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Abstract—The automatic discovery of causal relationships among human genes can shed light on gene regulatory processes and
guide drug repositioning. To this end, a computationally-heavy method for causal discovery is distributed on a volunteer computing grid
and, taking advantage of variable subsetting and stratification, proves to be useful for expanding local gene regulatory networks. The
input data are purely observational measures of transcripts expression in human tissues and cell lines collected within the FANTOM
project. The system relies on the BOINC platform and on optimized client code. The functional relevance of results, measured by
analyzing the annotations of the identified interactions, increases significantly over the simple Pearson correlation between the
transcripts. Additionally, in 82% of cases networks significantly overlap with known protein-protein interactions annotated in biological
databases. In the two case studies presented, this approach has been used to expand the networks of genes associated with two
severe human pathologies: prostate cancer and coronary artery disease. The method identified respectively 22 and 36 genes to be
evaluated as novel targets for already approved drugs, demonstrating the effective applicability of the approach in pipelines aimed to
drug repositioning.

Index Terms—distributed volunteer computing, gene regulatory network expansion, BOINC, prostate cancer, coronary artery disease
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1 INTRODUCTION

B IOINFORMATICIANS and computational biologists have
been experiencing an increased need for computational

resources in order to extract knowledge from the ever-
growing amount of information of the -omics data produced
by the latest high-throughput technologies. This knowledge
can be represented by gene regulatory networks, a syn-
thetic and convenient way of representing as graphs the
functional interactions of the genes of an organism [1].
The representation abstracts away from the details of the
actual underlying chain of events producing an interaction
between two genes, and draws it as an edge between the
corresponding nodes. Inferring gene regulatory networks
from transcriptomic data is a wide and active research
area [2] whose scope includes also the discovery of causal
relationships between the transcription levels of the genes.
However, causal discovery techniques are not among the
popular tools for gene network reconstruction. For example,
a recent and extensive review [3] covers different kind of
models (information theory, Boolean, ODE, Bayesian and
neural) and the corresponding tools, without reporting any
causal discovery technique. The viability and effectiveness
of discovery causal effects from transcriptomic data has
been already shown at least one decade ago [4], but so far it
lacks the attention that its theoretical soundness deserves.

The work of Judea Pearl [5] established causality as
a fundamental concept of statistics and computing. The
notion of causality is receiving a growing attention by the

data mining community [6] in applications where the focus
is the discovery of cause-effect relationships from observa-
tional data. The PC algorithm [7] tackles, among others, this
problem and it can be applied on transcriptome data to
infer causal relationships [8] where it promises to improve
upon pure-correlation approaches such as WGCNA [9].
However, the worst-case complexity of the algorithm makes
this approach not directly suitable for data of complex
organisms with tens of thousands of genes. These problems
can be mitigated by subsetting the variables and restricting
the inference to the expansion of known gene regulatory
networks of interest [10], [11].

In this paper we present the approach, methods and
results of the gene@home project [12]. Developed within a
collaboration of Trento University with FEM and IMEM-
CNR, the project aims to expand gene networks using
transcriptomic datasets with the support of voluntary com-
putation on the TN-GRID platform [12] based on the BOINC
system. The project involved so far two thousand volunteers
and thousands of computers with a current estimated power
of 14 teraFLOPS. In particular for human data we intend
to provide a public resource to navigate and combine the
results by expanding each single human transcript. Such
resource can have a substantial impact on biological and
medical research, as we make evident in two case studies.

The TN-GRID platform, which runs on a virtual server
in the Data Center of the University of Trento, hosted the
NES2RA algorithm [10], [11] which has been already used
to calculate gene network expansions in plants and microor-
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Fig. 1. Blocks scheme of the OneGenE architecture. Subfigure a shows the detail of the computation for a single gene g, while Subfigure b shows
the overview of OneGenE, highlighting the two computational stages.

ganisms, such as A. thaliana, E.coli and V. vinifera [10], [13].
NES2RA [11] outperformed the state of the art algorithm
ARACNE [14] in the task of network expansion. Starting
from a local gene network (LGN), based or hypothesized
on previous biological knowledge, its expansion consists
in a set of genes and a list of interactions which describe
putative causal relationships with the genes in the LGN. The
expansion is calculated on observational gene expression
data, organized in a coherent normalized data matrix. Each
expansion requires a few days to be carried out, even with
the use of the BOINC distributed computing platform, thus
presenting two main problems: the results cannot be pro-
vided to the user in real time and any expansion represents
a unique elaboration, very unlikely to be submitted again
given that the number of possible gene combinations is
exponential in the size of a genome (5,000 - 30,000 genes).

To overcome these problems, we are now adopting an
approach called OneGenE [15] which aims to expand each
single gene in an organism. OneGenE’s main idea is to calcu-
late the list of gene expansions for each gene in an organism
by systematically running single-gene NES2RA expansions
with fixed parameters, and then combine them afterwards
to simulate LGN expansions. By doing so, these expansions
can be used multiple times, thus effectively reducing the
computational effort. With OneGenE, we will create a public
database containing the expansions for each gene in an
organism, thereby offering the possibility of building any
LGN expansion in a very short time by combining the
already calculated single expansions.

The infrastructure can be considered a socio-technical
system that includes a server, the volunteers and their
computers, and the biologists interested in the results. The
communication of results at a scientific and popular level is
essential both to expand the volunteer base and to establish
a large and stable user base. To this end, we describe each
application in the forum and pay particular attention to the
requests of the volunteers.

The expansion of the human gene networks is based on
the transcriptomic dataset provided by the FANTOM project
[16]. FANTOM5 gene expression data come from sequenc-
ing of RNA extracted from 1,816 samples of different human
tissues and cell lines and contains expression profiles of
201,802 gene isoforms (transcripts). It thus contains plenty
of information on human gene transcriptional profiles in
different biological contexts that can be exploited for data
mining for different purposes. To our best knowledge ours
is the first attempt to infer genome-scale regulatory infor-
mation from FANTOM5 data. Few algorithms for network
reconstruction scale to such large networks [3], and their
benchmarking is usually done on far smaller networks. For
example, a recent benchmark on networks of maximum 100
nodes [17] showed that ARACNE [14] (against which we
already compared [11]) is still representative of the state of
the art. The gold truth is necessary to compute the usual
benchmarking metrics (precision, sensitivity, sensibility and
ROC curves) but its absence prevents us from setting up big
benchmarks with real data. Therefore we validate the results
in terms of functional enrichment against public resources
and present two in-depth case studies.

