sin Θ cos Θ

)(
ψ̂x
ψ̂y

)
, (2.23)

so that the kinetic part of the Hamiltonian in the |x〉, |y〉 linear polarization basis reads

Hkin =

∫
d2r

(
ψ̂†x ψ̂†y

)[
ωLP(k̂)I +

α

2

(
− cos 2Θ − sin 2Θ
− sin 2Θ cos 2Θ

)](
ψ̂x
ψ̂y

)
. (2.24)

Using spin conservation, the polariton�polariton interaction is naturally written in the circular
polarization basis |σ±〉 = (|x〉 ± i|y〉)/

√
2 as

Hint =
1

2

∫
d2r

[
gT(ψ̂†+ψ̂

†
+ψ̂+ψ̂+ + ψ̂†−ψ̂

†
−ψ̂−ψ̂−) + 2gSψ̂

†
+ψ̂
†
−ψ̂+ψ̂−

]
=

=
1

2

∫
d2r

[
gT + gS

2
ψ̂†xψ̂

†
xψ̂xψ̂x +

gT − gS

2
ψ̂†xψ̂

†
xψ̂yψ̂y + gTψ̂

†
xψ̂
†
yψ̂xψ̂y + x↔ y

]
(2.25)

where ψ̂±(r) denote the �eld operators for σ± circular polarizations respectively. In the simulations
we take the values gS/gT ∼ −0.1, gT > 0, in agreement with what discussed at the beginning of
this Chapter.

The full vectorial Hamiltonian for the polariton �eld then reads

H0 = Hkin +Hint +

∫
d2r

[
F (r, t)ψ̂†x(r) + F ∗(r, t)ψ̂x(r)

]
(2.26)

where F (r, t) = F0e
ikp·r−iωpt is the laser pump. Notice that in the experiment only the x-

polarization component of the polariton �eld is pumped.
Considering also the coupling to a dark excitonic reservoir (assumed as a mixture of both

polarizations), the generalized Gross-Pitaevskii equations read

i∂tψx =

[
ωLP(k̂)− α

2
cos(2Θ) +

gT + gS

2
|ψx|2 + gT|ψy|2 + gRnR − i

γc + γin

2

]
ψx−

− α

2
sin(2Θ)ψy −

gT − gS

2
ψ∗xψ

2
y + F (2.27)
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i∂tψy =

[
ωLP(k̂) +

α

2
cos(2Θ) +

gT + gS

2
|ψy|2 + gT|ψx|2 + gRnR − i

γc + γin

2

]
ψy−

− α

2
sin(2Θ)ψx −

gT − gS

2
ψ∗yψ

2
x (2.28)

∂tnR = −γRnR + γin(|ψx|2 + |ψy|2). (2.29)

Notice that the co-linear-polarization coupling gT is larger than the cross-linear-polarization cou-
pling gT+gS

2 ; this fact enhances the competition between the ψx and ψy �uids.
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Figure 2.11: Collective physics of spinorial �uid (left) Bistable behaviour |ψy|2 for a homogeneous
system. In blue the upper branch, in red the lower one; the green spot corresponds to the working
point where the dispersion of the left panel is computed. We remark the decreasing behaviour
above threshold of the cross�polarized component. Inset: the same for the co�polarized �eld,
which closely resembles the result of the scalar theory when α sin Θ is small. The densities are
multiplied by geff so that in the inset the jump occurs for a blueshift close to ∆. (right) Numerically
computed dispersion according to Eq. (2.40). Notice that the signal lies in between the two poles
ωx, ωy, and this partially explains the fact that, even though the experimental dispersion is quite
gapped, it looks linearly shaped.

For negative enough detuning ∆, the steady state solution {ψsx, ψsy, nsR} of Eqs. (2.27-2.29)
displays a bistable behaviour for ψsx as a function of the pump intensity |F0|2, similar to the well-
known solution in the single-polarization case; looking at the cross-polarized density ψsy instead,
for such small angle Θ the upper branch of the hysteresis is decreasing, due to the competing
interactions with ψsx. This phenomenology is depicted on the left side of Fig. 2.11.

On top of the steady state, one can compute the Bogoliubov excitations in the usual way, by
diagonalizing the linearized problem

i∂tδ ~ψ(r, t) = L̂ (k̂)δ ~ψ(r, t) (2.30)

where δ ~ψ = (δψx, δψ
∗
x, δψy, δψ

∗
y , δnR) is the �uctuation vector. The Bogoliubov spectrum then

consists of �ve eigenbranches Reω(k) related by particle-hole symmetry. The right panel of �gure
2.11 reports (on top of the emission intensity that will be explained below) the �ve eigenbranches,
calculated with the parameters of WPA and a pump intensity |F0|2 larger by 3% than the intensity
for having the acoustic dispersion. Red (blue) dots correspond to a predominantly x (y) polarized
character, respectively; the reservoir-like branch has zero real frequency.

One important feature visible in the fact that the y particle branch lies at higher energies
than the x one. This can be elucidated by turning o� the birefringence; for α = 0 the steady
state features ψsy = 0, while ψsx is given by the obtained according to the procedure above, with
renormalized nonlinear coupling strength geff = gT+gS

2 + gRγin

γR
. Also, the Bogoliubov equations for

the excitations for the condensate with y polarization are decoupled from those of the condensate
with x polarization and the reservoir:

i∂tδψx =

[
−∆− ~

2m
∇2 + 2ḡ|ψsx|2 + gRn

s
R − i

γ̄

2

]
δψx + ḡψsx

2δψ∗x + gRψ
s
xδnR (2.31)
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∂tδnR = −γRδnR + γin(ψsxδψ
∗
x + ψsx

∗δψx), (2.32)

and

i∂tδψy =

[
−∆− ~

2m
∇2 + gT|ψsx|2 + gRn

s
R − i

γ̄

2

]
δψy − gdψ

s
x

2δψ∗y , (2.33)

where ∆ = ωp − ω0
LP , ḡ = (gT + gS)/2, gd = (gT − gS)/2 γ̄ = (γc + γin). The corresponding 5× 5

Bogoliubov matrix L (k̂) separates into two block matrices, namely a 3×3 part for the x-polarized
condensate and reservoir, and a 2 × 2 part for the y-polarized condensate. In the former, in the
case ∆ = ~ωBS, where now ~ωBS = ḡ|ψx|2 + gRnR, the excitation spectrum has the linear gapless
dispersion discussed above, with speed of sound

c2x =
~ωBS

m
− γ̄

(γ̄ − 2γR)

gRnR

m
, (2.34)

holding for c2x > 0. In the slow reservoir limit most relevant here γR � γ̄ = (γc + γin), we obtain
c2x = ~ωBS/m− gRnR/m = ḡ|ψsx|2/m.

In the y-polarization sector the Bogolubov matrix reads

L (k)|y =

(
ηy(k)− i γ̄2 gdψ

s
x

2

−gdψ
s
x
∗2 −ηy(−k)− i γ̄2

)
, (2.35)

where ηy(k) = −∆/~ + ~k2/2m + gT|ψsx|2 + gRnR. The condition for having gapless Bogoliubov
excitations in the above equation is −∆ + gT|ψsx|2 + gRn

s
R = gd|ψsx|2. Interestingly, this coincides

with the condition ∆ = ~ωBS required for having a gapless x branch (this is true only for α = 0).
At low momenta the dispersion relation of the y branch reads ω±y (k) = ±cyk − iγ̄/2, with

c2y =
gd(µy − gRnR)

m
=
gT − gS

2

|ψsx|2

m
(2.36)

where µy = gT|ψsx|2 + gRnR. Notice that our choice of parameters gT > 0, gS/gT = −0.1 implies
that the y branch of the phonon dispersion lies at higher energy than the x branch for all k 6= 0,
which implies that cy > cx and the y particle branch lies above the x branch. For continuity, when
a small α is turned on, the y branch becomes gapped.

2.3.3 Modelling the photoluminescence

Having discussed the poles of the Bogoliubov matrix, we will now see how to numerically predict
the photoluminescence, which is the main observable of our experiment.

As demonstrated in Fig. S3 of (Stepanov et al. [2019]), the energy resolved emitted intensity
is perfectly consistent with a Boltzmann distribution at T = 30 K. This observation suggests that
the excitation mechanism giving rise to the EPL consists of thermal acoustic phonons scattering
polaritons from the injection state to Bogoliubov quasi-particle states.

We describe the coupling of polaritons to acoustic phonons by via the Frolich Hamiltonian
(Piermarocchi et al. [1996])

Hpol−phon =
∑
q,qz

Gq,qz (bq,qz − b
†
−q,−qz )ρq (2.37)

where Gq,qz is the acoustic phonon-polariton coupling strength taking into account the anisotropy
due to the presence of the quantum well con�nement in the z direction (Piermarocchi et al. [1996],
?), bq,qz is the phononic �eld operator and ρq is the density �uctuation of the polariton condensate
with cavity in-plane momentum q. The origin of this coupling stems from the fact that, in a Bohr-
Oppenheimer view of the electronic wavefunction, the exciton line depends on the unit length of
the lattice cell of the material: the phonon �eld describes the displacement �eld of the ions of the
lattice, so that the volume variation of a unit cell it's given by the divergence of the �eld (this in
particular entails Gq,qz → 0 for q, qz → 0).

The above Hamiltonian yields a stochastic phonon �eld in the Gross-Pitaevskii equation acting
on both polarization components σ = x, y of the polariton condensate according to (

∑
q[T (q, t) +

T ∗(−q, t)]eiq·r)ψσ(r), where

〈〈T ∗(q, t)T (q′, t′)〉〉ph =
∑
qz

|Gq,qz |2δq,q′n(ωq,qz )δ(t− t′) =

∫
dω

2π
e−iω(t−t′)S(q, ω), (2.38)
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Figure 2.12: Coherent versus reservoir fractions by quantitative comparison between experiment
and theory - Agreement between the measured dispersion relation and the full vectorial theory,
quanti�ed as r2(ρ) =min(R2)/R2(ρ) (red symbols), versus the condensate fraction ρ = nc/(nR+nc)
for WPA.2 (a),WPA.3 (b), WPB.2 (c) and WPB.3 (d). The red solid line is a guide for the eye.
The right axis show the calculated speed of sounds of the two cross polarized excitations cx/vc

(blue line) and cy/vc (blue green line) versus ρ, in the limit where ny = 0 (see text).

with 〈〈· · ·〉〉ph being the average over the noise realizations, n(ωq,qz ) = 1/(e~ωq,qz/kBT − 1), T
the temperature and ωq,qz the acoustic phonon dispersion. The sum over qz appears because the
exciton is con�ned in the QW so that kz is not a good quantum number and it couples to phonons
of any qz; in particular, the qz dependence of the coupling matrix is determined by the overlap
between the exciton and phonon �eld and becomes vanishing for qz � 2π/LQW . The use of a
constant power spectral density S(q, ω) is motivated in a high temperature approximation.

Then, within the linear response theory we treat the �eld T (q, ω) to order one in perturbation
theory and calculate the linear response of the polariton �eld to this stochastic phononic �eld. The
�eld amplitude is obtained as δ ~ψ = (δψx(k), δψ∗x(−k), δψy(k), δψ∗y(−k), δnR(k))

δ ~ψ = [ω − L̂ (k)]−1δ ~F , (2.39)

where the stochastic drive is denoted δ ~F = (δFx(k, ω),−δF ∗x (−k,−ω), δFy(k, ω),−δF ∗y (−k,−ω), 0).
After averaging over the random realizations of the phonon �eld and with the de�nition χij(k, ω) =[

1

ω−L̂ (k)

]
ij
, the �eld intensity reads

〈〈|δψy(k, ω)|2〉〉ph = |χ31ψ
s
x − χ32ψ

s
x
∗ + χ33ψ

s
y − χ34ψ

s
y
∗|2 Sph(k, ω) (2.40)

where the phonon density of states Sph is taken in this work as constant. Finally, in order to model
the e�ect of the �nite pump spot and of the �lter, we multiply the polariton �eld by a spatial �lter
function f corresponding to a circular hole of diameter 35µm, ψouty (r, t) = f(r)ψy(r, t); in the end,
the measured Fourier space intensity is I(k, ω) =

∫
dk′|f(k − k′)|2〈〈|δψy(k′, ω)|2〉〉ph. I(k, ω) is

our actual experimental observable. We thus apply to it the same numerical analysis as for the
experimental one: we �t it with a single Lorentzian lineshape, in order to obtain a single theoretical
dispersion relation (two if we accounts for positive and negative energy branches), to be compared
with the experimental one.

The result of this procedure is shown as a black line in Figure 2.11.b. It is apparent that the
peak of the emitted signal (green solid line) falls in between the poles of the x-like and y-like quasi-
particles (blue and red dotted lines). This accidentally results in a V-like shape of the observed
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dispersion, even though we are not so close to the acoustic point. Another interesting features is
that the ghost emission is very weak here because of a destructive interference of the contributions
coming from the x and y poles.

The most important observation though is that with this model we are able to closely �t the
experimental data. Once the reservoir decay rate and exciton-polariton coupling are �xed according
to γR = 1.6µeV and gR = 2gT , the relevant �tting parameter is γin (notice that the numerical
results depend only mostly depend on the product gRγin while are only weakly sensitive on gR, γin
individually).

The comparison between the theoretical dispersion relations and the measured ones is plotted
quantitatively in Figure 2.12 using r2(ρ) = min(R2)/R2(ρ), where the normalized deviation is
R2(ρ) =

∑
i[ωexp(ki) − ωth(ρ, ki)]

2/
∑
i ωexp(ki)

2. Here, the results are organized as a function of
the coherent fraction

ρ =
nc

nR + nc
=

γR

γin + γR
, (2.41)

where nc = nx +ny = |ψsx|2 + |ψsy|2 is the coherent density and γin is the actual �t free parameter.
The closer r2 is to 1, the better the agreement. The full width at half maximum of r2(ρ) provides
an estimate of its 1σ-con�dence interval. The line connecting the red dots in Fig. 2.12 is a guide
for the eye. The thus determined con�dence intervals has been used in Fig. 2.4 above, where the
theoretical dispersion plots is obtained by plotting the two dispersion relations calculated at the
two con�dence interval boundaries, and by coloring the area that they delimit.

This analysis also gives an estimate of the two speeds of sound that characterize the two cross-
polarized Bogoliubov branches at the sonic point of the hysteresis. In the simplifying assumption
that ny = 0, i.e ρ = nx/(nx + nR), they have the analytical expression given in eq.(2.34) and
eq.(2.36). The results are shown in Figure 2.12 (right axis), where the speeds of sound cx and cy
normalized to the critical velocity vc =

√
~ωBS/m are plotted alongside r2(ρ).

Knowing approximatively ρ hence the fraction of blue-shift to be attributed to coherent polariton-
polariton interactions, which in our sample is of the order of 30%, and carefully calibrating a count
of the number of polaritons in the microcavity, it is possible to have a reliable estimate of the
polariton-polariton coupling constant. In our experiment we reported the theoretically reasonable
value of gNQW = 8± 2µeV µm2 (as already mentioned, a plot summarizing several measurements
of gNQW from di�erent groups has been provided by Estrecho et al. [2019]).

In conclusion, in this Section we have predicted how the presence of an incoherent excitonic
reservoir a�ects the collective excitations of a resonantly injected polariton �uid. In particular,
while it provides a contribution to the Hartree energy as it can be observed in the blueshift, the
excitonic degrees of freedom are too slow to partecipate in the �nite frequency dynamics and
thus the speed of sound is determined only by the polariton-polariton interaction energy. Once
also the interplay of the two linear polarization and the response function corresponding to the
photoluminescence are properly kept into account, the experimental curves by Stepanov et al.
[2019] can be reproduced assuming a polariton-reservoir Hartree energy of the same order of the
one due to polariton-polariton interactions; the characteristics of the reservoir are expected to
depend very strongly on the particular sample. The next natural question is to what extent the
reduction of the speed of sound a�ects super�uid properties.

2.4 Super�uidity in the presence of an incoherent reservoir*

(this Section mostly builds on material contained in Section V from [Amelio et al., 2020b])

In Sec.1.4 we have seen that in the absence of reservoir, the generalized Gross-Pitaevskii equa-
tion (1.27) has speci�c invariance properties under Galilean boosts, which entail that the super-
�uidity properties must be then the same in the two cases of a defect moving through a polariton
�uid at rest and of a moving polariton �uid hitting a static defect: these two con�gurations rep-
resent in fact the same process seen in two di�erent Galilean frames. Correspondingly, since the
(not invariant but) covariant coherent pump does not explicitely enter the linearized Bogoliubov
calculation, the complex-valued dispersion ω(k) simply gets Doppler-shifted ω(k) → ω(k) + k · v
when going to a reference frame moving at speed v.

The situation is completely di�erent in the presence of an incoherent reservoir, as described
by the generalized dynamics of Eqs.(2.4-2.5). This latter, in fact, de�nes a privileged frame of
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Figure 2.13: From left to right: color plots of |χ11|, |χ12|, |χ11 − χ12| as functions of (k, ω), where
the dynamic response function is de�ned as χ(k, ω) = 1

ω−L (k) . Physically, χ11(k, ω) is the response
to a probe at (kp+k, ωp+ω) measured at the probe momentum and frequency, while χ12 describes
the response in a four-wave mixing setup; �nally, χ11 − χ12 was considered above in Sec. 2.3.3
and represents the susceptibility to scattering with phonons (or to any real �eld that couples to
the polariton density). From top to bottom: without reservoir and kp = 0, without reservoir and
vp = 1.1cs,T , with reservoir and kp = 0, with reservoir and vp = 1.1cs,T . The reservoir parameters
are γR = 2γinc = 0.08 γ. In particular, looking at the last column, it is clear that having both
kp 6= 0 and a reservoir allows for having di�erent luminescence (as generated by phononic white
noise) on the left and right particle branches, while the colorplot is only Doppler shifted (shear
mapping) if the reservoir is absent.

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Super�uidity in the presence of an incoherent reservoir* 56

Figure 2.14: Density modulation induced by a moving defect in the absence (left) and in the
presence (right) of an incoherent reservoir. The total blue-shift µT is the same in all panels. The
polariton �uid is at rest kp = 0 and the pump frequency is tuned at the resonant point ∆p = µT .
In the upper panels, the defect speed is chosen in the vicinity of the critical speed for super�uidity
in the absence of incoherent reservoir, vd = cs,T . In the lower panels, the defect speed is larger
vd = 1.3 cs,T . The dashed green lines in the lower panels indicate the Mach cone of angle 2α
expected from the chosen values of the �ow vd and sound (2.17) speeds, sinα = cs,0/vd. Reservoir
parameters are close to the ones estimated in (Stepanov et al. [2019]), gR = 2g, γR = 2γinc = 0.08 γ.
For thse values, the contributions of the polaritons and the incoherent reservoir to the blueshift
are equal, gRnR = gn0 = µT /2.

reference linked to the underlying semiconductor cavity structure. Such a feature is visible by
comparing the Bogoliubov spectra shown in the left and right panels of Fig.2.8: even though the
total blue-shift is the same in the two cases, the dispersions are markedly di�erent in both the
real and the imaginary parts. That not only the poles of the quasi-particles but also their nature
is a�ected by the breaking of the Galilean invariance is apparent also in Fig. 2.13, where we plot
three di�erent response functions in the four cases with and without the incoherent reservoir and
for a �uid at rest or in motion. When a polariton �uid is considered in the absence of reservoir,
Galilean invariance ensures that the physical susceptibility of a �uid at rest (�rst row) gets Doppler
shifted when setting the �uid into motion (second row). Notice that the Doppler shift corresponds
to a k−dependent translation or shear mapping and not to a rigid rotation, so that one of the
branches appears broader, but the point is that the �pixels� are moved but do not change their
color (p.e. the peaks at ±k reach the same maximum). In the plots in the last row, which refer to
the case with a resevoir, the left and right particle branches have di�erent shapes and luminosity,
which is only possible because Galilean invariance is broken. In particular, in the very last plot,
which mimicks an experiment where Bogoliubov excitations are generated by a phononic white
noise, the particle branch is very bright in proximity of the intersection with ω = 0. As mentioned
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Figure 2.15: Critical speed for super�uidity in the presence of a reservoir, for a small and shallow
defect moving in a polariton �uid pumped at the sonic point ∆p = µT and at rest kp = 0. (a) Drag
force as a function of the defect velocity vd in the absence (blue) and in the presence (orange) of
the incoherent reservoir. The force is here renormalized by the e�ective coupling geffFd, so to have
a fair comparison of the two cases with and without reservoir. The vertical lines con�rm that in
the former case the critical speed is at cs,T , while in the latter case it is at cs,0. An explanation for
the negative drag at small vd is provided in panels (b,c) where vd = 0.02cs,T is taken. Panel (b)
shows the polariton-induced component to the blueshift g|ψ(x)|2. Panel (c) shows the incoherent
reservoir contribution gRnR(x). The defect consists of a gaussian perturbation indicated in the
plot by the cyan circle of radius three times its width. The depletion of the (slow) reservoir density
that it leaves behind it is partly �lled by the (faster) polariton. Same parameters as in the previous
�gures, namely ~γ = 0.2µT , gR = 2g, γR = 2γinc = 0.08 γ, so that cs,0 = cs,T /

√
2.

in the previous Section, in the presence of a reservoir the imaginary part of the dispersion can
even become positive, signaling a modulational instability, analogously to the case of incoherently
driven �uids (Wouters and Carusotto [2007], Bobrovska et al. [2014, 2017], Baboux et al. [2018]).

In Fig.2.14, we illustrate this breaking of Galilean invariance by looking at the e�ect of the
incoherent reservoir on the density modulation pattern generated by a defect in motion through a
�uid at rest. As we expected and explicitly veri�ed by numerical integration of the Gross-Pitaevskii
equation (2.4-2.5), a defect moving with constant velocity vd in a �uid at rest with respect to the
semiconductor substrate generates a pattern which is stationary in the frame of reference of the
defect.

Therefore, within linear response to a shallow defect, it is possible to solve for the �eld pertur-
bation in this frame by using the technique illustrated in Eq. (1.35). Since the reservoir equation
in the defect frame3 reads

∂tnR = −vd · ∇nR − γRnR + γinc|ψ|2 , (2.42)

the ω = 0 condition discussed in Sec.2.3 allows for elimination of the reservoir via a momentum-
dependent e�ective coupling

geff(k) = g +
γinc

−ivd · k + γR
gR . (2.43)

Notice that this procedure of imposing ω = 0 in the defect frame can be equivalently implemented
in the lab frame by solving for ω = vd · k; this is proven by expressing the defect potential as
δVdef (x− vdt) =

∫
dkdω δ(ω − vd · k) δVdef (k)eik·x−iωt, and similarly for the Ansatz of the �eld

and reservoir.
For a fully coherent polariton �uid in the absence of a reservoir, the Galilean invariance holds

and the physics only depends on the relative velocity of the �uid and the defect. As a result, the
left panels of Fig. 2.14 equivalently represent the two cases of a �uid �owing against a static defect
or of a moving defect in a �uid at rest.

3Remember that �rst-order equations for scalar quantities require total time derivatives (also called convective
derivatives) in order to be Galileo invariant, like the one for density in the incompressible Euler continuity equation.
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Figure 2.16: Critical velocity versus speed of sound. The speed cs,0 turns out to be the critical
speed when super�uidity is considered for a moving defect, e.g. by computing the drag force (solid
orange line). For comparison, the blue line shows the drag force for a purely coherent �uid without
reservoir at the same µT . The parameters of the �uid are the same as in Fig. 2.9

Summary of the characteristic velocities

cs,T
mc2s,T = µT
(total blueshift)

Critical speed for a stationary �ow
against a static defect at ω = 0

cs,0
mc2s,0 = gn0

(coherent component only)

Propagation speed of dynamical
excitations at γR � |ω + iγ/2| � µT .
Critical speed for a moving defect

cs
mc2s = µT + γ

2γR−γ gRnR
(slope of dispersion at k = 0)

Propagation speed of very low frequency
dynamical excitations
up to |ω + iγ/2| ≈ γR

Table 2.1: Summary of the three characteristic velocities introduced in the text. From left to right,
the three columns indicate the notation, the mathematical de�nition, the physical meaning.

