This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

Activity Planning for Assistive Robots using
Chance Constrained Stochastic Programming

Bevilacqua, P., Member, IEEE, Frego, M., Palopoli, L., Member, IEEE Fontanelli, D. Senior Member, IEEE

Abstract—In this paper, we present a framework for planning
an activity to be executed with the support of a robotic navigation
assistant. The two main components are the Activity and the
Motion Planner. The Activity Planner composes a sequence of
abstract activities, chosen from a given set, to synthesise a
plan. Each activity is associated with a point of interest in the
environment and with probabilistic parameters that depend on
the plan, which are characterised by simulations in realistic
scenarios. The low-level action to pass from an activity to the
next is handled by the Motion Planner, which secures the physical
feasibility of the chosen actions and their compatibility with the
constraints posed by the user and the environment. Indeed, the
final plan must respect the user constraints and optimise his/her
satisfaction from the activity. We show a possible model for the
problem as a chance constrained optimisation along with an
efficient technique to find high quality solutions.

Index Terms—Assistive Robots, Activity Planning, Motion
Planning, Chance Constrained Opt., Integer Programming.

I. INTRODUCTION

The possible ways robotic technologies can be used to
assist humans are virtually beyond count. As a few examples,
robotic prosthetics like hands [1] or legs can be used to replace
missing or severely injured limbs [2]. Robots can also be used
for post-injury rehabilitation [3] or as home assistants [4]. In
this paper, we are interested in a particular category: navigation
and activity assistants. The objective is, in this case, to spur
senior users into frequent and compelling social activities
beyond the walls of their homes by offering physical and
cognitive support. A robot of this kind can be disguised as an
ordinary walker, but under the hood it contains a package of
technologies to sense the surrounding environment, to suggest
a sequence of actions and a safe path, to guide the user
along this path and to react to unexpected situations in the
environment. Robots of this kind have been proposed in the
context of several research projects [5], [6], [7].

Assistive Robotics. A key component of robotic assistants is
the planner, providing the users with sets of possible activities
to perform (e.g. the visit to a shopping mall, a museum, etc.),
based on their interests and requirements, and giving them
assistance and support during the execution of the chosen
activities, to guarantee safety, comfort and satisfaction. At
runtime, a monitoring component controls in what measure
the user follows the plan, and, if necessary, triggers an update
to tackle relevant deviations. The development of a planner
has several facets: the plan generated by the robot has indeed

P. Bevilacqua, M. Frego and L. Palopoli are with the Dep. of Information
Engineering and Computer Science; D. Fontanelli is with the Dep. of
Industrial Engineering, University of Trento, Italy.

to comply with the complex and diversified physical and
psychological requirements associated with the user. In this
context, there is not a viable one-size-fit-all solution: each user
is an individual for whom different barriers have to be lowered
and different motivations have to be triggered. Moreover, the
high level activity plan has to be translated to a sequence of
primitive and executable actions, i.e. elementary paths, that can
be followed by the user and by its robot assistant. The software
component responsible for the execution of the paths is the
Motion Planner that, at this “lower” level, needs to consider
also the robot kinematics and dynamics, and the presence of
additional constraints coming from the environment (a wall, a
temporary obstruction due to maintenance operations, etc.).
Related work (High-level Planning). The high-level planning
is abstracted as a graph, where the nodes represent relevant
points of interest and the edges are weighted by stochastic val-
ues such as distance and travel time. In literature, this kind of
optimisation problems, focusing on the search of the optimal
order to visit a given set of destinations, is known as the Multi-
Goal Motion Planning Problem. A possible solution strategy
for these problems is based on the reduction to Travelling
Salesman Problem (TSP) instances, and on the adoption of one
of the large number of effective TSP algorithms and solvers
available. This kind of approach is found for example in [8],
where the TSP is solved with a common greedy technique,
based on the construction of a Minimum Spanning Tree,
while the tree arcs are sequentially refined and made feasible
by the lower-level motion planner. Various applications in
literature require a strong interplay between planners working
at different levels of abstraction. For example, in [9], the
Authors present a planner for both terrestrial and flying agents,
accounting also for the dynamics of the different vehicles, by
means of a multi-layered approach.