The two case studies here presented are focused on
drug repositioning for two quite common pathologies, i.e.
prostate cancer and cardiovascular diseases. Drug reposi-
tioning is an alternative approach for the discovery of new
therapeutic opportunities for already approved medicines.
Compared to traditional de novo drug development strate-
gies, which have become increasingly expensive and time-
consuming, this method, which relies on previous knowl-
edge and speed up the approval procedure of the drug regu-
lators, can represent a valuable approach. The biological op-
portunity of drug repositioning relies on one side on the fact
that many diseases share common dysregulated pathways
and proteins, and on the other side that medicines actually
perturb multiple targets (off-targets interactions). Prostate
cancer is currently one of the most common carcinomas
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among men, 3 million people are now affected by this dis-
ease in Europe [18]. The most common treatments include
radical prostatectomy or radiotherapy, which often affect
semen production and fertility. Other chemotherapy based
medications exist, however most of them have serious side
effects that drastically reduce the quality of life of patients.
Therefore, drug repositioning could help identifying drugs
with anti-cancer activity as well as reduced adverse effects
for human health. Coronary artery disease (CAD), also
known as coronary heart disease (CHD) or ischemic heart
disease (IHD), is the most common type of heart disease. It is
the leading cause of death in most of the Western countries
as emerges from WHO data [19]. This condition leads to the
formation of a waxy substance called plaque in the coronary
arteries, decreasing the flow of oxygen-rich blood to the
heart. CAD is a complex disease caused by multiple factors,
including lifestyle and diet, thus different classes of drugs
are actually used to treat it, among which aspirin is the most
known one. Here, we present a data driven approach for
drug repositioning based on NES2RA ability to find genes
causally-related to genes already known to be involved in
these pathologies and propose them as novel drug targets
for the treatment of CAD or prostate cancer.

The next two sections present method, input data, and
the system. Section 4 is devoted to the validation of the
OneGenE approach of single-gene NES2RA expansions,
whereas Sections 5 and 6 focus respectively on the applica-
tion to drug repositioning for prostate cancer and coronary
artery disease. The last section draws conclusions and future
perspectives.

2 METHOD

OneGenE [15] is a method to compute ranked candidate
gene lists that expands known local gene networks given
gene expression data. As its predecessor NES2RA, OneGenE
(Algorithms 1 and 3) is based on the systematic and iterative
application of the skeleton function of the PC algorithm
(Algorithm 2) on subsets of the input data. OneGenE aims
to overcome the large latency of NES2RA when applied to
LGNs, by pre-computing partial results, namely single-gene
NES2RA expansions, on the BOINC platform.

Figure 1 shows the block scheme of the OneGenE archi-
tecture [15], highlighting the different platforms and the two
computational stages. First, a pre-computation step: can-
didate expansion lists are pre-computed for each gene (or
more generally transcript) of the target organism exploiting
the BOINC platform. Second, a ranking aggregation step:
the user provides as input a set of transcripts of interest
(LGN) and chooses a specific procedure to aggregate the
intermediate results pre-computed by OneGenE.

Data and Input. The pipeline starts with Algorithm 1
whose input consists of a n×m gene expression data matrix
E, where n = |S| is the number of transcripts S and m
the number of samples, and a set of parameter tuples Θ =
{θ} = {(α, d, i) | α ∈ A, d ∈ D, i ∈ I} where A,D and I
are respectively the sets of alpha values, tile sizes (namely
subset sizes), and number of iterations.

Nested Loop. For each transcript g in S , (Algorithm 1)
p instances of PC-IM (depicted in Figure 1 ) are executed
on the BOINC platform, where p = |Θ| = |A| · |D| · |I|. The

internal loop shown in Algorithm 1 is a special case of the
NES2RA Ranking Procedure, that receives as input-LGN a
single gene g with probability vector Π = 1, i.e. the gene
g is present in each subset. The internal loop comprises
the subsetting of the transcripts, the run of PC-skeleton
(Algorithm 2) on each subset, and the computation of abso-
lute frequencies, relative frequencies, and the corresponding
order of the candidates list.

Pre-computation Result. Unlike NES2RA, in OneGenE
the ranking aggregation is postponed. Each PC-IM returns
a candidate expansion list lg,θ for each tuple of parameters
θ = (α, d, i) corresponding to the set of lists resulting from
Algorithm 1. The candidate gene expansion lists are stored
on a local server (an example in Supplementary Material),
and, once all the results have been computed, OneGenE is
ready to be queried by the user with input LGNs.

Data: S set of n transcripts, E n×m matrix of expression data.
Input: I set of values of number of iterations, D set of values

of the subset dimension, A set of values of the
significance level α

Result: a set of ordered lists of candidate transcripts

L← ∅ // L set of ordered lists

foreach g ∈ S do
foreach θ = (α, d, i) ∈ A×D × I do

// NES2RA Ranking Procedure (RP) [20]
call

// lg,θ ← RP(S, {g}, E,1, i, d, α)
// equivalent to:
foreach j ≤ i do

Randomly generate a minimal collection of
subsets of dimension d of S such that g is in
every subset and each transcript is in at least one
subset

end
foreach subset do

Run the PC-skeleton function Algorithm 2 [21],
[20] on the expression data E restricted to the
transcripts of the subset and generate a network.

end
foreach γ adjacent to g in the networks do

// compute absolute frequency
fγ ← #networks s.t. γ, g are adjacent
// compute relative frequency
f ′γ ← fγ/(#subsets that contain γ)

end
lg,θ ← genes ordered with respect to f ′γ
// NES2RA RP ends, g is in each subset

with probability 1.
// In this case RP takes the name PC-IM

[22] and the call above is written
lg,θ ← PC-IM (S,{g},E,i,d,α)

L← L ∪ lg,θ
end

end
return L

Algorithm 1: OneGenE: Pre-computation Step.

Ranking or list aggregation. Let SLGN be the set of
transcripts in an input LGN and lg,θ is the candidate expan-
sion list of the gene g with the parameter tuple θ. The final
candidate gene expansion list is obtained by combining the
set of partial results L = {lg,θ | g ∈ SLGN , θ ∈ Θ} by means
of a ranking aggregator [15]. Algorithm 3 shows possible
alternatives (threshold on the relative frequency and fixed
or variable cut-offs on the rank) that are relevant for the
two case studies (Sections 5 and 6) where the expanded
lists intervene in rather complex workflows. The higher the
relative frequency the harder is to explain the correlation
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Data: T, Set of transcripts, E expression data
Input: Significance level α
Result: An undirected graph with causal relationship between

transcripts
Graph G← complete undirected graph with nodes in T;
l← −1;
while l < |G| do

l← l + 1;
foreach ∃u, v ∈ G s.t. |AdjG(u) \ {v}| ≥ l do // AdjG(u)

adjacent nodes of u in G
if v ∈ AdjG(u) then

foreach A ⊆ AdjG(u) \ {v} s.t. |A| = l do
if u, v are conditionally independent given A

w.r.t. E with significance level α then
remove edge {u, v} from G;

end
end

end
end

end
return G;

Algorithm 2: PC Algorithm: skeleton procedure [21].

Data: L = {lt,θ} set of ordered lists of candidate transcripts
Input: f ′min minimum relative frequency or k maximum

length of the lists or K = {kt} set of maximum lengths
of each list

Result: ordered list of candidate transcripts
while true do
Ltemp ← ∅ // Ltemp set of ordered lists
User enters/selects/edits T set of transcripts
// lists selection
foreach lt,θ ∈ L such that t ∈ T do
Ltemp ← Ltemp ∪ {lt,θ }

end
// lists trimming
Case frequency: Ltemp ← fre(Ltemp, f ′min) // trim

each list in Ltemp at threshold f ′min
Case top k: Ltemp ← top(Ltemp, k) // trim each

list in Ltemp to the first k elements
Case top variable kt:Ltemp ← top(Ltemp, K) // trim

each list lt,θ ∈ Ltemp to the first kt ∈ K
elements

// final lists aggregation
output l∗T =list_aggregation(Ltemp) // the final

relative frequency in l∗T is computed as
the mininum or the average

end
Algorithm 3: OneGenE: List Aggregation

between two genes in terms of other genes and this provides
evidence of a putative direct causal relationship. Ranks, on
the other hand, are useful for comparison between lists and
prioritization.

