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1 Introduction

We aim at determining in a constructive way, for the high order case, the finite
element solutions of grad φ = E, curl A = B, div D = ρ, namely, of the equations
linking the electric field E, the magnetic induction B, and the electric charge density
ρ, to their potentials φ, A and D, respectively. Stating the necessary and sufficient
conditions for assuring that a function defined in a bounded set Ω ⊂ R

3 is the
gradient of a scalar potential, the curl of a vector potential or the divergence of a
vector field is one of the most classical problem of vector analysis (see for example
[3, 6, 8]). We aim at providing an explicit and efficient procedure to construct a
finite element solution. For example, div-free fields, W, are implicitly characterized
in terms of a vector w of degrees of freedom of W by the algebraic constraint
Dw = 0, with D the matrix of the div operator between finite elements spaces.
The same fields, in the case of a domain with connected boundary, are explicitly
defined by w = R a, with no constraint on a, where R is the matrix of the curl
operator between finite elements spaces and a collects the degrees of freedom of the
vector potentials A. Similarly, one can wish to compute a vector potential a such
that R a = b, for a given field b verifying D b = 0. As explained in [5], these bases
can be constructed by the help of “trees” and “co-trees”, which are at the core of
this contribution. The case r = 0 is largely treated in the literature for different
types of topological domains (see for example [2]). In these pages, we develop the
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tree and co-tree approaches for r > 0 when fields in the high order Whitney spaces
are represented on the basis of their weights on small simplices [7, 9, 10]. With this
choice of degrees of freedom, the tree and co-tree concepts extend from r = 0 to
r > 0 straightforwardly.

2 Basic Concepts

Let Ω ⊂ R
3 be a bounded polyhedral domain with Lipschitz boundary ∂Ω and

M a simplicial mesh of Ω̄ . We denote by |A| the cardinality of the set A. For
0 ≤ k ≤ 3, let Δk(T ) (resp. Δk(M)) be the set of k-simplices of a mesh tetrahedron
T (resp. of the mesh M). Note that Δk(M) = ∪T ∈MΔk(T ). If Δ0(M) = {vi}i ,
with i = 1, . . . , Nv , being Nv = |Δ0(M)|, then each k-simplex S ∈ Δk(M) has
associated an increasing map mS : {0, . . . , k} → {1, . . . , Nv}. This map induces
an (inner) orientation on S (i.e., a way to run along S if k = 1, through S if k = 2,
in S if k = 3).

If we assign to each S ∈ Δk(M) a real number cS we can define the k-chain
c = ∑

S∈Δ0(M) cS S, i.e. a formal weighted sum of k-simplices S in M. One can
add k-chains, namely (c + c̃) = ∑

S(cS + c̃S) S, and multiply a k-chain by a scalar
p, namely p c = ∑

S(p cS) S. The set of all k-chains in M, here denoted Ck(M),
is a vector space, in one-to-one correspondence with the set of real vectors c =
(cS)S∈Δk(M). Each k-simplex S ∈ Δk(M), can be associated with the elementary
k-chain c with entries cS = 1 and c

S̃
= 0 for S̃ �= S. In the following we will use

the same symbol S to denote the oriented k-simplex and the associated elementary
k-chain.

The boundary operator ∂ takes a k-simplex S and returns the sum of all its
(k − 1)-faces f with coefficient 1 or −1 depending of whether the orientation
of the (k − 1)-face f matches or not with the orientation induced by that of the
simplex S on f . Since the boundary operator is a linear mapping from Ck(M) to
Ck−1(M), it can be represented by a matrix ∂ of dimension |Δk−1(M)|×|Δk(M)|,
which is rather sparse, gathering the coefficients 0, −1, or +1. Note that in three
dimensions, there are three nontrivial boundary operators acting, respectively, on
edges, triangles and tetrahedra: ∂1 represented by the matrix G�, ∂2 represented by
R�, and ∂3 represented by D�. To fully specify ∂ , we need to specify the boundary
of each simplex S. By definition, we have