On the basis of the discussion in the previous sections, it is natural to expect that the situation
be completely di�erent in the presence of an incoherent reservoir, which sets a privileged reference
frame linked to the semiconductor matrix. To start with, a pattern identical to the fully coherent
case is found for a static defect via the renormalized coupling (2.6), as long as the total blueshift is
the same and no dynamical instabilities develop (Amelio and Carusotto [2020a]). Instead, when it is
the defect to move in a polariton �uid at rest in the presence of a reservoir. the density modulation
pattern is shown in the right panels of Fig. 2.14. These panels are plotted in the experimentally
relevant γR � γ regime for the same values of the speed vd and the total interaction energy µT
used in the left panels. It is apparent that the critical speed is strongly reduced, as expected from
the Bogoliubov dispersion discussed in Sec.2.3. Moreover, the shape of the density modulation
pro�le shows a clear Mach cone of angle 2α with sinα ' cs,0/vd.

A more quantitative insight on the critical speed can be obtained looking at the plot of the
friction force as a function of the defect speed for a polariton �uid at rest shown in Fig.2.15. The
force is evaluated using (1.40) under the assumption that the defect only interacts with the coherent
polaritons. Both in the absence (blue line) and in the presence (orange) of the reservoir, the friction
force displays a clear threshold behaviour, losses being as usual Berceanu et al. [2012] responsible
for a smoothening of the threshold. In contrast to the 1D case of Fig.1.7, in the high-speed limit
the force tends to the asymptotically linear dependence on vd predicted by Astrakharchik and
Pitaevskii [2004] in 2D.

As expected, the position of the threshold occurs at a markedly lower speed in the presence of
the reservoir, at a value consistent with the e�ective speed of sound cs,0. The fact that the critical
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Figure 2.17: Panels (a-c): time-averaged polariton density (a), local phase at the �nal time (b),
and coherence function g(1)(r) for a polariton �uid evolving according to (1.11) in the presence of
disorder. Panels (d-f): same quantities for the same parameters in the presence of a incoherent
reservoir as in Eqs.(2.4-2.5). Parameters: ~γ = 0.04 meV, ∆ = −0.4 meV, kp = 0, F eff0 =
0.25 meVµm−1, W0 = 0.06 meV, σW = 0.5µm. In panels (d-f), the reservoir has ~γR = 0.01 meV,
~γinc = 0.02 meV and gR = 2g.

speed is set by the e�ective high-k speed of sound cs,0 rather than by the low-k value cs is physically
understood by noting that the density modulation is peaked in k-space at the intersection of the
Bogoliubov dispersion with the ω = k ·vd condition for the moving defect. A further con�rmation
of this statement can be found in Fig. 2.16.a, where we show the same plot for a faster reservoir
for which the distinction between cs,0 and cs is more evident.

The origin of the peculiar negative value Fd < 0 found in the presence of the reservoir is
illustrated in the panels (b,c) of Fig.2.15. A very slow defect excites quasi�resonantly the reservoir
branch of the dispersion, leaving in its wake a reservoir depletion, which is partially re�lled by the
faster polaritons. This results in an excess of polaritons behind the defect and, thus, to a negative
drag. Of course, the fact that the force tends to accelerate (rather than brake) the defect does
not violate energy conservation, since we are dealing with a driven-dissipative system. It is also
interesting to mention the recent calculations of the drag force of a polariton condensate in the
presence of a reservoir and in the gapped regime (He and Liang [2020]).

Coming back to the case of a defect at rest in a moving �uid, here the density modulation
pattern is stationary in the frame of the semiconductor cavity structure, so the ω = 0 value of the
e�ective interaction constant geff(ω) is to be used. As we have discussed in the previous sections,
this value recovers the interaction constant geff de�ned in (2.6) that enters the expression for the
total blue shift µT , so that the critical speed for super�uidity is set by cs,T such that mc2s,T = µT .
It is quite remarkable how this simple result holds independently of the relative magnitude of the
polariton and reservoir contributions to this latter and of the details of the complex Bogoliubov
dispersion in a moving �uid discussed in Sec.2.3. This last subtle feature is the reason why the
pioneering experiments in (Amo et al. [2009]) were in quantitative agreement with a theory that
did not include the reservoir. For what concerns the dynamical experiments in (Nardin et al.
[2011]), instead, the quantitative agreement with the reservoir-less theory was guaranteed by the
fact that the experiments were performed using a short pulse of coherent pump light, so that the
reservoir density did not have time to build up.

These considerations hold quite generally for a stationary situation, with the only requirement
that the �ow is dynamically stable. Crucially, as it was pointed out in (Amelio and Carusotto
[2020a]), the presence of a slow reservoir can in fact give rise to dynamical instabilities that prevent
from reaching the stationary state by lowering the critical disorder threshold discussed in Fig. 1.11
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of the previous Chapter. This point is remarked in Fig. 2.17, where in the (upper) lower panels the
�ow of a �uid without (with) reservoir is shown, as characterized (from left to right) by its density,
phase and g(1)(r) coherence function of Eq. (1.53): while the phase and density patterns are quite
similar in the two cases, the presence of the reservoir prevents from reaching the steady-state, with
the vortex positions that perform small oscillations.

2.5 Conclusions

To summarize, in Section 2.1 we started with some preliminary remarks on the spin-dependence
of the polariton-polariton interaction constant; we explained why a reliable measurement of g is
challenging, one of the reasons being the presence of dark excitonic states. The measurement of
the dispersion relation is the subject of Section 2.2, where we described in details the experiment
(Stepanov et al. [2019]) which stimulated us to consider a model containing a reservoir of incoherent
dark excitons.

In Section 2.3 we have formulated the model and reported a detailed theoretical study of the
collective excitations of a resonantly driven polariton �uid in the presence of the reservoir. The
excitons contribute to the average blueshift and lead to a renormalization of the interaction constant
in the steady state. However, if the reservoir is characterized by a slow relaxation scale, they barely
participate in the faster coherent dynamics of the �uid. As a consequence only the polariton-
polariton Hartree energy determines the speed of sound of the Bogoliubov quasi-particles. Our
study allows to �t reliably experimental data and obtain precise estimates on the fraction of dark
excitons in the �uid, which can be crucial in investigations of the polariton-polariton interaction
constant.

In the previous Chapter we demonstrated the Galilean invariance of the generalized GPE in the
absence of a reservoir. On the contrary, we show in Section 2.4 that the presence of the reservoir
of dark localized excitons �xes a privileged laboratory reference frame linked to the semiconductor
cavity structure. This breaking of Galilean invariance is visible in the Bogoliubov dispersion of
the collective excitations in the �uid and in the density modulation pattern generated by a defect:
while the e�ective speed of sound probed by a defect at rest is univocally determined by the total
blue shift of the polariton modes as in the experiments of Ref. Amo et al. [2009], the one probed
by a moving defect is signi�cantly smaller and mostly determined by the polariton contribution
to the blue shift. This results is of crucial importance to reconcile the historical demonstrations
of polariton super�uidity in Amo et al. [2009], Nardin et al. [2011] with the recent experiment
in Stepanov et al. [2019].

Beyond the microcavity polariton systems on which we have focused here, our results can be
straightforwardly applied to other physical realizations of �uids of light such as photons propagating
in cavityless nonlinear optical media Carusotto [2014]. While a sort of Galilean invariance along
the transverse plane holds for instantaneous Kerr-like nonlinearities Fontaine et al. [2018], a strong
breaking of Galilean invariance is in fact expected to occur when the optical nonlinearity has a
thermal nature Vocke et al. [2015]. This is a crucial feature that needs being duly taken into
account when using quantum �uids of light as quantum simulators.
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Chapter 3

Theory of the coherence of extended 1D

laser systems

In the �rst part of the Thesis we were concerned with the study of resonantly injected polariton
�uids, where the phase of the �eld is inherited by the external drive. In this second part we
will instead consider �uids of light and matter which spontaneously break the microscopic U(1)
symmetry, giving rise to a rather di�erent phenomenology with respect to the �rst part; on the
other hand, we will still be dealing with regimes amenable to the semi-classical �eld description.
We will be continuously switching between lasing and polariton condensation, since these two
paradigms share many analogies, in particular when the focus is on the universal behavior. While
here we start with a topologically trivial laser system, in the next Chapter we will turn to the case
of a 2D Harper-Hofstadter laser.

This Chapter is devoted to the study of the spatial and temporal coherence properties of
generic spatially extended models of laser operation, having typically in mind arrays of laser res-
onators or polariton microcavities. First, in Section 3.1 we review the basic principles of lasing
and the semiclassical derivation of the Schawlow-Townes linewidth for devices which, as tradi-
tionally considered in laser theory, are e�ectively point-like. In Section 3.2 we deal instead with
Kardar-Parisi-Zhang KPZ) universality in in�nitely extended 1D polariton quasi-condensates. The
gap in the understanding of temporal coherence between point-like and in�nite systems is �nally
bridged in Section 3.3, where the Schawlow-Townes linewidth is viewed as a �nite-size e�ect with
an additional broadening due to KPZ-like phase nonlinearities.

3.1 Coherent laser emission

The laser is one of the most fundamental tools in modern science Siegman [1987], Svelto [2010].
Its de�ning feature is the emission of radiation of unprecedented intensity and long coherence
length and time. This makes laser sources essential ingredients in a wide range of applications
and justi�es the continuous theoretical and technological research of new devices. Also from a
fundamental science perspectives, the physical mechanisms underlying laser oscillation represent
an archetypical model at the crossroad of nonlinear physics, non-equilibrium statistical mechanics,
and quantum optics (Haken [1983], Gardiner and Zoller [2004], Chiocchetta et al. [2017], Keeling
et al. [2017]). A very brief review of these concepts is the goal of the next few pages.

3.1.1 The LASER principle

As it is well known (Cohen-Tannoudji et al. [1998]), the interaction of an excited atom with the
electromagnetic vacuum induces the relaxation of the atom to a lower energy level with consequent
spontaneous emission of a photon, with a rate given by

A =
4|d12|2ω3

12

3~c3
, (3.1)
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where d12 and ω12 are the dipole moment and frequency associated with the atomic transition; one
factor of ω12 is due to the square of the electric �eld of a single mode of the electromagnetic �eld,
while a further ω2

12 comes from the 3D density of the modes at that frequency.
On the other hand, let a train of photons in the same state interact with an excited atom and

have a frequency quasi-resonant with an atomic downward transition: the relaxation and emission
processes into the same state of the incident wave are then stimulated, with a rate proportional to
the number of photons of the train. This enhancement builds on the bosonic nature of the photon
that is implicit in the Maxwell equations. The experimental observations that radiation thermalizes
and that it interacts with matter through quantized packets of energy related to its frequency via
the Planck constant was enough for Einstein to make his famous prediction of stimulated emission
in 1917.

Einstein's beautiful argument goes as follows. Let' s consider a bunch of two-level atoms in a
large cavity and let Ne be the number of atoms in a state excited by ω12. The energy stored in
the elctromagnetic �eld, which is at thermal equilibrium with the atoms, is distributed according
to the spectral density u(ω) and the rate of the process in which a photon gets absorbed and an
atom excited is proportional, via a coe�cient Babs, to u(ω12)Ng, with Ng = N −Ne the number
of atoms in the ground state. Considering only spontaneous emission and absorption, the rate
equation for Ne reads

dNe
dt

= −ANe +Babsu(ω12)Ng, (3.2)

leading to the steady-state relation Ng/Ne = A/(Bu(ω12)). This result also implies that at high
temperatures Ng/Ne ' 0, which is clearly inconsistent with the requirement that the atoms be in
thermal equilibrium

Ng
Ne

= exp

(
~ω12

kBT

)
, (3.3)

which already requires the notion of the Planck constant to inter-convert frequency and energy of
the photon. To enforce this constraint Einstein proposed the modi�ed rate equation

dNe
dt

= −[A+Bsteu(ω12)]Ne +Babsu(ω12)Ng, (3.4)

for which at the steady-state
Ng
Ne

=
A+Bsteu(ω12)

Babsu(ω12)
. (3.5)

The high temperature limit requires1 Bste = Babs ≡ B; the Bolzmann condition Eq. (3.3) is
consistent with the Planck law

u(ω) =
2~ω3

πc3
1

e~ω/kBT − 1
, (3.6)

which relates A,B through A/B = 2~ω3

πc3 .

The idea that stimulated emission would provide a mechanism to amplify an incoming electro-
magnetic wave began to circulate and led to the proposal of the MASER (Microwave Ampli�cation
by Stimulated Emission of Radiation) by Basov and Prokhorov and to its �rst implementation by
Townes and co-workers in 1954. One di�culty is that steady-state operation can' t rely on two-
level atoms, because, even in the presence of optical pumping of the medium, one will always have
Ne ≤ Ng at stationarity, so that absorption will dominate on stimulated emission. To stabilize
an inversion of population 3-level atoms can be used, as studied by Basov and Prokhorov and
illustrated on the left panel of Fig. 3.1.

A self-sustained LASER (Light Ampli�er by Stimulated Emission of Radiation) can then be
built by putting the gain medium in a cavity so to feed back the generated radiation to the excited
atoms for other successive ampli�cations. Following the theoretical proposal by Schawlow and
Townes [1958], the �rst2 laser was realized by Maiman in 1960 and consisted in a ruby rod doped
with chromium atoms that constituted the actual gain medium, used optical pumping from a
xenon �ashtube and delivered short pulses at random times. Devices capable of a continuous-wave

1If the excited level has a g−fold degeneracy then Bste = Babs/g.
2According to the �Laser� page of Wikipedia there has been some controversy on the �rst laser actually realized;

the �rst one to be registered by the U.S. Patent O�ce was the one by Maiman.
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Figure 3.1: Principle of the LASER. (left) Scheme of a 3-level atom used to achieve popu-
lation inversion between the level 2 and 1. The level 3 is optically pumped and will expe-
rience a fast (possibly non-radiative) decay to state 2; notice that the poluation of 1 is al-
ways larger than the one of 3. (right) Basic ingredients of a typical laser device, like the
original ruby laser; the green lines denote the oscillating electric �eld. Left plot taken from
https://commons.wikimedia.org/w/index.php?curid=3631918.

emission or of Q-switching came soon afterwards, and Basov, Prokhorov and Townes were awarded
the 1964 Nobel prize for their contributions to the development of the maser and of the laser.

The fundamental ingredients to understand the LASER self-sustained oscillation are an optical
resonator or cavity, the gain medium, a pumping mechanism to induce population inversion in
the gain medium and losses. To elucidate the mutual interplay of these elements we blend the
treatments by Scully and Zubairy [1997] and Mandel and Wolf [1995], inspired to a model of the
lasing operation due to Lamb [1964]. In this model lasing is described in terms of a classical
electric �eld: on the one hand, this enters the equation of motion of the atoms and contributes to
the evolution of the polarization vector; on the other hand, the polarization acts as a source term
in the Maxwell equations, so that the electric �eld is determined self-consistently.

Starting with the atomic degrees of freedom, let' s �rst point out that the 3-level scheme
pictured in Fig. 3.1 e�ectively allows to focus on a 2-level atom endowed with a unidirectional
pumping from the ground-state to the excited state (while any optical pumping on a really 2-level
atom would also come with stimulated emission processes into the pump wave). An adequate
Master equation to describe the interaction of such an e�ective 2-level atom with a classical wave
is provided by

∂tρ̂at = − i
~

[
Ĥat, ρ̂at

]
+
Pat
2
L [ρ̂at, σ̂+] +

γat
2
L [ρ̂at, σ̂−] +

γph
2
L [ρ̂at, σ̂z] . (3.7)

Here L
[
ρ̂, Ô

]
= 2Ôρ̂Ô† − {Ô†Ô, ρ̂} denotes the Linblad super-operator, and the three Linblad

terms, occurring with rates Pat, γat, γph, correspond respectively to the pumping used to build
the population inversion, to incoherent decay into the ground-state and to dephasing. This last
phenomena is per example due to scattering with other atoms (or with phonons in a solid state
medium), which leads to random Stark shifts which are local in space and time and result in a
�uctuating transition frequency. The Hamiltonian term instead contains the coherent part of the
interaction with light, so that stimulated emission is built in it:

Ĥat =
ω21

2
σ̂z + E(r0, t) · (d21 σ̂+ + d∗21 σ̂−) , (3.8)

where we neglected an irrelevant total energy shift and r0 is the location of the atom.
The electric �eld needs to be found by solving self-consistently the Maxwell equations, and in

particular the wave equation

∇2E− 1

c2
∂2
ttE =

4π

c2
∂2
ttP, (3.9)

where P(r, t) = nat(r)d21〈e|ρ̂(t)|g〉 is the polarization vector of the gain medium, characterized by
the atomic density nat(r). In writing this equation we have also assumed that the cavity is empty
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apart from the gain medium and that there are implicit boundary conditions. For a very good
cavity and with the assumption that the lasing mode has very similar shape to one mode of the
bare cavity f(r), we can use the ansatz

E(r, t) = f(r)Ẽ(t)e−iω
last + h.c. (3.10)

Here Ẽ(t) is a slowly varying envelope and f(r) satis�es the Helmoltz equation

∇2f =
ω2
c

c2
f (3.11)

with proper boundary conditions. For example, in the case of a ring cavity f will be approximated
by a plane wave times a polarization unit vector, or a sine in the case of a planar cavity. In the
following we will assume that f(r) is approximatively constant and equal to f(r0) in the region
occupied by the gain medium, so that any atom is subject to the same electric �eld.

Below we will keep the following time derivatives: ∂2
ttE ' (ωlas)2E−2iωlas∂tẼ(t)fe−iω

last+h.c.,
the second term being necessary because of a partial cancellation of the �rst one by ω2

c , and
∂2
ttP ' (ωlas)2P, since also P approximatively oscillates at the frequency ωlas (as discussed below).
With these simpli�cations, Eq. (3.9) becomes

2iωlas∂tẼ = [ω2
c − (ωlas)2]Ẽ + 2ωlasPρeg (3.12)

where P = 2πωlas
~ωcVc d21 ·

∫
dr f(r)∗nat(r) contains information about the overlap of the gain medium

density with the cavity mode, which has been normalized according to
∫
dr |f(r)|2 = ~ωcVc: with

this normalization |Ẽ|2 represents the number of photons in the cavity volume Vc. Since as it
will be apparent below ωlas ' ωc, the further simpli�cation ω2

c − (ωlas)2 ' 2ωlas(ωlas − ωc) can
be used. Finally, we introduce by hand some losses in the cavity mode with rate γc which can
per example be attributed to the functional leakage of the laser emission or to absorption by the
dielectric forming the cavity, so to arrive at

i∂tẼ =

[
ωlas − ωc −

i

2
γc

]
Ẽ + Pρeg. (3.13)

Moreover, we just used the �slow� density matrix element

ρeg(t) = eiω
last〈e|ρ̂(t)|g〉, (3.14)

while ρee(t) = 〈e|ρ̂(t)|e〉, and similarly for ρgg, ρge. A more explicit form of Eq. (3.7) is then given
in the so called Optical Bloch Equations (OBE)3, in the frame de�ned by Eq. (3.14) and within
the rotating wave approximation (RWA)

ρ̇ee = −γatρee + Patρgg + iẼ∗(t)Ω∗0ρeg − iẼ(t)Ω0ρge (3.15)

iρ̇eg =

[
ω21 − ωlas − i

Pat + γat + γph
2

]
ρeg − Ẽ(t)Ω0(ρee − ρgg) (3.16)

where we de�ned the vacuum Rabi frequency of the �lled cavity Ω0 = f(r0)·d21

~ .
The coupled Eqs. (3.13,3.15,3.16) can be solved numerically. However, to proceed further with

the analysis, one now assumes that the dynamics of the atom as governed by Pat, γat, γph is faster
than the dynamics of Ẽ(t), so that at any time t the atom can be considered in its steady state: in
this case we will speak of a class-A device, in contrast to a class B device where the dynamics of
the gain medium has to be treated explicitely. The density matrix elements ρee, ρeg, etc. are then
expressed only as a function of Ẽ(t):

ρeg =
Ẽ(t)Ω0

ω21 − ωlas − iPat+γat+γph2

(ρee − ρgg) (3.17)

ρee − ρgg =
Pat − γat[

Pat + γat + 2
(Pat+γat+γph)|Ẽ(t)Ω0|2

(ω21−ωlas)2+(Pat+γat+γph)2/4

] (3.18)

3 In the derivation one writes ρ = 1̂
2

+ (ρee − ρgg) σ̂z
2

+ 〈e|ρ̂(t)|g〉σ̂+ + 〈g|ρ̂(t)|e〉σ̂− and uses the commutators[
σ̂z
2
, σ̂±

]
= ±σ̂±, [σ̂+, σ̂−] = σ̂z and the anti-commutators {σ̂+, σ̂−} = 1, {σ̂+, σ̂+} = 0.
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In particular, injecting ρeg in Eq. (3.13) and after some algebra, one arrives at the equation of the
class-A laser

i∂tẼ =

[
ωlas − ωc −

i

2
γc +

i

2
(1 + iζ)−1 P

1 + |Ẽ|2/ns

]
Ẽ, (3.19)

where P = 4 PΩ0

Pat+γat+γph

Pat−γat
Pat+γat

, ζ = 2 ω21−ωlas
Pat+γat+γph

and n−1
s = 1 + 8

1+ζ2

|Ω0|2
(Pat+γat+γph)(Pat+γat)

.
In order to determine the steady state operation, this (complex-valued) equation needs to be

solved for ωlas, Ẽss. When ω21 = ωc ≡ ω0, the lasing frequency coincides with ωlas = ω0 and, since
ζ = 0 Eq. (3.19) simpli�es to

i∂tẼ =

[
ωlas − ωc −

i

2
γc +

i

2

P

1 + |Ẽ|2/ns

]
Ẽ; (3.20)

correspondingly, above the lasing threshold Pth = γc the steady-state �eld intensity is given by
|Ẽss|2 = ns(P − γc)/γc. On the other hand, if ω21 6= ωc the lasing frequency will be �pulled� from
ωc towards ω21; since this mode-pulling depends on |Ẽ(t)|2, a refractive index nonlinearity will be
also present.

Another scenario, occurring for class B devices, is that the atomic degrees of freedom cannot
be completely eliminated adiabatically, but still the gain medium is an incoherent one, or in other
words γph is very large, as it could be relevant to the density of carriers in a semiconductor laser.
In this case the adiabatic strategy can be applied to Eq. (3.16) only, allowing for the elimination of
ρeg. One remains with two coupled equations for the electric �eld Ẽ and the population unbalance
ρee − ρgg which have precisely the form (1.8,1.9) , introduced when discussing polariton lasing.

For completeness, notice that from Eqs. (3.9,3.15,3.16) one can read o� the physics also for an
ampli�er, where a wave is passed through the gain medium and gets ampli�ed but no feedback is
present (no cavity). In practice, one reinjects the expression for ρeg in the Maxwell Eq. (3.9) to
obtain a frequency dependent susceptibility, or equivalently a complex wavevector containing the
information about the ampli�cation factor per unit length. In particular, in the linear ampli�cation
regime where the incident wave is a weak one, one neglects the electric �eld in the correspective of
Eq. (3.15) to get ρee − ρgg = Pat−γat

Pat+γat
. On the contrary, the ampli�cation gets saturated for high

incident �elds, due to the denominator in Eq. (3.16).

3.1.2 Semiclassical theory and Schawlow-Townes linewidth

In the treatment above the electric �eld is purely classical. This approach is useful to get an
estimate of the lasing frequency and threshold and of their dependence on the microscopic param-
eters; it is also possible to study the switch-on dynamics of the device, with the so called relaxation
oscillations when the intensity is reaching its steady-state. This approach however tells us nothing
about the linewidth and the photon distribution of the emission. While here we just mention that
the instantaneous quantum state of the �eld can usually be approximated by a coherent state
with Poissonian photon number statistics, we want discuss a bit more in details the issue of the
linewidth.

The linewidth of a laser is the Full Width at Half Maximum of the spectral density of the
emission, which under the assumptions discussed below has Lorenztian shape. Formally, a pho-
todetection experiment will probe the correlation function

g(1)(t) =
〈

:Ê†(t)Ê(0):
〉
, (3.21)

or its Fourier transform S(ω), where the double dots denote normal ordering of the quantum
operators.