2.1 Data and running parameters
The human transcriptome data used in this work have
been downloaded from the repository of the FANTOM5
project (http://fantom.gsc.riken.jp/5/). FANTOM is an in-
ternational research consortium that generates and shares
high-quality transcriptome datasets (CC BY 4.0). The FAN-
TOM5 dataset was generated by RNA sequencing using
single molecule CAGE (Cap Analysis Gene Expression)[16].
Normalized expression values are estimated as transcripts
per million (TPM). The raw FANTOM5 dataset amounts to
1829 samples, encompassing human cell lines (271), primary
cells (564) and tissues (188) also part of time course ex-
periments (785) and fractionations/perturbations (21). FAN-
TOM5 identified 201802 distinct genomic transcription start
site (TSS) locations, corresponding to bona-fide transcript

isoforms. A first filtering has been applied on the dataset
to exclude unknown transcripts, i.e. without an annotated
HGNC symbol (https://www.genenames.org/). This step
resulted in a collection of 87554 transcripts, associated with
18889 genes, constituting our full version of the dataset
(FANTOM-full). In order to remove possible sources of
redundancy and noise in the data, additional filters were
applied to remove transcripts with absent or low expression
values in almost all samples, and transcript isoforms cor-
responding to the same genetic locus and showing highly
correlated expression profiles across the FANTOM dataset
(> 0.7). After the application of these filters, 49727 tran-
scripts, associated with 16356 genes, were retained in the
small version of the dataset (FANTOM-small). The single-
gene NES2RA expansions of FANTOM-small were submit-
ted on the BOINC platform, with a tile size of 1000 tran-
scripts, 1000 iterations and 0.05 as alpha threshold. With the
same parameters OneGenE is currently running the single-
gene NES2RA expansions on FANTOM-full.

For the analysis presented in Case Study 1, an additional
dataset has been used, retrieved from the Tumor Cancer
Genome Atlas (TCGA) [23], one of the most comprehensive
patient-derived cancer databases collecting data about 33
different cancer types. The RNA expression dataset from
the Prostate Adenocarcinoma (PRAD) project contains 551
samples and the expression values of 60,483 transcripts
obtained by RNASeq, expressed in Fragments Per Kilobase
Million (FPKM) [24]. Data was grouped inside a matrix and
then filtered according to these criteria: i) samples having
an average gene expression over the 0.975 quantile were
discarded; ii) genes not expressed in more than 500 sam-
ples were discarded. The resulting dataset (TCGA-PRAD-s)
contains 43128 transcripts for 537 samples. The single-gene
NES2RA expansion were submitted on the BOINC platform,
with a tile size of 2000 transcripts, 2000 iterations and 0.05
as alpha threshold.

3 SYSTEM AND IMPLEMENTATION

Since year 2014 CNR-IMEM, in collaboration with the Uni-
versity of Trento, has run TN-Grid, a computing infras-
tructure based on the BOINC platform. TN-Grid is hosting
gene@home, a project developed with the Edmund Mach
Foundation [12] with the goal to expand genetic regulatory
networks with putative causal relationships by analyzing
gene expression data, using the NESRA and NES2RA algo-
rithms. The gene@home project is now also running One-
GenE.

3.1 Performance

As shown in Section 2, the OneGenE application running
on the gene@home BOINC server, has the following main
sets of parameters: I (number of iterations), D (the subset
dimensions, i.e. the tile sizes), and A (the set of α to be used
in the statistical test of the PC algorithm). These parameters
need to be carefully chosen by balancing the execution
speed of the application, the accuracy of the results and the
statistical errors, and their values depend on the expression
dataset in input.

http://fantom.gsc.riken.jp/5/
https://www.genenames.org/
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TABLE 1
Optimization history of the OneGenE application

version SIMD Dataset Time (s) Relative gain

0.09 — FANTOM-full 101.93 —
0.10 sse2 FANTOM-full 37.00 2.75
0.11 sse2 FANTOM-full 23.37 1.58
1.10 sse2 FANTOM-full 15.19 1.54

Additionally other two parameters (n_pc and cut_off )
have to be set in order to optimize server and client perfor-
mance and the overall network bandwidth. The parameter
n_pc is the number of PC algorithm executions collected in
a single workunit, namely the BOINC unit of work that is
distributed to the volunteers. The parameter cut_off, whose
effect is shortening the size of the output file, is a threshold
that controls the removal of the lesser present interactions
from the ranked output list of a workunit.

Due to the large running times expected for completing a
OneGenE run, it is crucial to identify the optimal parameter
values before the beginning of the run and carefully monitor
and adjust them in the very early stages of the computa-
tional experiment, as it will be seen in Section 3.2.

The OneGenE experiments are intrinsically slow. The
core application, initially written in the R language, was first
rewritten in C++ (obtaining a substantial execution speed
increase), adapted to BOINC using its API, compiled for
different computing platforms (Windows x32/x64, Linux
x32/x64, Mac OS and Linux ARM), and made publicly
available1 to the volunteers and to anyone else. One of the
BOINC volunteers (Daniel Frużyński, Motorola Solutions
Systems Polska Sp.z.o.o), in his spare time, made significant
performance improvements to the code, profiling it using
Callgrind (Valgrind/Linux) [25], by

• removing two top bottlenecks in code (range check,
better I/O performance);

• rewriting of the correlation function, focusing on
unaligned load/store instructions and unnecessary
memory writes;

• templated versions of most performance-critical
functions;

• adding SIMD (Single instruction, multiple data), SSE-
AVX-FMA hardware-related optimization;

• using Gray code (reflected binary code, RBC, [26]) for
generating combinations (version 1.0).

An example of the achieved relative speed-ups, for versions
0.09-1.10 of the application on the H. sapiens FANTOM-full
dataset (α = 0.05, tile size = 1000) are shown in Table 1;
version 1.10 is the one currently running on gene@home.

3.2 System benchmarks and tuning
Among the parameters of a BOINC workunit, an impor-
tant one is the estimate of the computing time, which
allows the server to perform efficient scheduling and assign
the so-called credits (virtual rewards for the volunteers)
in a fair way. If a volunteer participates in many BOINC
projects, appropriate compute time estimate allows the

1. https://bitbucket.org/francesco-asnicar/pc-boinc

BOINC client to better choose its scheduling parameters
(cache, priority, resource shares), thus minimizing dead-
line misses. The calculation is usually done by running
a small number of randomly generated PC algorithm ex-
ecutions on a benchmark machine, getting the execution
time and calculating the needed FLOPS with the formula
running_time ∗ host_flops ∗ scale_factor.