∂1e =
∑

n∈Δ0(M)

Ge,n n, ∂2f =
∑

e∈Δ1(M)

Rf,e e, ∂3T =
∑

f ∈Δ2(M)

DT ,f f,

for any e ∈ Δ1(M), any f ∈ Δ2(M) and any T ∈ Δ3(M). For e = [v0, v1],
f = [v0, v1, v2] and T = [v0, v1, v2, v3], we have, respectively,

∂1[v0, v1] = v0 − v1, ∂2[v0, v1, v2] = [v0, v1] − [v0, v2] + [v1, v2],
∂3[v0, v1, v2, v3] = [v0, v1, v2] − [v0, v1, v3] + [v0, v2, v3] − [v1, v2, v3].
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The subscript is removed when there is no ambiguity, since the operator needed
for a particular operation is indicated from the type of the operand (e.g., ∂3 when
∂ applies to tetrahedra). The notion of boundary can be extended to k-chains by
linearity, ∂c = ∂(

∑
S∈Δk(M) cS S) = ∑

S∈Δk(M) cS ∂S.
We say that a k-chain c is closed if ∂kc = 0. Non-trivial closed k-chains are

called k-cycles and constitute the subspace Zk(M) = ker(∂k; Ck(M)). A k-chain
c is a boundary if it exists a (k + 1)-chain γ such that c = ∂k+1γ . The k-
boundaries constitute the subspace Bk(M) = ∂k+1Ck+1(M). From the property
∂∂ = 0, we know that boundaries are cycles but not all cycles are boundaries,
and we have Bk(M) ⊂ Zk(M). The quotient space Hk(M) = [Zk(M)/Bk(M)]
is the homology spaces of order k of the mesh M, and the Betti’s number bk =
rank [Hk(M)]. The presence of curl-free fields (resp. div-free fields) that are not the
gradient of a scalar field (resp. the curl of a vector field) is indicated from the fact
that b1 �= 0 (resp. b2 �= 0). We recall that Betti’s numbers are topological invariants
(i.e., they depend on the domain Ω up to a homeomorphism) and do not depend
on the mesh M on Ω̄ that is used to compute them (see [12] and an application in
[11]).

For the high order case, we need to introduce some concepts of relative
homology. Let Kk(M) be subspaces of Ck(M) with ∂kKk(M) ⊂ Kk−1(M). We
thus say that c ∈ Ck(M) is closed [modulo Kk(M)] if ∂c ∈ Kk(M). A (k−1)-chain
c bounds [modulo Kk(M)] if there exists a k-chain γ such that c−∂γ ∈ Kk−1(M).
We thus talk about relative homology groups.

A k-cochain w (over the mesh M) is a linear mapping from Ck(M) to R. They
are discrete analogues to differential forms. For k > 0, the exterior derivative of the
(k − 1)-form w is the k-form dw such that

∫
s

dw = ∫
∂s

w for all s ∈ Ck(M). With
this simple equation relating the evaluation of dw on a simplex s to the evaluation
of w on the boundary of this simplex, the exterior derivative is readily defined. We
can naturally extend the notion of evaluation of a differential form w on an arbitrary
chain by linearity:

∫
∑

i ci si
w = ∑

i ci

∫
si

w. Thus

∫

∑
i ci si

dw =
∫

∂(
∑

i ci si )

w =
∫

∑
i ci ∂si

w =
∑

i

ci

∫

∂si

w.

