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Abstract

We show in full generality the stability of optimal transport paths in branched
transport: namely, we prove that any limit of optimal transport paths is optimal
as well. This solves an open problem in the field (cf. Open problem 1 in the
book Optimal transportation networks by Bernot, Caselles, and Morel), which
has been addressed up to now only under restrictive assumptions. © 2020 Wi-
ley Periodicals LLC

1 Introduction
This paper deals with optimizers of the branched transportation problem. Given

a source �� and a target �C, and positive measures on Rd with compact support,
a transport path transporting �� onto �C is given by a 1-rectifiable current T
whose boundary @T is �C ���. This can be identified with a vector-valued mea-
sure T D ET .�H 1 E/ (with unit vector field ET and nonnegative multiplicity � ),
supported on a bounded set E � Rd , which is contained in a countable union of
curves of class C 1 and having distributional divergence div T D �� � �C: Given
a parameter � 2 .0; 1/, quantifying the convenience of grouping particles during
the transportation, we consider the �-mass of T ,

(1.1) M�.T / WD
Z
E

�.x/� dH 1.x/;

and the minimal transport energy to connect �� to �C,

(1.2) d�.�
�; �C/ WD

inffM�.T / W T is a transport path transporting �� onto �Cg:
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The optimizers in the minimization problem are called optimal transport paths; the
set of optimizers is denoted by OTP.��; �C/. The existence of solutions is ob-
tained by direct methods, and in general one does not expect uniqueness. Arguably
the main open question concerning the well-posedness of the problem, of special
relevance in view of numerical simulations, is whether the optima are stable with
respect to variations of the initial and final distribution of mass. In other words, we
ask if the limit of suitable sequences of optima (with respect to the usual notion of
convergence of vector-valued measures denoted by Tn

�
* T ) is still an optimum.

The main result of our paper provides a positive answer to this question, raised
in [2, problem 15.1] for every � 2 .0; 1/.

THEOREM 1.1 (Stability of optimal transport paths). Let � 2 .0; 1/, ��; �C be
mutually singular positive measures on xB.0;R/, R > 0, satisfying ��.Rd / D
�C.Rd /. Let f��n gn2N ; f�Cn gn2N be positive measures on xB.0;R/ such that for
every n 2 N ��n .R

d / D �Cn .R
d / and

(1.3) ��n
�
* ��;

and assume there exist Tn 2 OTP.��n ; �
C
n / optimal transport paths satisfying

(1.4) sup
n2N

M�.Tn/ <1:

Then, the (nonempty) family of subsequential weak-� limits of Tn is contained in
OTP.��; �C/.

Remark 1.2 (H -masses). With minor changes, Theorem 1.1 holds true for every
H -mass. Namely we can replace the integrand x 7! x� in (1.1) with a general
function H W R! �0;1/ that is even, subadditive, lower semicontinuous, mono-
tone nondecreasing in .0;C1/, continuous in 0, and satisfies H.0/ D 0. These
functionals have been widely studied (see, e.g., [9, 13, 19, 21, 34, 44]). The interest
is twofold: firstly, a general formulation of the branched transportation problem
allows us to consider several interesting models, which are relevant for applied
mathematics and numerical approximations as in [9]; secondly, the possibility to
prove the result in such generality shows the flexibility and the robustness of our
strategy, which does not employ any peculiar property of the function x 7! x�.
In Remark 4.1 we detail how to modify the proof of Theorem 1.1 to include such
generalization.

1.1 Background
In the case of discrete measures �� and �C, the minimization problem (1.2)

was suggested by a similar model of Gilbert [25], who proposed finite directed
weighted graphs G as transportation networks. For arbitrary measures �� and �C,
two generalizations of the discrete problem have been proposed. On one hand, the
above description in terms of transport paths is due to Xia [45,46], and it is related
to a problem that arises in the characterization of weakly approximable Sobolev
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maps with values in a manifold [26]. On the other hand, a different model was
introduced and studied in [2, 29]: here the transportation networks (called traffic
plans) consist of measures on the set of Lipschitz paths where each path represents
the trajectory of a single particle.

In both models, the existence of optimizers in the minimization problem has
been established [1, 10, 29, 40, 45] (see also the reference book [2]). The corre-
spondence between traffic plans and transport paths can be established by means of
Smirnov’s theorem on the structure of acyclic, normal 1-dimensional currents [43].
Indeed, the two formulations were proved to be equivalent (see [2, 40] and refer-
ences therein). Under some restrictions on �, ��, and �C, optimizers exhibit
regularity properties both in the interior (roughly speaking, they are locally finite
graphs) and close to their boundary, that is, the supports of �� [5,7,23,36,46,47].

The models described above can be used and generalized to describe a variety of
problems related to branched transportation: for instance, one can study the mail-
ing problem [2] (for which the first stability result was proved in [18]), the urban
planning model [8], including two different regimes of transportation, or the recent
multi-material transport problem [32, 33], allowing simultaneous transportation of
different goods or commodities. Recently shape optimization problems related to
the functional (1.1) were analysed in [11, 41], and similar branching structures are
observed in superconductivity models and for minimizers of Ginzburg-Landau-
type functionals; see, for instance, [14–16, 20, 27].

Explicit optima are known only in a few (mainly discrete) cases; for this reason,
some effort has been put into developing numerical strategies to compute minimiz-
ers, for instance, in terms of phase-field approximations [4, 12, 37], in the spirit
of numerical calibrations [3, 35], or by exploiting the convex nature of different
formulations of some aspects of the problem (which is overall highly noncon-
vex) [6, 30, 31].

Remark 1.3 (Stability in previous works). The answer to the stability question was
previously known for � 2 .1� 1=d; 1�. In this case, a simple argument relies on the
fact that the minimal transport energy d�.�n; �/ metrizes the weak-� convergence
of probability measures �n

�
* � (see [2, lemma 6.11 and prop. 6.12]). This prop-

erty is false for � � 1 � 1=d , as shown in [17]. The threshold � D 1 � 1=d appears
also because for � above this value any two probability measures with compact
support in Rd can be connected with finite cost. The same threshold is then re-
current in other results: for instance, above the threshold interior, regularity holds
(see [2, theorem 8.14]) and a possible proof is obtained using the stability property.

1.2 Strategy of the Proof
In analogy with previous works [1, 2, 17], to prove Theorem 1.1 we assume

by contradiction that T is not optimal, denote Topt a minimizer, and we construct
a better competitor for Tn (n large enough) by “sewing” a small portion of the
transport path Tn with a large portion of Topt. In the following we shortly describe
some of the main ideas and difficulties behind the proof of Theorem 1.1.
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Lagrangian Description of Transport Paths
By means of the Smirnov theorem we decompose the optimal path Tn as a super-

position of curves without cancellations. In contrast to previous works, our energy
competitor for Tn is not solely expressed in Lagrangian terms of a cut-and-paste
of trajectories to exploit the full power of the slicing operation defined for currents
(see §3.2).

Cancellations in the Lagrangian Description of T
A technical difficulty for our construction is related to the fact that, although the

limit of the Lagrangian descriptions of Tn provides a Lagrangian description of T ,
the latter could contain cycles and cancellations at the level of currents. This issue
did not appear in [17, theorem 1.2], because there the convergence Tn

�
*T was not

necessary to obtain a cheap connection of the slices. To overcome this and obtain
a lower-semicontinuity result that keeps track in the limit of those Lagrangian tra-
jectories which have opposite orientations and therefore they would cancel at the
Eulerian level, we employ some ideas from the theory of currents with coefficients
in normed groups (see §3.4).

Sewing Trajectories
Lemma 3.2 shows that, even though M� does not metrize the weak-� conver-

gence of measures for � below the critical threshold (as explained in Remark 1.3),
this holds true on the class of atomic measures with uniformly bounded energy
(the energy of an atomic measure is defined in (3.1)). This lemma is applied to
the slices of some portions of Tn and T along the boundary of small cubes, and it
allows us to have a cheap connection between Tn and T in proximity of the bound-
ary. For such operation we need to exploit the convergence of the slices of Tn to
the slices of T : for this reason we cannot directly connect the trajectories of Tn to
the trajectories of Topt.

