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Abstract—Infrastructure providers employing Virtual Network
Functions (VNFs) in a cloud computing context need to find
a balance between optimal resource utilization and adherence
to agreed Service Level Agreements (SLAs). Tenants should be
allocated as much computing, storage and network capacity as
they need in order not to violate SLAs, but not more so that
the infrastructure provider can accommodate more tenants to
increase revenue. This paper presents an optimizer VNF that
ensures that a given virtual machine (VM) is sufficiently utilized
before directing traffic to another VM, and an orchestrator
VNF that scales the number of VMs up or down as needed
when workloads change, thereby limiting the number of active
VMs to a minimum that can deliver the service. We setup a
testbed to transcode and stream Video on Demand (VoD) as a
service. We present experimental results which show that when
the optimizer and orchestrator are used together they outperform
static provisioning in terms of both resource utilization and
service response times.

Index Terms—NFV, Provisioning, SLA, QoS, MANO

I. INTRODUCTION

Infrastructure providers often need to optimize their cloud
computing resources to reduce costs while maintaining the
Quality of Service (QoS) they provide to their customers [1].
This process typically involves assigning an optimal amount
of resources to each tenant, so that spare capacity can remain
available for other tenants. In this way, the provider can obtain
more profit with modest resources. However this process is
not trivial, given that the adherence to Service Level Agree-
ment (SLA) constraints and the provisioning of a just sufficient
amount of resources are often contending targets.

It is common practice in cloud networks to make use
of more than one server to provide a given service to end
users in order to guarantee better availability according to
a given SLA [2]. This however means that the network
owner incurs extra expenses without guarantees that the extra
resources will actually be necessary. With Network Function
Virtualization (NFV) such resources can be dynamically scaled
up as needed to accommodate high demand, or scaled down
when demand decreases.

This paper presents a dynamic scaling system that can be
used by Management and Orchestration (MANO) [3] utilities
to provision resources dynamically based on traffic demands.
Concretely our main contributions are:

1) A load optimization network function that channels re-
quests to alternative nodes only when the set of resources
currently allocated is sufficiently highly utilized;

2) An orchestrator that scales Virtual Machine (VM) nodes
up or down by predicting the system state through ap-
proximations of near-term statistical state distributions.

To illustrate the operation of the proposed provisioning
scheme, we use transcoding as a case study of a cloud service.
Transcoding is a resource-demanding process and is therefore
a suitable application to be run as a service in the cloud. This
is particularly important when the device on which the media
is consumed has limited computational resources and power,
as would be the case for a mobile phone.

The rest of this paper is organized as follows. In Section II,
we briefly discuss previous work related to dynamic provision-
ing. In Section III, we present key definitions and subsequently
provide a detailed description of our system. In Section IV,
we describe the experiments to test the proposed provisioning
scheme, analyze the results and discuss their implications.
Finally in Section V we conclude the paper and propose
possible future areas of research.

II. RELATED WORK

Several schemes have been proposed to tackle the chal-
lenges posed by dynamic scaling. Iqbal et al. [4] propose a
reactive model based on heuristics obtained from logs of HTTP
servers to scale up resources and a polynomial regression
model (trained on the logs) to predict when resources should
be scaled down. Islam et al. [5] employ a neural network
trained using data from the TPC-W [6] benchmarking tool
and a sliding window to predict CPU utilization in a virtual
machine in order to decide when scaling is required.

The authors of [7] propose admission control with schedul-
ing that combines heterogeneous workloads (with high and low
resource demands) to better utilize spare capacity that may
otherwise remain unused when serving homogeneous work-
loads. In [8], the authors propose a proportional thresholding
policy that adapts to workloads so that a tenant can carry
out horizontal scaling (increase the capacity of a service by
adding resources). This scheme relies on monitoring tools that
infrastructure providers offer to their tenants.

The authors of [9] propose an analytic model aimed at max-
imizing profit for the network owner while adhering to agreed
SLAs. Their approach relies on computing request arrival rates
of resource-intensive cloud applications. Dutreilh et al. [10]
explore a control theory-based provisioning paradigm whereby
thresholds are set for when to scale up or scale down virtual



machines. They highlight the instability issues caused by the
setting of improper thresholds, as well as by a too strict or too
weak control.

Most of the approaches cited bear a huge overhead in
training an intelligent agent with known workloads. Some of
the proposals, as those in [7] and [9], are also fairly complex as
they require fine-grained knowledge of cloud service delivery
metrics. In contrast, our proposed system does not require
prior knowledge of an application’s traffic demand as it
adapts to changing workloads. In the design of our adaptation
mechanism, we take into account the recommendations given
in [10] such as the need to monitor the system prior to and after
scaling in order to prevent oscillations in the VM instantiation
process.