The operator d is the dual of the boundary operator ∂ . As a corollary of the boundary
operator property ∂∂ = 0, we have that dd = 0. Since we used arrays of dimension
|Δk(M)| to represent a k-cochain, the operator d can be represented by a matrix
d of dimension |Δk(M)| × |Δk−1(M)|, 1 ≤ k ≤ 3. Again, we have one matrix
for the exterior derivative operator for each simplex dimension. When a metric is
introduced on the ambient affine space, the exterior derivative operator d stands for
grad, curl, div, according to the value of k from 1 to 3, and it is represented by,
respectively, G, R, D, the connectivity matrices of the mesh M.
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3 Small Simplices, Weights and Potentials

We introduce the multi-index α = (α0, . . . , αs) of s + 1 integers αi ≥ 0 and weight
|α| = ∑s

i=1 αi . The set of multi-indices α with s + 1 components and weight r is
denoted I(s + 1, r). We denote by vi the (Cartesian) coordinates of the node ni in
R

3. Given a multi-index α ∈ I(4, r), and a k-subsimplex S of T , the small simplex
{α, S} is the k-simplex that belongs to the small tetrahedron with barycenter at the
point of coordinates

∑3
i=0[( 1

4 +αi)vσ 0
T (i)]/(r + 1), which is parallel and 1/(r + 1)-

homothetic to the (big) sub-simplex S of T . The notation {α, S} was first defined in
[9]. The set of small tetrahedra of order r+1 > 1 can be visualized starting from the
principal lattice Lr+1(T ) in the simplex T = {nσ 0

T (0) nσ 0
T (1) nσ 0

T (2) nσ 0
T (3)} defined as

Lr+1(T ) =
{

x ∈ T : λσ 0
T (i)(x) ∈ {0,

1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1}, 0 ≤ i ≤ 3

}

.

and connecting its points by edges parallel to those of T . (See, e.g., Fig. 1.)
We denote by Λk(Ω) the space of all smooth differential k-forms on Ω .

The completion of Λk(Ω) in the corresponding norm defines the Hilbert space
L2Λk(Ω). Let P−

r+1Λ
k(T ) be the space of so-called trimmed polynomial k-forms

of degree r + 1 on T , with r ≥ 0, (as in [7]), and we define

P−
r+1Λ

k(M) = {ω ∈ HΛk(Ω) : ω|T ∈ P−
r+1Λ

k(T ), T ∈ M}

where HΛk(Ω) = {ω ∈ Λk(Ω) : dω ∈ Λk(Ω)} is a Hilbert space (see [4]).

Definition 1 The weights of a polynomial k-form u ∈ P−
r+1Λ

k(T ), with 0 ≤ k ≤ 3
and r ≥ 0, are the scalar quantities

∫

{α,S}
u, (1)

on the small simplices {α, S} with α ∈ I(4, r) and S ∈ Δk(T ).

v3

v0

v1

v2

v3

v0

v1

v2

v3

v0

v1

v2

Fig. 1 From the principal lattice of degree r+1 = 3 in a tetrahedron T , we define a decomposition
of T into 10 small tetrahedra, 4 octahedra O and 1 reversed tetrahedron. Each face on ∂T is
decomposed into 6 small faces and 3 reversed triangles, in solid red line (Left)
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We now list some remarkable properties of the small simplices which are useful
in the tree construction.

Property 1 The weights (1) of a Whitney k-form u ∈ P−
r+1Λ

k(T ) on all the small
simplex {α, S} of T are unisolvent, as stated in [7, Proposition 3.14]. The small
simplices can thus support the degrees of freedom for fields u ∈ P−

r+1Λ
k(T ), with

0 ≤ k ≤ 3 and r ≥ 0. Since the result on unisolvence holds true also by replacing
T with F ∈ Δn−1(T ) then TrF u ∈ P−

r+1Λ
k(F ) is uniquely determined by the

weights on small simplices in F . It thus follows that a locally defined u, with u|T ∈
P−

r+1Λ
k(T ) and single-valued weights, is in HΛk(Ω). We thus can use the weights

on the small simplices {α, S} as degrees of freedom for the fields in the finite element
space P−

r+1Λ
k(M) being aware that their number is greater than the dimension of

the space.