As recognized by Schawlow and Townes [1958] in their seminal paper, the intrinsic quantum
mechanism, which sets the ultimate lower bound to the laser linewidth, is spontaneous emission
into the same cavity mode in which lasing occurs. If the lasing �eld is viewed as a coherent state
of a given phase, the spontaneous emission event acts like a kick of one quantum of intensity and
random phase to the �eld.

We sketch here how a simple semiclassical treatment that grasps the basic aspects of the
Schawlow-Townes line emerges from a fully quantum treatment (Mandel andWolf [1995], Scully and
Zubairy [1997]); this also enables to ask meaningful questions about the distributions of photons
in the �eld. Since using here the optical Bloch equations (3.15, 3.16) would turn out to be a bit
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involved, it is possible to obtain the correct results by considering the small time perturbation
expansion for the cavity-atom density matrix with initial conditions in a product state where the
atom is in the excited level. Indeed, assuming that the dynamics of the cavity �eld is slow on the
time-scale of the interaction with each atom, we can imagine that the �eld interacts with only one
atom, shot through the cavity, at each time. This allows, having written down the time-dependent
Schroedinger equation for the density matrix, to trace over the atomic degrees of freedom to yield
a Master equation for the radiation density matrix ρ̂. Introducing also cavity losses, the Master
equation takes the form

∂tρ̂ =
A

2
L
[
ρ̂, ψ̂†

]
+
C

2
L
[
ρ̂, ψ̂

]
+
B

8

(
ψ̂ψ̂†ψ̂ψ̂†ρ̂+ 3ψ̂ψ̂†ρ̂ψ̂ψ̂† − 4ψ̂†ψ̂ψ̂†ρ̂ψ̂ + h.c.

)
(3.22)

where A,B,C are coe�cients that can be determined from �rst principles.
The next step uses the fact that the density matrix has �nite trace, so that in the coherent

state basis ρ(φ, ψ) = 〈φ|ρ̂|ψ〉 is an entire function of φ, ψ and it can be known on the plane φ = ψ
without loss of information. This is referred to as the P or Glauber representation. It is then
su�cient to write down an equation for the time-evolution of diagonal component ρ(ψ, t) of the
density matrix. Keeping only the �rst order term in the coe�cient B, which is typically small,
and assuming that the dynamics occurs close to the steady state of the laser and not too close to
threshold, for which the distribution ρ is concentrated at large |ψ|, the evolution reads

∂tρ(ψ, t) = A
∂2

∂ψ∂ψ∗
ρ+

1

2

∂

∂ψ
ψ
[
B|ψ|2 −A+ C

]
ρ+

1

2

∂

∂ψ∗
ψ∗
[
B|ψ|2 −A+ C

]
ρ. (3.23)

This is a Fokker�Planck equation for ρ(ψ, t), which, as expected from the theory of classical states
of light, in a lasing state closely resembles a probability distribution. The crucial remark is that
the Fokker-Planck equation associated with the semi-classical Langevin equation

i∂tẼ =

[
ωlas − ωc −

i

2
γc +

i

2
(1 + iζ)−1P (1− |Ẽ|2/ns)

]
Ẽ +

√
2D ξ, (3.24)

obtained by expanding Eq. (3.19) for small saturation term and adding the random drift of strength
D (properly related to A,B,C), has precisely this same form. Also notice that in the Laplacian
term of the Fokker-Planck equation it enters A but not C, meaning that the di�usion of ψ is due to
the interaction with the gain medium but not to cavity losses, while in the Wigner representation
also C enters in the di�usion term. This apparent contradiction is resolved by observing that in the
P representation a coherent state is a delta function, and the di�usion term corresponds to a drift
of the coherent state. In the Wigner representation instead a coherent state is a Gaussian with
spread determined by the uncertainty principle, and the C contribution to the di�usion accounts
for this �nite variance.

Here we are not very interested in a microscopic derivation of the spontaneous emission rate or
equivalently of D and refer to (Henry [1982], Scully and Zubairy [1997]) for a more quantitative
discussion. Moreover, in what follows we will be mostly involved with any source of noise associated
with a homogeneous broadening of the laser emission, for instance as due to collisions (Svelto
[2010]); we will tend to use anyhow the expression Schawlow-Townes linewidth to denote the drift
of the optical phase. A simple semiclassical approach based on (3.24) is illustrated below, without a
formal derivation which would be cumbersome and not very instructive (Mandel and Wolf [1995]).
Conversely, there exist also mechanisms of inhomogeneous broadening, such as due to Doppler
shift in �nite temperatures atomic clouds or to disorder; these do not fall in the Schawlow-Townes
class characterized by a di�usion of the phase and in general do not feature a Lorenztian spectral
distribution.

To grasp the nature of the Schawlow-Townes broadening, let' s then consider the semiclassical
Langevin equation

i∂tψ =W(n)ψ +
√

2Dξ , 〈ξ∗(t)ξ(t′)〉 = δ(t− t′), (3.25)

where n = |ψ|2 represents the intensity of the �eld and ξ is white noise with di�usion coe�cient
D, accounting for spontaneous emission and homogeneous broadening. Also, we enclose inW(n) =
W ′ + iW ′′ the dependence of the gain, absorption and refractive index properties of the medium
on n, where for simplicity the atomic degrees of freedom have been eliminated. In the absence of
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the external noise, Eq. (3.25) has the U(1) symmetry for the phase of the �eld; this is zero below
the lasing threshold, while in the symmetry broken lasing phase its intensity satis�es W ′′(n0) = 0,
the pedex denoting the solution without noise. The phase, instead, will rotate with frequency
ωlas =W ′(n0).

To deal analytically with Eq. (3.25) it is convenient to resort to the phase�density formalism:
writing the �eld as ψ =

√
neiφ it holds

∂tφ = −W ′(n) +

√
D

n
ξ1 (3.26)

∂tn = 2W ′′(n) n+ 2
√
nD ξ2 (3.27)

where now one has two real uncorrelated noises 〈ξl(t)ξl(t′)〉 = δ(t− t′), l = 1, 2. Assuming noise is
small enough to cause minor perturbations δn to the density, one can use the linearized equations

∂tφ = − ∂W ′

∂n

∣∣∣∣
n0

δn+

√
D

n0
ξ1 (3.28)

∂tδn = −Γδn+ 2
√
Dn0 ξ2, (3.29)

with Γ = −2n0
∂W′′
∂n

∣∣∣
n0

the relaxation rate of the density �uctuations. Since in this limit both φ

and n are Gaussian variables, the autocorrelation of the �eld reads

g(1)(t) = 〈ψ∗(t)ψ(0)〉 = n0e
− 1

2 〈[φ(t)−φ(0)]2〉. (3.30)

On the other hand, the U(1) symmetry of the model ensures that the dynamics of the phase is a
di�usion with no restoring force, so the decay of coherence is described by the exponential

g(1)(t) = n0e
− γST2 |t|, (3.31)

where the rate γST is the celebrated Shawlow�Townes linewidth (Schawlow and Townes [1958]).
In Fourier space, this corresponds to a Lorentzian power spectral density.

Integrating Eq. (3.29) one �nds the �uctuations of the density4

〈δn2〉 =
Dn0

Γ
, (3.32)

which, after applying basic statistics to Eq. (3.28), entails

γST =
D

2n0

(
1 + α2

)
. (3.33)

Here we call α = ∂W′
∂n /

∂W′′
∂n the Henry factor, for its close analogy to the one introduced by Henry

[1982]. The crucial feature of this formula is the density appearing at the denominator, connected
with the following picture: the more photons in the resonator, the less the phase of the �eld is
perturbed when a photon with a random phase is randomly emitted into the �eld. Plus, �uctuations
of the �eld intensity or of the carrier density re�ects in temporal variations of the refractive index,
hence of the cavity resonance frequency, which ultimately leads to the supplemental broadening
factor α.

In the following we will restrict the discussion of the linewidth to the simplest case W(n) =
i
2

[
P

1+n/ns
− γ
]
, corresponding to Eq. (3.20), from which it follows

i∂tψ =
i

2

[
P

1 + n/ns
− γ
]
ψ +
√

2Dξ (3.34)

and Γ = γ(P − γ)/P . In this case the linewidth reads

γST =
D

2n0
. (3.35)

The Scawlow-Townes line in a strict sense, i.e. the ultimate quantum limit set by spontaneous
emission, has been experimentally approached by Manes and Siegman [1971], making use of a
He-Ne infrared gas laser in a lossy cavity, so to have very strong gain and associated noise but low
intensity. We just mention other interesting experimental works regarding the linewidth in bad
cavities (Kuppens et al. [1994]) and in Quantum Cascade Lasers (Bartalini et al. [2010]).

4curiously, using the fast density approximation 0 = Γδn+2
√
Dn0 ξ2 already in the �rst step leads to the correct

linewidth, but to the wrong amplitude of the density �uctuations.
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3.2 Kardar-Parisi-Zhang physics in 1D nonequilibrium �uids

In the previous Section, the temporal coherence of the light emitted by a laser device was studied in
details. The Schawlow-Townes analysis indicates, in a broad sense, the treatment of homogeneous
broadening when the laser �eld is described by the evolution of a single spatial mode. Some
extensions have been developed in the context of open resonators, as we will brie�y review in
Section 4.2.4 when discussing the Petermann factor. In these works, the competition with other
cavity modes leads to an enhancement of the Langevin di�usion constant for the lasing mode, but
the quantity of interest remains the linewidth, while the spatial coherence of the lasing mode itself
is not considered. This approach is expected to be adequate for devices consisting of a Fabry-Perot
cavity with 3D con�nement or for ring lasers.

In this Section we will consider arrays of coupled laser resonators or polariton condensation
(which was already sketched in Section 1.2) in low dimensional structures, where the spatial co-
herence of the lasing �eld is a serious issue. Here we will focus on the spatio-temporal dynamics of
a 1D nonequilibrium �uid, such as the lasing or polariton �elds, described by the one�dimensional
chain of Nx coupled nonlinear oscillators x = 1, ..., Nx

i∂tψx = −Jψx+1 − Jψx−1 + gnxψx +
i

2

[
P

1 + nx
nS

− γ

]
ψx +

√
2Dξx , (3.36)

with periodic boundary conditions and independent noises 〈ξ∗x(t)ξx′(t
′)〉 = δxx′δ(t − t′). Equiva-

lently, one can deal with the continuum version of Eq. (3.36)

i∂tψ(x, t) =

{
− 1

2m
∂2
x + gn(x, t) +

i

2

[
P

1 + n(x, t)/nS
− γ
]}

ψ(x, t) +
√

2D ξ(x, t) , (3.37)

where 〈ξ(x, t)∗ξ(x′, t′)〉 = δ(x−x′)δ(t− t′) and −Jψx+1−Jψx−1 is replaced by − 1
2m∂

2
x, where the

mass is related to the hopping via m = 1/2J (the distance between the oscillators being 1). For the
sake of completeness, we have also added a refractive index nonlinearity in the form of a polariton-
polariton interaction g|ψ|2ψ. This equation is the adiabatic approximation of Eqs. (1.8,1.9), intro-
duced when we touched on incoherently excited polariton �uids and polariton condensation.

Extensions of this equation to include absorption nonlinearities or momentum dependent losses
and to deal explicitely with the reservoir of carriers in the spirit of Eqs. (1.8,1.9) have been pre-
sented by He et al. [2015], Squizzato et al. [2018] with no major modi�cations in the �nal results.
Another important remark is that, while for polariton �uids in a nanowire Eq. (3.37 ) is a proper
approximation, for arrays of coupled semiconductor laser the situation is much more complicated:
the tight-binding approximation expressed by Eq. (3.36), in which only a single mode per resonator
can be excited, is in general not valid and an ab initio treatment from the Maxwell equations is
needed, as discussed more in details at the end of the next Chapter.

3.2.1 Spatio-temporal phase dynamics

Let' s now study the stationary dynamics of an in�nitely extended polariton wire, as described by
Eq. (3.37).

To familiarize with the problem we start by reviewing the Bogoliubov approach. In the absence
of noise, any plane wave ψ0(x, t) = ψ0e

iklasx x−iωlast is a steady-state solution, provided that ωlas =
(klasx )2/2m + µ, µ = gn0 and n0 ≡ |ψ0|2 = nS(P/γ − 1). Because of the U(1) invariance of the
noiseless semicalssical laser equation under phase shifts ψ(x, t) → eiϕψ(x, t), the phase of ψ0 is
completely arbitrary. The linearized equations on top of the uniform state with klasx = 0 read

i∂tδψ(x, t) = − 1

2m
∂2
xδψ + µ (2δψ + δψ∗)− i

2
Γ (δψ + δψ∗) +

√
2D ξ , (3.38)

with Γ = γ(P − γ)/P . It is also instructive to write this down in the density-phase formalism and
in Fourier space:

∂t

(
δφk
δnk

)
=

(
0 k2

4mn0
+ g

n0
k2

m −Γ

)(
δφk
δnk

)
+

( √
D
n0

ξ1,k

2
√
Dn0 ξ2,k

)
(3.39)

with 〈ξl,k(t) ξl′,k′(t
′)〉 = δll′δkk′δ(t − t′). The eigenvalues of the Bogoliubov matrix represent the

elementary excitations of the system and have dispersion
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Figure 3.2: Bogoliubov dispersion of polariton laser wire. We depict the real (left) and imaginary
(right) part of the Bogoliubov dispersion Eq. (3.40), in the presence and in the absense of polariton-
polariton interactions. The Goldstone mode has a di�usive nature in this system. Parameters used:
m = 1,Γ = 0.25.

ω±(k) = −iΓ
2
± i

√(
Γ

2

)2

− k2

m

(
k2

m
+ 2µ

)
+ i0− . (3.40)

The real and imaginary parts are depicted respectively in in Fig. 3.2.a and b, showing the typical
sticking of the branches in the real part and the corresponding opening of the imaginary branches,
as prescribed by the particle-hole symmetry of the Bogoliubov problem. The U(1) invariance
ensures the existence of a purely phase-like mode at k = 0 with zero eigenvalue, which we call the
Goldstone mode in analogy with equilibrium statistical mechanics and quantum �eld theory. The
low frequency physics is dominated by the mostly phase-like modes belonging to the Goldstone
dome: these are characterized by pole in

ω+(k) = −i k
2

mΓ

(
k2

m
+ 2µ

)
; (3.41)

notice the di�erent asymptotic behaviors at small k, k2 versus k4, when the polariton-polariton
interaction is present or not.

In the presence of an incoherent reservoir of carriers, as described by Eqs. (1.8,1.9) and originally
studied by (Wouters and Carusotto [2007]), a third branch is present at zero real energy and with
�nite lifetime; also in this case, the slow frequency physics is expected to be dominated by the
Goldstone dome.

The Bogoliubov approach in 1D is not self-consistent: as highlighted by Chiocchetta and Caru-
sotto [2013], the spatial correlations can be computed evaluating 〈δφ∗kδφk〉 at equal times from
Eq. (3.39) and are predicted to decay exponentially with the distance. This is the prediction of
the expected lack of long-range order in low dimensionality; since the Bogoliubov theory requires
linearization on top of a uniform state, the Bogoliubov approximation is not internally consistent
in 1D. Nontheless, the �nal result that the spatial correlations decay exponentially is correct, as
we move to consider now in a more proper theoretical framework.

Here we will deal with Eq. (3.37) with the assumption of small noise amplitude. In this case we
can safely treat density �uctuations as �rst order perturbations. However, since we are in 1D, the
polariton �eld will describe a quasi-condensate dynamics, where the coarse-grained phase performs
a random walk along the wire. As a result, it is not possible to treat the phase variations as a
small deviation from the uniform state.

The strategy pursued by Gladilin et al. [2014] has then been to adiabatically get rid of density
�uctuations and obtain a nonlinear equation for the phase. Let' s start by writing down Eq. (3.37) in
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the phase-density formalism with ψ(x, t) =
√
n0 + δn(x, t)eiφ(x,t)−iµt ' √n0

(
1 + δn

2n0

)
eiφ(x,t)−iµt:

∂t
δn

2n0
= − 1

2m

[
2∂x

δn

2n0
∂xφ+

(
1 +

δn

2n0

)
∂2
xφ

]
− Γ

δn

2n0
+

√
D

n0
ξ1, (3.42)

∂tφ = − 1

2m

[
∂2
x

δn

2n0
− (∂xφ)2

]
− 2µ

δn

2n0
+

√
D

n0
ξ2. (3.43)

Assuming fast relaxation of the intensity �uctuations, one can neglect all the terms containing δn
but the one proportional to Γ and set

δn

2n0
' −Γ−1

2m
∂2
xφ+ Γ−1

√
D

n0
ξ2. (3.44)

Reinjecting this expression in the equation for the phase, one has to deal only with the dynamics
of the phase, which is described by the Kuramoto�Sivashinsky equation (KSE)

∂tφ =
1

2m

[
−Γ−1

2m
∂4
xφ− (∂xφ)2 + 2µΓ−1∂2

xφ

]
+

√
D

n0
ξ1. (3.45)

Importantly, here φ is the unwound phase living on the real axis, and not the compact one restricted
to [0, 2π]. The characteristic scales of the system can be expressed as a function of the microscopic
parameters:

l∗ =

[
J4

Γ3Dn−1
0

]1/7

, t∗ =

[
J2

Γ5(Dn−1
0 )4

]1/7

,

φ∗ =

[
(Dn−1

0 )2

JΓ

]1/7

, µ∗ =
1

2

[
Γ6(Dn−1

0 )2

J

]1/7

. (3.46)

Measuring space, time, (unwound) phase and Hartree potential in terms of l∗, t∗, φ∗, µ∗ (and after
sending φ→ −φ) the adimensional KSE reads

∂t̃φ̃ = µ̃∂2
x̃ − ∂4

x̃φ̃+ (∂x̃φ̃)2 + ξ̃. (3.47)

The renormalization group analysis shows that at long distances and times the KSE �ows to
the KPZ universality class (Ueno et al. [2005]), whose main features we state here, while a more
formal introduction is left to the next Section. The KPZ equation reads

∂t̃φ̃ = ν∂2
x̃φ̃+

λ

2
(∂x̃φ̃)2 +

√
Dξ1 (3.48)

and it was originally proposed by Kardar et al. [1986] to describe the growth of interfaces. Its scaling
behavior at low energies (and assuming an in�nite system and stationary regime) is characterized
by the correlation function

∆φ̃2
x̃,t̃ ≡ 〈[φ̃(x̃, t̃)− φ̃(0, 0)]2〉 (3.49)

and by two exponents χ, z which determine the asymptotic behavior of the spatial and temporal
correlations respectively, according to ∆φ̃2

x̃,0 ∼ x̃2χ and ∆φ̃2
0,t̃
∼ t̃2χ/z.

In 1D we have χ = 1/2 for the roughness exponent and z = 3/2 for the dynamical exponent;
even more precisely it holds

∆φ̃2
x̃,t̃ =

(
1

2
λA2t

)2/3

gKPZ

(
x̃

(2λ2At̃2)1/3

)
(3.50)

where A = D
2ν is the variance of ∂x̃φ̃. The universal function gKPZ is known exactly (Prähofer

and Spohn [2004]) and we here recall its limiting values gKPZ(u) − 2|u| → 0 for u → ∞ and
gKPZ(u) → 1.150... for u → 0. As a consequence, the equal�time correlation function has the
random walk form ∆φ̃2

x̃,0 = A|x̃|, which is insensitive to the KPZ nonlinearity λ and can be captured
by a linearized Bogoliubov analysis. In other words, only looking at the spatial correlations the
dynamics is not distinguishable from the one of the linear (λ = 0) Edwards�Wilkinson (EW)
model. In both cases, one has χ = 1/2 which corresponds to an exponential decay of the spatial
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Figure 3.3: Bogoliubov-KPZ crossover in polariton laser wires. (left) The equal-time correlation
function 〈φ̃∗kφ̃k〉 plotted a function of k for di�erent values of µ̃. (right) Decay time τk extracted
from the correlator 〈ψk(t)∗ψk(0)〉 ' n0e

−t/τk . While in the presence of repulsive interactions the
Bogoliubov prediction works very well for the system size explored here, when µ̃ = 0 there is a
clear emergence of the KPZ exponents at small k. Plots taken respectively from (Gladilin et al.
[2014]) and (Ji et al. [2015]).

coherence (Gladilin et al. [2014], He et al. [2015]). A di�erence is instead visible in the spatio-
temporal correlations, which have di�erent exponents in the two models, namely z = 2 in the linear
EW model and z = 3/2 in KPZ.

These concepts have been well illustrated in the works (Gladilin et al. [2014], Ji et al. [2015]),
where the crossover between the linear and nonlinear theory at di�erent observation length scales is
higlighted. In particular in those works, the equal-time correlation function 〈φ̃∗kφ̃k〉 and the decay
time τk, as extracted from the correlator 〈ψk(t)∗ψk(0)〉 ' n0e

−t/τk , are plotted a function of k and
di�erent values of µ̃, see Fig. 3.3. In particular, when µ̃ = 0 there is a clear crossover between the
Bogoliubov prediction that works at small distances and the KPZ exponents that are visible at
low momenta. Moreover, from both panels it emerges the role played by the polariton-polariton
interaction: since this provides a stabilization mechanism (visible in the fact that the red modes
in Fig. 3.2 are much more damped than the blue ones), �owing to the KPZ regime requires longer
systems and longer times. For this reason in what follows we will focus on the numerically easier
case g = 0.

A numerical demonstration of the collapse of the coherence functions to the scaling form (3.75)
will be instead given in Fig.4.10(b) of the next Section in comparison with the topological lasing
case.

3.2.2 KPZ universality

Kardar, Parisi and Zhang in 1986 (Kardar et al. [1986]) proposed that the scaling properties of the
dynamics of a growing interface can be captured by the KPZ equation

∂th = ν∇2h+
λ

2
(∇h)2 +

√
Dξ, (3.51)

with5 〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′). Here h(x, t) is the height of the interface on a d-
dimensional substrate, ν is called the surface tension and promotes a smooth surface, while the
Langevin term describes stochastic noise.

The crucial term though is the nonlinear one. Realistic interfaces grow in the direction which
is locally normal to the interface itself, so that in a small interval δt the interface front is pushed
forward by an amount λδt, denoted by the blue arrows in Fig. 3.4.a; this step has to be projected
in the direction of the h axis, by multiplying by 1/ cos θ where tan θ = |∇h|, as suggested by the
magenta arrow in Fig. 3.4.a. Finally one assumes that the slope of the interface is always small, so
that expanding for small angles yields δh = λδt(1 + 1

2∇h
2); the �rst term yields a constant growth

velocity over all the substrate and is neglected.

5 Some care needs to be paid since an equally used convention in the statistical mechanics literature is that the
strength of the Langevin term is 2D instead of D... crucially, in the fundamental work Prähofer and Spohn [2004]
there is a factor 2 missing in the �rst equation!
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x

h

δh(x)

  

Figure 3.4: Interface growth in the KPZ class. (left) A typical 1d interface is plotted in red. The
growth proceeds normally to the local front with a step λδt highlighted in blue, while it is the
projection δh, in magenta in the �gure, to enter the KPZ equation. (right) Diagram in di�erent
dimensionalities of the KPZ �xed points as characterized by the e�ective nonlinear parameter λ̄;
taken from Kamenev [2011].