Comparison with Previous Strategies
In [17, theorem 1.2] we employed a dimension-reduction argument to cut the

trajectories of Tn and glue them with the trajectories of Topt. There are three sub-
stantial differences in the approach we adopt in the present paper: firstly, in the
previous work we guaranteed the smallness of the connection by making it act on
a .d � 1/-dimensional surface (hence the bound � > 1 � 1=.d � 1/); secondly, to
guarantee the smallness of the connection we required that �� be supported on an
H 1-null set; lastly, while in [17, theorem 1.2] the connection acted on Lagrangian
trajectories, in this paper we need to perform the slicing at the Eulerian level of
currents, possibly introducing cancellations in mass.
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2 Notation and Preliminaries
2.1 Sets and Measures

We add below a list of frequently used notations:
e1; : : : ; ed standard basis of Rd ;
B.x; r/ open ball with center x and radius r ;

xA closure of the set A;
1E characteristic function of a set E, taking values 0 and 1;

Im  image (or support) of a curve  ;
jvj Euclidean norm of a vector v 2 Rd ;

dist.x; A/ WD infy2Afjx � yjg, distance between a point x and a set A; we
also use dist.A;B/ WD infy2Afdist.y; B/g and B.A; �/ WD fx W
dist.x; A/ < �g;

MC.Y / set of positive Radon measures on the space Y ; we use P.Y / for the
subset of probability measures;

f� measure associated to a measure � and an integrable function f ,
namely �f��.E/ WD R

E f d�;
� E WD 1E�, restriction of a measure � to a set E;
f# � push-forward of a measure � on Y according to a map f W Y ! Y 0,

that is, the measure on Y 0 given by �f# ��.E/ WD �.f �1.E//;
j�j total variation measure associated to a real- or vector-valued mea-

sure �; we call the positive and negative part of a real-valued mea-
sure �, respectively, the measures 1=2.j�j C �/ and 1=2.j�j � �/;

supp.�/ support of �; we say that � is supported on E if j�j.Y nE/ D 0; we
say that two measures � and � are mutually singular if � is supported
on a set E such that j�j.E/ D 0;

M.�/ WD j�j.Y /, mass of a measure � on a space Y ;
� � � means that �.A/ � �.A/ for every Borel set A;

�x Dirac delta at the point x;
H k k-dimensional Hausdorff measure;

Lp.�/ space of p-integrable functions w.r.t. �; we also use Lp.�IV / for
p-integrable functions with values in the normed space V ;

k�kp Lp-norm; we also use k�k1 to denote the supremum norm;

�n
�
* � denotes the weak-� convergence of measures, that is,

R
f d�n !R

f d� for every f 2 C 0
c .

2.2 Rectifiable Sets and Currents
We recall here the basic terminology related to k-dimensional rectifiable sets

and currents. We refer the reader to the introductory presentation given in the
standard textbooks [28,42] and to the most complete treatise [24]. For the purposes
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of this paper, we point out that in [17] the same terminology was used and more
extensively presented in the context of branched transport.

For k D 0; 1; : : : ; d , a set E � Rd is said to be k-rectifiable if it can be covered,
up to an H k-negligible set, by countably many k-dimensional submanifolds of
class C 1.

In the following we use the following notation:

Tan.E; x/ tangent k-plane to the k-rectifiable set E at the point x (defined at
H k-a.e. x 2 E);

Dk.Rd / space of smooth and compactly supported differential k-forms onRd

(the topology on Dk.Rd / is analogous to the topology defined on the
space of test functions with respect to which distributions are dual);

Dk.R
d / space of k-dimensional currents in Rd , namely, continuous linear

functionals on Dk.Rd /;
hT; !i duality pairing between a k-current T and a k-form !. We use the

same symbol for the duality pairing between a k-covector and a k-
vector;

Tn * T weak-� convergence of currents, namely hTn; !i ! hT; !i for every
! 2 Dk.Rd /;

@T boundary of T , that is, the .k � 1/-dimensional current defined via
h@T; �i WD hT; d�i for every � 2 Dk�1.Rd /;

k!k WD supx;�fh!.x/; �i: x 2 Rd , � is a unit simple k-vectorg is the
comass norm of the form !;

M.T / WD sup!fhT; !i: k!k � 1g is the mass of the current T ;

T D ET jT j representation of a current with finite mass (or a vector-valued mea-
sure)1, namely, hT; !i D R

Rd
h!.x/; ET .x/id jT j.x/; jT j 2 MC.R

d /

and ET is a unit k-vector field; in particular,M.T / DM.jT j/;
supp.T / support of T (in the distributional sense);
Nk.R

d / normal currents, that is, currents T such that both T and @T have
finite mass;

@CT; @�T (for T 2 N1.R
d /) positive and negative part of the (finite) measure

@T ;
T A restriction of a current T with finite mass to the Borel set A, namely,

hT A;!i WD R
Ah!.x/; ET .x/id jT j.x/;

F.T / flat norm of the current T , that is, F.T / WD inffM.R/CM.S/ W T D
RC @S; R 2 Dk.R

d /; S 2 DkC1.R
d /g;

1 Even though currents with finite mass and vector-valued measures can be naturally identified,
the convergence of currents does not imply in general convergence of vector-valued measures. This

is the reason for using the two different symbols �n
�

* � and Tn * T .
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Rk.R
d / space of k-rectifiable currents, represented as T D �E; �; ��, which

means h�E; �; ��; !i WD R
E h!.x/; �.x/i �.x/dH k.x/; where E is

a k-rectifiable set, �.x/ is a unit, simple k-vector field that spans
Tan.E; x/ for H k-a.e. x 2 E, and � 2 L1

loc.H
k E/; in partic-

ular, the mass of T can be computed asM.T / D R
E j�.x/jdH k.x/;

M�.T / WD R
E j� j�.x/dH k.x/ is the �-mass of T , where � 2 .0; 1� and

T D �E; �; ��. We set M�.T / D C1 for every T 2 Nk.R
d / n

Rk.R
d /.

Remark 2.1 (Flat norm and weak-� convergence). In general, F.Tn � T / ! 0

implies that Tn * T . If the Tn’s are all supported on a common compact set and
have equibounded masses and masses of the boundaries, the reverse is also true.
This fact can be easily deduced from [24, theorem 4.2.17(1)].

2.3 Transport Paths
Fix R > 0. From now on, by X we denote the closed ball of radius R in Rd

centered at the origin. Following [2, 45], given two positive measures ��; �C 2
MC.X/ with the same total variation, we define the set TP.��; �C/ of the trans-
port paths connecting �� to �C as

TP.��; �C/ WD fT 2 N1.R
d / W supp.T / � X; @T D �C � ��g;

and the minimal transport energy associated to ��; �C as

d�.�
�; �C/ WD inffM�.T / W T 2 TP.��; �C/g:

Moreover, we define the set of optimal transport paths connecting �� to �C by

(2.1) OTP.��; �C/ WD fT 2 TP.��; �C/ WM�.T / D d�.�
�; �C/g:

As observed in [17, prop. 2.5], in order to minimize the �-mass among currents
with boundary in X , it is not restrictive to consider only currents supported in X .

2.4 Structure of Optimal Transport Paths and Good Decompositions
In the class of rectifiable 1-currents, some basic objects are given by the ones

associated to Lipschitz simple curves with finite length. The aim of this subsection
is to describe the so-called “superposition principle,” according to which every
acyclic normal 1-current can be written as a weighted average of such curves.

We denote by Lip the space of 1-Lipschitz curves  W �0;1/ ! Rd that are
eventually constant (and hence of finite length). For  2 Lip we denote by T0./

and T1./ the values

T0./ WD supft W  is constant on �0; t �g;
T1./ WD infft W  is constant on �t;1/g:

Given  2 Lip, we call .1/ WD limt!1 .t/. We say that a curve  2 Lip is
simple if .s/ ¤ .t/ for every T0./ � s < t � T1./ such that  is nonconstant
in the interval �s; t �.
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We associate canonically to each simple curve  2 Lip, the rectifiable 1-current
I WD �Im ;  0=j 0j; 1�: It is easy to check that M.I / D H 1.Im / and @I D
�.1/ � �.0/; since  is simple, if it is also nonconstant, then .1/ ¤ .0/ and
M.@I / D 2.