Property 2 The weights given in Definition 1 have a meaning as cochains and this
relates directly the matrix describing the exterior derivative with the matrix of the
boundary operator. The key point is the Stokes’ theorem

∫
C

du = ∫
∂C

u , where
u is a (k − 1)-form and C a k-chain. More precisely, if u ∈ P−

r+1Λ
k(M) then

z = du ∈ P−
r+1Λ

k+1(M) and

∫

{α,S}
z =

∫

{α,S}
du =

∫

∂{α,S}
u =

∑

{β,F }
B{α,S},{β,F }

∫

{β,F }
u

being B the boundary matrix with as many rows as small simplices of dimension k

and as many columns as small simplices of dimension k − 1. The small simplices
{α, S} inherit the orientation of the simplex S so the coefficient B{α,S},{β,F } is equal
to the coefficient BS,F of the boundary of the simplex S if β = α. This is
straightforward if dim(F ) > 0 and when dim(F ) = 0, providing that small nodes in
T are given in the notation {α, n} according to their position in the small simplices
when fragmented (see Fig. 1 in [1]).

Property 3 The generated (r+2
2 ) small faces on each face F of T , pave F together

with the (r+1
2 ) reversed triangles, denoted by ∇, contained in F . Similarly, the

generated (r+3
3 ) small tetrahedra contained in T pave T together with the (r+2

3 )

octahedra, denoted by O, and the (r+1
3 ) reversed tetrahedra, denoted by ⊥, contained

in T , as shown in Fig. 1. Reversed octahedra and reversed tetrahedra are examples
of “holes” in T (see [9, 10]).

Property 4 Since homology is preserved by homotopy, in [10, Section 3.4], it is
discussed the fact that the relative homology (i.e., the homology [modulo the holes’
boundaries]), of the complex of small simplices is the same of the homology of
M. This property is fundamental to build the tree for high order potentials when
working with small simplices. The homology [modulo the holes’ boundaries] can be
translated in matrix notation, by showing that the boundary matrices associated with
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the small simplices, “modified” and “completed” (in a sense that we explain in the
next section) by the relations [10, Proposition 3.5] are incidence matrices of a graph.
To apply the theory presented in [10, Section 3.4] in a tetrahedron T ∈ Δ3(M), we
need to introduce, for r > 0, two sets K1 and K2 of chains generated by the small
simplices that belong to the boundary of some hole in T as follows:

• K1 are the chains generated by the boundary of the (r+1
2 ) reversed triangle ∇ ⊂ F

and that for each F ∈ Δ2(T ), and the boundary of the three faces out of four on
the boundary ∂⊥ of each of the (r2) reversed tetrahedra ⊥ in T ;

• K2 are the chains generated by 4 out of 8 faces of the (r+2
3 ) octahedra O in T .

The involved faces are the small faces belonging to the boundary ∂O privated of
∂O ∩ (Δ2(T ) ∪ ∂⊥).

The two sets K1 and K2 satisfy the property ∂K2 ⊂ K1, decisive to conclude that
the relative homology [modulo the holes’ boundaries] of the complex of the small
simplices is the same as the homology of the original mesh M [10].

4 Trees and Graphs

As stated in [12], a directed graph G consists of two sets N and A of nodes and
arcs, respectively, subjected to certain incidence relations, collected in the all-vertex
incidence matrix MG ∈ Z

|N |×|A| as follows:

MGn,a =

⎧
⎪⎨

⎪⎩

−1 , if a starts from n,

+1 , if a ends in n,

0 , if a does not contain n.

An incidence matrix M of the graph G is any sub-matrix of MG with |N | − 1 rows
and |A| columns. The node that corresponds to the row of MG that is not in M will
be indicated as the reference node of G. A graph G is connected if there is a path
between any two of its nodes. A tree T of a graph G is a connected acyclic subgraph
of G. A spanning tree Ts is a tree of G visiting all its nodes. Any connected graph
G admits a spanning tree Ts . We have now to particularize these notions for small
simplices. In each tetrahedron T of the oriented mesh M, we consider the small
mesh associated with Lr+1(T ) composed only of small tetrahedra, for a given r

uniform all over the mesh M. The union of the small meshes for all T ∈ Δ3(M) is
denoted Mall .