The reference machine used for the benchmark is an Intel
I7-4770k workstation running Linux, with 8GB RAM, hyper-
threading enabled, and a theoretical computational power of
4374.07 MFLOPS and 16809.68 MIPS (average values given
by the BOINC client using standard Whetstone/Dhrystone
synthetic benchmark system). Benchmarks were run using
only one thread, keeping the others free. The Time column
of Table 2 shows the averaged time needed for completing
five single PC++. The ETA column (calculated by assuming
1000 as number of iterations) gives an estimate of the time
needed for completing a OneGenE pre-computation step for
all g ∈ S using all the eight threads of the reference machine.

The speed of our flow-controlled work generator (one of
the BOINC server key components, the one that actually
builds the workunits, written in the Python language) de-
pends only on the number of transcripts of the dataset and
the tile size.

In the specific case of OneGenE on the FANTOM-full
dataset the workunit n_pc parameter was set to the value of
600, this number was carefully chosen to minimize network
bandwidth and computational errors (achieving relatively
fast redistribution in such cases). The time requested for pro-
cessing a single n_pc on the reference computer is ≈ 15.19
sec (as seen in Table 2). The workunit execution time is
therefore 15.19·600 = 9114 sec (≈ 2.5 hours). The expansion
of a transcript becomes made up by 294 workunits, to be
sent twice (for homogeneous redundancy).

The FANTOM-full dataset size (compressed with gzip)
is ≈ 132 Mb, this is a sticky file, i.e. it remains on the client
after job is finished, it could be reused. The size of an input
file (bz2 compressed) is ≈ 1.4 Mb, the output file (gzip) size
is ≈ 8.6 Kb. The network bandwidth needed for processing
the complete expansion of a transcript, in the optimal case,
is 294·2·(1.4+0.0086) ≈ 828 Mb (not counting the dataset).

Another BOINC scheduler’s parameter needed to be set
is the workunit’s deadline, it has to be carefully tuned to
speed-up job return time, to have a fast turnaround in case
of abandoned jobs and to prevent job preemption. At the
very beginning we set the parameter to 4 days, we increased
it to 6 days after deploying applications for low performance
devices such as ARM-based computers.

3.3 Computational power and drawbacks

The use of a volunteer-based distributed computing sys-
tem, like the BOINC framework, has some drawbacks. Any
workunit is sent to at least two different volunteers, with a
deadline (4 to 6 days in our set–up). The returned results, i.e.
the application output files containing the expansion list, are
considered correct only if returned before the deadline and
if at least two of them are bit-wise identical (homogeneous
redundancy), if not they are sent to other volunteers. This
procedure, while obviously minimizing client-side compu-
tational errors, practically halves our theoretical computing

https://bitbucket.org/francesco-asnicar/pc-boinc
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TABLE 2
OneGenE benchmarks, application version 1.1

Dataset # of Transcripts # of Samples Tile size α Time (s) ETA (years)
i = 1000

FANTOM-full 87554 1829 100 0.05 0.4753 144.39
200 0.05 1.2313 187.03
500 0.05 5.0811 310.13

1000 0.05 15.1895 463.56
1500 0.05 32.6940 668.96
2000 0.05 50.9953 778.14

FANTOM-small 49727 1829 100 0.05 0.6014 58.99
200 0.05 2.4171 118.55
500 0.05 7.9092 155.78

1000 0.05 27.4379 270.22
1500 0.05 54.6467 365.96
2000 0.05 99.8513 491.68

TCGA-PRAD-s 43128 537 100 0.05 0.0421 3.11
200 0.05 0.0723 2.67
500 0.05 0.2744 4.08

1000 0.05 1.0705 8.05
1500 0.05 2.5450 12.61
2000 0.05 4.7694 17.92
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Fig. 2. Statistics for gene@home project, courtesy of Willy de Zutter (boincstats.com)

Fig. 3. Computing status page of the gene@home project

power. Moreover, for expanding a single transcript, the
system distributes several workunits, and the slowest one
to be completed determines the overall computation time.

We do not have any control over our volunteer’s com-
puting resources, this implies that we likely are subjected

Fig. 4. gene@home distribution of computational power among coun-
tries

to errors, because of misconfigured or faulty devices. How-
ever, the error rate is acceptable: a 7-days statistics shows,
among 125989 received results, 782 invalid (0.62%) and
1033 compute errors (0.82%), most actually generated by
a very small number of computers. BOINC implements
different strategies to limit the impact of faulty hosts, like
automatically decreasing the number of sent workunits.

Another issue is that BOINC is a volatile resource, only

boincstats.com
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Fig. 5. Computational status of HS OneGenE at 2019-11-05

relying on volunteers, therefore the overall available com-
puting power is difficult to predict and to maintain over
time. However, being active in solving volunteer’s problems
and taking care of communications issues we were able to
involve a large number of volunteers, many of them with
a large number of powerful computers, more than 40000
different computes contacted the server to request worku-
nits, around 6800 recently (a snapshot of the server’s status
page is shown in Figure 3). In the last year we achieved an
average power of 14 TFLOPS (equivalent to about 350 of
our reference computer), and this value could be further in-
creased by upgrading our server resources. Figure 2 (credits
are proportional to FLOPS) shows the computing power of
TN-Grid in a 60 days range. The high peaks starting at 2019-
09-19 16:00 (UTC) are due to a competition among volunteers
(Formula Boinc Sprint, http://formula-boinc.org/sprint.py)
that attracted a significant number of them to the project,
just for its duration (3 days), the higher peak value is
very close to our theoretical power limit, without using
non-volatile resources, such as HPC. BOINC itself main-
tains useful real-time statistics and leaderboards: FLOPS per
application (https://gene.disi.unitn.it/test/apps.php), top
users, top computers, and CPU models (https://gene.disi.
unitn.it/test/stats.php).

Other interesting statistics is the world-map distribution
of credits (see Figure 4). Note that this is a subset of the total
number of users, a lot of them do not specify the country
optional field while registering.

3.4 Current state of OneGenE
The gene@home project is running the complete systematic
expansion of the dataset FANTOM-full. Figure 5 shows the
current state of the project as a snapshot from the site.
Although at the current rate the completion will require
almost six years it is worth to say that the system could
be at least three times faster as seen during the competition.
Moreover, we can prioritize the genes on-demand and we
plan to do actions to increase the steady base of volunteers
if and when the demand of expansion of genes will increase.

A possible concern is the environmental impact of such
a heavy computation that takes years on thousands of com-
puters. The actual carbon-footprint of the project depends
on the nature of the energy sources available to the volun-
teers. However, the distributed nature of the computation
allows for local optimization like the ones foreseen by the
SUNBURN project [27] where the computation is performed
directly on a solar panel when there is excess of production.
This is a potential advantage with respect to use centralized
computing resources.