III. SYSTEM DESCRIPTION

A. Definitions
Adaptive provisioning can be considered a special case

of sequential decision making [11]. An agent monitors the
environment in order to obtain its state. It then decides on an
action to take. Feedback from the environment, in the form of
an immediate positive or negative reward signal or an eventual
outcome, indicates how good or bad the action or a sequence
of actions was. Such an action or sequence of actions results
in a transition of the environment from one state to another.

If we let T be the set of decision epochs, S be the set of
states the system can be in, As be the set of actions that the
agent can take when the system is in state s, pt(·|s, a) be the
distribution of system state changes given the state and action
at the current decision epoch, following [12], we can formalize
the sequential decision process as

{T, S,As, pt(·|s, a)}. (1)

B. System Functions
Our system uses discrete time epochs to make scaling

decisions based on the current state of the system. A state
refers to the number of requests being served concurrently by
a VM node and will be used interchangeably throughout this
paper. The actions to be taken are predefined based on an
average system-wide value obtained by monitoring the set of
active VM nodes for a finite time and counting the number of
times each was servicing a specified number of requests.

A block diagram of the transcoding Service Function
Chain (SFC) is shown in Fig. 1. The admission control
function carries out the instantaneous monitoring of individual
nodes: it has the effect of converting each VM node into a
finite-state machine, given that it conditionally admits requests
based on the current state of the node, thereby limiting the
number of possible states. An admitted request increases the
state value of a VM node while a request that is fully served
decreases the state value. Each of these events occurs with a
probability that depends on the workload and computing power
of the VM node respectively. These managed transitions can be
modelled via a discrete-time Markov chain (DTMC). Systemic
environment monitoring is carried out by the Orchestrator
function.
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Fig. 1. Block diagram of transcoding service chain

1) Orchestrator: The orchestrator takes action in response
to perceived system state as gleaned from polling the set of
active VM Nodes. The actions that can be taken are:

• Scale up: Increase the number of active VM nodes to
handle increased demand.

• Scale down: Reduce the number of active VM nodes
when demand is low.

• No action: If the current number of active nodes can
handle the traffic satisfactorily.

Scaling Up: The orchestrator employs a provisioning algo-
rithm that calculates the average number of concurrent requests
being served by the entire set of active VM nodes using
reports they send. These are obtained over a time window
that is at least an order of magnitude longer than the service
time of a single request, and are sent at intervals slightly
shorter than the observation window. This setting preserves
the memory of traffic events in previous epochs, and reduces
the possibility of premature system scaling, which may result
in oscillations (scaling down shortly after scaling up, or vice-
versa) [10].

The average number of concurrent requests being served,
Kσ can be calculated as

Kσ =

k∑
i=0

iN(t)∑
j=1

wj(t)pij(t)

 , (2)

where k is the size of the state space, N(t) is the number of
active VM nodes in observation window t, wj(t) is the fraction
of counts in node j w.r.t. the total counts from all active nodes
taken over observation window t and pij(t) is the probability
a given VM node j is running i concurrent transcoding jobs
over observation window t.

The scale-up condition compares the average number of
concurrent requests the system is serving to the average cal-



0 1 2 3 4
0

20

40

60

80

100

Concurrent transcoding requests

%
C

PU
ut

ili
za

tio
n Median value

Regression fit

Fig. 2. Relationship between CPU Utilization and concurrent transcoding
processes in a VM. CPU usage is monitored by querying the number of
ongoing transcoding requests.

culated experimentally when the system is close to saturation.
Specifically, the orchestrator checks if

Kσ ≥ K∆ , K∆ =

∑k
i=0 iπi
γ

, (3)

where K∆ is the upper bound metric, γ is a tunable parameter,
and πi is the long-term probability of being in state i (the
long-term probabilities, π, are derived from the state transition
matrix of a VM node operating under saturation conditions).
If the condition in (3) is verified, a new VM node is added to
the set of VM nodes.

The tradeoff between the blocking probability and resource
utilization is not trivial. The choice of γ should be such that
the orchestrator only adds to the set of VM nodes when the
joint utilization of the current set is high enough. Similarly,
γ should be chosen such that the orchestrator is responsive
to perceptible changes in demand that may lead to reduced
service availability, owing to an increase in the likelihood
that a new request finds all active VM nodes too busy to
admit it (blocking probability). In a scenario with known
rates of arrival and departures the blocking probability can
be computed using a queue model for instance, however we
use observations to make the system more robust to dynamic
demands.

Scaling Down: A lower bound metric, K∇ of system
utilization also needs to be established, which specifies the
lowest average number of concurrent processes that can justify
the use of extra resources. It is fittingly chosen in relation to
K∆ as

K∇ = ηK∆ , 0 < η < 1 , (4)

where η is a tuning parameter specifying the tolerance of the
system.