A (Primal) Small Tree for the Gradient Problem
For r = 0, the graph G1 has N = Δ0(M) and A = Δ1(M). The boundary matrix
G� is the all-vertex incidence matrix of the graph G1. Extracting a spanning 1-tree
T 1

s from G1 is equivalent to finding in G�, minus one row, a submatrix of maximal
rank (see [11] for a suitable and easy way of constructing T ). For r > 0, we have
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v

v
v

v

0

1

2

3

v

v
v

v

0

1

2

3

2

v
0

v

v

v
1

3

Fig. 2 (Left) The graph G1 and a spanning tree in thick line, for r = 1. (Right) A spanning tree
for r = 2 in a fragmented layout

to consider the new graph G1 with N = Δ0(Mall) and A = Δ1(Mall). Let G�
all be

the all-vertex incidence matrix of this new graph G1. Note that G�
all results from the

boundary operator ∂1 on the elementary 1-chains from Mall . Extracting a spanning
1-tree T 1

s from G1 is equivalent to finding in G�
all , minus one row, a submatrix of

maximal rank. Example of spanning 1-tree T 1
s for r+1 = 2 in the right part of Fig. 2

and for r + 1 = 3 in Fig. 5 (fragmented visualization). Note that we can repeat this
construction in the two-dimensional case.

A (Dual) Small Tree for the Divergence Problem
For r = 0, the graph G2 is built on M∗, the so-called dual mesh of M, as follows.
Let us note that an internal face F ∈ Δ2(M) connects two adjacent tetrahedra
T1, T2 ∈ Δ3(M) whereas a boundary face Fb ∈ Δ2(M) connects a tetrahedron
Tb ∈ Δ3(M) and the boundary ∂Ω . We can construct the following connected
(dual) graph G2: the set of nodes, N , contains the barycenter of any tetrahedron
T ∈ Δ3(M) together with one additional exterior node representing ∂Ω; the set of
arcs, A, contains any face F ∈ Δ2(M). For r = 0, the matrix D associated with the
boundary operator ∂3, acting on C3(M), is an incidence matrix of the (dual) graph
G2, with reference node the one corresponding to ∂Ω . Extracting a spanning tree
T 2

s from G2 is equivalent to finding in D a submatrix of maximal rank.
For r > 0, let R2 be the set of small faces chosen as follows: one small face for

each octahedron O contained in K2 (see the right side of Fig. 3 for the dashed small
face in R2 when r+1 = 2). To construct the graph G2 for r > 0 we need to consider
M∗

all , the dual mesh associated to Mall , where nodes are the small tetrahedra and
the arcs the small faces, apart from the ones in R2. To understand this, we can reason
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Fig. 3 The (dual) graph G2∗ associated with the small mesh Mall defined in a tetrahedron T for
r = 1: the black dots are the nodes, and curved lines the arcs (Left). The (dual) graph G2 obtained
from G2∗ by merging the nodes corresponding to barycenter of t0 = {(1, 0, 0, 0), T } and of O, thus
eliminating the arc associated with the shaded small face f O

u (Right)

as follows. For r > 0, we have one arc connecting two small tetrahedra, say t�, t◦,
when

• either t�, t◦ share the same small face f , i.e. ∂t� ∩ ∂t◦ = f ;
• or t�, t◦ have a small face on the boundary of the same octahedron O, i.e. f� =

∂t� ∩ ∂O and f◦ = ∂t◦ ∩ ∂O for the same octahedron O.