There is also some connection between the KPZ equation and hydrodynamics. De�ning v =
−∇h, the gradient of Eq. (3.51) yields the Burgers equation

∂tv + λv · ∇v = ν∇2v +
√
Dξ, (3.52)

which is one form of the incompressible Navier-Stokes equations. The left-hand side is in the form
of a convective derivative and suggests the invariance under the Galilean transformation to a frame
moving at constant velocity v0

x′ = x− λv0t , v′(x′, t) = v(x, t)− v0; (3.53)

in the KPZ framework this translates into the invariance under the tilt by the in�nitesimal vector
ε, that is

x′ = x− λεt , h′(x′, t) = h(x, t) + ε · x. (3.54)

We now brie�y sketch the path integral approach following Frey et al. [1996] and Kamenev
[2011]. The Keldysh action can be obtained via the Martin-Siggia-Rose procedure starting with
the integral over all �eld con�gurations and noise realizations

Z =

∫
D[ξ(x, t)]e−ξ

2/2

∫
D[h(x, t)] δ

(
∂th− ν∇2h− λ

2
(∇h)2 −

√
Dξ
)

(3.55)

At this point the Dirac delta is represented as δ(y(x, t)) =
∫
D[p(x, t)] eipy, the noise ξ is Gaussianly

integrated and the rede�nition p = 2ihq is performed, so that we are left with

Z =

∫
D[h(x, t)]D[hq(x, t)] e−S[h,hq ] (3.56)

where the Keldysh action for KPZ reads

S[h, hq] = hq∂th− νhq∇2h− λ

2
hq(∇h)2 − D

2
(hq)2. (3.57)

The correlation function in this formalism is obtained by adding a source term
∫
dxdt (jh+ jqhq)

to (minus) the action and taking the functional derivative

C(x, t) = 〈h(x, t)h(0, 0)〉 =
δ2 logZ[j, jq]

δj(x, t)δj(0, 0)

∣∣∣∣
j,jq=0

. (3.58)

Together with the correlator, it is in general necessary to consider the response function (or retarded
Green's function)

G(x, t) = 〈h(x, t)hq(0, 0)〉 =
δ〈h(x, t)〉
δjq(0, 0)

∣∣∣∣
j,jq=0

. (3.59)
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Since this is an out-of-equilibrium model, in principle the correlator and response function are
not linked by a �uctuation-dissipation relation, as it occurs in equilibrium statistical mechanics.
This is rooted in the fact that, in order to treat the dynamics, the Keldysh partition function is
expressed in terms of two independent �elds h, hq, while in the Keldysh action for an system h and
hq are related by a symmetry transformation (Sieberer et al. [2015]).

At this point it is useful to rewrite the KPZ equation in Fourier space as

h(k, ω) = G0(k, ω)ξ(k, ω) +
λ

2
G0(k, ω)

∫
dq

(2π)d
dω′

2π
q · (k− q)h(q, ω′)h(k− q, ω − ω′), (3.60)

where the bare response function is given by

G0(k, ω) =
1

−iω + νk2
, (3.61)

corresponding to G0(k, t) = e−νk
2t in real time, which can be also recognized as the kernel of the

heat equation. When λ = 0 the KPZ equation reduces to the linear Edwards-Wilkinson (EW)
equation, which is easily integrated and yields the bare correlator

C0(k, ω) =
D

ω2 + (νk2)2
. (3.62)

It is instructive to consider the perturbative renomalization group (RG) procedure applied to
the KPZ equation. The idea is to progressively integrate out the high momentum6 components
of the �elds and to write an e�ective action with renormalized parameters for the coarse-grained
�elds; assuming that λ is small, the renormalized parameters are computed perturbatively.

In practice one introduces an ultraviolet cuto� Λ and breaks the momentum space in two
regions, [0,Λ/b] and [Λ/b,Λ] with b > 1. The slow or coarse-grained component of the h �eld is
hs(k, ω) = h(k, ω) for k in the �rst interval and zero otherwise; in a similar way one builds hqs and
the fast �elds hf , h

q
f . The action is correspondingly split in the following manner:

S[h, hq] = Ss[hs, h
q
s] + S0

f [hf , h
q
f ] + δSfs , δSfs = −λ

2

∫
dx
[
hqs(∂xhf )2 + 2(hf∂xhf )(∂xhs)

]
+ ...

(3.63)
where in view of the next developments we have neglected a few terms and in the fast action we
cut the nonlinear vertex. The fast degrees of freedom are then perturbatively integrated out∫

s,f

e−S =

∫
s

e−Ss〈e−δSfs〉f,0 =

∫
s

e−Ss+log〈exp[−δSfs]〉f,0 , (3.64)

where the integrals imply integration over the fast and slow degrees of freedom and the average
over the fast Gaussian system 〈·〉f,0 =

∫
f
· e−S

0
f has been introduced. At this point one expands

the inner exponential in a series of λ, computes the Gaussian averages via the Wick theorem and
takes the logarithm; the coe�cients of the series in λ contain the slow �elds and momenta, which
are then included as a correction to the bare parameters. The one-loop corrections to ν,D are
expressed diagrammatically as7

where the inner (outer) lines correspond to the fast (slow) �elds and the dotted (solid) lines
to hq (h) respectively. The �rst diagram renormalizes the D2 (hq)2 term, the second νhq∂2

xh. The
one-loop renormalization of the vertex is instead determined by the two diagrams

6In principle one should do the same thing for the frequencies, but in practice performing this procedure on
momenta is enough to cure the divergencies.

7plots taken from Kamenev [2011].
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which however cancel out. The cancellation of the vertex corrections repeats itself at any order
of perturbation theory, and there is a deep reason behind. Since hs appears in the vertex δSfs
only through its spatial gradient, there is no correction to hq∂th. On the other hand, the Galilean
or tilt invariance of the microscopic requires that the form of the convective derivative remains the
same at each scale8: if hq∂th is not renormalized, the nonlinear term λ is preserved in the RG �ow
too.

Before integrating out the fast degrees of freedom, one usually performs the rescaling k → bk
so that the new momenta live in the original shell [0,Λ] and the initial action with corrected
parameters is recovered; also the �eld are correspondingly rescaled according to

r→ r/b, t→ t/bz, h→ h/bχ, hq → hq/bχ
q

, (3.65)

which corresponds to zooming out the system and where the three exponents z, χ, χq appear.
Because of the above discussion, it is convenient to implement explicitly the stationarity of hq∂th
under the RG �ow, which is done by setting χq = −χ− d. In the absence of the nonlinearity the
Edwards-Wilkinson equation is trivially scale-invariant provided that ν,D are adimensional, with
exponents that are then �xed to z = 2, χ = 1 − d/2 by dimensional analysis. Since the scaling of
the KPZ nonlinear term occurs with the exponent 2− d− z − 2χ− χq, the previous condition on
χq implies that λ does not �ow if

χ+ z = 2; (3.66)

this is the fundamental relation between the exponents which stems from the tilt invariance of the
KPZ equation.

The discrete RG steps are made into a continuous �ow by setting b = es and computing deriva-
tives of the renormalized parameters with respect to s. It is convenient to introduce the e�ective

KPZ nonlinearity λ̄(s) = λ
√

2ν(s)
D(s)3 , which is the quantity that fully determines the dynamics of

the adimensionalized KPZ equation

∂t̄h̄ = ∇̄2h̄+
λ̄

2
(∇̄h̄)2 + ξ̄. (3.67)

The RG equation for λ̄ reads

∂sλ̄
2 =

(
ε+

1− 2ε

1− ε/2
Sdλ̄

2

)
λ̄2 (3.68)

with Sd the surface of the momentum sphere and ε = 2− d, while ν,D �ows as

∂sν = (z − d− 2χ+ Sdλ̄
2)ν, ∂sD = (z − 2− ε

d
Sdλ̄

2)D. (3.69)

From Eq. (3.68) it is clear that the Gaussian �xed point λ̄ = 0 is stable only if d > 2 9. In these
dimensionalities there exist also another perturbative unstable �xed point for λ̄2

c = −ε/Sd; for
small negative ε it is possible to inject λ̄c in the RG equations and extract consistently χ, z from
the requirement that ∂sν = ∂sD = 0. One then �nds χ = O(ε2), z = 2 − O(ε2) which express
the tendency of the interface to become �at on large scales. As suggested by Fig. 3.4.b at even
higher coupling constants the RG will �ow towards a strong coupling regime which goes beyond
this perturbative analysis.

8that a symmetry is preserved in the RG �ow and no anomalies occur is formally proven by making use of the
Ward identities (Frey and Täuber [1994]).

9that the critical dimension should be 2, it can be understood already at the level of the Gaussian theory, whose
scaling entails that the dimension of the nonlinear coupling is ε/2 = 1− d/2, which is irrelevant in d > 2.
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In low dimensions d < 2, instead, the Gaussian �xed points is always unstable and the surface
roughens for any microscopic value of λ 6= 0. The perturbative analysis predicts in d = 1 the non-
perturbative �xed point λ̄2 = 1/(2S1), leading to χ = 1/2, z = 3/2; while the one-loop approach is
in principle unreliable in this regime, this is by chance the correct result, as shown below.

This procedure can be applied also to the Kuramoto-Sivashinky equation introduced in the pre-
vious Section, as done by Ueno et al. [2005]. In particular, the same Galilean invariance argument
holds so that λ is not renormalized in the RG �ow; instead, the fourth derivative term turns out
to be irrelevant and in general the surface tension term will be generated even if not present in the
microscopic equation.

It is also important to mention that, while we have shown here the one-loop perturbative
corrections, it is possible to set up a non-perturbative RG procedure (Canet et al. [2010]), which
allows to study rigorously the �ow in all dimensionalities.

In 1D the previous one-loop analysis leads to the correct result for the exponents in spite of
the fact that it is not well justi�ed. However, it is possible to deal with this case with simple and
rigorous arguments. To start with, the Fokker-Planck equation associated with the KPZ equation
reads

∂tP [h,x, t] =

∫
dx

δ

δh(x)

[
−
(
ν∇2h+

λ

2
(∇h)2

)
P +

D
2

δP

δh(x)

]
, (3.70)

the �rst term arising essentially from the conservation of probability (continuity equation) and the
second from heat-like di�usion. The remarkable fact is that in 1d the �eld distribution

P [h] = e−
ν
D

∫
dx(∂xh)2

(3.71)

is a stationary solution of the Fokker-Planck equation, as a consequence of 3∂2
xh(∂xh)2 = ∂x(∂xh)3

being a full derivative. Importantly, it follows that, even though ν and D will both grow in the
RG �ow10, the ratio A = ν

2D is not renormalized and the equal time correlator

C(x, 0) = 〈h(x, 0)h(0, 0)〉 = A|x| = C0(x, 0) (3.72)

is independent (of the very presence) of λ. In particular, one cannot determine from static and
isolated snapshots of the system if the underlying microscopic equation is the linear EW or the
nonlinear KPZ one. From Eq. (3.72) one can see that the roughening exponent is χ = 1/2; then,
from χ + z = 2 as prescribed by the Galilean invariance, the dynamical exponent z = 3/2 is
obtained. These results are strongly related to the invariance in 1d under the generalized time-
reversal transformation

h(x, t)→ −h(x,−t) , hq(x, t)→ hq(x,−t) + 2A∂2
xh(x,−t). (3.73)

Exploiting this symmetry plus the causality constraint G(x, t < 0) = 0 for the response function,
one can prove the �uctuation-dissipation relation

C(k, ω) = D|G(k, ω)|2 (3.74)

or equivalently G(k, t) = 2νk2

D θ(t)C(k, t) in real time.
In 1d the precise scaling of the steady-state solutions of the KPZ equation has been computed

exactly by Prähofer and Spohn [2004] by expressing the 2-point correlator of the polynuclear growth
model, which belongs to the KPZ universality class, in terms of a Painlevé II equation. The result,
anticipated in the previous Section, is

C(x, t) = 〈h(x, t)h(0, 0)〉 =

(
1

2
λA2t

)2/3

gKPZ

(
x

(2λ2At2)1/3

)
(3.75)

with gKPZ(u)− 2|u| → 0 for u→∞ and gKPZ(u)→ 1.150... for u→ 0.
Last but not least, we mention that it is possible to study the growth process going beyond

the correlation functions and looking directly at the stochastic properties of height variable. One
indeed �nds that

h(0, t) ' v∞t+ (κt)1/3χ(t), (3.76)

10at the strong coupling �xed point ν and D do not converge.
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Figure 3.5: Kardar-Parisi-Zhang to Schawlow-Townes crossover in the temporal coherence of �nite,
one-dimensional laser arrays The numerical prediction of Eq. (3.36) for the logarithm of the equal�
space time correlation function − log g(1)(t) is plotted in loglog scale as a function of time for
increasing system sizes Nx = 64 (left), Nx = 256 (middle), Nx = 1024 (right). In all cases, lasing
occurs around klasx = 0. For a given temporal window, the decay of the coherence is dominated by a
Schawlow�Townes�like di�usion g(1)(t) ∼ e−B|t| for small sizes [panel (a)] and by the KPZ behavior
g(1)(t) ∼ e−B|t|

2/3

for large sizes [panel (c)]. The crossover between the two regimes is visible for
intermediate sizes [panel (b)]. The cyan and red lines are �ts of log[− log g(1)(t)] with functions of
the form 2β log |t|+B′. Other system parameters: J = 0.5γ, P = 2γ, nS = 1000, D = γ.

where v∞, κ are non-universal parameters and χ(t) is a random variable of zero mean and unit
variance distributed according to three possible distributions well-known in random matrix theory:
Tracy-Widow for the Gaussian Unitary Ensemble (TW-GUE) or for the Gaussian Orthogonal
Ensemble (TW-GOE) or Baik-Rains (BR). These three possibilities de�ne three sub-universality
classes, which are selected by the KPZ dynamics depending on the boundary conditions; for an
e�ectively in�nite system at the steady-state the BR distribution is the relevant one. We point to
the review by Takeuchi [2018] for more details and for the original references.

3.3 Linewidth of extended 1D laser systems*

(this Section closely follows Sec. II of Amelio and Carusotto [2019])

As explained before, in the Schawlow-Townes treatment very well known to laser theorists the
spatial extension of the laser is irrelevant and the dynamics is e�ectively restricted to the phase
of a single complex number, the main quantity of interest being the linewidth. On the contrary,
in the statistical mechanics literature the focus has been so far on the KPZ scaling in 1D in�nite
systems. Even though the �nite size corrections to the KPZ behaviour have been studied to some
extent, the linewidth or coherence time at asymtotic timescales had never been considered before
to our knowledge. In this Section we want to bridge the gap and study how spatial �uctuations
a�ect the temporal coherence of the nonequilibrium �eld at very long times. To this purpose, the
crucial quantity to study is the time dependence of the equal�space correlator

g(1)(t) =
1

n0
|〈ψ∗(x, t)ψ(x, 0)〉| , (3.77)

which characterizes the temporal coherence of the emission. The dependence of g(1) on x has been
dropped since we are considering a spatially uniform system.

Within the Bogoliubov approximation, modes of di�erent momenta are decoupled. For a dis-
crete lattice, one obtains with simple algebra that

〈[φ(x, t)− φ(x, 0)]2〉 =
1

Nx

∑
x

〈[φ(x, t)− φ(x, 0)]2〉 =
1

Nx

∑
k

〈[φ(k, t)− φ(k, 0)]2〉 '

' 1

Nx

∑
k

〈∫ t

0

dt′ e−iω+(k)(t−t′)

√
D̄k

n0
ξ1(t′)

2〉
=

1

n0Nx

∑
k

D̄k

∫ t

0

dt′e−2iω+(k)(t−t′). (3.78)
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Figure 3.6: Extraction of the coherence time. (a) Correlation functions g(1)(t) extracted from 8
runs and their average, for Nx = 128, J = 5γ. Linear �tting between red dots yields τc. (b) Loglog
plot of (minus) the logarithm of averaged g(1)(t). Red line is linear �t of log[− log g(1)(t)] with
2β log |t|+B′, highlighting the Schawlow�Townes regime.

where for illustrative purposes we have restricted the sum to the modes belonging to the Goldstone

branch and close to k = 0. The e�ective drift coe�cients D̄k =

(
1
2 + Γ

2
√

Γ2−4(Jk2)2

)2

D are

determined by the shape of the Bogoliubov modes and tend to D in the long-wavelength limit
k → 0. In this same limit, the lowest Bogoliubov mode has a di�usive character with ω+(k) =
−iγ+(k) = −iJ2Γ−1k4, as reviewed in the previous Section. The factor 1/Nx in front of (3.78)
can be interpreted by viewing the white spatial noise as randomly drawing noise realizations with
a given k and unit strength at each site. The probability to pick a given mode is then 1/Nx. Note
that the �ultraslow decay of �uctuations� that was numerically observed in [Seclì et al., 2019] is a
consequence of the softness of the di�usive Goldstone branch and thus a general feature of spatially
extended lasers.

In a spatially �nite system where k is quantized, only the k = 0 mode gives a �nite contribution
at long times, proportional to |t|; the contribution of all other modes decays instead exponentially
with time. From this, one immediately obtains the expression of the Bogoliubov�Schawlow�Townes
coherence time

τc = τST = 2γ−1
ST =

2n0Nx
D

(3.79)

that generalizes the Schawlow-Townes phase di�usion to the case of a �nite laser array, n0Nx being
equal to the total number of photons. Notice that τST does not depend on J . Moreover, the array
can lase in any klasx depending on the initial conditions: the di�usive Goldstone dome will then
feature an e�ective coupling Jeff , given by the curvature of the free array dispersion in klasx , but
τST will not depend on klasx . In any case, in the following of the Chapter we will stick to the case
of zero winding number.

For the sake of discussion, the situation is a bit di�erent for a strictly in�nite array. In this case,
the sum over discrete k modes has to be replaced by an integral in dk. This yield the Bogoliubov
prediction g(1)(t) ∼ e−B|t|

3/4

, where B is a constant. The slower power-law decay stems from the
fact that the speci�c k = 0 mode is now occurring with a probability zero. It is worth noting that
a di�erent scaling would be found in the presence of a nonlinear refractive index. In this case,
the imaginary part of the Bogoliubov frequency would scale as γ+(k) ∝ k2 in the long-wavelength
k → 0 limit (Wouters and Carusotto [2007]), leading to a slower decay g(1)(t) ∼ e−B|t|

1/2

in an
in�nite one-dimensional system. Instead, the coherence time (3.79) of a �nite Bogoliubov system
is not changed by the refractive index nonlinearity.

Of course, the linearized Bogoliubov approximation, where di�erent modes are decoupled, is
not adequate for an in�nite or large enough system, where nonlinear KPZ features set in.

For an in�nite system a stretched exponential behavior

g(1)(t) ∼ e−B|t|
2β

(3.80)
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Figure 3.7: Scaling of the coherence time with system size Nx. The coherence time τc is extracted
from the long-time exponential decay of coherence for di�erent systems. Blue and cyan markers
refer to the one-dimensional, topologically trivial arrays of laser resonators of Eq. (3.36) with
di�erent values of the inter-site coupling J = 5γ and J = 0.5γ, and zero winding number. The red
and orange markers refer to the topological laser case of Eq. (4.23) for the same two values of J .
For each point, the value of the coherence time τc is normalized to an e�ective single-site coherence
time τST,1. For the 1D array, this is de�ned by the Schawlow-Townes formula (3.79). For the
topological 2D array, it is given by τST,1 ≡ τST /Nx, with τST being the Bogoliubov�Schawlow-
Townes prediction (4.29) that includes the (small) Petermann correction.

was predicted in [He et al., 2015], with a universal 2β = 2χ/z = 2/3 and a non�universal value of
the constant B.

If the system is su�ciently large but �nite, the Bogoliubov approximation breaks down, but the
spontaneously broken U(1) symmetry still imposes that the coherence must decay at long times at
least as fast as a pure exponential, g(1)(t) ∼ e−|t|/τc . In this case, we expect that the KPZ physics
typical of the in�nite chain should remain visible only for intermediate times, up to a saturation
time scaling as (Nx)z.

These arguments on the functional form of the temporal decay of coherence are quantitatively
illustrated in Fig. 3.5, where we display the temporal correlation function computed by numerically
solving Eq. (3.36) for three di�erent system sizes Nx = 64, 256, 1024 initialized in the kx = 0 state:
the thick black line shows − log g(1)(t), while the red and cyan lines are linear �ts in the loglog
scale of the plot. Keeping the same observation window, for small system sizes the temporal decay
of the coherence g(1)(t) is mainly di�usive and follows an exponential law [panel (a)]. For very
large sizes [panel (c)], the exponential Schawlow�Townes behavior is pushed at very long times so
that only the KPZ stretched exponential g(1)(t) ∼ e−B|t|

2/3

is clearly visible in the time window
displayed in the plot. An attempt to see the exponents of both regimes on a single plot is shown
in the plot for an intermediate size shown in panel (b): while a hint of them is visible, a complete
separation of the two regimes would require a very large system sizes and very long observation
times, which is numerically very demanding.

More speci�cally, the numerical e�ort required for the calculation of τc(Nx) grows up rapidly
with Nx, since one has to access the dynamics at very long times, larger than the KPZ saturation
time scaling as ∼ N

3/2
x . For this reason, an intensive analysis of the accuracy of the data points

reported in Fig. 2 of the main text has been restricted to the Nx = 128, J = 5γ case.
For this dataset we performed 8 runs of duration T = 108γ−1, the corresponding correlation

functions g(1)(t) being reported in Fig. 3.6.a. Because of �nite statistics, the resolution of g(1)(t)
is limited and the curves reach a noisy plateaux at very large times. The average of the 8 runs
is taken (more speci�cally the complex functions 〈ψ∗(x, t)ψ(x, 0)〉 are averaged over all the runs
and the absolute modulus is taken afterwards) and we extract τc by a linear �t of log g(1)(t) in
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Figure 3.8: Non-monotonic behavior of τc(Nx). The coherence time τc(Nx), corresponding to the
cyan points of Fig. 3.7, is studied for intermediate system sizes at di�erent values of the rescaling
parameter σ, which quanti�es how �ne the numerical grid is. The agreement between the di�erent
datasets suggests that the curious monotonic behavior observed is an instrinsic property of the
continuous Kuramoto-Sivashinskii equation, and not an artifact of the grid discretization or an
e�ect due to large density �uctuations.

the interval indicated by the red dots, which is of the order of τc itself. The same is done also for
the single runs, resulting in a mean coherence time of γτc ' 9.72 · 104 with a standard deviation
of 0.73 · 104, which is approximatively the size of the marker in Fig. 2 of the main text. From
the averaged correlation function instead we extracted γτc ' 9.40 · 104. Recall that our goal here
is mainly to establish deviations from the Bogoliubov�Schawlow�Townes prediction, which yields
the much larger γτST ' 2.56 · 105.

The logarithm of the averaged g(1)(t) is plotted in loglog scale in Fig. 3.6.b. Here we �t the
curve in the same interval of Fig. 3.6.a, to prove that τc has been computed by considering large
enough times to be in the Schawlow-Townes regime.

Finally, we argue that this analysis allows to have a rough estimate of the uncertainty of τc
also for the other sizes and couplings, for which we have performed a single run, instead of 8.
In particular, for Nx < 128, the standard deviation computed here is an upper bound for the
statistical error done by extracting τc(Nx) from a single simulation of duration T .

The KPZ scaling of g(1)(t) at intermediate times is a clear indication of the crucial role of
nonlinear coupling between modes in determining the phase dynamics. While the linearized Bo-
goliubov theory predicts the (qualitatively correct) exponential form of the decay of coherence at
long times, it is natural to wonder whether the KPZ nonlinear couplings are responsible for any
quantitative deviation of the coherence time from the Bogoliubov�Schawlow�Townes prediction
(3.79).

This issue is numerically investigated in Fig. 3.7 where we plot the numerical result for the
coherence time τc in one-dimensional arrays of increasing sizes for two di�erent values of the inter-
site coupling J = 5γ (blue) and J = 0.5γ (cyan) . To better highlight the KPZ features, we have
normalized the coherence time to the single site Schawlow�Townes coherence time

τST,1 ≡ τST /Nx =
2n0

D
. (3.81)

For all parameter choices, the coherence time follows the Bogoliubov scaling proportional to Nx
until a certain critical size numerically compatible with the scaling of l∗ ∼ J4/7 given in (3.46),
after which its increase with Nx occurs at a much slower rate.

This marked deviation is indeed expected and can be understood looking at the KPZ equation
(3.48): the total phase drift is the k̃ = 0 part of the phase �eld, which can be decomposed in two
statistically independent contributions

φ̃(x̃, t̃) = φ̃0(t̃) + φ̃′(x̃, t̃). (3.82)

Here, φ̃0 accounts for the global phase evolution generated by the k̃ = 0 component of noise,

∂t̃φ̃0 ≡
√
Dξ1(k̃ = 0, t̃), (3.83)
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and yields the Schawlow�Townes drift. Even though the equation for φ̃′(x̃, t̃) is independent of
ξ1(k̃ = 0, t̃), an additional evolution of φ̃′(k̃ = 0, t̃) is induced by the �nite k̃ components φ̃′(k̃ 6= 0, t̃)
of the phase �eld via the KPZ nonlinearity λ. The additional phase noise induced by this nonlinear
coupling is responsible for the deviation of the coherence time from the Bogoliubov-Schawlow-
Townes prediction visible in Fig. 3.7.