A normal current T 2 N1.R
d / is said to be acyclic if there exists no nontrivial

current S such that

@S D 0 and M.T / DM.T � S/CM.S/:

We recall a fundamental result of Smirnov [43], which establishes that every
acyclic normal 1-current can be written as a weighted average of simple Lipschitz
curves in the following sense.

DEFINITION 2.2 (GOOD DECOMPOSITION). Let T 2 N1.R
d / be represented as

a vector-valued measure ET jT j, and let P 2 MC.Lip/ be a finite positive measure,
supported on the set of curves with finite length such that

(2.2) T D
Z

Lip
I dP./I

namely, for every smooth compactly supported 1-form ' W Rd ! Rd , it holds that

(2.3)
Z
Rd
h'; ET id jT j D

Z
Lip

Z 1

0

h'..t//;  0.t/idt dP./:

We say that P is a good decomposition of T if P is supported on nonconstant,
simple curves and satisfies the equalities

M.T / D
Z

Lip
M.I /dP./ D

Z
Lip

H 1.Im /dP./;(2.4)

M.@T / D
Z

Lip
M.@I /dP./ D 2P.Lip/:(2.5)

In [38, theorem 10.1] it was shown that optimal transport paths T 2 OTP.��;
�C/ are acyclic; hence they admit such a good decomposition. In the next result,
we collect some useful properties of good decompositions, whose proof can be
found in [17, prop. 3.6].

THEOREM 2.3 (Existence and properties of good decompositions [39, theorem 5.1]
and [17, prop. 3.6]). Let ��; �C 2 MC.R

d / and T 2 OTP.��; �C/ with finite
�-mass. Then T is acyclic and there is a Borel finite measure P on Lip such
that P is a good decomposition of T . Moreover, if P is a good decomposition of
T 2 N1.R

d / as in (2.2), the following statements hold:
(1) The positive and the negative parts of the signed measure @T are @�T DR

Lip �.0/dP./ and @CT D R
Lip �.1/dP./:

(2) If T D �E; �; �� is rectifiable, then j�.x/j D P.f W x 2 Img/ for H 1-
a.e. x 2 E.
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(3) For every P 0 � P the representation T 0 WD R
Lip I dP

0./ is a good
decomposition of T 0; moreover, if T D �E; �; �� is rectifiable, then T 0 can
be written as T 0 D �E; � 0; � � with j� 0j � minfj� j; P 0.Lip/g and � � � 0 � 0,
H 1-a.e.

Remark 2.4 (Lagrangian description of the limit). Let Tn * T be a sequence
of currents converging weak-� with uniformly bounded mass and mass of the
boundaries, and let Pn be good decompositions of Tn. Up to a subsequence,
Pn

�
* P 2 P.Lip/ (thanks to (2.5) and to (2.4), which ensure precompactness

of the sequence of measures). Then P might fail to be a good decomposition of
T , but (2.2) remains valid. Indeed, every smooth compactly supported 1-form !

induces a continuous function on curves Lip 3  ! hI ; !i, and we can test both
weak-� convergences Tn * T and Pn

�
* P to obtain the equality.

3 Preliminary Results

Given a cube Q � Rd whose faces are parallel to the coordinate hyperplanes
and k 2 N, we denote by

�.Q; k/ WD fQ`g2kd`D1

the collection of the 2kd cubes obtained dividing each edge of Q into 2k subinter-
vals of equal length. We denote by

S.Q; k/ WD
2kd[
`D1

@Q`

the .d � 1/-skeleton of the grid �.Q; k/. Moreover, we denote by �Q` the con-
centric cube to Q`, with homothety ratio �.

Given two cubes Q and R , we define Lip.Q;R/ as the set of curves in Lip that
start in Q and end in R, namely,

Lip.Q;R/ WD f 2 Lip W .0/ 2 Q; .1/ 2 Rg:
Given an atomic measure � 2 MC.X/ of the form � DP

i2N �i�xi , we define
its �-mass

(3.1) M�.�/ D
X
i2N

��i :

The alpha mass of a real-valued atomic measure is simply the sum of the �-mass
of its positive and its negative part (the �-mass of a measure is considered to be
infinite if the measure is not atomic). If � is atomic and supported on a cube
Ql.x/ � Rd , centred at x and with diameter l , the cone over � with vertex x is
defined as the 1-current

(3.2) x ��� WD
X
i2N

�iSi ;
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where Si is the 1-dimensional current canonically associated to the oriented seg-
ment connecting x to xi . It is easy to check that

(3.3) @.x ���/ D � �
�X
i2N

�i

�
�x and M�.x ���/ � l �M�.�/:

LEMMA 3.1 (Existence of a sequence of negligible nested grids). Let Q � Rd be
a cube. Let f�ngn2N � MC.Q/ be a countable family of measures. Then there
exists a cube Q0 � Q such that

(3.4) �n.S.Q0; k// D 0 for all .k; n/ 2 N2:

PROOF. Denote � WD P
n2N 2�n�n=M.�n/. Let Q00 be a cube such that the

edge length of Q00 is an integer number and such that dist.Q; .Rd nQ00// � 1. For
every j D 1; : : : ; d and k 2 N we denote by Hj;k the union of 2kC1 hyperplanes,
orthogonal to ej , partitioning Q00 into 2k slabs of equal volume. Denote also

Lj WD
[
k2N

Hj;k :

Since Lj C rej is disjoint from Lj C sej whenever r � s 2 R nQ, then for every
j there exists �j 2 �0; 1� such that

�.Lj C �j ej / D 0:

We conclude that Q0 WD Q00 CP
j �j ej yields (3.4). �

3.1 A Metrization Property forM�

We show that if a sequence �n of measures satisfying a uniform bound on the
�-masses weak-� converges to a measure �, then the connection cost d�.�n; �/
converges to 0 for every � 2 .0; 1/ (compare with Remark 1.3, which requires
instead � > 1 � 1=d).

LEMMA 3.2 (Metrization property for M�). Let Q � Rd be a cube and C > 0.
Let �n; �n 2 MC.Q/ be atomic measures such that1 �n � �n * 0 and for all
n 2 N

M.�n/ DM.�n/; M�.�n/CM�.�n/ � C:

Then limn!1 d�.�n; �n/ D 0.

PROOF. By Lemma 3.1 we can assume that, up to enlarging the cube Q,

(3.5) �n.S.Q; k// D �n.S.Q; k// D 0 for all .k; n/ 2 N2:

1 We remind the reader that the symbol * denotes the weak-� convergence of 0-currents. Under
the assumptions of the lemma, this is equivalent to the weak-� convergence of the associated real-
valued measures.
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Now fix k 2 N and  > 0; let fQ`g`D1;:::;2kd be the cubes in �.Q; k/. Denote by
�n the real-valued measure

�n WD
2kdX
`D1

�`�x` where x` is the barycenter of Q` and �` WD �n.Q
`/ � �n.Q

`/:

By (3.5), the assumption �n � �n * 0 yields

(3.6) M�.�n/ D
2kdX
`D1

j�n.Q`/ � �n.Q
`/j� �  for n sufficiently large:

For every ` D 1; : : : ; 2kd , we consider the cone over .�n � �n/ Q` of vertex x`
as in (3.2):

C ` WD x` ��
�
.�n � �n/ Q`

�
:

Its boundary is given by .�n � �n/ Q` C �n Q`. Denoting by l the diameter
of Q and C1 WD

P2kd

`D1 C
`, we have

M�.C1/ �
2kdX
`D1

M�.C `/
(3.3)� 2�kl

2kdX
`D1

.M�.�n Q`/CM�.�n Q`//

(3.5)� 2�kl.M�.�n/CM�.�n// � 2�kC1lC;

(3.7)

and

(3.8) @C1 D �n � �n C �n:

Denote also x the center of Q and C2 WD x �� �n. Again by (3.3) and (3.6), sinceP2kd

`D1 �` D 0 we have

(3.9) @C2 D �n and M�.C2/ � l � :
Combining (3.7), (3.8), and (3.9), we deduce that

@.C1 � C2/ D �n � �n and M�.C1 � C2/ � l.2�kC1C C /:

The conclusion follows from the arbitrariness of k and  . �

3.2 Slicing
A fundamental tool for the proof of Theorem 1.1 is the notion of slicing of rec-

tifiable 1-currents. Here we recall the definition and some fundamental properties.
We refer the reader to [42, sec. 28] for further details.2

2 Like many classical references, [42] considers only rectifiable currents with integer multiplici-
ties. It is easy to check that every statement we refer to is valid also in the case of real multiplicities.
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DEFINITION 3.3 (SLICING OF k-RECTIFIABLE CURRENTS). Let T D �E; �; �� 2
Rk.R

d / and let f W Rd ! R be a Lipschitz function. For a.e. t 2 R we define the
slice of T according to f at t to be the .k � 1/-rectifiable current

hT; f; ti D �Et ; �t ; �t �

where

� Et D E \ f �1.t/ and is .k � 1/-rectifiable (at most countable for k D 1)
for a.e. t ;

� �t .x/ D �.x/ rEf .x/
jrEf .x/j

(where rEf denotes the tangential gradient) is
the .k � 1/-vector defined by duality as follows�

�.x/
rEf .x/
jrEf .x/j ; v

�
D
�
�.x/;

rEf .x/
jrEf .x/j ^ v

�
for every .k � 1/-vector v:

In the simpler case k D 1, �t .x/ D 1 if the scalar product rEf .x/ � �.x/
is positive, while �t .x/ D �1 otherwise;

� �t D 1Et
� .

We will use the following characterization of the slices (see [42, lemma 28.5(2)]).
Let T 2 Rk.R

d / \ Nk.R
d / and f be as above. Then

(3.10) hT; f; ti WD @.T ff < tg/ � .@T / ff < tg
for a.e. t 2 .0;C1/.

We conclude this short review with a simple consequence of the coarea formula
for rectifiable sets (see [42, lemma 28.5(1)]). Let T and f be as above; then

(3.11)
Z b

a

M.hT; f; ti/dt � Lip.f /M.T fa < f < bg/:

In the following, we choose f WD dx , where dx.´/ WD k´ � xk1.

LEMMA 3.4 (Estimate of M� of suitable slices). Let x; y 2 Rd , r0 > 0, �0 2
.1; 2/, and fTn D �En; �n; �n�gn2N � R1.R

d / with M�.Tn/ � C: Then there
exists a set of positive measure E � �r0; �0r0� such that for every r 2 E there exist
infinitely many n 2 N satisfying

(3.12) M�.hTn; dx; ri/CM�.hTn; dy ; ri/ � 4
M�.Tn/

.�0 � 1/r0
for j D 1; : : : ; m.

PROOF. For every n 2 N we define the set

Fn WD
�
r 2 .r0; �0r0/ WM�.hTn; dx; ri/CM�.hTn; dy ; ri/ � 4M�.Tn/

.�0 � 1/r0

�
:
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We apply the Chebyshev inequality and (3.11) to the 1-rectifiable current zTn D
�En; �n; �

�
n � to obtain

H 1..r0; �0r0/ n Fn/ 4M
�.Tn/

.�0 � 1/r0
�
Z �0r0

r0

M�.hTn; dx; ri/CM�.hTn; dy ; ri/dr

D
Z �0r0

r0

M.h zTn; dx; ri/CM.h zTn; dy ; ri/dr

� 2M. zTn/ D 2M�.Tn/:

We deduce that H 1.Fn/ � .�0 � 1/r0=2. By Fatou’s lemma

.�0 � 1/r0

2
� lim sup

n!1

Z �0r0

r0

1Fn.r/dr �
Z �0r0

r0

lim sup
n!1

1Fn.r/dr I

hence there exists a set of positive measure of radii where lim supn!1 1Fn.r/ D 1.
Any r in this set satisfies (3.12) (for a possibly r-dependent family of indices n).

�

3.3 Improved Lower Semicontinuity
Given fx1; : : : ; xN g 2 Rd , we consider a sequence of sets fGkgk2N with the

following property. For every k 2 N there are closed disjoint cubes Qk
1 ; : : : ;Q

k
N

of diameters �k1 ; : : : ; �
k
N such that �kj ! 0 for every j D 1; : : : ; N as k ! 1,

xj � Qk
j for j D 1; : : : ; N , and moreover Qk

j � Qh
j , for every h > k and for

every j D 1; : : : ; N . Define

(3.13) Gk D Rd n
N[
jD1

Qk
j :

LEMMA 3.5. Let fGkgk2N be as in (3.13) and let fTngn2N � R1.R
d / and T 2

R1.R
d / such that

(3.14) lim
n!C1

F.Tn � T / D 0:

Then there exists a subsequence fTnkg and a sequence of open sets G0
k
� Gk such

that

(3.15) lim
k!C1

F.Tnk G0
k � T / D 0:

PROOF. For every n 2 N, let "n WD F.Tn � T /. By assumption "n ! 0 as
n ! C1. For every k 2 N, let �k > 0 be such that �k ! 0 as k ! 1 and
dist.Qk

i ;Q
k
j / � 2�k for every 1 � i < j � N . By definition of flat distance, for

every n 2 N there exist Rn; Sn such that

(3.16) Tn � T D Rn C @Sn and M.Rn/CM.Sn/ � 2"n:
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Choose nk such that 2"nk � �2
k

. By (3.11), for every k and for every j D
1; : : : ; N , there exists 0 < rkj < �k such that, denoting dkj .x/ WD dist.x;Qk

j /,
we have

(3.17)
NX
jD1

M
�

Snk ; d

k
j ; r

k
j i
� � ��1k "nk � �k :

DenoteG0
k
WD RdnSN

jD1
x

B.Qk
j ; r

k
j /. ObviouslyG0

k
� Gk for every k. Moreover,

since
Tnk G0

k � T D Tnk � T � Tnk
�
Rd nG0

k

�
;

then in order to prove (3.15) it is sufficient to prove that

lim
k!1

F.Tnk .Rd nG0
k// D 0:

Observe firstly that M.T .Rd n G0
k
// � M.T .

SN
jD1

x
B.Qk

j ; �k/// ! 0, as

k ! 1 because
SN
jD1

x
B.Qk

j ; �k/ monotonically converges to the H 1-null set
fx1; : : : ; xN g; hence

lim
k!1

F.T .Rd nG0
k// D 0:

Therefore, it suffices to show that

lim
k!1

F..Tnk � T / .Rd nG0
k// D 0:

Denoting hSnk ; @G0
k
i WD PN

jD1hSnk ; dkj ; rkj i, we observe by (3.16) that Snk 2
R2.R

d / \ N2.R
d /, and consequently (3.10) applies. Hence we can write:

.Tnk � T / .Rd nG0
k/

D Rnk .Rd nG0
k/C @Snk .Rd nG0

k/

(3.10)D Rnk .Rd nG0
k/C @.Snk .Rd nG0

k//C hSnk ; @G0
ki:

(3.18)

Hence, denoting R0
k
WD Rnk .Rd nG0

k
/ChSnk ; @G0

k
i and S 0

k
WD Snk .Rd nG0

k
/,

we have .Tnk � T / .Rd nG0
k
/ D R0

k
C @S 0

k
, and, by (3.14),M.R0

k
/CM.S 0

k
/ �

�k C 2"nk , which tends to 0 as k !1. �

We improve [17, lemma 4.10] as follows:

LEMMA 3.6 (Semicontinuity with lower bound on the density). Let T 2 R1.R
d /.