See an example of graph G2 for Mall (here M = {T }) in the left part of Fig. 3
for r + 1 = 2, where the node associated with the octahedron O is not a node in
the graph, but stands to indicate that the four small tetrahedra are connected one to
the other by one arc because they all have one small face on ∂O. Naming tk the
small tetra with a vertex in vk , k = 0, 3, and numbering first the 3 × 4 faces on
tk ∩ ∂T , called f k

i for i = 1, 2, 3, second those on ∂O (where f O
u , f O

 , f O
d , f O

r are
the small faces up, left, down, right of ∂O), we have

Dtmp =

∂T

t0

t1

t2

t3

O

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 −1

1 1 1 −1

1 1 1 −1

1 1 1 −1

1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

f 0
1 f 0

2 f 0
3 f 1

1 f 1
2 f 1

3 f 2
1 f 2

2 f 2
3 f 3

1 f 3
2 f 3

3 f O
u f O

 f O
d f O

r

Since the octahedron O is not part of the small mesh Mall , we have to imagine
that its node collapses with the node of one of its neighbouring small tetrahedron,
say t0 with a vertex in v0, and thus that the corresponding arc (i.e. the small face
f O

u = ∂t0 ∩ ∂O, the dashed one in the right part of Fig. 3) is eliminated. From a
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v0

v1

v3

v2

v
2

v
3

v
1

v
0

Fig. 4 Example of spanning tree in the (dual) graph G2, namely a selection of acyclic paths made
of arcs, visiting all the nodes of G2 (r = 1, Left and r = 2, Right)

matrix point of view, D is obtained by adding the line “O” in Dtmp to the line “t0”,
and eliminating f O

u , namely

D =

t0

t1

t2

t3

⎛

⎜
⎜
⎜
⎝

1 1 1 1 1 1
1 1 1 −1

1 1 1 −1
1 1 1 −1

⎞

⎟
⎟
⎟
⎠

f 0
1 f 0

2 f 0
3 f 1

1 f 1
2 f 1

3 f 2
1 f 2

2 f 2
3 f 3

1 f 3
2 f 3

3 f O
 f O

d f O
r

(in bold font, the submatrix of maximal rank in D for the spanning tree T 2
s illustrated

in Fig. 4, left part for r + 1 = 2). To repeat this construction in the two-dimensional
case, when T is a triangle, we have to consider the mesh Mall of small triangles
in T and the role of the core octahedra O is played by the reversed triangles ∇ ∈
T . The set R2 is replaced by R1, composed of one small edge for each reversed
triangle ∇ ∈ K1. In two dimensions we do not have reversed tetrahedra, therefore
no reversed triangles ∇⊥.

The construction of the spanning tree in Mall can be done by assembling that of
the geometrical mesh M, namely a spanning tree for the Whitney forms of lower
degree (blue lines in Fig. 5 (Right)), together with local contributions, one from
each element (green lines in Fig. 5 (Right)). Each local contribution results from one
fixed on a reference element which is mapped on the current element (respecting the
orientation). In Fig. 5 (Left), in green/red thick line we have marked the small edges
of a spanning tree in the graph G1, for r = 3, in the reference triangle. The red ones
belong to the spanning tree in the reference triangle, but they are in general omitted
in the spanning tree of Mall , (indeed, they appear only if they are covered by the
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0

1 2 1

2

3

4

5

6

7

Fig. 5 (Left) In thick colored line, the small edges of the graph G1, for r = 3, that compose a
spanning tree in a reference triangle. (Right) In thick blue line the contribution of the branches of
a spanning tree in a (2D) toy mesh M reported on Mall . In green, the contribution of the small
branches mapped from the green ones in the reference triangle. It is not necessary to report the red
ones since they are either covered by the blue ones or omitted. The co-tree is in black

blue tree). The small co-tree is in black. A similar construction can be repeated in
3D (both for k = 1 and k = 2) and it reflects the decomposition given, for instance,
in [13] (Sect. 5).
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