4 VALIDATION

The objective of this section is the evaluation of the bio-
logical pertinence of the single-gene NES2RA expansions

FANTOM-full vs small
(OneGenE)

FANTOM-full vs small
(Pearson)

OneGenE vs Pearson
(FANTOM-full)

OneGenE vs Pearson
(FANTOM-small)
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Fig. 6. Comparison of the gene similarity (A) (Jaccard Index) and the
difference in biological pertinence (B) (fraction of significant functional
enrichments that include the "seed" of the expansion) of the expansions
obtained using the OneGenE method against an approach based on
Pearson correlation. The comparison was performed for 307 expansions
in the FANTOM-full and FANTOM-small datasets.

obtained by OneGenE. The experiment was performed us-
ing both the full FANTOM expression dataset (FANTOM-
full) and the dataset where redundant or low expression
isoforms were filtered away (FANTOM-small), using 307
OneGenE expansions involving genes of medical relevance
for two large families of human pathologies: neuronal motor
diseases and hematopoietic tumors. For each expansion,
the top scoring 250 transcripts were considered. OneGenE
expansions were benchmarked against a simple Pearson
correlation analysis: starting from the same seed transcript,
the top 250 correlated transcripts were considered and com-
pared to the 250 transcripts identified by OneGenE.

To quantify the overlap among the expansions obtained
from the same transcript using different methods or differ-
ent datasets, we calculated the Jaccard Index, defined as the
number of items shared between two sets divided by the to-
tal number of items in both sets (shared and un-shared). As
represented in Figure 6A, the distribution of Jaccard Indexes
indicates that OneGenE expansions are largely populated by
distinct genes with respect to the correlation approach (me-
dian Jaccard Index 0.33 and 0.35 for the FANTOM-full and
FANTOM-small datasets, respectively). On the other hand,
the application of the same method to different datasets

http://formula-boinc.org/sprint.py
https://gene.disi.unitn.it/test/apps.php
https://gene.disi.unitn.it/test/stats.php
https://gene.disi.unitn.it/test/stats.php
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Fig. 7. Overlap between OneGenE expansions and protein-protein inter-
actions annotated in STRING, using the datasets FANTOM-full (upper
panel) and FANTOM-small (lower panel). For each gene, the scatter
plot displays the Odds Ratio and the enrichment p-value. The ten most
enriched genes are highlighted in the plot. The distribution of the p-
values is also displayed as a box-whisker plot on the left.

yields more similar results (median Jaccard Index 0.56 and
0.47 for OneGenE and Pearson, respectively).

To evaluate the biological pertinence of an expansion,
we performed functional enrichment analysis on the list of
the top scoring 250 transcripts with the EnrichR resource
(https://amp.pharm.mssm.edu/Enrichr/). Next, we quan-
tified the fraction of pertinent enrichments, defined as the
fraction of statistically significant enrichments (Fisher test
P-value < 0.05) that also contain the seed transcript of the
expansion. The higher the value of this measure, more the
expanded transcripts are functionally related to the seed,
based on existing annotations. As represented in Figure
6B, this analysis revealed that the single-gene NES2RA
expansions of OneGenE consistently achieves higher bio-
logical pertinence than the correlation approach, in both
the FANTOM-full and the FANTOM-small datasets (P: 6.4e-
07 and 6.1e-24 respectively, tested with a Mann Whitney U
test).

Finally, in order to validate our results with published
protein-protein interaction data, we performed a compari-

son between OneGenE expansions and interactions anno-
tated in STRING v.11 [28]. We considered the NES2RA
expansions of 179 genes, selecting their most expressed
isoform. For each expansion, we compared the list of genes
identified with OneGenE with the list of known interactions
in STRING (combined score > 0.15). Based on the number of
genes in the OneGenE expansion, the number of annotated
STRING interactions and the overlap between the two lists,
we calculated odds ratio values and corresponding enrich-
ment P-values (Fisher test), as represented in Figure 7 and
ST1 (see Supplementary Material). We report that the odds
ratio is > 1 in 96% and 94% of the expansions, with P-
value < 0.05 in 84% and 82% of the expansions (FANTOM-
small and FANTOM-full, respectively, Figure 7). This result
further supports the biological pertinence of the single-gene
NES2RA expansions obtained by OneGenE.

5 CASE STUDY 1: PROSTATE CANCER

Here, we present the application of the OneGenE method
for prostate cancer drug repositioning. A selection of 22
genes known to be important for this cancer onset and
development has been expanded as single-gene by NES2RA
on two transcriptomic datasets (see Section 2): FANTOM-
small, including a wide collection of data from primary
cell types, human tissues and cancer cells, and TCGA-
PRAD-s, a dataset dedicated to prostate cancer. These lists
have been initially used to analyze the direct interactions
within the input genes and represent them as graphs. We
then focused on two prostate specific networks and the
expansion lists of the genes belonging to the networks
were aggregated. A comparison analysis with STRING and
functional enrichment analyses allowed to understand the
nature and composition of these gene networks. Finally,
after filtering out genes already known to be related to
prostate cancer, a query against the Gene Drug Interaction
database allowed to identify novel targets for this disease
that can support drug repositioning. The pipeline of the
procedure is depicted in Figure 8.

5.1 Prostate cancer genes selection and expansions
with NES2RA
Prostate cancer related genes were retrieved from the Open-
Targets platform (release 3.8 2018-08-28) [29] which provides
genes associated to clinical conditions and scores according
to the reliability of this evidence. In this study, germinal and
somatic genetic variations were equally considered and 22
genes, corresponding to 125 isoforms of the FANTOM-small
dataset, were selected (ST2, ST3). They were subsequently
expanded as single genes by NES2RA using FANTOM-small
and TCGA-PRAD-s expression datasets and thus producing
125 and 22 expansion lists, respectively.

5.2 Network analysis of the input genes
As a first step, the expansion gene lists computed on the two
datasets were trimmed in order to have lists of comparable
length. The relative frequency has been compared against a
minimum threshold: 0.5 for the FANTOM-small lists, 0.1 for
the TCGA-PRAD-s, producing lists of 250-400 genes. Then,
these lists were analyzed to find the functional relationships

https://amp.pharm.mssm.edu/Enrichr/
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Fig. 8. Case Study 1: Pipeline.

among the input genes. The mutual interaction among each
pair (x, y) of input genes, defined as the presence of gene
x into the expansion list of gene y and vice versa, was
computed to reconstruct a gene network. In the case of
the FANTOM-small dataset, as many isoforms have been
measured for each gene, the expansion lists of the isoforms
of each gene were combined by averaging their relative
frequency. The strength of the mutual interaction was cal-
culated as the average between the relative frequencies of
gene x in the expansion list of the gene y and that of gene y
in the list of gene x. The resulting networks are presented as
graphs in Figure 9, where the 22 initial genes are the nodes
and the edges represent the mutual interaction.