For every � > 0, there exists �T;� > 0 that satisfies the property: Let fGkgk2N be
as in (3.13) and let fTngn2N � R1.R

d / be such that Tn D �En; �n; �n� and

(3.19) M�.Tn/CM�.T / � C and lim
n!C1

F.Tn � T / D 0:
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Then there exists xk 2 N such that for any k � xk and for infinitely many n (possibly
depending on k)

(3.20) M�

�
Tn

�
Gk \

�
j�nj >

�
�T;�

2C

� 1
1��

���
�M�.T / ��:

PROOF. Given � > 0, let �T;� > 0 be such that, by the lower semicontinuity
ofM� with respect to the flat convergence (as stated in [19, prop. 2.5]),

(3.21) F.T � T 0/ � �T;� ) M�.T / �M�.T 0/C �

2
:

Let us denote " D .�T;�=2C /
1=.1��/. By contradiction, there exist increasing

sequences ki and mi such that

(3.22) M�.Tn .Gki \ fj�nj > "g// <M�.T / ��; 8n � mi ; 8i 2 N:
By Lemma 3.5, there exists a subsequence fTni gi2N � fTmi

gi2N and a sequence
of open sets G0

ki
� Gki such that

(3.23) F.Tni G0
ki
� T / � �T;�

2
; 8i 2 N:

Moreover, since mi is an increasing sequence, we deduce that ni � mi .
By (3.19) it holds that

M.Tni .G0
ki
\ fj�ni j � "g//

< "1��M�.Tni .G0
ki
\ fj�ni j � "g// < C"1��:

(3.24)

Hence, by (3.23) and (3.24), we compute

F.T � Tni .G0
ki
\ fj�ni j > "g//

� F.T � Tni G0
ki
/C F.Tni G0

ki
� Tni .G0

ki
\ fj�ni j > "g//

D F.T � Tni G0
ki
/C F.Tni .G0

ki
\ fj�ni j � "g//

(3.23)� �T;�

2
CM.Tni .G0

ki
\ fj�ni j � "g//

(3.24)� �T;�

2
C C"1��

� �T;�

2
C �T;�

2
D �T;�:

(3.25)

Combining (3.25), (3.22), and (3.21), for every i 2 N, we deduce the desired
contradiction

M�.T /
(3.21)� M�.Tni .G0

ki
\ fj�ni j > "g//C �

2

�M�.Tni .Gki \ fj�ni j > "g//C �

2

(3.22)
< M�.T / � �

2
: �
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3.4 Currents with Coefficients in RM

A technical difficulty in the proof of Theorem 1.1 comes from the fact that the
limit of a sequence of good decompositions (as in Definition 2.2) is not necessarily
a good decomposition. More precisely, we need a lower semicontinuity type result,
which heuristically keeps track in the limit of those Lagrangian trajectories that
have opposite orientations and therefore would cancel as classical currents. To this
aim we require notions from the theory of currents with coefficients in groups. In
particular, we work in the normed group G WD .RM ; k�k1/ and obtain in Lemma
3.7 a stronger statement with respect to the usual lower semicontinuity of the �-
mass.

For the purposes of this paper it is sufficient to regard a current T onRd with co-
efficients in RM as an ordered M -tuple of classical currents on Rd (i.e., with real
coefficients), henceforth called the components of T , and denoted T 1; : : : ; TM .
In particular, one can represent a rectifiable 1-current T on Rd with coefficients
in RM as a triple �E; �;��, where E is a 1-rectifiable set on Rd , � is an orien-
tation of E and � D .�1; : : : ; �M / W E ! RM , with � 2 L1.H 1 EIRM /.
The components of T are the classical 1-rectifiable currents T j WD �E; �; �j � for
j D 1; : : : ;M . The space of 1-rectifiable currents on Rd with coefficients in
RM is denoted RRM1 .Rd /. We refer the reader to [33, sec. 4] for a more rigorous
introduction.

For every � 2 .0; 1/ and for T D �E; �;�� 2 RRM1 .Rd / we define the quantity

M�
RM

.T / WD
Z
E

k�k�1 dH 1:

By [44, sec. 6] this quantity is lower semicontinuous with respect to the standard
notion of convergence in flat norm for currents with coefficients in groups, which
by [33, sec. 4.6] is equivalent to the joint convergence in flat norm of all compo-Insert “the” between

“norm” and “of”? nents.

LEMMA 3.7 (Lower semicontinuity without cancellations). For every n 2 N, let
fT `

n gM`D1, fT `gM
`D1

� R1.R
d / with T `

n D �En;`; �n;`; �n;`� and T ` D �E`; �`; �`�.
We assume that

(3.26) lim
n!C1

F.T `
n � T `/ D 0 8` D 1; : : : ;M;

and

(3.27) M.Tn/ D
MX
`D1

M.T `
n / where Tn WD

MX
`D1

T `
n :

We denote E DSM
`D1E` and � W x 2 E 7!PM

`D1 j�`.x/j. Then

(3.28)
Z
E

�� dH 1 � lim inf
n!1

M�.Tn/:



ON THE WELL-POSEDNESS OF BRANCHED TRANSPORTATION 17

PROOF. We first observe that by (3.27), for every n 2 N, there exists a unitary
vector field �n on En WD

SM
`D1En;` such that

(3.29) Tn D �En; �n; �n� where �n WD
PM

`D1 j�n;`j.
For every ` D 1; : : : ;M , we can associate to the classical current T `

n the cur-
rent S`n D �En;`; �n;`; �n;`e`� 2 RRM1 .Rd /. Analogously we associate to the
current T ` the currents S` D �E`; �`; �`e`�. We define Sn WD PM

`D1 S
`
n and

S WD PM
`D1 S

`. In other words, Sn is the current with coefficients in RM whose
components are T 1

n ; : : : ; T
M
n , while S has components T 1; : : : ; TM . By (3.27),

we can compute

(3.30) M�
RM

.Sn/ D
Z
En

� MX
`D1

j�n;`j
��

dH 1 (3.29)D M�.Tn/:

By the lower semicontinuity ofM�
RM

(see [44, sec. 6]), we deduce thatZ
E

�� dH 1 D
Z
E

k.�1; : : : ; �M /k�1dH 1 DM�
RM

.S/

(3.26)� lim inf
n!1

M�
RM

.Sn/
(3.30)D lim inf

n!1
M�.Tn/: �

4 Proof of Theorem 1.1
Up to a simple scaling argument (detailed at the beginning of the proof of [17,

theorem 1.2]), we can assume that M.��n / DM.��/ D 1 without loss of gen-
erality. By contradiction, we assume there exists a (nonrelabeled) subsequence
fTngn2N and a transport path T 2 TP.��; �C/ such that F.Tn � T / ! 0 and T

is not optimal. We consider Topt 2 OTP.��; �C/ and denote

(4.1) � WDM�.T / �M�.Topt/ > 0:

Let ��=4 > 0 be defined as in Lemma 3.6 with respect to �=4 and T and denote

(4.2) C WD sup
n2N

M�.Tn/

and fix

(4.3) " WD min

(
�

16
;

�
�

8C

� 2
�

;

�
��=4

2C

� 2
1��

)
;

Step 1. Partitioning Smirnov curves of Tn according to their initial and final
points.

Since Tn are optimal transport paths, by Theorem 2.3 we can find for every
n 2 N a good decomposition (see Definition 2.2)

Tn D
Z

Lip
I dPn./;
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with Pn 2 P.Lip/; supported on curves parametrized by arc length.
Applying Lemma 3.1, we can find a cube Q containing X such that

(4.4) ��.S.Q; k// D ��n .S.Q; k// D 0 for all .k; n/ 2 N2:

Without loss of generality we will assume that the edge length of Q is 2, so that
for every Qi 2 �.Q; k/ the distance between the center of Qi and @Qi is 2�k .
For every k 2 N, we consider �.Q; k/ WD fQ`g2kd

`D1
. Moreover, denoting Jk WD

f1; : : : ; 2kd g2 for every n 2 N and every .i; j / 2 Jk , we define

(4.5) T ij
n WD

Z
Lip.Qi ;Qj /

I dPn./;

which represents the portion of Tn associated to the paths which begin in Qi and
end in Qj . The construction of T ij

n is illustrated in Figure 4.1.

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Tn T
2;4
n

T
1;3
n

FIGURE 4.1. Representation of T ij
n .

Notice that T ij
n depends implicitly on k; we will not make explicit this depen-

dence in the proof, apart from Steps 8 and 9 where the dependence on k for the
construction is more relevant. By Theorem 2.3(3), we observe that (4.5) is a good
decomposition. In particular, for every n 2 N, denoting Tn D �En; �n; �n�, we
have that T ij

n can be represented as T ij
n D �En; �n; �

ij
n �, with �

ij
n .x/ � �n.x/ � 0

and

(4.6) j� ijn .x/j � minfj�n.x/j; Pn.Lip.Qi ;Qj //g for H 1-a.e. x 2 En:

Step 2. Lagrangian description of T and partition of the associated trajecto-
ries.