Should Kσ become lower than K∇, we determine which
node should be shut down by computing the average number
of concurrent processes, Kε(n), for each node:

Kε(n) = min
1≤n≤N

k∑
i=0

ipin , (5)
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Fig. 3. Schematic of large scale deployment.

where pin is the probability of being in state i for VM node
n, N is the total number of active VM nodes and k is the
size of the state space. The VM node n̂ = argminnKε(n) is
scheduled for shutdown.

No Action: If the state of the system is such that:
K∇ < Kσ < K∆, no scaling action is undertaken.

2) Load Optimizer and Admission Control: Our system
includes a load-optimizer network function which informs the
decision of the admission controller to admit or drop a request.
Given the strong correlation depicted in Fig. 2, the optimizer
obtains the utilization level of each of the active VM nodes in
turn by querying the number of concurrent requests in service.
If the utilization of a VM node is such that a new request will
not cause it to saturate, the optimizer directs the admission
controller to admit the new request to the given VM node. If
all the active VM nodes are saturated, the optimizer instructs
the admission controller to drop the new request. Therefore,
unlike a fair load balancer which channels traffic uniformly
among nodes, the load optimizer only redirects requests to
an alternative node when the ones under consideration are
saturated or near saturation.

C. Large Scale Deployments

Though the experiments outlined in this paper were carried
out on a single server, large scale deployments can be handled
in a modular fashion as shown in Fig 3. Here, a set of VNFs is
employed in each physical server, and a standard load balancer
mediates the channeling of the traffic to each server.

IV. EXPERIMENTAL RESULTS

A. Testbed Setup

We setup the experiment as shown in Fig. 4. The Host PC
has 4 hyperthreaded cores (8 logical CPUs) and 16 GB RAM.



Fig. 4. Testbed setup. (1) Host PC (2) Client PCs (3) Gigabit per second
(Gbps) capable switch.

Each of the client PCs has at least 2 hyperthreaded cores (4
logical CPUs) and 8 GB RAM. The host uses KVM [13] as
the hypervisor and libvirt [14] to manage the deployment of
the VM nodes. Each VM Node is configured with 4vCPUs
and 2GB of RAM.

The host launches VM nodes running G-Streamer [15] as
the transcoder. It also runs ancillary Python and Shell scripts
which handle the signalling and control aspects ensuring that
each response is correctly mapped to the requesting process
running on the client PCs. The Admission Control, Load
Optimizer and the Orchestrator Network Functions are located
in the host. All physical and virtual machines run on Ubuntu
Linux 16.04 LTS.

We obtained the source video files from the official
“Big Buck Bunny” repository [16] in 3 formats/resolutions:
avi (720p), h264 (1080p), h264 (2160p). These formats rep-
resent mature standards widely adopted by content providers
for video encoding [17]. We subsequently carried out scene
selection and length splitting to create short video segments of
5 seconds for each file, using FFMPEG [18], without changing
the source formats or other properties. This is common prac-
tice in adaptive bit rate streaming, whereby the same video
content is encoded in different resolutions and file formats that
support fragmentation. Each short fragment can be streamed
interchangeably with others (bearing the same content but of
a different format/resolution) depending on available network
bandwidth [19].

Each request specifies the source file to transcode from the
three formats/resolutions. The format of the output stream
is selected randomly by the control script as VP8 with
either 320x180 or 640x360 resolution. The audio stream is
transcoded from 448 kbps AC-3 format with 6 channels (5.1
surround) to 128 kbps mp3 audio with 2 channels (stereo).
These formats were chosen for their popularity in video
streaming [20]. For each request, the time taken to complete
the simultaneous transcoding and streaming operation (as
reported by G-Streamer) is logged with a timestamp indicating
when it was received.

TABLE I
TRANSITION PROBABILITIES OF A BUSY VM NODE

Target State
0 1 2 3 4

So
ur

ce
St

at
e 0 0.259 0.441 0.218 0.076 0.006

1 0.025 0.345 0.409 0.209 0.012
2 0.004 0.068 0.415 0.467 0.046
3 0 0.018 0.186 0.791 0.005
4 0 0.002 0.030 0.248 0.720

B. System calibration

In order to establish the upper-bound metric, K∆, the SFC
was constrained to use only one VM node. This threshold was
obtained by running transcoding requests at random intervals
between 0 and 5 seconds of each other for a sustained period
of 16 hours. This rate ensured that the VM node was operating
close to saturation for the entire duration. The admission
control was set to only admit new requests if CPU utilization
was below saturation.

A monitoring script, running at 1 second intervals, keeps
track of the process IDs of ongoing transcoding streams, in
order to obtain the probabilities of transitioning from one
state to another. The script checks the process IDs of running
transcoder threads and compares the set of current IDs with
the previous set. The intersection of the two sets indicates
the number of transcoding processes that were ongoing in the
system, the number of IDs present in the current set but absent
in the previous set indicates the new requests. The number of
IDs absent in the new but present in the previous set indicates
completed streams. The total number of parallel transcodings
in progress define the state.