The graphs produced from the FANTOM-small (Fig-
ure 9A) and TCGA-PRAD-s (Figure 9B) datasets appeared
quite different: in the former case 20 out of 22 genes were
connected, whereas in the latter only 5 genes, forming 2
networks, were. In particular, these genes were CHEK2,
TERT, PTEN, MXI1 and SPOP. This result likely reflected
the different nature of the datasets, a generic one and a
condition-specific one. To understand the way cancer affects

and impairs cellular gene networks, we focused our atten-
tion onto these 5 genes. The network formed by CHEK2 (a
kinase involved in cell cycle regulation) and TERT (a reverse
transcriptase involved in telomere maintenance) was iden-
tified in both analyses. These genes are well-known to be
strictly related to cell cycle and cancer development. There-
fore, their interaction was expected in the prostate cancer
dataset; nonetheless, by checking their expression profile in
FANTOM5 using SSTAR [30], we observed that they were
mainly expressed in tumor cell types also in FANTOM5. A
different case is represented by PTEN (a phosphatidylinosi-
tol phosphatase that acts as a tumor suppressor) and MXI1
(a transcription factor that down-regulates the oncogenic c-
myc gene): their interaction was identified in both analyses,
but in FANTOM-small the isoforms responsible of the inter-
action (listed in ST4) are expressed mainly in brain tissues,
so it seems that in prostate cancer cells, where they are likely
to be mutated, an unusual interaction takes place. Finally,
SPOP, a protein that mediates gene repression by binding to
histone complexes and the most frequently point-mutated
gene in prostate cancer, interacts with different genes in
FANTOM-small and TCGA-PRAD-s. In the former, it is
connected to CAPS8 and ATM, both involved in cell cycle
regulation and apoptosis, while in the latter, it interacts with
MXI1. This result is supported by previous findings, which
reports that the mutated SPOP protein loses the ability to
interact with the other proteins involved in DNA repair,
causing spontaneous replication stress [31].

5.3 Comparison with STRING
Focusing now on the whole expansion gene lists computed
by NES2RA on the two datasets FANTOM-small and TCGA-
PRAD-s, a first validation analysis was carried out. NES2RA
output was compared with the lists of interacting genes
provided by STRING (v. 11) [28] similarly to what shown
in Section 4. Results are shown in Table 5.3.

TABLE 3
Case Study 1: enrichment analysis between OneGenE expansions and

interactions annotated in STRING

Gene Dataset Expansion STRING Odds P_value
genes overlap ratio

CHEK2 FANTOM-small 335 110 3.13 2.61E-19
CHEK2 TCGA-PRAD-s 213 81 3.91 5.03E-19
PTEN TCGA-PRAD-s 244 87 1.82 8.79E-06
TERT FANTOM-small 261 52 2.02 1.28E-05
PTEN FANTOM-small 244 79 1.57 6.81E-04
SPOP FANTOM-small 341 31 1.85 1.37E-03
TERT TCGA-PRAD-s 137 19 1.29 1.69E-01
SPOP TCGA-PRAD-s 171 6 0.66 1.94E-01
MXI1 TCGA-PRAD-s 239 11 1.21 2.48E-01
MXI1 FANTOM-small 258 12 1.23 2.55E-01

The overlap between STRING and OneGenE output
is significant for 4 out 5 of the gene lists computed on
FANTOM-small, while only for 2 out of 5 of those com-
puted on TCGA-PRAD-s. This result was not unexpected,
as STRING and FANTOM5 are both comprehensive and
generic databases: the remarkable agreement of this com-
parison represented a good validation of OneGenE analysis.
Conversely, the lower overlap observed between STRING
and TCGA-PRAD-s analyses likely reflected the different
behavior of some genes between the healthy and prostate
cancer condition, as reported for SPOP [31].
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Fig. 9. Case Study 1. Network representation of the interactions among the 22 genes related to prostate cancer. The two graphs were produced
with NetworkX Python pkg considering the mutual interaction computed on the expansion lists obtained with NES2RA on the FANTOM-small (A)
and TCGA-PRAD-s (B) datasets. Nodes represent genes as described in the legend; edges connect interacting genes. Mutual interaction has been
calculated as the mean of the relative frequencies of the two genes and has been represented with three line styles.

5.4 Functional analysis of the TCGA-PRAD-s lists
The expansion lists computed on the TCGA-PRAD-s dataset
were aggregated according to the network analysis pre-
sented in 5.2. We thus named CHEK2-TERT network the
list of 567 genes coming from the union of their respective
expansion lists; similarly, the PTEN-MXI1-SPOP network
is formed by 810 genes. By doing so, we focused our
attention of the interactions taking place in the perturbed
cancer situation, that is the real condition in which drugs
should be effective. To explore the gene composition and
functional involvement of the two networks, enrichment
analyses considering KEGG pathways and Gene Ontology
biological process categories were performed (Table 5.4 and
ST5).

TABLE 4
Case Study 1: Enrichment analysis. Top enriched categories obtained

with EnrichR considering KEGG pathways 2019 on the aggregated lists
of the two networks, CHEK2-TERT and PTEN-MXI1-SPOP.

KEGG Pathways 2019 P-value Adj P-value
CHEK2-TERT network

DNA replication 2.73E-09 8.40E-07
Cell cycle 2.37E-06 3.64E-04
Mismatch repair 3.96E-04 4.07E-02

PTEN-MXI1-SPOP network
Signaling pathways regulating pluripotency of 4.28E-03 1.00E+00

stem cells
Protein processing in endoplasmic reticulum 7.31E-03 7.51E-01
Tight junction 9.40E-03 5.79E-01
Oxytocin signaling pathway 2.19E-02 1.00E+00
Ras signaling pathway 2.72E-02 1.00E+00
Gastric cancer 4.00E-02 1.00E+00

As expected, the CHEK2-TERT network was enriched
in genes involved in DNA replication, cell cycle and DNA
damage repair. Conversely, the PTEN-MXI1-SPOP gene net-
work was populated by heterogeneous groups of genes

involved in signaling cascades (such as RAS, RAP1, WNT
pathways), tight junction, protein transport from the ER to
the plasma membrane and many cancer types, and did not
produce significantly enriched categories.

5.5 Selection of novel drug targets
The two lists were then filtered by removing those genes
that were present in the OpenTargets list as prostate cancer
related: 159 genes (28%) for the CHEK2-TERT network,
and 249 (31%) for the other network. By querying the
DGIdb database [32] of gene-drug interactions with these
filtered lists (408 and 561 genes, respectively), we obtained
a selection of 12 FDA-approved drugs for the CHEK2-TERT
network and 23 to the PTEN-MXI1-SPOP one (ST6). Finally,
the presence of these genes in the expansion lists obtained
from FANTOM-small has been checked in order to exclude
targets that might raise more cytotoxic response, due to their
interaction with the input genes also in healthy conditions.
The genes GAL, UST and LIAS were thus not considered in
the list of targets.

5.6 Discussion of Case Study 1
Here, we show that starting from 22 genes related to prostate
cancer and expanding them with the OneGenE algorithm,
two small cancer specific networks have been identified.
About 30% of these genes were already classified as prostate
cancer related in Opentargets, thus supporting the validity
of the method. Among the others, novel putative targets for
drug repositioning are proposed (Table 5.5). Three subunits
of the Calcium-voltage-gated channel have been found,
targeted by GABA-analogue anti-convulsant drugs. Despite
being commonly associated with physiological processes
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TABLE 5
Case Study 1: target genes.