We denote by length./ the length of any curve  2 Lip, and we notice that
the function length is lower semicontinuous on Lip, and the Pn converge weak-�
as measures. By Theorem 2.3(2), j�nj � 1 for H 1-a.e. x. By (1.4), since Tn are
optimal, we deduce the following tightness condition for Pn:

(4.7) sup
n2N

Z
Lip

length./dPn./
(2.4)D sup

n2N

M.Tn/
j�nj�1� C <1:
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By [2, theorem 3.28], up to a further (nonrelabeled) subsequence, Pn
�
* P 2

P.Lip/. By [2, lemma 3.21] P is supported on eventually constant curves, and by
Remark 2.4

(4.8) T D
Z

Lip
IdP./:

Notice that in general (4.8) could fail to be a good decomposition of T in the sense
of Definition 2.2.

Analogously to (4.5), one can define the portion of T associated to the paths that
begin in Qi and end in Qj , as

T ij WD
Z

Lip.Qi ;Qj /

I dP./:

Again we recall that the latter may fail to be a good decomposition. By Theo-
rem 2.3(1) applied to T ij

n and Pn, we deduce

@�T
ij
n D .e0/#.Pn Lip.Qi ;Qj //;

@CT
ij
n D .e1/#.Pn Lip.Qi ;Qj //;

where e0 W  2 Lip 7! .0/ and e1 W  2 Lip 7! .1/. Passing to the limit in n,
we deduce that

@�T
ij D

Z
Lip.Qi ;Qj /

�.0/ dP./;

@CT
ij D

Z
Lip.Qi ;Qj /

�.1/dP./:

(4.9)

For every .i; j / 2 Jk we remark that T ij
n * T ij . Since M.T

ij
n / � C and

M.@T
ij
n / � C , by Remark 2.1, we have

(4.10) lim
n
F.T ij

n � T ij / D 0:

Indeed, Pn Lip.Qi ;Qj /
�
* P Lip.Qi ;Qj /, because they are obtained localizing

the weak-� converging sequencePn
�
* P to the set Lip.Qi ;Qj /, whose boundary

has 0 P -measure by (4.4):

P.@Lip.Qi ;Qj // � P
�f 2 Lip W .0/ 2 @Qig�

C P
�f 2 Lip W .1/ 2 @Qj g�

D ��.@Qi /C �C.@Qj / D 0:

Step 3. Isolating “bad” cubes containing most of the atomic part of ��.
In the following, given a measure � 2 MC.X/, we denote by �a its atomic part,

i.e., the only measure such that �a � �, �a is supported on a countable set and
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.� � �a/.fxg/ D 0 for every x 2 X . Since �� are finite measures, there exists
N 2 N such that the sum of their atomic parts can be written as

(4.11) �Ca C ��a D
� NX
hD1

ch�xh

�
C �r withM.�r/ < ";

for some c1; : : : ; cN 2 R and N distinct points x1; : : : ; xN 2 X (we are implicitly
assuming that the two addenda in the RHS of (4.11) are mutually singular). We
observe that, for every k 2 N, the set fxh W h D 1; : : : ; N g is contained in at
most N cubes of �.Q; k/. By (4.4) and since �C and �� are mutually singular,
there exists k0 such that, for every k � k0, all these cubes are disjoint (hence
their mutual distances are larger than or equal to the edge length of each cube, i.e.,
2�kC1) and contain a single Dirac delta. For every k 2 N, up to reordering, we
denote these cubes by fQh W h D 1; : : : ; N g. Again, we do not make explicit
the dependence of these cubes on k, but we observe that their number N does not
depend on k.

We recall that 5=4Qh is the concentric cube to Qh, enlarged by the factor 5=4, so
that the cubes 5=4Qh remain disjoint; we denote

(4.12) Bk D
N[
hD1

5

4
Qh and Gk WD Bc

k ;

Since the sequence Bk converges monotonically decreasing to the finite set fxh W
h D 1; : : : ; N g, there exists k1 � k0 such that, for every k � k1,

(4.13) M�.T Bk/ D
Z
Bk\E

j� j� dH 1 � ":

Step 4. Multiplicity estimate for the pieces of Tn that do not connect bad cubes.
Since ��

d
WD �� � ��a has trivial atomic part, then there exists k2 � k1 such

that, for every k � k2,

(4.14) max
�
�C
d
.Qi /; ��d .Q

i /
	
<

"

3
for all Qi 2 �.Q; k/:

Then, by (4.11), for every k � k2

maxf�C.Qi /; ��.Qi /g < 2"

3
for all Qi 2 �.Q; k/ n fQh W h D 1; : : : ; N g:

Hence, by (1.3) and (4.4), for every k � k2 there exists n0 D n0.k/ such that, for
every n � n0

(4.15) maxf�Cn .Qi /; ��n .Q
i /g < "

for all Qi 2 �.Q; k/ n fQh W h D 1; : : : ; N g:
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Since �C and �� are mutually singular by assumption, and since each cube in
fQh W h D 1; : : : ; N g contains at most 1 of the N points x1; : : : ; xN , then by
(4.11) and (4.14), for every k � k2,

(4.16) minf�C.Qi /; ��.Qi /g < 2"

3
for all Qi 2 �.Q; k/:

Hence, for every k � k2, there exists n1 D n1.k/ � n0.k/ such that for every
n � n1

(4.17) min
�
�Cn .Q

i /; ��n .Q
i /
	
< " for all Qi 2 �.Q; k/:

Using Theorem 2.3 (1,3) applied to T
ij
n , we deduce from (4.17) that, for every

couple of cubes Qi and Qj such that either Qi or Qj belongs to �.Q; k/ n fQh W
h D 1; : : : ; N g, for every k � k2 and for every n � n1,

j�
T
ij
n
.x/j � Pn.Lip.Qi ;Qj // � minf@�Tn.Qi /; @CTn.Q

j /g
D minf��n .Qi /; �Cn .Q

j /g � "
(4.18)

for H 1-a.e. x 2 En.

Step 5. Choice of slightly enlarged cubes to have a control on the slices.
In the following we use the short notation S ijn .�/ and S ij .�/ to denote, respec-

tively,

hT ij
n ; dxi ; �i C hT ij

n ; dxj ; �i and hT ij ; dxi ; �i C hT ij ; dxj ; �i;
where xi denotes the center of the cube Qi and dx is defined in §3.2.

For every k 2 N, and for a given pair .i; j / 2 Jk , applying Lemma 3.4, we
get that, up to a (nonrelabeled) subsequence fTngn2N , there exists a set of positive
measure of radii �ij

k
2 .1; 5=4/ such that

M�.S ijn .2
�k�

ij

k
// � 4

M�.T
ij
n /

2�k�2

� 2kC4M�.Tn/
(4.2)� 2kC4C for every n 2 N;

(4.19)

where the second inequality follows form Theorem 2.3 (3). By (4.10), up to ex-
tracting another (nonrelabeled) subsequence fTngn2N , for almost every radius �ij

k
,

(4.20) lim
n!1

F
�
S ij

�
2�k�

ij

k

� � S ijn
�
2�k�

ij

k

�� D 0:

By lower semicontinuity ofM� with respect to the flat convergence we deduce that

(4.21) M�
�
S ij

�
2�k�

ij

k

�� � 2kC4C:

Since for every k 2 N the number of possible pairs .i; j / is finite, up to choosing
iteratively a (nonrelabeled) subsequence fTngn2N , we can assume that estimates
(4.20) and (4.21) hold for every .i; j / 2 Jk .
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We observe that @T ij
n .�

ij

k
Qi[�ij

k
Qj / D @T

ij
n and analogously @T ij .�

ij

k
Qi[

�
ij

k
Qj / D @T ij , which combined with (3.10) gives, respectively,

(4.22) S ijn
�
2�k�

ij

k

� D @
�
T ij
n

�
�
ij

k
Qi [ �

ij

k
Qj

�� � @T ij
n ;

and

S ij
�
2�k�

ij

k

� D @
�
T ij

�
�
ij

k
Qi [ �

ij

k
Qj

�� � @T ij
�
�
ij

k
Qi [ �

ij

k
Qj

�
D @.T ij

�
�
ij

k
Qi [ �

ij

k
Qj

�� � @T ij :
(4.23)

Consequently, we deduce, respectively, that

(4.24)
�
S ijn

�
2�k�

ij

k

��
.Rd / D 0 and

�
S ij

�
2�k�

ij

k

��
.Rd / D 0:

We denote

S WD
X

.i;j /2Jk

S ij .2�k�
ij

k
/ and Sn WD

X
.i;j /2Jk

S ijn .2
�k�

ij

k
/:

Step 6. Transport between @T and the corresponding slice S .
We define

(4.25) Rij
n WD T ij

n

�
�
ij

k
Qi [ �

ij

k
Qj

�
; Rn WD

X
.i;j /2Jk

Rij
n :

The construction of Rn is illustrated in Figure 4.2.