We provide here some numerical evidence and theoretical argument that suggests that the
exponent ρ characterizing the large Nx dependence τc ∼ Nρ

x should be ρ = 1/2 (Amelio et al.
[2020a]). Indeed, let's assume a scaling behavior for the equal-space time phase correlator, in the
form

∆φ0,t ∼ t2/3f
(

t

N
3/2
x

)
, (3.84)

so that for t smaller of the saturation time O(N
3/2
x ) we can assume f ∼ 1 and we recover the

correct KPZ scaling. At longer times, instead, we make the ansatz f(x) ∼ x1/3 so that the correct
di�usive time dependence is obtained: from ∆φ0,t ∼ t

N
1/2
x

we make the guess that τc ∝
√
Nx

for very large Nx's. This is in good agreement with numerical data as taken for J = 0.5γ up to
Nx = 1024, see the cyan dotted line in Fig. 3.7, for which this scaling seems to be ful�lled at least
over an order of magnitude.

The complex behaviour of τc(Nx) at intermediate Nx suggests that a quantitative explanation
of the phenomenon requires a non�perturbative computation that we are starting to work out
based on the so called Mode Coupling Approximation (Frey et al. [1996]). Here we limit to prove
that the non-monotic behavior of τc(Nx) is an long-distance e�ect, and it is not due the weak value
of the coupling J , which in principle could give rise to some nontrivial short-distance dynamics.
This is studied by rescaling the microscopic parameters according to

J → σ2J, D → σD. (3.85)

Plugging these transformations into Eqs. (3.46), we have that the only characteristic scale to be
modi�ed is l∗ → σl∗, while the time and phase scales are unchanged. Rescaling also the physical
size of the system according to Nx → σNx, the e�ective size of the system Nx/l

∗ is una�ected.
In Fig. 3.8 we show that τc(Nx) in the non-monotonic region is independent, within statistical
�uctuations, of σ = 1, 2 or 3. This rules out that this strange behavior comes from discretization
issues of the laser array equation. In parallel, this procedure also provides an a posteriori indirect
check that the level of local noise is small enough to adiabatically remove the density degrees of
freedom and the scales associated to the density dynamics, so to restrict to the �phase" scales of
Eqs. (3.46). The non-monotonic behavior has then to be attributed to some long-distance property
of the Kuramoto�Sivashinsky equation.

The results from Eq. (3.84) and other analyses will be presented in a future publication (Amelio
et al. [2020a]).

3.4 Conclusions

In this Chapter we have studied the linewidth of 1D non-equilibrium quasi-condensates, as can be
implemented by incoherently driven polariton wires or laser arrays.

In Section 3.1 we brie�y gave the basics of laser theory and of the classical theory of the linewidth
by Schawlow and Townes. In Section 3.2 we reviewed the theory of 1D non-equilibrium quasi-
condensates, which have been recently studied in connection to polariton �uids, demonstrating
that the low energy physics falls in the KPZ universality class.

The original results are contained Section 3.3: here we highlighted the crossover, as a function
of the observation time, between KPZ scaling and phase di�usion in large but �nite systems. We
showed that the linewidth, that is the rate of the phase di�usion, for large systems deviates from
the Bogoliubov prediction, with the further broadening being due to nonlinear phase �uctuations.

A similar linewidth enhancement is expected also for lasing in other lattice dimensionalities
(with a smaller value of ρ in lower dimensions) as well as in equilibrium atomic condensates at zero
temperature. For the sake of completeness, nonlinear mode couplings were predicted in (Sinatra
et al. [2009]) to play a crucial role in the phase di�usion of equilibrium condensates, but have a
di�erent physical origin in Beliaev processes. The linewidth broadening e�ect we have reported here
arises instead from spatial �uctuations; to what extent this phenomenon is qualitatively di�erent

Coherent Dynamics of Low Dimensional Quantum Fluids of Light and Matter. I. Amelio



Conclusions 83

in low dimensions, where long-range order cannot be established, remains the subject of future
investigations.
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Chapter 4

Theory of the coherence of the

Harper-Hofstadter topological laser

The goal of the present Chapter is to apply the techniques developed in the previous Section to the
study of a simple model of a 2D topological laser. This new concept of laser device holds a promise
for practical applications, based on a few interesting properties arising from topology, including
non-reciprocity of the emission and robustness to fabrication imperfections. Our work is the �rst
study of the spatio-temporal coherence of topological lasers.

A due introduction to topological photonics and lasing is provided in Section 4.1, where the
Harper-Hofstadter model is also presented in details. In Section 4.2 the Bogoliubov theory is ap-
plied to study the excitation modes and the coherence of the Harper-Hofstadter laser: in particular,
it is shown how to map the edge dynamics to a 1D system and the Schawlow-Townes linewidth is
computed. While this analysis holds for small arrays, in Section 4.3 large lattices are considered for
which the phase dynamics on the edge is a nonlinear one and one can �nd the signatures of the KPZ
universality. The robustness of the coherence properties in the presence of disorder is demonstrated
in Section 4.4. Relevance for real devices is carefully considered in the �nal Section 4.5.

4.1 Topological lasers

In this Section we will review lasing in the edge modes of a topological structure. We will �rst
introduce general topological features of linear photonic systems and then discuss the recent ex-
perimental realizations of lasing. The simple Harper-Hofstadter model is �nally de�ned, which will
be the basis for the investigations of the next Sections.

4.1.1 Topological photonics

Even though some sparse elements had been highlighted before, a systematic study of the topolog-
ical properties of condensed matter systems started with the discovery of the Quantum Hall e�ect
and the subsequent e�orts to understand the quantization of the Hall conductance (Thouless et al.
[1982]); the geometric aspects underlying the Integer Quantum Hall physics were uncovered by
Simon [1983] and Kohmoto [1985]. A heterostructure containing a 2D quantum well can be doped
and gated in such a way to form a 2D electron gas (2DEG). If an external magnetic �eld normal
to the wafer is applied, the transport properties display very interesting features. In particular,
the Hall conductance σH , de�ned as the current in the direction of the applied potential over the
voltage generated along the transverse direction, turns out to be quantized in units of e2/h at the
integer values of the �lling factor.

The Integer Quantum Hall phenomenology can be understood in terms of non-interacting elec-
trons. In the presence of the magnetic �eld, the electronic states splits in highly degenerate bands,
named Landau levels and separated by the cyclotron energy ωB = eB/m. Interactions and sample
imperfections cause a broadening of the Landau levels with extended states living at the center of
the band and localized states forming the tails. Moreover, to each Landau level it corresponds an
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Figure 4.1: Nonmagnetic topological laser. (left) All-dielectric design of a ±2πα Berry phase per
plaquette for (anti-)clockwise ring modes. This implements two symmetry-protected copies of
the Harper-Hofstadter model with opposite magnetic �eld. (right) The addition of an S-shaped
coupler in each resonator together with optical pumping of the edge of the lattice determine that
the clockwise modes suppress, via gain competition and energy recirculation, the anti-clockwise
modes, so to obtain chiral laser operation. Plots taken from (Hafezi et al. [2011]) and (Bandres
et al. [2018]), respectively.

edge state which extends all over the boundary of the system and determines the quantization of
the Hall conductivity.

Thouless et al. [1982] used the Kubo formula to write the Hall conductivity as

σH = −e
2

h

∑
n

νn, (4.1)

where νn is the topological invariant of the n-th Landau level and can take only integer values; in
the modern formulation it is called the Chern number of the band

νn =
1

2π

∫
1BZ

d2k Ωn(k), (4.2)

where we introduced the local Berry curvature

Ωn(k) = i〈∂n(k)

∂kx
|∂n(k)

∂ky
〉 − i〈∂n(k)

∂ky
|∂n(k)

∂kx
〉 (4.3)

and |n(k)〉 is the eigenstate of the n-th band of quasi-momentum k. In introducing integration over
the �rst Brillouin zone we assumed a lattice discretization of the 2DEG and periodic boundary
conditions. This integer is a bulk topological invariant which determines the number and the
chirality of the edge states at the boundary of the system; in a time-reversal invariant system
νn = 0, ∀n.

Because the remarkable transport properties arising from the Pauli principle play a major role
in Quantum Hall systems, the application of the theory of topological band invariants remained
limited to electronic systems for more than two decades. In the meanwhile, important advances
were made for both non-interacting and interacting electron systems. For the former class of
models, it is worth mentioning the proposals by Haldane [1988], where time-reversal symmetry is
broken and one has nonzero Chern numbers without applying a magnetic �eld, and the Quantum
Spin Hall E�ect by Kane and Mele [2005], where a so-called Z2 topological invariant is introduced
for a time reversal invariant system. Concerning interacting systems instead, a tremendous e�ort
has been profounded in the theoretical understanding of Fractional Quantum Hall states (Cage
et al. [2012]); ongoing research is devoted to the experimental engineering and detection of anyons
and Majorana fermions, which would provide a robust platform for quantum computation (Nayak
et al. [2008]).
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Figure 4.2: Magnetic topological laser. (left) Applying a magnetic �eld to a photonic crystal
containing YIG elements allows to have nonreciprocal lasing in arbitrarily shaped geometries.
(right) The power slope e�ciency of the device display the typical behavior of a laser with a
well de�ned threshold. In the inset, the spectral narrowing of the emission is demonstrated upon
increasing the pump power. Plots taken from (Bahari et al. [2017]).

It was just with the work by Haldane and Raghu [2008] that the �eld of topological band
engineering for photons took over: the authors remark that the Chern number is a feature of a
single-particle problem with broken time-reversal symmetry; this condition can be achieved also
without a real magnetic �eld and charged particles, in particular with optical waves1. Since photons
are neutral, bosonic and non-conservative particles, the hallmark of topology is here probed by
using the edge modes at the boundary of the lattice as directional waveguides. Moreover, because of
the well-de�ned chirality of the edge modes in the gap between the bands, when disorder is present
the edge states remain extended along the boundary of the system and can just hybridize with
states of the same chirality: as a result, a wave travelling in such a mode won't be backscattered by
disorder, which is commonly referred to as topological protection or topological robustness (Raghu
and Haldane [2008]). The �rst experimental realization of these concepts by Wang et al. [2009]
consisted of a two-dimensional magneto-optical photonic crystal in the microwave domain.

However, this and similar strategies do not allow to create strong magnetic �elds for photons.
A very interesting alternative path was pursued by Hafezi et al. [2011, 2013], where the two
polarizations of the photon are exploited to build a Spin Hall system consisting of linear optical
elements and a large bandgap can be obtained without breaking time-reversal symmetry (see
Fig. 4.1.a below). A variety of other proposals based on arti�cial gauge �elds, Floquet engineering
(Rechtsman et al. [2013]), Thouless pumping, etc. has since thrived, as described in a few recent
reviews (Lu et al. [2014], Ozawa et al. [2019]).

4.1.2 Topological lasers: Experimental implementations

In the last four years several groups have been able to obtain lasing in topological edge modes,
with implementations spanning over a wide spectrum of topological insulator models, frequency
ranges and material platforms. Some of these advances have been covered in the recent review
paper by Ota et al. [2018].

The �rst platform is based on the all-dielectric design by Hafezi et al. [2011] to engineer a
�nite Berry phase around a plaquette by connecting the resonators of the lattice with waveguides
of increasing lengths, depicted in Fig. 4.1.a. This creates a spin-Hall system where the role of
the spin is played by the propagation verse around the ring. Bandres et al. [2018] modi�ed this
system by using the S-shaped resonators in Fig. 4.1.b-c to favour one of the two spins, which is
e�ective because the lasing nonlinearity breaks the reciprocity of the Maxwell's equations in linear
media. Moreover, they optically pumped only the external resonators, made of InGaAsP QWs,
and obtained chiral laser emission, as depicted in Fig. 4.1.d. The topological bandgap obtained
here was of 80 GHz, while with real magnetic �elds one can reach few GHz.

In the meanwhile, Bahari et al. [2017] achieved topological lasing in a photonic crystal con-
taining elements made of yttrium iron garnet (YIG), a gyrotropic material that upon application
of a magnetic �eld breaks the time-reversal invariance of light propagation. By engineering the
unit cell in di�erent ways inside and outside of an arbitrarily shaped region (which in the paper
resembled the United States, as pictured on the left of Fig. 4.2), one can de�ne two topologically

1Actually, that the theory of the geometric phase does not require quantum mechanics but applies also to classical
waves had already been mentioned at the end of (Berry [1984]).
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distinct regions, with a chiral edge mode living at the interface. In this experiment, all the inner
region is optically pumped and lasing in the edge state is selected because of the sharp spectral
pro�le of the gain medium, falling at the wavelength frequencies of around 1530 nm. Nice power
e�ciency characteristics and spectral narrowing above the lasing threshold were measured and are
reported on the right panel of Fig. 4.2.

More recently, an electrically pumped device based on the Quantum Cascade Laser principle
has been built on top of a valley-Hall photonic crystal by Zeng et al. [2020]. The emission is in
the therahertz range and unfortunately several side-peaks appear in the spectrum, suggesting that
many modes are lasing.

Single-mode emission at telecommunication wavelength was studied by Noh et al. [2020] by
varying the degree of asymmetry of the unit cell of a photonic crystal, which is a way to control
the bandgap of the associated valley-Hall topological insulator. For a properly chosen bandgap,
one standing-wave mode of the system has quality factor much larger than the other ones, so that
when optical pumping is switched on it wins the mode competition.

Other works, less relevant for our goals since no chiral transport is supported, have investigated
lasing at the localized resonance of a 1D quasi-periodic Aubry-André-Harper model (Pilozzi and
Conti [2016]) or in the 0-dimensional edge states of the so-called SSH chain (St-Jean et al. [2017],
Parto et al. [2018], Han et al. [2019]), together with a high-performance topological bulk laser,
exploiting band-inversion-induced re�ection in an array of patterned nanodisks. We also mention
a recent theoretical proposal by Yang et al. [2020] to obtained stable mode-locked laser operation,
resulting in the emission of short intense pulses, in a Floquet system with one real and one synthetic
dimension.

4.1.3 The Harper-Hofstadter laser

We now move to review an important model of laser device, which is obtained by amplifying the
chiral edge modes of a Harper�Hofstadter topological insulator (Longhi et al. [2018], Seclì et al.
[2019], Amelio and Carusotto [2019]). We will discuss both class-A and class-B devices and the
di�erences between these two cases. In the former case, the dynamics of the carriers which provide
the gain mechanism is assumed fast enough to be adiabatically eliminated. In the latter instead,
the carrier dynamics is retained by relying on simple kinetic equations.

The idea is to start with a photonic lattice implementing the so-called Harper Hofstadter (HH)
model (Ozawa et al. [2019]). In the Landau gauge, the HH Hamiltonian reads:

H = −J
∑
x,y

{
ψ̂†x,yψ̂x,y+1 + e−2πiθyψ̂†x,yψ̂x+1,y + h.c.

}
(4.4)

where the sum runs over all the sites of the lattice, x = 1, ..., Nx, y = 1, ..., Ny, ψ̂x,y is the
photon annihilation operator at the site (x, y) and J a real hopping amplitude. The strength of
the synthetic magnetic �eld is quanti�ed by the �ux θ per plaquette in units of the magnetic �ux
quantum. For rational θ = p/q, the bulk eigenstates distribute in q bands.

As in the previous studies, we will focus in the following on a system with θ = 1/4. Also,
periodic (open) boundary conditions will be taken along the x-axis (y-axis), such that chiral edge
states unidirectionally propagating along the y = 1 and y = Ny edges appear in the energy gaps
between the bands, as sketched in Fig. 4.3 (a). In particular, there are two edge modes living in
the negative frequency gap: the one with positive group velocity is localized on the y = 1 side,
while the one with negative group velocity on the y = Ny side. Viceversa for the modes in the gap
at positive frequencies.

Since we want to have lasing on top of this topological insulator, we brie�y repeat the basic
elements and notations introduced in the previous Chapter. We consider the lattice resonators to
have losses with rate γ and a nonlinear refractive index captured by a photon-photon interaction
constant g. To enable lasing, we �ll the resonators with a gain medium. The e�ective number
of inverted electronic transitions is given by the reservoir density Nx,y. In what follows we have
in mind the experimental situation where we pump these transitions on the y = 1 edge of the
system, with injection rate P . These electronic excitations can then feature stimulated emission
into the electromagnetic mode of the resonators, with an e�ciency R, or decay via other channels
with rate γR. The state of the active medium will also a�ect the refractive index and hence the
resonant frequency of the cavity mode via a contribution gRNx,y, which is at the origin of Henry's
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Figure 4.3: Free theory. Panel (a): energy bands of the conservative Harper-Hofstadter Hamilto-
nian Eq. (4.4) with �ux θ = 1/4 in a lattice of Ny = 399 sites along y and periodic boundary
conditions along x. Blue color scale indicates edge modes localized on the m = 0 edge, with dis-
persion ε(kx). The dark dot indicates the most localized edge mode of the bottom gap. Panel
(b): G(kx) (red line) function versus curvature of the dispersion (blue line). Panel (c): imaginary
part of the Bogoliubov spectrum over the vacuum solution at lasing threshold. Black (red) lines
indicated result from the full 2D (1D e�ective) model. Parameters: J = 1, γ = 0.2J , βP = 1.142γ,
gR = 0.

linewidth enhancement factor (Henry [1982]). In the following, we will refer to it as reservoir-photon
interaction.

Within this setting and adopting a semi-classical approximation for the electromagnetic �eld,
the equations of motion are the Harper-Hofstadter version of Eqs. (1.8,1.9) and read

i
∂ψx,y(t)

∂t
=− J

[
ψx,y+1 + ψx,y−1 + e−2πiθyψx+1,y + e+2πiθyψx−1,y

]
+
[
g|ψx,y|2 + gRNx,y +

i

2
(RNx,y − γ)

]
ψx,y

(4.5)

where the reservoir density Nx,y is determined by the rate equation,

∂Nx,y
∂t

= Pδy,1 − (γR +R|ψx,y|2)Nx,y (4.6)

As far as losses overcome the gain, the steady-state of the device is the electromagnetic vacuum
ψx,y = 0 and Nx,y=1 = P/γR. A non-trivial steady state can be reached when the gain of one
mode becomes higher than its losses. This de�nes a threshold Pth for the injection rate, which is
calculated by linearizing Eq. (4.5) around the vacuum solution: passing to Fourier space along the
periodic direction, this amounts to solve for each kx the eigenvalue problem:

ωδψkx,y = −J
[
δψkx,y+1+δψkx,y−1+2 cos(2πθy+kx)δψkx,y

]
+
i

2

[
(R−2igR)

P

γR
δy,1−γ

]
δψkx,y (4.7)
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The spectrum of the corresponding Nx × Nx matrix, as sketched in Fig. 4.3.c, allows to
determine the lasing threshold Pth at which the imaginary part of one eigenvalue becomes positive,
meaning that the trivial solution is not dynamically stable anymore.

For P > Pth the vacuum solution is then unstable and in a regime of parameters to be ex-
plored below the device can reach a dynamically stable stationary state. Due to the translational
invariance along the x-axis, the steady-state can be written as:{

ψssx,y(t) = ψ0
ye
−iµt+iklasx x

Nx,y(t) = N0δy,1.
(4.8)

where the lasing frequency µ in general needs to be evaluated numerically and will be discussed
below. Notice that, unless P is very close to Pth, both the lasing wavevector klasx and the global
phase of ψ0

y are randomly selected, depending on external noise or on the initial conditions (Seclì
et al. [2019]); in particular, the spontaneous breaking of the global U(1) symmetry of Eq. (4.5)
is at the origin of the Goldstone mode discussed below, and determines the long time coherence
properties of the device (Amelio and Carusotto [2019]).

In Fig. 4.3 (c) we illustrate that, under this pumping scheme, the lasing instability is stronger
for the chiral edge states localized on the y = 1 side than for modes extending over the bulk.
Moreover, among the chiral edge modes, the ones at the middle of the gap are more localized
and feel a larger gain. Note also that in (c) the threshold value is βPth = 1.142γ > γ namely
slightly above the single resonator threshold, since a chiral edge mode does not overlap totally
with pumping due to slight penetration into the lossy bulk.

Furthermore, when the nonlinearity factors g, gR can be neglected, the e�ective gain is equal for
the negative and positive frequency edge modes, as in Fig. 4.3 (c), so lasing occurs with probability
1/2 in each gap, consistently with previous observations (Seclì et al. [2019]). This behaviour is due
to an extended chiral symmetry inherited from the one of the HH model (Repellin and Goldman
[2019]), that holds for the HH laser as long as g, gR = 0. Indeed, in this case, for every steady-state
solution ψssx,y(t) = ψ0

ye
−iµt+iklasx x of Eq. (4.5) it exists the related steady-state solution

ψssx,y(t) = (−1)x+y(ψ0
y)∗e+iµt+iklasx x, (4.9)

characterized by opposite frequency and wavevector kx + π. This transformation, that can be
de�ned only on a lattice, explains the structure of the HH spectrum, somehow symmetric with
respect to zero energy. In the continuum problem, instead, the Landau levels can only have
positive energy. We mention en passant that the relation between HH edge modes at the same
energy living on di�erent edges is provided by ψ0

x,y → (ψ0
x,Ny−y+1)∗, corresponding to the parity

plus time reversal symmetry of the cyclotron orbits. When g, gR 6= 0 instead, the symmetry (4.9)
breaks down and the lasing state will have di�erent properties in the two topological gaps; in
particular, if gR > 0 the lasing threshold is lower for the positive frequency modes than for the
negative frequency modes (Longhi et al. [2018]). However, for realistic parameters and su�cient
pumping intensity this e�ect remains small and the probability to lase in one or the other gap
remains close to 1/2.

Finally, an important regime is identi�ed when the dynamics of the reservoir is very fast com-
pared to the other timescales of the device, i.e. γR

γ � 1. In this case we can make use of the

adiabatic approximation and set to zero the left-hand side of Eq. (4.6), so that Nx,y =
Pδy,1

γR+R|ψx,y|2
instantaneously. For simplicity reasons we will switch o� in most of the following also the refractive
index nonlinearities g = gR = 0 and refer to such a device as a class-A laser. The corresponding
equations of motion read:

i
∂ψx,y(t)

∂t
= (Hψ)x,y +

i

2

(
βPδy,1

1 + β|ψx,y|2
− γ
)
ψx,y, (4.10)

where β = R
γR

and (Hψ)x,y = −J
[
ψx,y+1 + ψx,y−1 + e−2πiθyψx+1,y + e+2πiθyψx−1,y

]
. This is

precisely the model considered in (Seclì et al. [2019], Amelio and Carusotto [2019]).

4.2 Bogoliubov theory: elementary excitations and coher-

ence*

( this Section builds on (Amelio and Carusotto [2019], Loirette-Pelous [2020]) )
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In the �rst part of this Section, we discuss the collective excitations on top of the stationary
chiral lasing mode. A deeper understanding is also developed by means of a projection of the
2-dimensional model to a 1D e�ective equation. Here a major focus will be on the Goldstone
branch: we will investigate in details its dependence on both the dispersion curvature and the edge
localization of the original HH chiral modes.

In the second part we discuss the coherence of the topological laser within linearized theory. The
chiral nature of the edge mode �nds a clear hallmark in the spatio-temporal correlation functions;
the linewidth is computed within the Bogoliubov scheme.

While in our treatment we focus on the case of a class-A device, we also provide a few remarks
about generalization to class-B lasers.

4.2.1 Semi-analytical considerations on the steady-state

The aim of this Section is to get more insight about the physics of edge state lasing and the
corresponding Bogoliubov modes. The Bogoliubov tratment, that we will sketch below, requires
to compute numerically the steady state of the system by solving explicitly the equations of mo-
tion (4.10). Here we will �rst discuss more in details the steady-state, in particular close to the
edge; this will eventually allow us to adopt an analytical scheme to grasp the edge dynamics by
solution of a 1D e�ective laser model, which includes a momentum dependent e�ective gain. The
Bogoliubov modes most localized on the edge, i.e. the ones which determine the slowest relaxation
dynamics, are then quantitatively recovered within this dimensional reduction strategy.