Gene Gene description Drug Class Disease (DrugBank)
CACNG4 calcium voltage-gated channel subunits PREGABALIN Anticonvulsants, Analgesic neuropathic pain
CACNA1E GABAPENTIN Anticonvulsants, Analgesic neuropathic pain
CACNB2
GALR1 galanin receptor 1 METHOXAMINE Antihypotensive agents Acute hypotensive state

TESTOSTERONE Hormone replacement agents Hypogonadism
TEMAZEPAM Hypnotics and sedatives Short-term insomnia

GNG2 G protein subunit gamma 2 HALOTHANE Anesthetics, inhalation Anesthetic
KCNJ12 potassium inwardly rectifying channel DOFETILIDE Anti-arrhythmia agents Cardiac action, antiarrhythmic agent

subfamily J member 12
RPE65 retinoid isomerohydrolase RPE65 TRETINOIN Keratolytic agents Skin conditions, promyelocytic leukemia
IL1R1 interleukin 1 receptor type 1 antineoplastic agents Skin conditions, promyelocytic leukemia

such as neurotransmitter release, excitation-contraction cou-
pling or hormone secretion, they play an important role in
cell proliferation and apoptosis in many cancer types and
represent therapeutical targets already under investigation
[33]. The genes GALR1, GNG2 and KCNJ12 have been
found as functionally correlated and involved in tumor
suppression in other tissues, representing novel target for
prostate tumor [34]. Finally, IL1R1 and RPE65, targeted by
tretinoin, the former involved in mammary and pulmonary
cancer [35], could be considered for further characterization
in prostate cancer.

6 CASE STUDY 2: CORONARY ARTERY DISEASE

In this second case study, the OneGenE approach of single-
gene NES2RA expansions was applied to identify novel
putative drug targets for Coronary Artery Disease (CAD),
by considering genes genetically associated with this disease
which can be used for drug repositioning. The pipeline and
step-by-step results have been summarized in Figure 10.

Open Targets is a platform which integrates public do-
main data to enable drug target identification and prior-
itization [29]. The list of 643 genes genetically associated
with CAD was retrieved (Open Targets release 3.8 (2018-08-
28)) and ranked based on the genetic association score. We
focused on the first 46, which correspond to 183 isoforms
of the FANTOM-small dataset (ST7). These were expanded
as single genes by NES2RA, obtaining the corresponding
expansion lists.

6.1 Score aggregation and filtering
In order to retain the genes most related to CAD, the
expansion lists were trimmed according to the following
criteria: For each expansion list, only the first Nl isoforms
were selected, where Nl = max{5; 100 − Rl + 1}, and
Rl is the rank, based on genetic association derived from
Open Targets, of the starting gene. The resulting lists of
isoforms were aggregated summing the relative frequencies
computed by NES2RA. Then, the list of isoforms was ranked
and converted into a ranked list of 2043 genes. The rank of
a gene was obtained as the minimum of the ranks of its
corresponding isoforms.

6.2 Selection of target genes and functional analysis
To have an insight on the biological function of these genes,
ToppGene [36] was used to perform enrichment analysis
against the Biological Processes of the Gene Ontology (ST8).

Open Target

NES²RA

46 CAD 
genes

expansion 2expansion 1 expansion 
183

aggregation 
+ 

filtering

2043 selected 
genes

149 target 
genes

NES²RA

expansion 2expansion 1 expansion 
173

643 CAD 
genes

Open Target

WGS scores

permutations

36 significant 
genes

Fig. 10. Case Study 2: Pipeline.

The most significant terms are reported in Table 6.2. The
Open Targets Python API was used to query which of these
genes were already targets of clinically approved drugs.
A list of 149 target genes was obtained, which were then
considered for the following analyses (ST9).

6.3 Single-gene NES2RA expansion of the target genes
In order to identify a subset of genes with a strong asso-
ciation with CAD, 173 isoforms corresponding to the 149
target genes were used as starting genes for single-gene
NES2RA expansions. For each gene, only isoforms that were
present in the filtered and aggregated list described above
were considered.
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TABLE 6
Case study 2: Selection of top enriched GO Biological processes from

the list of 2043 genes resulting from step 3 of the pipeline. The q-values
result from Benjamini-Hochberg correction.

Biological Process q-value

organic substance catabolic process 4.40E-11
regulation of intracellular signal transduction 1.20E-10
positive regulation of gene expression 4.10E-10
response to oxygen-containing compound 4.60E-10
positive regulation of RNA metabolic process 1.60E-09
regulation of response to stress 2.00E-08
vasculature development 4.60E-08
cardiovascular system development 8.40E-08
regulation of cell proliferation 1.80E-07
lipid metabolic process 3.30E-07
blood vessel development 6.30E-07
regulation of kinase activity 9.10E-07
response to endogenous stimulus 1.10E-06
cell cycle 1.10E-06
symbiont process 1.10E-06

6.4 Comparison of expanded lists with CAD genes
In order to quantify the overlap between the ranked list
of genes genetically associated with CAD (obtained from
Open Targets) and the ranked expansion lists obtained in the
previous step as output of NES2RA, we used the Weighted
Jaccard Similarity (WJS) [37], which we define below.
Definition. Given two weighted lists of items, ρ and σ, of length
N , the Weighted Jaccard Similarity, WJS(ρ, σ), is defined as:

WJS(ρ, σ) =

∑N
i=1min(ρi, σi)∑N
i=1max(ρi, σi)

where ρi and σi are the weights corresponding to the same item i.
In our analysis, the weight of a feature i (gene or isoform)

in a ranked list ρ is computed as length(ρ)−rank(i)+1. This
allows us to assign large weights to high ranking features.
In principle, the lists of features do not contain the same
number of elements. To solve this issue, we included the
missing elements of one list to the other (and vice versa)
as ties in the last position of the ranking. To compute the
WJS between the CAD genes and each expansion list, we
converted NES2RA isoforms into genes, ranking them by
the largest relative frequency of their isoforms.

The scores obtained from the WJS are not directly compa-
rable, since they depend on the length of the lists. In order to
obtain values that can be compared directly, we used a per-
mutation approach to estimate a set of score distributions.
For each length present, we generated 2000 random lists of
genes or isoforms, we computed the WJS and we generated
the score distribution associated to that length. Then, we
used these distributions to compute empirical p-values. The
Benjamini Hochberg correction was used to adjust p-values
for multiple hypothesis testing [38]. A significance level of
0.05 was used to identify statistically significant WJS scores.

After the permutation approach 36 genes were obtained
(Table 7 and ST10). The tables show the possible target
genes, ordered by their q-value. 19 of them are already as-
sociated with CAD (column "CAD") and 4 of these (PDE4D,
PDE4B, NDUFA4L2 and INSR) already present a drug for
the disease: Dyripimadole (Phase IV) and Pentoxyfylline
(Phase II) for PDE4D and PDE4B, Metformin (Phase IV)
for NDUFA4L2, Insulin Human (Phase IV), Insulin As-
part (Phase IV), Insulin Lispro (Phase IV), Insulin Glargine

(Phase IV) for INSR (data retrieved by Open Targets). Drug
Bank (Version 5.1.1, released July 03, 2018) [39] was used
to obtain the drugs in Phase IV that have the 36 genes
as targets, the disease and the molecule type (respectively
columns "Drug", "Disease" and "Molecule Type" in the ta-
ble). The drugs reported in the table are the new putative
drugs that can be further investigated.