2�kC1�
2;4
k

2�kC1�
1;3
k 2�kC1

Q1

Q2

Q3

Q4

T
2;4
n

T
1;3
n

R
2;4
n

R
1;3
n

FIGURE 4.2. Representantion of Rn.

We remark that, by Theorem 2.3(2), for H 1-a.e. x

j�Rn
.x/j D

��� X
.i;j /2Jk

�
R
ij
n
.x/

��� � X
.i;j /2Jk

�
T
ij
n
.x/

�
X

.i;j /2Jk

Pn.f 2 Lip.Qi ;Qj / W x 2 Img/

� Pn.f 2 Lip W x 2 Img/ D j�Tn.x/j:

(4.26)
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We observe that, since @T ij
n D @T

ij
n .Qi [Qj /, by (3.10)

@Rn D
X

.i;j /2Jk

@Rij
n D

X
.i;j /2Jk

@T ij
n

�
�
ij

k
Qi [ �

ij

k
Qj

�C S ijn
�
2�k�

ij

k

�

D
X

.i;j /2Jk

@T ij
n C S ijn

�
2�k�

ij

k

� D @Tn C Sn:
(4.27)

Analogously one can define Rij and R as

Rij WD T ij
�
�
ij

k
Qi [ �

ij

k
Qj

�
; R WD

X
.i;j /2Jk

Rij :

We have

@R D
X

.i;j /2Jk

@Rij D
X

.i;j /2Jk

@
�
T ij

�
�
ij

k
Qi [ �

ij

k
Qj

��
(4.23)D

X
.i;j /2Jk

�
@T ij

�
�
ij

k
Qi [ �

ij

k
Qj

�C S ij
�
2�k�

ij

k

��
(4.28)

D
X

.i;j /2Jk

.@T ij .Qi [Qj //C S D .�C � ��/C S D @Topt C S:(4.29)

Step 7. Connection of the slices of Tn and T .
We define

�n WD
X

.i;j /2Jk

�
S ijn

�
2�k�

ij

k

��
C
C

X
.i;j /2Jk

�
S ij

�
2�k�

ij

k

��
�

and
�n WD

X
.i;j /2Jk

�
S ij

�
2�k�

ij

k

��
C
C

X
.i;j /2Jk

�
S ijn

�
2�k�

ij

k

��
�
:

We observe that

�n��n D
X

.i;j /2Jk

�
S ijn

�
2�k�

ij

k

��S ij �2�k�ij
k

�� (4.20)
* 0 and M.�n/ DM.�n/:

By (4.24), we deduce that

M.�n/ �M.�n/

D
X

.i;j /2Jk

�
S ij

�
2�k�

ij

k

��
C
.Rd / � �

S ij
�
2�k�

ij

k

��
�
.Rd /

C �
S ijn

�
2�k�

ij

k

��
�
.Rd / � �

S ijn
�
2�k�

ij

k

��
C
.Rd / D 0:

(4.30)

Moreover, thanks to (4.19) and (4.21) we have that

M�.�n/CM�.�n/ � 22kdCkC6C:
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Applying Lemma 3.2, for every k � k2, there exists n2 D n2.k/ � n1.k/ such
that for every n � n2 there exists a transport Tn;conn such that

(4.31) @Tn;conn D �n � �n D S � Sn and M�.Tn;conn/ < ":

Step 8. Improved semicontinuity of the energy to bound a modified density of T
that neglects cancellations among different partitions.

In this step we will label the dependence of T ij and T ij
n from k explicitly, with

the notation T
ij

k
and T

ij

n;k
. In particular, we write T

ij

k
D �E

ij

k
; �

ij

k
; �

ij

k
�. Let us

consider the rectifiable set E D S
k2N [i;jEij

k
and x�k D P

ij j� ijk j. We claim
that for H 1-a.e. x 2 E, the sequence x�k.x/ is nondecreasing in k and that, setting
x� D supk2N x�k , we have

(4.32)
Z
E

x�� dH 1 � C:

To prove this claim, we define the positive measures �ij
k
WD j� ij

k
jH 1 E

ij

k
2

MC.R
d / associated to T ij

k
and the measure �k WD

P
ij �

ij

k
D x�kH 1 E. By the

good decomposition of Tn, we deduce that

(4.33) M.Tn/ D
X
ij

M
�
T
ij

n;k

�
:

By (4.10) and (4.33), we can then apply Lemma 3.7 to the sequence T ij

n;k
to deduce

that for every fixed k 2 N

(4.34)
Z
E

x��k dH 1 � lim inf
n!1

M�.Tn/ � C:

Furthermore, we observe that �k � �kC1 for every k 2 N. Indeed,

�
ij

k
D

X
s;t WQs�Qi ;Qt�Qj

�stkC1;

where we intend that Qs and Qt belong to �.Q; k C 1/, and Qi and Qj belong
to �.Q; k/. Therefore

x�k D
X
ij

��� ij
k

�� DX
ij

��� X
s;t WQs�Qi ;Qt�Qj

�stkC1

���
�
X
ij

X
st WQs�Qi ;Qt�Qj

���stkC1�� DX
s;t

���stkC1�� D x�kC1:

Consequently, the monotonicity together with the uniform bound in k (4.34)
yields (4.32).
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Step 9. Energy estimate for R, defined in Step 6.
We claim that there exist infinitely many indexes fkhgh2N such that

(4.35) M�.R/ < ":

In the proof of this step we will trace the dependence of R from k explicitly with
the notation Rk . We first observe that M.Rk/ ! 0 as k ! C1. Indeed, since
the function length is lower semicontinuous on Lip and Pn converge weak-� as
measures, we haveZ

Lip
length./dP � lim inf

n!1

Z
Lip

length./dPn:

By the good decomposition property (2.4) of Tn, and since by Theorem 2.3(2) the
density of Tn is bounded by 1 D Pn.Lip/, we have

(4.36)
Z

Lip
length./dP � lim inf

n!1
M.Tn/ � lim inf

n!1
M�.Tn/:

Hence we know that length./ 2 L1.P /. Now we define

Ak./ WD
[
i;j

�
�
ij

k
Qi [�ij

k
Qj W Qi ;Qj 2 �.Q; k/; .0/ 2 Qi and .1/ 2 Qj

	
;

and the function lengthk W Lip ! �0;C1/ as

lengthk./ WD
Z 1

0

j P j.t/�fsW.s/2Ak./g.t/dt D H 1.Im  \ Ak.//:

We can then estimate

M.Rk/ �
Z

Lip
lengthk./dP./:

As observed above, the limit P has the property that  is an eventually constant
curve for P -a.e.  . We consequently deduce that lengthk./ ! 0 for P -a.e.  2
Lip. Moreover, lengthk./ � length./. Since length 2 L1.P /, by dominated
convergence we deduce that

(4.37) lim
k!1

M.Rk/ � lim
k!1

Z
Lip

lengthk./dP./ D 0:

By (4.37), there exists a subsequence fkhgh2N such that the density �Rkh
of Rkh

satisfies �Rkh
.x/ ! 0 as h ! 1 for H 1-a.e. x 2 E. Moreover, thanks to

(4.32), we deduce that j�Rkh
j� � x��

kh
� x�� 2 L1.H 1 E/ (where the set E

and the multiplicities x�kh and x� have been defined in Step 8) and consequently, by
dominated convergence, that

M�.Rkh/ D
Z
E

j�Rkh
j�dH 1 ! 0 as h!1;

which implies the claim in (4.35).
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Step 10. Construction of the energy competitor for Tn.
In the rest of the proof we fix

k 2 fkhgh2N with k � maxfxk; k2g and n � n2.k/;

where xk and n are obtained in Lemma 3.6, with �=4 in place of � and fGkgk2N ,
fTngk2N , and T being those used so far in the proof of Theorem 1.1. We recall
that k2 was defined (4.14), fkhg in (4.35), and n2.k/ in (4.31).