This method relies on the fact that for γ, P � J the eigenmodes of the driven-dissipative
system resembles the ones of the bare HH model. The steady-state is an eigenstate of longitudinal
momentum ψssx,y(t) = ψssy e

−iµt+iklasx x. The transverse part ~ψss = {ψssy } will be a superposition of
the HH eigenstates labeled by the lasing klasx momentum and another transverse index. Still, for
computing the steady-state it is su�cient to consider the most localized mode, as also con�rmed
by numerics:

lim
γ/J→0

ψssy = Aφy(klasx ) (4.11)

where ~φ(klasx ) = {φy(klasx )} denotes the (transverse part of the) HH eigenstate at klasx most localized
on the y = 1 edge. We assume the normalization

∑
y |φy|2 = 1 so that we need to �nd A. We

can proceed by taking the equation of motion applied to ψssx,y(t) (we call B the nonlinear HH
Hamiltonian plus gain and loss operator) and then take the overlap of this vector with ψssx,y(t)∗

itself: in Dirac notation

0 = 〈ψss|i∂t − B|ψss〉 = µ− ε(klasx )− i

2

[
βPG(klasx )

1 + β|ψss1 |2
− γ
]

(4.12)

where we introduced the edge mode dispersion ε(kx) and the edge localization function G(kx) =
|φ1(kx)|2 that quanti�es the overlap of the HH edge states with the y = 1 edge. Setting the real
and imaginary parts to zero we arrive at

lim
γ/J→0

µ = ε(klasx ) (4.13)

lim
γ/J→0

|ψss1 |2 = P/P th − 1 (4.14)

with the lasing threshold P th = β−1γ
G(klasx )

.
These results are su�cient for the rest of the discussion. Still, for a deep understanding of the

physics at play, it is necessary to inspect the �rst order γ/J corrections to ψssy close to the edge,
for y = 1, 2. Our claim (checked via numerics) is that

ψss1 = Aφ1 (4.15)

ψss2 = Aφ2 + iA
γ

2J

1− |φ1|2

φ1
+O((γ/J)2) (4.16)

Importantly, notice that ~φ has real entries. The overall radiative losses of the lasing mode are
given by γNx

∑
y |ψssy |2 ' γNxA

2, the second equality being true neglecting second order terms.
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Figure 4.4: Typical real (left) and imaginary (right) part of the elementary excitations spectrum of
a class-A laser . Blue (red) lines indicates results from the full 2D (1D e�ective) model. Parameters:
γ = 0.2J , adiabatic approximation (γR � γ), βP = 2γ, g = gR = 0, klasx = −0.982.

On the other hand all the power is injected in the y = 1 sites, which account for the losses
γNx|ψss1 | = γNxA

2|φ1|2. Density conservation at stationarity then implies that there is a current
�owing out of the edge (from y = 1 to y = 2), provided exactly by the �rst order term in Eq. (4.16).
Even if this term is order γ/J the associate current contains the tunneling rate J and is of order γ.
In this way the total loss rate of the y = 1 sites is equal to that of the whole lattice γNxA2|φ1|2.

This analysis suggests that the two fundamental quantities to understand the features of topo-
logical lasing and its collective excitations are the dispersion and localization of the HH edge states.
The dependence on momentum of these quantities is fundamental in computing the Bogoliubov
modes. The edge localization G(kx) represents the fraction of the lasing state that is ampli�ed.
Greater localization corresponds to a lower threshold. We plot G(kx) in Fig. 4.3.b (red line) to-
gether with the curvaturem−1

∗ of the HH edge dispersion (blue line). In Fig. 4.3.c the red line refers
to the linear perturbations of the vacuum computed from a 1D laser model with a gain rescaled by
G(k), which recovers exactly the calculation with the full 2D model. This simple approach allows
to calculate the lasing threshold and the amplitude of a steady chiral edge mode directly from the
eigenmodes of the conservative problem.

4.2.2 Bogoliubov modes

Let' s now move to the collective excitations; leaving for a moment aside the previous semi-
analytical considerations, the stationary lasing states of the system can be found numerically by
evolving with Eq. (4.10). Then, the Bogoliubov method (Wouters and Carusotto [2007]) consists
in linearizing the equation of motion via the ansatz

ψx,y(t) = [ψssy + δψx,y(t)]e−iµt+ik
las
x x. (4.17)

The outcome, passing to Fourier space along the x-axis and in time, is a system of equations
for δψ, δψ∗:

ωδψkx,y(ω) = (Hδψ)kx,y + Dyδψkx,y + D̃yδψ
∗
−kx,y (4.18)

and its complex conjugate evaluated at (−k,−ω), where k = kx − klasx and

Dy = −µ+
i

2

(
βPδy,1

1 + β|ψss1 |2
− γ
)
− i

2

β2Pδy,1|ψss1 |2

(1 + β|ψss1 |2)2
, D̃y = − i

2

β2Pδy,1(ψss1 )2

(1 + β|ψss1 |2)2
. (4.19)

In particular, notice that H couples all the sites along y, so that in a given (k, ω) block δψk,:(ω)
is coupled to δψ−k,:(−ω)∗ (the : implies a vector with indices y = 1, ..., Ny). The problem then
reduces to diagonalizing numerically a 2Ny × 2Ny Bogoliubov matrix for each kx.

A typical example of an elementary excitations spectrum is reported in Fig. 4.4.b. In the
real part of the spectrum, the excitations around the lasing mode (small ω and k) exhibit the
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typical sticking of non-equilibrium condensates. The branch in this region follows exactly the HH
edge mode (properly shifted according to µ and klasx ). In the imaginary part of the spectrum,
we recognize the typical splitting between the Goldstone and the amplitude branches around the
lasing mode, corresponding respectively to phase-like and density-like excitations. At k = 0 the
Goldstone mode always has ω = 0 as a consequence of the spontaneous breaking of the global U(1)
symmetry.

The peculiarity of the HH laser are the edge modes with the opposite chirality living around k ∼
±π, which have longer lifetime because, being localized on the edge, bene�t of the gain and decay
as Im(ω) ∼ −iΓ

2 (a more precise analysis is provided in the next Section) with Γ = γ(1− Pth/P )
being the characteristic relaxation rate of the density �uctuations (see the previous Chapter). The
excitations living in the bulk, instead, are basically lossy HH modes and decay as Im(ω) ∼ −iγ2 .

Now we move to discuss the Bogoliubov edge modes. Let' s denote ~φ(k) = {φy(k)} the trans-
verse part of the HH edge mode of wavevector kx = klasx + k. If ~φ(k) were equal to ~φ(−k), the
ansatz

δψx,y = ueikxφy(k) + ve−ikxφy(−k). (4.20)

would be exact in the limit γ/J → 0. However this is not the case and the Bogoliubov system
is not close when inserting this ansatz, so that it is not possible to expand only on the HH edge
modes, but a mixing with the bulk is expected. However, we close eyes and assume ~φ(k) = ~φ(−k).
Plugging in Eq.( 4.18), multiplying by ~φ(k) and summing over y, we get the Bogoliubov 2 × 2
problem

ω

(
u
v

)
=

ε(k)− µ+ iγ
2

(
G(k)
G(0) − 1

)
− i

2ΓG(k)
G(0) − i

2ΓG(k)
G(0)

− i
2ΓG(−k)

G(0) −ε(−k) + µ+ iγ
2

(
G(−k)
G(0) − 1

)
− i

2ΓG(−k)
G(0)

(u
v

)
(4.21)

Expanding the dispersion of the edge statesup to second order ε(k)−µ ≈ vgk+ k2

2m∗
, it is clear

that the group velocity term acts like a diagonal term and does not play any role in determining
the stability of the device (and similarly for all the odd terms in the small k expansion of the
dispersion that here we have neglected). The term G(k)

G(0) − 1 is of geometric nature and describes
the localization of the HH modes. The spectrum of this matrix is plotted in Fig. 4.4 (red lines),
which shows that both the Goldstone and amplitude branches are quantitatively recovered, as well
as the edge mode with opposite chirality.

We now discuss the slowest excitations to relax, that play a very important role in determining
the spatio-temporal coherence properties of the laser operation (Amelio and Carusotto [2019]). If
it were G(k) = G(0), Eq. (4.21) would predict a quartic contribution to the lifetime of the Gold-

stone branch Im(ω(k)) ∼ − (k2/2m∗)
2

Γ ; instead, the k-dependent localization function is responsible
for a contribution ∼ a2k

2 independent of m∗. This is illustrated in Fig. 4.5, where the important
observation is that at very small k the imaginary part of ω+(k) does not depend on J/γ, which
con�rms that the k2 behaviour is due to the momentum dependent localization of the HH edge
modes. Still, the aforementioned ~φ(k) 6= ~φ(−k) issue matters and quantitative agreement is not
good: the numerical coe�cient is afit2 ' 0.045γ versus the theoretical prediction a2 ' 0.081γ.
In spite of this small shortcoming, our simple dimensional reduction argument allows to under-
stand all the qualitative features of the edge Bogoliubov modes and motivates the presence of the
k2 behaviour, which is fundamental in determining the coherence properties of large lattices, in
particular if J ∼ γ (Amelio and Carusotto [2019]). At greater k the curvature of the HH edge
mode gives most of the k4 contribution, and in practice one can just set G(k) = G(0) (at least
at J � γ). In this regime, the agreement is perfect and one can notice the scaling of the coef-
�cient a4 of −Im(ω+(k)) = a2k

2 + a4k
4 + ... with J2, the theory prediction being in this regime

a4k
4 = (k2/2m∗)

2

Γ .
Finally, we can summarize and reinterpret the results of this Section by saying that, when

considering the low energy and small density �uctuation physics of edge, one can e�ectively deal
with the 1D laser wire equation

i∂tψ(x) =

[
ε(k̂x) +

i

2

(
G(k̂x)

βP

1 + β|ψ(x)|2
− γ
)]

ψ(x), (4.22)
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Figure 4.5: Scaling of Goldstone branch at small k. The red and green lines Goldstone branches
have been calculated with the full 2D model for di�erent hoping strengths. Blue dashed line is a
linear �ts of −Imωk with afit2 k2: as predicted by theory a2 is independent of J . Cyan dashed lines
correspond to the a4k

4 scaling of the 1D e�ective laser with a4 = (4m2
∗ΓG(0))−1. The ticks on

the k-axis suggest what are the typical sizes for which the ∼ k2 regime is relevant. The density
relaxation rate is given by Γ/2 (magenta dotted line), which is independent of J but depends
on the degree of localization G(0) of the edge mode and determines the frequency at which the
amplitude and Goldstone branches split. Parameters: adiabatic approximation, γ = 0.2, βP = 2γ,
g = gR = 0, klasx = −0.982.

where the �eld lives on the real axis and k̂x = −i∂x. Notice that the edge localization and saturation
terms do not commute. In particular, above we have explicitly demonstrated that this e�ective 1D
equation recovers with excellent quantitative agreement the lasing instabilities (i.e. the Bogoliubov
edge modes on top of the vacuum), the lasing threshold and the Bogoliubov dispersion of the lasing
edge in the γ/J � 1 limit. These results are expected to be quite general and relevant to lasers
built on top of di�erent topological insulators, as recently con�rmed for the Haldane model by
Zapletal et al. [2020]2.

4.2.3 Chiral edge dynamics

In the following, we add the Peierls phases to the semi-classical equation (3.20) for the class A
laser and study the temporal evolution of the �eld according to the stochastic equations

i∂tψx,y = −J
[
ψx,y+1 + ψx,y−1 + e−2πiαyψx−1,y + e2πiαyψx+1,y

]
+

+
i

2

[
Pδy,1

1 + nx,y/nS
− γ
]
ψx,y +

√
2Dx,yξx,y ; (4.23)

we will adopt cylindrical boundary conditions where not otherwise stated. As mentioned in Section
3.1, the rate of spontaneous emission noise is typically of the order of the losses (at least not too
far from the lasing threashold), so it is reasonable to take the di�usion coe�cient to have form
Dx,y = (1+δy,1) γ/2 (once again notice that in the semicalssical treatment the e�ective strength of
the noise can be rescaled by changing nS , so that the precise choice of D is not so important). In
introducing a noise also in the unpumped bulk of the system we have assumed some homogeneous
contribution also from thermal phonons or electronic scattering, while the stronger noise on the
edge sites re�ects the presence of gain and the consequent spontaneous emission processes. We have
however checked that our results remain qualitatively identical if di�erent spatial distributions of

2However they miss the momentum dependence of the edge localization and in fact use G(kx) ' G(0).
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Figure 4.6: Topological lasing. Lower panel: typical snapshot of the �eld modulus distribution
|ψ(x, y)| at steady-state. Upper panel: Wavevector- and energy-resolved spectrum of the �eld on
the y = 1 edge. The dotted lines are the Harper�Hofstadter bands and the spectral intensities are
normalized to the laser emission at ωlas ' −9.774γ, klasx = −2π 19

128 . Numerical calculations were
performed according to Eq. (4.23) for a lattice of size Nx = 128, Ny = 12 with periodic boundary
conditions along x and a �ux density α = 1/4. System parameters: J = 5γ, P = 2γ, ns = 1000,
Dx,y = (1 + δy,1)γ/2.

Dx,y are used. We have also checked that the statistical results that are going to be discussed in
the following of the paper are unchanged if di�erent system geometries are considered, e.g. with
open boundary conditions (see e.g. Fig. 4.9 below) We also mention the study (Peano et al. [2016])
of the chiral �uctuations in a similar con�guration but in the linear ampli�er regime.

The main features of the steady-state topological laser operation including noise are illustrated
in Fig. 4.6. In the lower panel we plot a typical example of the �eld modulus |ψx,y| for a �nite
Nx = 32, Ny = 12 cylindrical lattice, showing localization of the mode on the edge. The upper panel
reports instead the power spectral density S(kx, ω) of the �eld ψx,1(t) on the y = 1 edge: the narrow
lasing mode is strongly saturated on this scale and is indicated by the cyan circle. Noise-induced
�uctuations distribute themselves over all modes but are concentrated on the ones with largest
overlap with the y = 1 side, in particular on the two edge states with opposite chiralities. The
spectral distribution roughly follows the dispersion of the optical modes in the underlying passive
Harper�Hofstadter model indicated as a cyan dotted line, since, as shown above in Fig. 4.4.a, the
real part of the Bogoliubov edge modes closely resembles the HH ones.

It is also interesting to discuss the emission spectrum from each site. In Fig. 4.7(a) we show
the emission spectrum de�ned as

S(ω) =
1

Nx

∑
x

|ψ(x, ω)|2 (4.24)

for the parameters and lasing point shown in Fig. 4.6(b). In addition to the main lasing peak,
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Figure 4.7: Correlated side-peaks in the emission spectrum. (a) Spectrum of the �eld on a single
resonator located on the ampli�ed edge. The spacing of the side�peaks is determined by the
quantization of the wavevector kx around the periodic direction. The side�peaks are generated by
parametric scattering processes from the lasing mode into pairs of symmetrically located modes.
(b) Color plot of the momentum-space correlation function (4.25) in the kx, k′x plane showing -
among other- strong correlations along the anti-diagonal, that is within pairs of symmetrically
located modes.

the emission spectrum displays a comb-like structure with a series of symmetric side-peaks: the
frequency spacing is determined by the quantization of the momentum along the periodic direction
and is approximatively vg 2π

Nx
.

The visibility of the comb is not merely due to the existence of eigenstates at those speci�c values
of the frequency, but their population by noise is enhanced by correlations. This is illustrated in
Fig. 4.7(b) where we show the normalized momentum�space intensity�intensity correlation function

R(2)(kx, k
′
x) =

〈nkxnk′x〉√
〈n2
kx
〉〈n2

k′x
〉
. (4.25)

Here, the momentum�space densities nkx are evaluated at the same time over the whole edge,
nkx(t) = |ψ(kx, t)|2.

Several features are visible in this plot. The diagonal line for kx = k′x is due to a trivial
self-correlation and R(2) is here equal to 1. For generic pairs of modes, the thermal g(2)(kx) = 2
character of all kx 6= klasx modes implies that the background value is R(2) = 0.5. When one (two)
modes coincide with the lasing one, R(2) is equal to 1/

√
2 (1), which explains the vertical and

horizontal stripes and the central peak. The most interesting feature is the stripe on the anti-
diagonal, corresponding to correlations between symmetrically located modes such that kx + k′x =
2klasx . For the �rst two pairs of side�peaks, this correlation is nearly perfect, indicating that these
modes are populated in pairs by parametric scattering processes.

Of course, such correlations are not speci�c of topological systems but can be observed also
in the 1D systems studied in the previous Chapter, albeit with a suppressed intensity due to the
curvature of the dispersion. In analogy to exciton-polariton systems pumped around the magic
angle (Carusotto and Ciuti [2013]), the magnitude of these parametric correlations is strongest if
lasing is made to operate around the in�ection point of the dispersion.

To characterize the spatio-temporal coherence of the emission, we now consider the �uctua-
tions of the phase of the one-dimensional �eld living on the amplifying boundary of the Harper�
Hofstadter lattice, ψ(x, t) ≡ ψx,1(t).

In the steady-state of laser operation, the phase displays slow �uctuations around a carrier
wavevector klasx and frequency ωlas: the former can be extracted from the (spatial) winding number
of the phase around the system, the latter can be determined by �tting the evolution of the �eld
phase on single sites. In the spectrum of Fig.4.6, they are indicated by the position of the cyan
circle. While a precise determination of these quantities can be important from the applicative
point of view, they are somehow uninteresting from the statistical mechanics point of view, since
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Figure 4.8: Chiral motion of the phase �uctuations. (a) Spatio-temporal plot of the slowly varying
phase of a random realization of ψsl(x, t), showing that the �uctuations chirally move around
the system. (b) Spatio-temporal plot of the phase of ψ

CM
(x, t) in the co-moving frame: now the

�uctuations are observed in their natural frame of reference and evolve slowly. (c) Correlation
function g(1)(x, t): since the �uctuations move at vg, after a time t the �eld in x is correlated with
the one in x+ vgt. System parameters: Nx = 128, Ny = 12, J = 5γ, P = 2γ, ns = 1000, D = 2γ.

they are mostly determined by the deterministic dynamics of the device and are weakly a�ected
by the �uctuations.

In order to remove the carrier frequency and wavevector and concentrate on the stochastic
�uctuations, we de�ne the slowly varying �eld

ψsl(x, t) ≡ e−i(k
las
x x−ωlast) ψ(x, t). (4.26)

Looking at the phase of a typical realization of ψsl(x, t) shown in Fig. 4.8(a), we easily recognize
a phase �uctuation pattern that moves at a constant velocity and gets slowly distorted. The drift
velocity can be inferred from the dispersion ωem(kx) of the lasing chiral edge mode, which has
group velocity vg = dωem

dkx
(klasx ) and curvature Jeff (klasx ) = 1

2
d2ωem
dk2
x

(klasx ) < J .
In order to focus on the intrinsic dynamics of the phase �uctuations, we plot in Fig. 4.8(b) a

typical realization of the phase evolution seen from the moving frame at vg,

ψCM (x, t) ≡ ψsl(x+ vgt, t). (4.27)

For the relatively strong inter-site coupling J = 5γ and relatively small system size Nx = 128, the
phase �uctuations develop very slowly and remain quite small. Their magnitude gets larger if the
mean intensity n0 is reduced, the inter-site coupling J is reduced, or larger systems are considered.
This will be discussed in Sec. 4.3.

While the transformation to ψ
CM

(x, t) allows for a direct visualization of the phase dynamics,
it is also possible to study the �uctuations circulating along the edge by computing the space�time
correlation function of the original �eld,

g(1)(x, t) =
|〈ψ∗(x, t)ψ(0, 0)〉|√
〈|ψ(x, 0)|2〉〈|ψ(0, 0)|2〉|

, (4.28)

where the average is taken over the noise and invariance under temporal t and spatial x transla-
tions is assumed. This analysis requires no preliminary estimate of klasx and ωlas and will be our
workhorse in the next sections. As it is apparent looking at the smooth stripes in Fig. 4.8(c), the
analysis of g(1)(x, t) is the cleanest way to extract the velocity at which �uctuations travel. The
result vg ' 6.07 γa is perfectly compatible with the group velocity vg ' 6.08 γa obtained from the
linear dispersion of the chiral edge mode.

In numerical simulations the cylindrical con�guration with periodic boundary conditions along
x is convenient to collect more statistics by using translational invariance and recording all sites.
In an experiment, instead, one can run very long measurements and it may be cumbersome to
record correlations between any pair of sites. So it is useful to demonstrate that the above picture
is unchanged also in the presence of open boundary conditions. For a rectangular lattice with
the gain on the edge, we have lasing as already reported in the literature (Seclì et al. [2019]),
see Fig. 4.9.a. Notice that the density is slightly higher at the corners, so that the denominator
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Figure 4.9: Correlations around a rectangular lattice. (a) Snapshot of the absolute value of the
�eld in a rectangular Nx = 44 × Ny = 22 lattice with open boundary conditions and amplifying
medium along all the edge. (b) Correlation function g(1)(u, u0, t) = 〈ψ∗(u, t)ψ(u0, t)〉 where u is a
coordinate along the edge, with u0 indicated in magenta. Red dashes correspond to the position
of the corners. Except for the boundary conditions and the lasing point, which was not �xed via
the initial conditions but was randomly selected by the dynamics, the parameters are the same as
Figs. (4.6�4.8).

of Eq. (4.28) is not a constant. By de�ning an edge coordinate u (which starts from the lower
left corner and runs clockwise) and measuring correlation functions with respect to a given point
(indicated in magenta), we get the pattern of panel (b), analogous to Fig. 4.8.c. The phase picture
of panels 4.8.a-b would be in general more complicated, because the lasing wavevector, which is a
gauge dependent quantity, would be in general di�erent on the four edges.

4.2.4 Linewidth and Petermann factor

In analogy to the topologically trivial laser discussed in the previous Chapter, within the linearized
theory the very long time behaviour of the coherence is determined by the phase drift associated
with the Goldstone mode and the U(1) symmetry of the laser dynamics, with all other excitations
modes being exponentially damped.

To start with, we illustrate the Bogoliubov approach in full generality for a lasing system.
For a lattice of N sites (labelled as ~x) of arbitrary dimensionality, let us call Llas the 2N × 2N
Bogoliubov matrix of the linearized dynamics on top of the lasing steady-state. Let V = {V~xσ,p} be
the invertible matrix which diagonalizes Llas, where the pseudo-spin σ =↑, ↓ indicates the particle
and hole components of the Bogoliubov problem and p labels the 2N eigenmodes. The Goldstone
mode V~xσ,G, that we assume to be unique with all other excitations having a �nite life-time, is the
eigenstate with zero eigenvalue. As usual, its spatial shape follows the one of the lasing mode. The
e�ective noise acting on the lasing mode will be determined by the projection of the bare noise
on it. For generality we consider a position dependent bare noise D~x. Then, in the Bogoliubov
approximation, the phase drift associated with the Goldstone mode is given by

〈∆tφ
2〉 = Φ2

G

∑
~x

D~x (V −1)G,~x↑(V
−1)G,~x↓ |t| (4.29)

where the summation represents the projection of the noise on the Goldstone mode and

ΦG = ΦG(~x) =
−i
n0(~x)

[ψ∗0(~x)V~x↑,G − ψ0(~x)V~x↓,G] (4.30)

is actually independent of ~x and provides the normalization of the Goldstone mode phase compo-
nent.