6.5 Discussion of Case Study 2

NES2RA one gene expansions are meant to explore putative
causal relationships between genes. Since NES2RA retrieves
up to several thousands genes for each expansion, we have
to apply aggregation and filtering techniques in order to ex-
tract meaningful biological information from the expansion
lists. One of such techniques is the comparison of expansion
lists of putative targets with the list of genes already known
to be associated with CAD, which allows one to identify tar-
get genes that are more likely to interact directly with CAD
genes. It is worth mentioning that this approach focuses
only on the identification of a subset of all the possible puta-
tive targets, namely those that are correlated to CAD genes
at the transcriptional level. In order to critically evaluate the
biological relevance of the results of NES2RA, we perform
enrichment analysis. We expect to find Gene Ontology terms
related to the cardiovascular systems. To assess whether the
subset of 149 target genes is related to the cardiovascular
system, we performed an enrichment analysis that retrieved
a larger number of terms associated with the circulatory
system, such as blood circulation, circulatory system process
and angiogenesis. This suggests that NES2RA was able to re-
trieve a group of genes that directly interact with CAD genes
and appear to be involved in the cardiovascular system.
The 36 genes identified with our pipeline are involved in
metabolic diseases, autoimmune diseases (particularly skin
and joints), skin diseases, diseases of female reproductive
organs, cardiovascular diseases and kidney diseases. We
decided to analyze in further detail the relationship of some
of these diseases with CAD, using the literature. The relation
between diabetes mellitus (DM) and cardiovascular diseases
is well known. For DM, CAD is a major determinant of the
long-term prognosis among patients. DM is associated with
a 2 to 4-fold increased mortality risk from heart disease [40].
Metformin, a drug targeting NDUFAL4L2 is an example of a
drug used to treat both CAD and DM [41]. Considering this
result, a proposal could be to repurpose drugs used to treat
DM for CAD. From our analyses, the gene GAA seems to be
a promising target for drug repurposing. GAA (Glucosidase
Alpha, Acid) is a protein coding gene essential for the
degradation of glycogen in lysosomes. This gene is not
associated with CAD, but it was identified by our pipeline.
It is targeted by Miglitol, a drug that acts by inhibiting the
ability of the patient to breakdown complex carbohydrates
into glucose. Another identified gene, PDE4B, already has a
phase IV drug for CAD (namely, Dypiridamole), alongside
approved drugs for some skin conditions, such as atopic
eczema and alopecia. This link suggests that the several
drugs acting on skin conditions, targeting the gene RARA
(one of our 36 genes), could be investigated for CAD. RARA
is very weakly associated with CAD, therefore any positive
therapeutic confirmation would be particularly significant
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TABLE 7
Case Study 2: 6 of the 36 putative new target genes for CAD, together with their Phase IV associated drugs (DrugBank (Version 5.1.1, released

July 03, 2018)). For the complete list, see ST10 in the supplementary material.

Target gene q-value CAD gene Drug (retrieved by Drug Bank) Disease Molecule Type
PDE4D 0 yes PENTOXIFYLLINE Hepatitis, Alcoholic Small molecule

DYPHYLLINE obstructive lung disease Small molecule
ROFLUMILAST chronic obstructive pulmonary disease Small molecule

PDE4B 0 yes DIPYRIMADOLE coronary artery disease Small molecule
AMLEXANOX obstructive lung disease Small molecule
FLAVOXATE pain Small molecule
THEOPHYLLINE asthma Small molecule
APREMILAST Alopecia Small molecule
CRISABOROLE atopic eczema

NDUFA4L2 0 yes METFORMIN Obesity Small molecule
INSR 0 yes INSULIN HUMAN Type II diabetes mellitus Protein
RARA 0 yes TRETINOIN neoplasm Small molecule

ADAPALENE acne Small molecule
ETRETINATE psoriasis Small molecule
ALITRETINOIN neoplasm Small molecule
ISOTRETINOIN acne Small molecule
TAZAROTENE acne Small molecule
ACITRETIN psoriasis vulgaris Small molecule

GAA 4.4e-02 no MIGLITOL type II diabetes mellitus Small molecule

for the assessment of the efficacy of NES2RA for drug re-
purposing. Also Pentoxifylline, currently a phase II drug for
CAD disease, is reported in the literature to be a drug with
wide spectrum applications in dermatology, although it has
not been investigated thoroughly for these applications [42].
This could potentially foster the connection between CAD
and skin conditions.

7 CONCLUSION

We presented the activity of systematic discovery of causal
relationships between the transcripts of human genes and
its application to prostate cancer and coronary artery dis-
ease with the goal of drug repositioning. The activity is
performed within the gene@home project that relies on
volunteer computation using BOINC. The distributed com-
putation provides for several executions of the PC algo-
rithm, a popular causality discovery algorithm on subsets
of data with a high number of variables. In particular the
system runs on data about the transcription of human genes.
Validation shows that this approach has an edge w.r.t. the
pure correlation for finding relevant and functionally related
genes, and that results are significantly enriched in known
protein-protein interactions. Case studies on prostate cancer
and coronary artery disease show that the method can be
effectively inserted in pipelines aimed at drug reposition-
ing/repurposing.

Causality discovery and inference from purely obser-
vational data is a central topics in statistics, biostatistics
and data mining. In this work we show that, with a big
computational effort mitigated by the use of BOINC and
the help of the BOINC users community, the task to discover
putative causal relationships can be done for variables in the
order of 50000 and more. This permits to tackle applications
in sensitive domains like drug repurposing for important
and severe diseases.

Drug repurposing is a challenging task for which com-
putational tools could provide a good starting point, allow-
ing to start from a relatively short list of putative drugs to
explore, hence permitting to save resources and time. The
aim of the two case studies is to show the potential of One-
GenE applied to this complex task for two different diseases:

prostate cancer (Case Study 1) and coronary artery disease
(Case Study 2). In both cases, as a starting point, a list of
22 and 46 genes, known to be genetically associated with
prostate cancer and CAD respectively, has been selected. In
Case Study 1 the pipeline produced a list of 22 genes likely
involved in prostate cancer that are therapeutic targets for
already FDA-approved drugs currently used to treat other
pathologies. Case Study 2 resulted in a list of 36 target genes
for different diseases. Of these 36 genes, 19 emerged to be
associated with CAD and 4 (PDE4D, PDE4B, NDUFA4L2
and INSR) to have a drug already used to treat it.

Both case studies retrieved genes that are related to their
disease of interest, which shows the potential to improve
drug repositioning. However, in order to draw conclusions
on the validity of the targets and of the drugs individuated
in the two case studies experimental and clinical validations
are required.

Supplementary Material

The file SupplTables.xlsx contains supplementary ta-
bles ST1-10 referred to in Sections 4, 5 and 6 and
Code.zip collects the related source code. The file
ExampleofOneGeneExpansion.xlsx contains, as an exam-
ple, the output of the expansion of the first isoform of gene
CHEK2 (p1@CHEK2).
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