We deduce from (3.20) the following estimate:

M�
�
Tn

�
Gk \

�j�nj > p
"
	��

(4.3)� M�

�
Tn

�
Gk \

�
j�nj >

�
��=4

2C

� 1
1��

���
(3.22)� M�.T / � �

4
:

(4.38)

In the first inequality we used that
p
" � .��=4=2C /

1=.1��/, by (4.3). We define
the following transport path:

Tn;comp WD Tn;conn C Topt �RCRn:

This is a competitor for Tn, namely @Tn;comp D @Tn. Indeed, thanks to (4.29),
(4.27), and finally (4.31), we compute

@Tn;comp D @Tn;conn C @Topt � @RC @Rn D @Tn;conn � S C @Tn C Sn
(4.31)D @Tn:

Step 11. Energy estimate and conclusion. To estimate the energy of the com-
petitor Tn;comp we first use the subadditivity ofM� and the smallness of the energy
contributions of Tn;conn and R, in view of (4.31) and (4.35). We obtain that

M�.Tn;comp/ �M�.Rn/CM�.Tn;conn/CM�.Topt/CM�.R/

�M�.Rn/CM�.Topt/C 2";

which, combined with (4.1) and (4.38), reads

M�.Tn;comp/
(4.1)� M�.Rn/CM�.T / ��C 2"

(4.38)� M�.Rn/CM�.Tn .Gk \ fj�nj >
p
"g//

� 3�

4
C 2";

(4.39)

Next, we call xT1 WD Rn and xT2 WD Tn .Gk \ fj�nj >
p
"g/ and estimate their

densities.
We first observe that, by (4.12), it holds Gk \ .�

ij

k
Qi [ �

ij

k
Qj / � Bc

k
. This

implies that for every x 2 Gk \ .�
ij

k
Qi [ �

ij

k
Qj /, either Qi or Qj belong to
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�.Q; k/ n fQh W h D 1; : : : ; N g. Applying (4.18) and recalling the definition
(4.25) Rij

n D T
ij
n .�

ij

k
Qi [ �

ij

k
Qj /, we can estimate the density of xT1 as follows

(4.40) j� xT1 j � " for H 1-a.e. x 2 Gk :

Notice that (4.40) may no longer hold for x � Gk: indeed, (4.18) may fail if both
Qi and Qj belong to fQh W h D 1; : : : ; N g.

On the other side, the density of xT2 satisfies

(4.41)
p
" � j� xT2.x/j � j�Tn.x/j for H 1-a.e. x 2 Gk \ fj� xT2 j > 0g:

Combining the bounds (4.40) and (4.41), we deduce that

(4.42) j� xT1 j� C j� xT2 j� � "� C j� xT2 j� � ."�=2 C 1/j� xT2 j�

for H 1-a.e. x 2 Gk \fj� xT2 j > 0g. We employ this inequality together with (4.26)
in the energy estimate

M�. xT1/CM�. xT2/ D M�
� xT1 �

Gc
k [ .Gk \ f� xT2 D 0g/��

C
Z
Gk\fj�xT2

j>0g

j� xT1 j� C j� xT2 j� dH 1

(4.26);
(4.42)� M�

�
Tn

�
Gc
k [ .Gk \ f� xT2 D 0g/��

C ."�=2 C 1/

Z
Gk\fj�xT2

j>0g

j� xT2 j� dH 1

(4.41)� M�.Tn .Gc
k [ .Gk \ f� xT2 D 0g///

C ."�=2 C 1/

Z
Gk\fj�xT2

j>0g

j�Tn j�dH 1

D M�
�
Tn

�
Gc
k [ .Gk \ f� xT2 D 0g/��

C ."�=2 C 1/M�.Tn .Gk \ fj� xT2 j > 0g//

� ."�=2 C 1/M�.Tn/:

We plug this estimate into (4.39) and recall thatM�.Tn/ � C , so that

M�.Tn;comp/ � ."�=2 C 1/M�.Tn/ � 3�

4
C 2"

� M�.Tn/ � 3�

4
C 2"C C"�=2

(4.3)� M�.Tn/ � �

2
:

(4.43)

The estimate (4.43) contradicts the optimality of Tn.
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Remark 4.1. In the spirit of the works [19, 21, 44], we can replace x 7! jxj� with
more general functions H W R ! �0;1/ that are even, subadditive, lower semi-
continuous, monotone nondecreasing in .0;C1/, continuous in 0, and satisfying
H.0/ D 0. The associated functionals on transport paths are usually called H -
masses and are defined as

MH .T / WD
Z
E

H.�.x//dH 1.x/ where T D �E; �; �� 2 R1.R
d /:

The obvious analogue of Theorem 1.1 holds true. We divide the argument into two
cases:

� First case: lim�!0C
H.�/=� D C1. For every � > 0 there exists ".�;H/ >

0 such that ".�;H/=H.".�;H// < �. One can repeat the proof of all the state-
ments of Section 3 just changing M� to MH . The only differences are in
Lemma 3.6: the statement (3.20) becomes

MH

�
Tn

�
Gk \

�
j�nj > "

�
�T;�

2C
;H

����
�MH .T / ��;

in the proof we choose " WD ".�T;�=2C ;H/, and we change (3.24) in

M.Tni .G0
ki
\ fj�ni j � "g// < "

H."/
MH .Tni .G0

ki
\ fj�ni j � "g//

< C
"

H."/
<

�T;�

2
:

We can then repeat verbatim Section 4, with the same proof of Theorem
1.1, just changing M� to MH and modifying (4.38) according to the new
version of Lemma 3.6.

� Second case: lim inf�!0C
H.�/=� < C1. Then it is easy to show that the

minimal transport energy

dH .��; �C/ WD inffMH .T / W T is a transport path connecting �� to �Cg;
defined analogously to (1.2), metrizes the weak-� convergence of mea-
sures. We can then simply repeat the proof in [2, prop. 6.12] to get the
validity of Theorem 1.1.

We observe moreover that the continuity of H in 0 is a necessary hypothesis for
the validity of Theorem 1.1. Indeed, consider the case of the size, i.e.,

(4.44) H.�/ D 1 on R n f0g and H.0/ D 0:

Consider �� WD �0 and �C WD �e1 ; for every n 2 N we define

��n WD �0 and �Cn WD 1

n
�e1=2Ce2=8 C

�
1 � 1

n

�
�e1 :

Since ��n and �Cn are finite atomic measures, by [2, prop. 9.1] the optimal transport
path Tn is a finite graph made of segments with no loops. Moreover, by (4.44), the
energy is the sum of the length of the segments composing the graph. In particular,
the graph has to be connected, since both the points e1=2C e2=8 and e1 have to be
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connected to 0. As a consequence, the energy of any transport path in TP.��n ; �
C
n /

must be bigger than or equal to the length of the minimal tree connecting the three
points, which is the union of the support of the following two curves 1 W �0; 1�!
Rd

(4.45) 1.t/ WD t
�e1
2
C e2

8

�
and 2.t/ WD 1C t

2
e1 C 1 � t

8
e2:

Hence dH .��n ; �
C
n / D

p
17=4 for every n 2 N and an optimal transport path

Tn 2 OTP.��n ; �
C
n / is

Tn WD I1 C .1 � 1=n/I2 :

We observe that
Tn * T WD I1 C I2 :

As previously observed, MH .T / D p
17=4 > 1 � dH .��; �C/ (since the seg-

ment joining �� and �C has energy 1). Since ��n * ��, this inequality contra-
dicts the stability.
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