For a system which is translationally invariant along x the Bogoliubov matrix can be made
block-diagonal Llas =

⊕
kx
Llas(kx) with the transverse dependence of the Goldstone Vyσ,G di-

agonalizing the kx = 0 block. Then in Eq. (4.29) one should replace
∑
~x → Nx

∑
y, ψ0(~x) =
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ψ0(y)eik
las
x x → ψ0(y) and, choosing the standard normalization of the modes, V~xσ,G → Vyσ,G/

√
Nx,

V −1
G,~xσ → V −1

G,yσ/
√
Nx. This approach leads to write τST = NxτST,1, where τST,1 does not depend

on Nx but in a subtle way via the discretization of klasx .
If V V † = 1 a very clear expression holds for the Schawlow�Townes line:

γST =

∑
~xD~xn~x
n2
tot

=
Dn

ntot
(4.31)

with ntot =
∑
~x n~x and Dn =

∑
~xD~xn~x/

∑
~x n~x. This is for instance the case of a spatially

uniform, topologically trivial system, for which the di�erent wavevectors decouple and the sector
of Llas(kx = 0), corresponding to the lasing wavevector ~klas, is diagonalized by a 2 × 2 unitary
matrix V V † = 1, since modulus and phase are decoupled for the lasing mode.

Equation (4.31) is no longer valid when V V † 6= 1. Let's consider the topological laser: the
kx = 0 sector has dimension 2Ny × 2Ny and V is not unitary, so in general V V † 6= 1. However,
for the considered parameters, it turns out that V V † ' 1, so the approximate expression

γST =
2

τST
'
∑
x,y nx,yDx,y[∑
x,y nx,y

]2 =
Dn

Nx
∑
y n1,y

=
Dn

ntot
. (4.32)

is expected to provide an accurate approximation. We stress the scaling τST ∝ Nx.
The non�orthogonality of V is also related to the so-called Petermann factor and excess noise,

very well known in standard laser theory (Petermann [1979], Henry [1986], Siegman [1989b]).We try
to sketch this analogy here following the ideas of (Hamel and Woerdman [1989], Siegman [1989a]).
For a typical laser resonator the spatial distributions of loss and gain do not coincide: the typical
case are a Fabry-Perot cavity or a ring cavity where the losses are mostly due to the outcoupling
and are concentrated at the mirrors. As a consequence, the spatial form of the possible lasing
modes is not the one of the empty cavity but it is deformed by the presence of gain; for example,
in a ring cavity the �eld would be an exponentially ampli�ed plane wave along each arm which
at any mirror is damped by the re�ection coe�cient. One can also think of the electric �eld as
experiencing several round trips through the cavity, where at each round trip it gets ampli�ed in
the bulk and weakened at the outcouplers.

Very close to threshold and restricting for now to the deterministic semiclassical dynamics, we
can neglect the nonlinearities due p.e. to the saturation term and assume a linear dynamics as
given by the operator A. In the absence of gain and losses A is hermitian and its eigenmodes are
the normal, mutually orthogonal modes of a perfect cavity; when gain and losses are present A is
in general non-hermitian3 but let' s assume that it is diagonalizable. The lasing mode f0(x) will
be a particular eigenvector of A, presumably the one with eigenvalue ωlas with all other modes
fm(x) having damping eigenvalues. If we add by hand spontaneous emission noise, the evolution
will be of the kind

i∂tψ(x, t) = Aψ(x, t) + Ξ(x, t), (4.33)

with the spontaneous emission noise Ξ(x, t) which can be taken of uniform strength for our goal.
If we now want to project on the lasing mode, we would be temped to multiply by f0(x)∗ and
integrate. However, since A is not hermitian, the modes are not orthogonal

∫
dx fm(x)∗ · f l(x) 6=

δlm. The correct way to do the projection is to consider the set of adjoint modes φm(x), which
are the eigenvectors of A†, and require the normalization∫

dx φm(x)∗ · f l(x) = δlm. (4.34)

By bracketing Eq. (4.33) with
∫
dx φ0(x)∗, one then obtains a point-like equation á la Schawlow�

Townes for the amplitude of the lasing mode ψ(t)

i∂tψ(t) = ωlasψ(t) +
√

2DK ξ(t) (4.35)

where
√

2D ξ(t) =
∫
dx f0(x)∗ · Ξ(x, t) only depends on the shape of the lasing mode, while the

di�usion strength of the noise has been enhanced by the Petermann factor

K =

∫
dx φ0(x)∗ · φ0(x), (4.36)

3See (Grangier, Ph. and Poizat, J.-Ph. [1998]) for some nice consideration on the non-unitary origin of this
dynamics.
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which is related to the shape of all the modes of A and it is in general larger than one, since the
{fm} and {φm} modes are not simultaneously normalizable. A very similar argument holds if
one wants to start from the Maxwell wave equation with the second-order time derivative, as it is
mostly done in the original literature.

This nice linear algebra insight strictly speaking is only valid very close to threshold (or in
the linear ampli�er regime) where the dynamics can be described by a linear operator; we stress,
instead, that our generalization of this argument in the framework of the Bogoliubov formalism,
where the orthogonality of the modes is related to the unitarity of V , holds even far above threshold.
Notice also that close to threshold A corresponds to the particle-particle sector of the Bogoliubov
matrix L. The application of this strategy to another simple example, consisting of two coupled
and asymmetrically pumped resonators, is illustrated in Appendix A.

Physically, the extra spontaneous emission noise is due to the coupling of di�erent modes, as it
has been clearly illustrated by Grangier, Ph. and Poizat, J.-Ph. [1998]. One can also distinguish
between longitudinal and transverse Petermann factors, depending on the direction the mixing
occurs in. Semiconductor lasers are often made of open resonators, where the Petermann factor
can be of the order of tens or hundreds.

In analogy with these known results, we de�ne here the transverse Petermann factor as the
ratio

K =
γST

Dn/ntot
. (4.37)

Importantly, for the topological laser device this number is around K ' 1.002 for J = 5γ and
K ' 1.1 for J = 0.5γ; we attribute the small discrepancy with respect to 1 to the fact that the
lasing mode is very slightly distorted in the nonlinear steady-state with respect to the HH mode
of the Hamiltonian model, the amount of distortion depending on J/γ, see discussion around
Eqs. (4.15,4.16).

In conclusion, within the linearized Bogoliubov approximation, the laser emission is for all
practical purposes determined only by the total number of photons in the device, which is the
textbook, optimal case. This con�rms that topological guiding in the edge mode is immune from
the linewidth broadening e�ects typical of lasing in open resonators with gain guiding.

4.3 Nonlinear phase physics*

( this Section builds on (Amelio and Carusotto [2019]) )

The discussion of the emission spectrum presented in the previous subsection gives �rst hints
of the complexity of the �uctuation dynamics in an extended device. Here we will build a complete
theoretical picture of the spatio-temporal coherence of the topological laser.

To get a �rst hint on the behaviour, we can make the assumption, as already argued in Section
4.2, that the �eld on the edge can be described in the comoving frame by the 1D equation

i∂tψCM (x, t) = (−Jeff + iη)∂2
xψCM +

i

2

[
Peff

1 + nS |ψCM |2
− γ
]
ψ
CM

+
√

2D ξ. (4.38)

Here Jeff is given by the curvature of the bare Harper�Hofstadter topological mode, Peff is chosen
as to retrieve the numerical mean intensity n0 on the edge, and η accounts phenomenologically
for the k-dependent localization of the lasing mode on the edge of the lattice and the consequent
k-dependence of gain. We mention that a �nite η would arise also in the 1D chain if a dissipative
coupling described by a non-vanishing imaginary part of J (Longhi and Feng [2018], Aleiner et al.
[2012], Harrison et al. [2020]) were considered.

Assuming a fast relaxation of the intensity �uctuations, we can then restrict our attention to the
dynamics of the phase. By neglecting terms containing four derivatives (both the linear, Galilean-
preserving ones and the nonlinear, Galilean-breaking ones4), one gets to a motion equation for the

4 The phase equation associated with Eq. (4.38) reads

−∂tφ = −η∇2φ+ Jeff (∇φ)2 −
Jeff

2n0
Γ−1
eff∇

2
[
−2ηn0(∇φ)2 − 2Jeffn0∇2φ

]
+

+
η

n0
Γ−1
eff∇φ · ∇

[
2ηn0(∇φ)2 + 2Jeffn0∇2φ

]
+

√
D

n0
ξ1
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Figure 4.10: KPZ dynamics on the topological edge mode. (a) Typical example of the steady�state
space-time dynamics of the phase of the �eld ψ

CM
(x, t) on the system edge seen from the comoving

frame. (b) Correlators C̃(t̃, x̃z) for x = ±30, ...,±160 (small lines) for the topological device lasing
into the kx = −2π 155

1024 mode (orange) and for the non-topological one-dimensional array lasing in
the kx = 0 mode (cyan). Red and blue dashed lines indicate the KPZ universal function (4.43)
on which all curves collapse. System parameters: Nx = 1024, J = 0.5γ, P = 2γ, nS = 1000,
Dx,y = γ/2(1 + δy,1).

phase of the KPZ form:

∂tφ = η∂2
xφ−

J2
eff

Γ
∂4
xφ− Jeff (∂xφ)2 +

√
D

n0
ξ. (4.39)

Since η is the less controlled parameter of the model, we do not perform the usual KPZ rescaling (He
et al. [2015]) to yield an equation containing the e�ective nonlinearity as the only one parameter.
Rather, we rely on the rescaling Eqs. (3.46) with the e�ective parameters J → Jeff , P → Peff ;
this transformation does not depend on η 5 and yields

∂t̃φ̃ =
ηt∗
l2∗
∂2
x̃φ̃− ∂4

x̃φ̃+ (∂x̃φ̃)2 + ξ̃. (4.40)

In these units we then expect the KPZ nonlinearity to be close to λ = 2; this value is also protected
from renormalization induced by the quartic derivative term in the KSE (Ueno et al. [2005]). It is
thus natural to expect that the coherence of the topological laser will closely resemble the one of
the generic extended laser discussed in Chapter 3. In what follow, we proceed to numerically verify
this statement on simulations of the stochastic laser equations in the topological two-dimensional
lattice.

Based on our previous discussion, we expect that the KPZ universal dynamics occurs, in a lattice
of Nx sites, on timescales shorter than the saturation time ∼ Nz

x (after which the Schawlow�Townes
like behavior described above sets in) but larger than the timescales where the linear Bogoliubov
dynamics and non�universal e�ects dominate. Having a sizable window where to observe KPZ
physics then requires the system to be large enough, precisely it should be at least Nxa�

√
2πl∗

(Gladilin et al. [2014]). We thus consider a large system of length Nx = 1024 with periodic
boundary conditions along x and with Ny = 12 points along the open direction y. In order to
clearly observe KPZ physics while keeping intensity �uctuations within 15% and having a tractable
system size, it is bene�cial to use a small inter-site coupling J = 0.5γ.

One may argue that such a value of the coupling J (and thus of the topological gap) is compa-
rable with the bare linewidth γ. Such narrow topological gaps are very relevant for experimental
implementations (Bahari et al. [2017]), but it is not a priori obvious whether in this regime the
chiral edge modes survive losses. While this is indeed a serious issue to observe chiral edge prop-
agation in passive systems, it is a crucial result of laser theory that the laser linewidth above

5Actually, also the dependence on Γeff is such that, given the measured n0, any uncertainty on the value of
Peff will only a�ect the KPZ coe�cient of the Laplacian.
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Figure 4.11: Small-bandgap topological lasing. A 45× 21 Harper�Hofstadter lattice with J = 0.5γ
and open boundary conditions is built with a strong defect on an edge. Amplifying the edges result
in topological lasing: the modulus of the �eld is visible in panel (a) and the momentum-space
intensity along the blue dots is plotted in panel (b)Both panels show no trace of backscattering.
In this case the chiral mode on the lower edge goes from left to right, since for this negative k the
group velocity is positive.

threshold can be orders of magnitude smaller than γ. Our numerical simulations con�rm stable
lasing into the chiral edge mode even for small J/γ: in particular, we consider a strong defect on
the boundary of a rectangular lattice (so that also the corners act like defects) and put gain all
over the edge of the system. Starting the simulation with a small random seed, the �elds reach
a steady-state which displays the usual features of a topological laser and is able to go around
the strong defect, as it is shown in Fig. 4.11. In panel (a) we depict the modulus of the �eld,
while the absence of backscattering is demonstrated by plotting, in panel (b), the Fourier intensity
S(k) of the �eld along the blue dots of panel (a). This indicates that the emission is narrow and
single-peaked in momentum space, and corresponds to positive group velocity (as it is visible in
Fig. 4.6 of the main text).

To numerically highlight the KPZ physics we have performed 20 simulations of the full two-
dimensional lattice of duration γT = 5 · 105, starting from a plane wave with the wavevector value
for which the Harper�Hofstadter eigenstate is most localized on y = 1, that is kx = −2π 155

1024 . For
each run, after a suitable equilibration time, the correlation function 〈ψ∗(x, t + t̄)ψ(0, t̄)〉 on the
edge site is computed and then averaged over the 20 trials to yield g(1)(x, t). The typical dynamics
occurring in a time γT = 2 · 104 is depicted in Fig. 4.10(a), where the phase of the �eld ψ

CM
(x, t)

along the edge is shown in the comoving frame: a structure similar to the fractal structure of
interface growth can be recognized.

De�ning the correlation function in the comoving frame as

g(1)
CM

(x, t) = |〈ψ∗
CM

(x, t)ψ
CM

(0, 0)〉| (4.41)

and the rescaled correlator as

C̃(t̃, x̃z) ≡ −2(φ∗)−2x̃−2χ log g(1)
CM

(x̃, t̃), (4.42)

KPZ universality requires that

C̃(x̃, t̃) = C̃(t̃/x̃z) =

(
1

2
λA2s

)2/3

gKPZ

(
1

(2λ2As2)1/3

)
(4.43)
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Figure 4.12: Finite�size e�ects in KPZ dynamics. We assess �nite-size e�ects by considering the
correlation functions of a topological laser of length Nx = 512 in the KPZ regime (parameters like
Fig. 6 of the main text). (a) Equal-time spatial correlation function. For an in�nite system one
would have −2 log g(1)(x̃, 0) = A|x̃|; �nite-size e�ects are kept into account by adding the Brownian
bridge factor. (b) The correlation functions (orange) collapse, in very good approximation, onto
the same universal scaling function of the twice longer system N = 1024 (red dashes).

with s = t̃/x̃z and z = 3/2 on the right-hand side and gKPZ a universal function discussed in
Sec.3.2. In particular, one has C̃(0) = A = D

2ν .

A series of curves of C̃(x̃, t̃) for x = ±30, ...,±160 is plotted as orange lines in Fig.4.10(b)
as a function of t̃/x̃z: to correct for the �nite size e�ects, we actually plot C̃(x̃, t̃)/(1 − |x|/Nx).
The rational behind this trick is that the probability of having an equal-time jump of φ(x)− φ(0)

in an in�nite system is proportional to the Gaussian e−
∆φ2

Ax . In a �nite system with periodic
boundary conditions one has to multiply the probabilities of making the jump by crossing or not

the boundary of the system e−
∆φ2

Ax × e−
∆φ2

A(L−x) = e−
∆φ2

Ax(1−x/L) , which is called a Brownian bridge.
With this strategy the theoretical prediction perfectly matches the numerical spatial correlation
function, as shown in Fig. 4.12.a. Coming back to Fig.4.10(b), the collapse of the di�erent lines onto
a single curve demonstrates that within an excellent approximation (the corrected against �nite
size e�ects version of) C̃ only depends on t̃/x̃z, as expected from the KPZ scaling. This result for
the topological laser is to be compared to an analogous analysis for a trivial one-dimensional array
with the same physical parameters lasing in the k = 0 mode as discussed in Sec.3.2. Also in this
case, the di�erent lines (cyan) collapse on a single curve, con�rming the expected KPZ scaling.

The crucial point about Fig.4.10(b) is that the phase, the space and the time have been rescaled
by the φ∗, l∗, t∗ values obtained from Eqs. (3.46) using the e�ective masses and gain parameters: for
the topological laser, Jeff is the curvature of the Harper�Hofstadter band at the lasing point and
Peff is chosen in order to reproduce the observed intensity on the edge. For instance, Jeff ' 0.319γ
hence l∗ ' 1.92 here.

As explained in Section 3.2, the Renormalization Group analysis (Ueno et al. [2005]) predicts
for the non-topological 1D array lasing in the klas = 0 mode that the rescaled KSE Eq. (3.48)
�ows to the low energy e�ective KPZ theory Eq. (3.47) with λ = 2, since, thanks to the Galilean
invariance holding for KSE and KPZ equations, the nonlinear coupling is not renormalized. This
is con�rmed by our simulations, which show that the rescaled correlation functions indeed collapse
to a unique curve as shown in Fig.4.10(b) and this curve is excellently �tted (blue dashed line)
using (4.43) with λ = 2 and A = 0.96, as expected from the Galilean invariance argument.

For the topological laser, the curves again collapse onto a single curve, which is well �tted
using λ = 2.1 and A = 0.65 (red dashed line). Note that an upper bound for the �tted value of
the nonlinearity is provided by the value λ = 2.3 with A = 0.63. We checked that these e�ective
KPZ parameters λ,A do not depend signi�cantly on the size of the system, in other words the
renormalization �ow has reached its �xed point. This is shown in Fig. 4.12.b, where the correlation
functions of a shorter Nx = 512 long system (orange lines) fall close to the scaling function �tted
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Figure 4.13: Kardar-Parisi-Zhang to Schawlow-Townes crossover in a �nite�size topological laser.
This plot is the analogue of Fig. 3.5 for the topological laser. The thick black lines correspond
to the logarithm of the temporal correlation for a given site on the edge of the lattice. The thin
dashed lines show the temporal evolution of the coherence − log g(1)

CM
(t) seen from the reference

frame comoving with the edge state. For increasing system sizes and a given temporal window,
a crossover between an exponential (red �ts) and a KPZ (cyan �ts) decay of the coherence is
observed. The amplitude of the oscillations is inversely proportional to the spatial coherence of
the device. In the long-time limit, only the global phase matters and the oscillations fade away.

from the Nx = 1024 data (red dashes, the same as Fig. 4.10.b).
In contrast to the non-topological case, for the topological laser there is no a priori guarantee

that a Galilean invariant KSE holds microscopically; all the contrary, an analysis along the lines
of (Gladilin et al. [2014], Altman et al. [2015]) suggests that a rescaling with Jeff still yields a
microscopic λ = 2, but other terms should also be added in Eq. (3.47), e.g. of the kind ∂2

xφ(∂xφ)2,
(∂2
xφ)2, ∂3

xφ∂xφ, etc. These additional terms come from e�ective imaginary derivatives due to
the kx dependent localization of the Harper�Hofstadter eigenstates on the edge; in particular, they
break Galilean invariance and one may expect that they signi�cantly renormalize the e�ective KPZ
parameters, since they contain the same number (four) of derivatives as the KSE term. However,
it turns out from our numerics that the renormalization of λ remains small.

Still, it is interesting to note that the curves for the topological laser (in the properly rescaled
units) sit below the ones of the trivial one-dimensional laser array and are correspondingly �tted
by a KPZ form with a lower A. This feature can be traced back to the imaginary term proportional
to η in (4.38) that accounts for the k-dependence of the edge mode penetration in the bulk. This
term stabilizes the emission and makes the topological device more coherent than the 1D laser
with the corresponding Jeff , Peff . The crucial role of η in topological devices is apparent already
at the level of Bogoliubov analysis (Loirette-Pelous [2020]), at least for class-A lasers.

We conclude this section with a brief remark on the experimental protocol to assess KPZ
physics. The analysis of the correlation functions g(1)

CM
(x, t) shown in Fig.4.10.b was carried out

in the reference frame comoving with the chiral mode. Typical experiments measure correlation
functions between di�erent times g(1)(x, t) and di�erent points in the laboratory frame. How-
ever, since the correlation functions in the comoving and laboratory frames are simply related
by g(1)

CM
(x, t) = g(1)(x − vgt, t), the interesting g(1)

CM
can be extracted by a straightforward post-

processing of g(1)(x, t) measured in the laboratory frame. Graphically, this amounts to tilt the
correlation function of Fig. 4.8(c) with the suitable vg so to have the maximum of g(1)(x, t) at
x = 0 for all times t.

Finally, it is interesting to compare the linewidth as extracted from the numerical simulations
of the stochastic equations with the Bogoliubov calculation. The numerical predictions for the
coherence time of the topological laser are shown by the red and orange triangles in Fig. 3.7 (from
the previous Chapter) as a function of the system size. The dashed line shows the theoretical
prediction Eq. (4.29). From these results, one concludes that the topological laser behaves again
similarly to the topologically trivial one-dimensional laser array: on one hand, the agreement
with the Bogoliubov-Schawlow-Townes model of phase di�usion is excellent for small Nx and the
coherence grows proportionally to Nx. On the other hand, a much slower growth of the coherence
time with Nx is found for larger systems.

As a �nal point, it is interesting to note that the Bogoliubov-Schawlow�Townes prediction
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Figure 4.14: Topological robustness of the temporal coherence. Plot of the coherence time nor-
malized to the clean system value, as a function of the strength W of the disorder. Di�erent
markers refer to di�erent realizations of disorder. Blue and green markers are for a non-topological
one-dimensional laser array lasing at klas = 0 (blue) or klas = 2π 13

128 (green). Red markers are
for the topological laser with periodic boundary conditions (squares and triangles) and with open
boundary conditions (crosses). Same marker shapes correspond to the same spatial distribution of
the disorder potential except for the overall strength W .

that well captures the emission linewidth for small systems does not depend on Jeff nor on the
dispersion of the Bogoliubov modes at kx 6= 0. On the other hand, the deviation observed for larger
systems does strongly depend on Jeff , which pinpoints the crucial role of the KPZ nonlinearities
illustrated above 6.

4.4 Lasing and coherence in disordered arrays*

( this Section builds on (Amelio and Carusotto [2019]) )

The general message of the previous Section was that the coherence properties of a topological
laser follow the same KPZ dynamics as the ones of a topologically trivial, one-dimensional laser
array. This conclusion is not restricted to the well-known KPZ features in the in�nite system limit,
but also applies to the dependence of the coherence time on the system size and to its marked
deviations from the Bogoliubov Schawlow-Townes prediction.

In this Section we investigate the e�ect of static disorder on the coherence of the laser emis-
sion. A certain degree of fabrication imperfections and inhomogeneities is in fact expected to be
always present in any real device. As we are now going to see, our numerical study points out
a dramatically di�erent behaviour of topologically trivial vs. topological systems: disorder has a
strong impact on the coherence of a topologically trivial system, a small amount of disorder being
able to give a wide range of realization-dependent, chaotic and multi-mode phenomena. On the
other hand, the temporal coherence of a topological laser is robust against a sizable disorder and
emission remains well monochromatic as long as the disorder magnitude is not so large to close
the topological gap.

6For this plot we chose the klasx corresponding to the maximally localized Harper�Hofstadter eigenvector, but
the results are qualitatively independent of this choice. Fixing klasx is however needed if one is to compute the KPZ
correlation functions by running parallel simulations.
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Figure 4.15: Lasing in a disordered non-topological 1D array. For a relatively weak disorder
W = 0.02J we report (a) the evolution of the phase of the �eld starting from an initial condition
in a plane-wave form with klasx = 0 for a given realization of disorder and (b) the lasing frequency
of each site on the edge, measured with respect to the spatial average of the lasing frequencies.
The spatial behavior of the phase is changed by disorder without a�ecting the spatial coherence,
and, very curiously, all sites lase at the same frequency even though the coherence time is reduced
to τc/τc(W = 0) ∼ 0.1 (while the intensity of the �eld is on average una�ected). Panels (c-d) are
the same as panels (a-b) except for the much stronger disorder W = 0.32J : the lattice breaks up
in small domains lasing at distinct frequencies spread in the frequency interval between the the
band edges of the system (vertical black dashes).

4.4.1 Lasing in non-topological 1D arrays with disorder

We start by considering the e�ect of on�site disorder on the lasing properties of a non-topological
array of resonators. We do not aim here to a general discussion of the theory of lasing in disordered
systems or to make a connection with random lasers (Wiersma [2008]), but our purpose is just to
provide a benchmark to assess the features of a topological laser.