Table I shows the transition probabilities obtained with
our testbed. Using (3) and the stationary distribution derived
from Table I, we computed K∆ = 2.709

γ . State occupancy
reports were obtained over a duration of 5 minutes and sent
to the orchestrator every 3 minutes to provide some filtering
to spurious traffic events which may result in premature
scaling [10].

The blocking probability is calculated as the proportion of
requests that are not admitted over the 3 minute epoch to the
total number of requests received in that epoch.

C. Results and Discussion

In the referenced figures, “LO” refers to the case where
only the Optimizer (with all three nodes active) is used and
not the Orchestrator whilst “LB” refers to the case where Load
Balancing (round robin) is applied with all three VM nodes
active.

As depicted in Fig. 5, a higher value of γ results in lower
blocking probability as the SFC becomes more sensitive to
smaller increases in traffic. When γ = 1.0 high blocking
probabilities are sustained for longer periods. If all the VM
nodes are active and either “LB” or “LO” is employed, the
lowest blocking probability is experienced as an alternate
VM node is immediately available to handle the increase in
demand.
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Fig. 5. Blocking probabilities under different values of γ. Between minute
10 and 20 the average traffic is 23 requests/min. Between minute 70 and
90 the average traffic is 20 requests/min. The rest of the time the average
traffic is 8 requests/minute. η = 0.8.
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Fig. 6. Scaling actions by orchestrator. Given that only 3 VM nodes were
available, scaling to a 4th VM node is included to show that if the capacity
of the host had not been exceeded then there would have been another VM
node added to the active set. η = 0.8.
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Fig. 7. CPU utilization. Between minute 10 and 20 the average traffic is 23
requests/min. Between minute 70 and 90 the average traffic is 20 requests/min.
The rest of the time the average traffic is 8 requests/minute. Except for the
“LB“ and “LO“ case VM2 and VM3 are shut down at certain periods, see
Fig. 6. η = 0.8.

Fig. 6 shows the number of VM nodes dynamically pro-
visioned by the orchestrator. A higher setting of γ increases
the sensitivity of the orchestrator resulting in more scaling
actions as the SFC adjusts to subtler changes in demand. When
γ = 1.0, the orchestrator exhibits the smallest sensitivity and
no scaling action is made leaving only the primary VM node
to handle all the traffic.

Fig. 7 shows the average CPU utilization of the primary
node (VM1) for different values of γ, and that of all VMs for
the two cases in which the orchestrator is not used. At low
demand, when only the Load Optimizer (LO) is used, VM1
experiences most of the traffic while VM2 and VM3 are mostly
idle. In the case where the orchestrator is used together with
the optimizer, it shuts down the least busy VM nodes thereby
eliminating superfluous resources. When Load Balancing (LB)
is used, the levels of CPU utilization at low demand are about
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Fig. 8. Distribution of Service times for transcoding h264(1080p) to
VP8(640x360). The other input and output formats mentioned in Section IV
show similar results.

50% less than those experienced when the load optimization
is used together with the orchestrator.

Fig. 8 shows the distribution of the service times of
transcoding requests. The greater the number of active nodes,
the worse the service time, given that more context switch-
ing [21] has to be performed (whereby the hypervisor has to
stop, save state, handle interrupts and resume processing on a
VM Node), which results in less CPU time for performing the
transcoding. Context switching compounds when the hypervi-
sor manages multiple VM nodes. The orchestrator ameliorates
this effect by shutting down idle VM nodes resulting in
improved performance.

The median transcoding time with γ = 1.8 (which pro-
vides a good compromise between service times and service
availability) is about 1.3 s shorter than when round-robin load
balancing (LB) is used. When extra VM nodes are not added,
as is the case with γ = 1.0, the best response is observed.

From the results it is clear that a trade-off between system
sensitivity to changes in demand and service performance has
to be made. The settings for the orchestrator can be customized



with reference to SLA terms agreed with tenants.

V. CONCLUSIONS

In this paper, we presented a load optimizing and an orches-
trator network function. When used together in a SFC, they
improve the utility of VM nodes involved in servicing requests
and limit the use of resources to those strictly necessary to
meet SLAs.

We demonstrated that by learning the response of virtual
machines handling a cloud service, decision bounds can be
obtained for scaling up or down. We also showed that shutting
down under-utilized nodes improves service times by reducing
hypervisor overheads involved in managing multiple virtual
machines.

As future extensions to this work, we plan to use online
machine learning to appropriately adjust γ and η. This should
reduce the blocking probability by making scaling more agile
and able to face rapidly-varying network traffic.
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