Along all this section, a disordered potential is added to Eqs. (3.36) and (4.23) in the form,

i∂tψ~x = . . .+WG(0, 1)ψ~x, (4.44)

where G(0, 1) is a Gaussian random variable with mean 0 and variance 1. For the sake of de�-
niteness, we restrict here to the Nx = 128 and J = 5γ case. The lasing dynamics in the presence
of disorder is in general very complex, but, since our ultimate goal is a qualitative comparison
with the topological laser, we focus here on the coherence time of the system for various values of
disorder W , and in particular on whether there is a clear threshold value of disorder above which
coherence collapses.

For linear waves, the sensitivity of the eigenstates at a given energy to a static perturbation
is proportional to the spectral density of states. Then, in order to have a fair comparison of the
trivial and topological cases, we consider lasing both at klas = 0 and at klas = 2π 13

128 . This latter
case has a �nite group velocity (and hence a density of states) comparable to the one of the chiral
edge mode of the Harper�Hofstadter model in its central part and for these reasons we propose it
as the proper benchmark for the topological laser.
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Figure 4.16: Panel a): Bogoliubov modes ωλ in the Goldstone dome for a Nx = 128, J = 5γ
topological array in the presence of disorder, plotted as Im ωλ versus Re ωλ. Di�erent marker shapes
correspond to di�erent realizations of disorder and colder to warmer colors point at increasing values
of W/J . Remarkably, the lifetime of the Bogoliubov modes is signi�cantly reduced for W ∼ 0.5J ,
so that longer times and larger arrays are required to observe appreciable nonlinear e�ects in the
phase dynamics. Inset: Bogoliubov-Schawlow-Townes prediction for the coherence time τST for
increasing disorder strength W/J , plotted in units of the coherence time in the clean sample. b)
Plot of the ratio τc(W )/τc(0) as a function of the disorder strength W/J for di�erent system sizes
Nx = 32, 80, 128; in particular note how the enhanced coherence time at intermediate W/J is only
observed for large enough systems. c) Plot of the ratio τc(W )/τST (W ) as a function of disorder
strength W/J for di�erent system sizes Nx = 32, 64, 128, showing how the linewidth recovers the
Bogoliubov prediction for smaller arrays and for stronger disorder close to the threshold.

In Fig. 4.14, we plot the coherence time normalized to the value in the absence of disorder. In
particular, we use an exponential �t to extract the coherence time τc for each site (an exponential
�t is used even if the shape of g(1)(t) is in general very complex) and we plot the average over the
lattice. Markers with the same shape indicate that the same realization of disorder and the same
initial conditions have been used, while only the overall strength factor W is varied.

Looking at the blue and green points in the plot, we see that already a very small disorder has
a marked impact on the coherence time of the device. As expected, the threshold value depends
on klasx , as visible comparing the blue dataset for lasing at klas = 0 and the green dataset for a
�nite klas where the density of states is smaller. While a detailed description of the variety of
possible behaviours for di�erent disorder realizations goes beyond the scope of this work, some
illustrative examples are shown in Fig. 4.15. In the left panels the phase of ψsl(x, t) is plotted
in the slowly varying frame, while in the right panels the frequency of each site ω(x), de�ned as
the peak of the spectrum of the �eld on that site, is plotted with respect to the spatial average
ω̄ = 1

Nx

∑
x ω(x), with the exception of panel Fig. 4.15.d where the absolute frequency is plotted

instead. In particular, for intermediate disorder W ∼ 0.08J laser operation may get fragmented
with di�erent portions of the sample lasing at di�erent frequencies (panels (c,d)). Calculations for
di�erent realizations of disorder suggest that coherence can be greatly reduced even in the absence
of fragmentation (as shown in panel b) of the same �gure) and without a�ecting the intensity
of the �eld, thus showing that there is no general one-by-one correspondence between the power
slope e�ciency and the robustness of coherence robustness to static disorder. Finally, curious
non-monotonic behaviors can also be observed in some other realizations.

4.4.2 Topological robustness to disorder

The same protocol was repeated for the topological laser on a Nx = 128 times Ny = 12 stripe with
J = 5γ, periodic boundary conditions along y and gain localized on the y = 1 row of sites. The
results are reported as red datasets in Fig. 4.14. Simulations were also performed with fully open
boundary conditions and gain distributed along the whole edge, yielding the same conclusions.
In contrast to the non-topological case discussed in the previous subsection, the behavior of the
topological laser remains quite regular in the presence of disorder and di�erent realizations show
very similar features.

For weak disorder strengthsW , disorder has a negligible impact: as naively expected, scattering
on defects is topologically suppressed as the laser �eld in the chiral edge mode is able to continuously
travel around the system almost undisturbed. The temporal and spatial coherence properties of
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Figure 4.17: KPZ dynamics in disordered topological laser. Correlators C̃(t̃, x̃z) for x =
±70, ...,±300 (small orange lines) for the topological device lasing in the presence of disorder
of strength W = 0.032J . The wrinkles are not due to statistical noise, but arise because of the
disorder (the data are relative to a speci�c realization). The red dashed line indicates the KPZ
universal function (4.43) �tted on the clean sample. System parameters: Nx = 1024, J = 2γ,
P = 2γ, nS = 1000, Dx,y = γ/2(1 + δy,1).

the clean system are thus very well preserved. For strong disorders, topological protection breaks
down and the coherence displays a marked threshold at a value of disorder Wc ∼ J , that is on
the order of the topological gap of the underlying Harper�Hofstadter model. Beyond this value,
spatial and temporal coherence are rapidly lost.

The most intriguing regime is for intermediate values of the disorder strength, where we observe
a surprising and systematic enhancement of the temporal coherence. A tentative explanation for
this expected behavior can be put forward in terms of the KPZ dynamics. Even though they
are too small to destroy the topology, these values of W/J are strong enough to hamper the
nonlinear phase dynamics that is responsible for the deviation from the Bogoliubov-Schawlow-
Townes prediction seen in Fig. 3.7. As a result, for intermediate W the coherence time recovers
the Bogoliubov�Schawlow�Townes prediction (4.29).

This interpretation is substantiated by the analysis reported in Fig. 4.16. As a �rst step, in panel
a) we plot the real and imaginary parts of the lowest Bogoliubov eigenfrequencies (Loirette-Pelous
[2020], Zapletal et al. [2020]) for a few realizations of disorder and di�erent disorder strengths
indicated by the shape and color of the markers. As usual in such calculations, the computation
consisted in reaching the noiseless steady-state via the deterministic evolution in the presence of
disorder and then �nding the eigenmodes of the linearized evolution around the steady-state by
diagonalizing Bogoliubov matrix. From the plot, it is apparent how disorder has a strong e�ect
in reducing the lifetime of the excitation modes. Physically, this behaviour can be understood
in terms of the �uctuation modes being pushed by the disorder deeper into the non-amplifying
bulk of the lattice. Since the Bogoliubov-Schawlow-Townes coherence time is not sensitive to
the decay rate of �uctuation modes, this e�ect is however not enough to explain the numerical
observation shown in Fig. 4.14: As reported in the inset, a computation using the linearized
Bogoliubov-Schawlow-Townes recipe of Eq. (4.32) rather predicts a slightly decreased coherence
time for increasing disorder.

On the other hand, as the precursor of KPZ physics in a linearized analysis is typically given by
the softening of the Bogoliubov modes, the faster decaying modes reported in Fig. 4.16.a hint to a
suppression of the e�ective nonlinear coupling responsible for the KPZ-broadened linewidth. This
intuition is quantitatively tested by repeating our calculation of the coherence time for di�erent
system sizes. As we have seen in Fig.3.7, the KPZ nonlinearity has in fact no e�ect on small
systems, but it dramatically reduces the coherence of large systems.

Panels b) and c) of Fig. 4.16 fully con�rms this mechanism. For the small Nx = 32 system size
for which Fig.3.7 showed an accurate agreement with Schawlow-Townes, we �nd in panel b) that
no enhancement is present and the coherence time remains nearly constant up to the threshold
value Wc for which topological protection is broken. Panel c) show the same data on a di�erent
scale, with the coherence time normalized to the Bogoliubov-Schawlow-Townes prediction plotted
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in the inset of panel a). For small lattices Nx = 32, the relative coherence time τc/τST ≈ 1
up to Wc, showing that the Bogoliubov-Schawlow-Townes prediction is accurate and the KPZ
nonlinearity plays no role. For the large system with Nx = 128, the relative coherence time τc/τST
is suppressed at small disorders by the KPZ nonlinearity and only recovers the unit value as the
threshold Wc is approached and the KPZ nonlinearity is no longer e�ective. We have checked that
these considerations remain valid for di�erent noise distribution Dx,y, as it is displayed in Fig. S9.

Work in progress (Amelio and Carusotto [2020b]) is focusing on the direct measurement of
KPZ correlations in the disordered case. We report in Fig. 4.17 the analogue of Fig. 4.10.b but
in the presence of disorder. In particular we used a value W = 0.032J close to the threshold for
observing KPZ physics: for W below this value the clean red dashed line is recovered, while for
stronger values the scaling behavior breaks and the orange region broadens considerably. This
threshold is consistent with the crossover point one can see in Fig. 4.14 and we just discussed,
above which τc gets enhanced.

As a last point, it is worth commenting on the dependence of these results on the speci�c
value of klas, that is the winding number klasNx/(2π) of the lasing mode. For a non-topological
one-dimensional system, we have seen in the blue and green datasets of Fig.4.14 that lasing at
di�erent klas give very di�erent robustness to disorder. On the other hand, we have found that
topological lasing is quite insensitive to the speci�c value of klas that can be chosen for laser
operation (Seclì et al. [2019]). The simulations of the topological laser can thus be started with
arbitrary initial conditions on the �eld, �nding almost identical behaviours at the steady�state.
This further demonstrates that the topological device is able to automatically reach a stable and
coherent steady�state emission.

4.5 Discussion*

( this Section builds on (Amelio and Carusotto [2019]) )

Our calculations are based on a simple model that brings together two main ingredients: lasing,
meant as an archetype of nonlinear physics, and topologically protected chiral edge states. We
give a rather complete treatment of this model. However, many additional elements that would
be essential to quantitatively describe real-life devices have been neglected in our study. In this
subsection we discuss to what extent our results are expected to apply to realistic devices, in
particular the recent semiconductor-based realizations (Wittek et al. [2017], Bandres et al. [2018],
Bahari et al. [2017], Zeng et al. [2020], St-Jean et al. [2017], Parto et al. [2018]), and in which
properties the main deviations are expected to occur.

First of all, we have focused our attention on an idealized gain medium with a temporally
instantaneous response. This is a good approximation for a gain medium with a fast relaxation
rate, in which the electronic dynamics in the medium can be adiabatically eliminated in favour of
the electromagnetic �eld dynamics. Furthermore, we have assumed that the optical nonlinearity
reduces to gain saturation, and does not a�ect the real part of the refractive index. This would
be a good approximation only if laser operation occurs near the center of the ampli�cation band,
otherwise mode pulling e�ects typically set in.

While these elements are essential in order to make quantitative predictions for a speci�c device,
we do not expect they will introduce qualitative changes: as it was shown in (Gladilin et al. [2014],
He et al. [2015], Squizzato et al. [2018]), the characteristic length and time scales over which the
KPZ regime is observed are of course modi�ed in the presence of reactive optical nonlinearities,
but not the universal scaling behaviour. Of course, this is valid as long as the additional features
�in particular the slow carrier dynamics� do not introduce dynamical instabilities akin to those
predicted in (Longhi et al. [2018], Baboux et al. [2018], Loirette-Pelous [2020]) or multi-mode lasing
behaviours. Inspection of the experimental spectra reported in (Bahari et al. [2017], Harari et al.
[2018]) agree with our numerical calculation in giving a stable single-mode emission, so this does
not appear to be a concern for existing experiments.

Concerning the coherence time, it is well known that the details of the gain medium (Whittaker
and Eastham [2009], Pick et al. [2015]) can have a sizable impact on the linewidth, but they typically
do not change the exponential functional form of the long time coherence decay. In particular,
the intensity-dependence of the refractive index is typically responsible of an additional linewidth
broadening e�ect as intensity �uctuations translate (often in temporally non-local way determined
by the carrier dynamics) into �uctuations of the cavity mode frequency and thus in a di�usion
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of the phase. The ensuing linewidth broadening e�ect is quanti�ed by the so-called Henry factor,
which in semiconductor lasers can be as large as a few tens. In realistic topological lasers, we
expect that this broadening source will sum up with the Petermann factor and the broadening
factor arising from the nonlinear phase dynamics illustrated in Fig. 3.7.

The e�ect of a non-instantaneous response of the gain medium requires some distinctions. On
one hand, a slow carrier dynamics breaking our adiabaticity assumption should not introduce
any additional linewidth broadening e�ect (Pick et al. [2015]). On the other hand, the restricted
frequency-band of gain that is often associated to a non-instantaneous response of the gain medium
may enhance both spatial and temporal coherence since lasing typically occurs at the point of
maximum gain and the weaker ampli�cation of �uctuating side-modes results in a faster e�ective
damping ν in (3.48) and η in (4.39). A theoretical study of the role of a frequency-dependent
ampli�cation in favoring laser operation in the topological edge modes over bulk modes as observed
in (Bahari et al. [2017]) will be the topic of a forthcoming publication (Secli and Carusotto [2019]).

Another important issue to be carefully considered is the actual validity of the tight-binding ap-
proximation in a speci�c topological system and the possibility of a complex nonlinear dependence
of the tight-binding parameters on the circulating light intensity. The tight-binding approximation
performed in our calculations consists in solving the nonlinear dynamics of the �eld on a dis-
crete lattice of coupled single-mode resonators instead of dealing ab initio with the full nonlinear
Maxwell equations in the microscopic geometry of the underlying topological structure. Powerful
methods to this purpose have been developed, e.g. the so-called SALT � Steady-state Ab initio
Laser Theory (Türeci et al. [2006]) but they remain computationally very expensive compared to
the tight-binding model: they allow to compute the deterministic steady-state and then compute
the Schawlow-Townes linewidth within the linearized approach, but have never been pushed to
more subtle KPZ features. Also the recent works on KPZ physics in lasers (Altman et al. [2015],
Gladilin et al. [2014], Ji et al. [2015], He et al. [2015], Lauter et al. [2017], Squizzato et al. [2018]) did
not start from a microscopic description of the system, but were rather based on model equations
of the Complex Ginzburg Landau family.

Since our conclusions on the spatio-temporal coherence are based on universal properties, we can
anyway expect they are independent of the underlying microscopic model, so they should extend to
generic realizations of the topological laser concept, irrespectively of the material platform under
investigation. The only crucial assumption is that the dynamics can be described by a unique
classical stochastic �eld, or in the laser terminology that the emission is a single mode one. This
assumption needs to be veri�ed ab initio for each model, and it remains to be investigated to what
extent topology can help to phase-lock the �eld at the di�erent sites of the array into a single,
spatially extended mode. Certainly, the fact that the edge and bulk HH modes have very di�erent
spatial pro�les can be helpful to achieve this goal, as studied in more detail by Noh et al. [2020],
who managed to get single-mode operation by exploiting the fact that for large enough topological
bandgaps one cavity mode has a quality factor considerably larger than the other modes, and as
pointed out also in connection to supersymmetric laser arrays (Khajavikhan et al. [2020]).

4.6 Conclusions

In this Chapter we have investigated the spatio-temporal coherence properties of topological arrays
of coupled laser resonators, discussing analogies and di�erences between lasing in a non-topological
one-dimensional chain and chiral edge-state lasing in a 2D topological Harper�Hofstadter lattice,
introduced in Section 4.1. A main focus of our work has been to clarify how the spatial �uctuations
of a non-equilibrium classical �eld impact on its temporal coherence.

To attack this question, the Bogoliubov spectrum and temporal coherence have been computed
in Section 4.2. In particular, for relatively small systems in the Schawlow-Townes regime the
topological laser emission is by a transverse Petermann factor very close to one: this further
clari�es the nature of the topological localization on the edge, proving that the coherence is not
a�ected by the geometry of the cavity, as it instead occurs for lasing in open resonators. For all
practical purposes the coherence time is then determined by the total number of photons in the
device.

Moreover, provided one reasons in the reference frame moving at the group velocity of the chiral
mode, the results of Chapter 4.3 are found to directly apply to the chiral laser emission in the
edge states of extended topological devices. More precisely, the Kardar-Parisi-Zhang universality
is numerically demonstrated and also concerning the very long time coherence the KPZ physics
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starts playing a central role in larger lattices, where the Schawlow-Townes linewidth gets strongly
broadened by the nonlinear dynamics of spatial �uctuations.

The key novelty of topological lasing is visible in disordered systems, discussed in Section 4.4.
While for clean samples the spatio-temporal correlations behave very similarly for the topological
and trivial devices, topological protection entails a much larger resilience to fabrication imperfec-
tions. For the non-topological arrays, static disorder is in fact able to spatially localize the lasing
mode and/or break it into several disconnected and incoherent pieces. On the other hand, the
topological protected chiral motion of the edge state of a topological laser device is able to phase-
lock the di�erent sites and thus maintain the spatial and temporal coherence across the whole
sample up to much larger values of the disorder strength on the order of the topological gap. In
this regime, the many individual sites participating to the topological lasing operation emit in a
coherent way as a single, very large and powerful laser in spite of fabrication disorder. These re-
sults open exciting perspectives both for technological applications and for studies of fundamental
physics using topological lasers.

From the theoretical point of view, ongoing research includes the classi�cation of the di�erent
Kardar-Parisi-Zhang universality subclasses for our model (Squizzato et al. [2018]) and the exten-
sion of our study to arrays of realistic semiconductor lasers and other kinds of non-equilibrium
condensates, e.g. exciton-polaritons. As we argued in Section 4.5, since our results on the coher-
ence properties are based on universal properties of the stochastic spatio-temporal �eld dynamics,
we expect that our conclusions apply, with a proper rescaling of the coherence length and time, also
to class B devices provided the laser emission is a single mode one. In this respect, the important
open question is to assess whether the topology is able to overcome the di�erent destabilization
mechanisms that hinder single mode laser operation in spatially extended semiconductor laser ar-
rays. On a longer run, a natural step involves the generalization of the topological laser concept
to photonic lattices in higher dimensionalities and with di�erent band topologies (Ozawa et al.
[2019]), possibly exploiting the synthetic dimension concept for mode-locked emission (Yang et al.
[2020]).

From the experimental side, the e�ectively periodic boundary conditions naturally enjoyed by
a chiral edge mode are extremely promising to suppress undesired spatial inhomogeneities and
boundary e�ects in experimental studies (Baboux [2020]) of the critical properties of di�erent
non-equilibrium statistical models.

On the application side, we have shown that the coherence properties of a topological laser are
robust against the static fabrication disorder that is unavoidably present in any realistic system.
While a marked robustness to disorder was established for the single-mode character of the emission
and the power slope e�ciency of the laser device in (Harari et al. [2018]), here we have demonstrated
that robustness also holds with respect to the coherence properties of the emission. This con�rms
the strong promise that topological lasers hold for practical opto-electronic applications.
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Conclusions and Outlooks

In this Thesis we have studied the physics of polariton �uids and laser arrays in di�erent regimes.
Here we want to summarize the most important results and future research directions, leaving to
the Conclusions of each Chapter for more details and for the reference to the speci�c Sections.

Part I deals with resonantly driven polariton �uids: in Chapter 1 we presented a numerical
study of steady-state �ows o� a �nite laser spot. In particular, we highlight the extremely non-
linear response of the �ow to the pump parameters, correcting some wide-spread misconceptions
in the literature: our work thus candidates as the fundamental theoretical reference for studies of
polaritons ejected by a �nite laser spot. The experimental investigation of the quantum pressure
term is being currently pursued by Alberto Bramati's group.

In Chapter 2 we treat polariton dynamics in the presence of dark excitonic states. The Chapter
revolves around the experimental measurement of the polariton dispersion relation and the obser-
vation of a reduced speed of sound with respect to a fully coherent polariton model. We show that
this feature can be accounted for by the presence of an incoherent excitonic reservoir and we can
provide estimates of the reservoir contribution to the total polariton blueshift. Moreover, we point
out the crucial di�erence of the impact of the reservoir on static versus dynamical properties, also
in the light of a formal Galilean boost argument. We expect these conclusions to inform quite
generally on driven nonlinear waves coupled to a density variable with a slow dynamics.

In Part 2 we turn to lasing systems and incoherently driven polariton condensates, where the
macroscopic state spontaneously break the microscopic U(1) symmetry. The general goal of this
Part is understanding how spatial �uctuations a�ect temporal coherence in low dimensional and
topological systems.

In Chapter 3 we have elucidated the behavior of large 1D laser arrays or polariton quasi-
condensates at very long times, when the KPZ universal physics turns into a Scahwlow�Townes-like
phase di�usion. This is characterized by a linewidth which experiences an extra broadening sensible
to the lack of long range order. Our results propose the linewidth as a very interesting observable
for future studies of non-equilibrium �uids. Current research is also focusing on the quantitative
understanding of the non-trivial linewidth behavior with the system size, on the application of these
concepts to other models and on the relevance of our analysis for experimentally available laser
arrays. In particular, an intriguing question concerns the limits of applicability of the Bogoliubov
method to real devices, since in traditional laser theory this approach is completely absent; the
treatment of multimode lasing within this formalism represents a closely related challenge.

Finally, in Chapter 4 we report the �rst study of the coherence properties of a topological laser
and illustrate the structure of the spatio-temporal correlators of the edge mode laser emission. In
particular, a dimensional reduction is carefully discussed; moreover, while for small system sizes
the Bogoliubov analysis is valid, for large enough systems the results of Chapter 3 apply after a
proper change of frame. In the Bogoliubov regime, the computation of Petermann factors very
close to 1 con�rms the nature of edge mode lasing, in contrast to the case of gain guiding in
open resonators. Our method provides an elegant generalization of the usual approach to the
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Petermann factor, and it will be interesting to apply it to other situations (Appendix A is a �rst
small anticipation of this program). Another remarkable result is the robustness of the coherence
properties to disorder, which (up to a certain threshold) surprisingly helps in stabilizing the device.
In the close future, it will be very interesting to study existing devices and try to probe the generic
behavior of the correlation functions found here. Our work represents also an important step
towards understanding the potential of topological semiconductor lasers for practical applications.
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Appendix A: Petermann factor of two

coupled resonators

Here we want to compute the Petermann factor of a simple system by applying the Bogoliubov
method described in Eqs. (4.29,4.37). The system we consider consists of two resonators with the
same bare frequency which we set to zero, coupling J and losses γ1, γ2. The crucial ingredient,
though, is that we amplify only the �rst resonator with pumping rate P . The equations of the two
oscillators then read

i∂tψ1 = −Jψ2 +
i

2

[
P

1 + |ψ1|2/nS
− γ1

]
ψ1,

i∂tψ2 = −Jψ1 −
i

2
γ2ψ2.

It is easy to check that, for J > γ/2, the steady-state ψi(t) = ψ0
i e
−iω0t satis�es

ψ0
2 = − J

ω0 + iγ2/2
ψ0

1

ω0 = ±
√
J2 − (γ2/2)2

|ψ0
1 |2 = nS(P/γ12 − 1) , γ12 = γ1 + γ2.

Also notice that the two resonators have the same steady-state intensity ψ0
2 = |ψ0

1 |eiφ; moreover,
when γ2 � J , φ ∼ γ2/J . This solution is stable above the exceptional point J > γ2 of the
bare system, see (Zhang et al. [2018]) and references within for exceptional points and linewidth
broadening.

The Bogoliubov equations read

i∂tδψ1 = (−ω0 +
i

2
γ2)δψ1 − Jδψ2 −

i

2
Γ(δψ1 + δψ∗1)

i∂tδψ2 = (−ω0 −
i

2
γ2)δψ2 − Jδψ1

corresponding to the Bogoliubov matrix

L =


−ω0 − i

2 (Γ− γ2) − i
2Γ −J 0

− i
2Γ ω0 − i

2 (Γ− γ2) 0 J
−J 0 −ω0 − i

2γ2 0
0 J 0 ω0 − i

2γ2


where Γ = γ12(P − γ12)/P .
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Applying the strategy discussed in Eqs. (4.29,4.37), the resulting Petermann factor is presented
in the plot below, obtained for γ1 = γ2 = γ. In this model the distortion of the bare mode that
produces the Petermann factor is not a modi�cation of the intensities of the two resonators but a
relative phase twist.
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