Other kinds of problems bearing some similarities with
the considered Activity Planning are the Partial Satisfaction
Planning [10], and the variant of the Orienteering Problem
(OP) [11] known as the Tourist Trip Design Problem (TTDP).
In TTDP, given a set of attractions to visit, each with a certain
score given according to the user preferences, the solver has to
choose the attractions to include in the plan, and the optimal
order of the visits, given some constraints on the maximal
duration of the plan. Generally, most of the solutions available
in literature adopt metaheuristic optimisation algorithms [12].
A survey illustrating the TDDP and its variants, and discussing
possible solutions, is available in [13].

However, to the best of the Authors’ knowledge, none of
the existing solutions deals with the kind of problems that we
are called to solve for the Activity Planner, characterised by

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

the presence of different constraints expressed in probabilistic
terms. For example, the objective of the TSP is to determine
the shortest path visiting all the vertices of the graph. On the
contrary, we can select a subset of nodes to visit, in order
to maximise the user satisfaction, according to his/her prefer-
ences, respecting both deterministic and stochastic constraints.
On the other hand, in general, all the existing solutions to
the TTDP focus on deterministic constraints only, or on the
modelling of a single stochastic constraint to be satisfied.
Therefore, these metaheuristic approaches handle only one
nondeterministic constraint, whereas the problem tackled in
this paper requires the effective handling of a number of them.
Related work (Low-level Planning). A strong body of scien-
tific results has addressed the problem of motion planning. A
review of these methods can be found in a rather complete
textbook [14]. We can attempt a rough classification among
algorithms based on cell decomposition [15], [16], on sam-
pling [17] and on potential fields [18].

Contribution of the paper. The focus of this paper is the
design of an integrated planning tool, that can be employed
for the generation of sequences of tasks and activities to be
performed by older adults in public spaces with the support of
assistive robotic rollators. To this end, our approach demands
a strong interaction between the motion planner, working at a
lower level of abstraction, and the activity planner, working at
a higher level, with the intended goal to produce a sequence of
smooth, feasible trajectories, visiting a subset of the available
points of interest (POIs). The activity planning problem poses
a set of challenges, that cannot be solved reasoning solely at
a high level or at a low level of abstraction. On one hand, at
an higher level it is simpler to model and capture “complex”
elements such as user requirements and preferences. However,
a graph based representation of the environment may not
be adequate to model operations in unstructured and “open”
environments, such as public spaces. Also, standard motion
planning algorithms are not suitable to handle all the complex
requirements that have to be considered for the synthesis of
activity plans (e.g. visits to sequences of points of interest).
Therefore, a strict convergence between low and high level
planning is necessary for an effective solution of the problem.
It is worthwhile to note that even with this decomposition of
the Activity Planning, that is modelled at two different levels
of abstraction, the high level optimisation problem belongs to
the NP-hard class. Hence, it cannot be solved with standard
graph search algorithms, e.g. A*, but it requires the adoption
of more powerful optimisation tools.

The environment where an activity takes place contains a
set of POIs, each with a certain score, depending on the user
preferences. In addition, users may have different constraints
and requirements, with different levels of criticality (i.e. differ-
ent acceptable probabilities of violation). The Activity Planner
uses the information on the environment and the user profile,
to generate plans, i.e. sequences of tasks. Each of these tasks
corresponds to a motion between a pair of POIls, and it is
associated with physical parameters such as length, travel
time, etc., modelled probabilistically. The characterisation of
these parameters is performed offline by running the motion
planner over a large number of different scenarios. Constraints

Fig. 1. Examples of possible trajectories among pairs of nodes. The blue star
denotes a deviation to bypass a temporary obstacle.

expressed in probabilistic terms can be formalised by recasting
the problem as a Chance Constrained Stochastic Programming
(CCSP) with integer decision variables. Thus, in order to ef-
fectively deal with probabilistic constraints, we model Activity
Planning problems as CCSP instances. Considering the limited
size of the planning instances to be solved, it is possible to
apply exact algorithms, yielding the optimal solution within
reasonable and acceptable computational times. In addition,
we propose also a hierarchical decomposition of full problems,
applicable to larger examples of problems. As shown in the
paper, this expedient enables us to produce very high quality
sub-optimal solution in an acceptable time (a few minutes)
even for unrealistically large scale problems.

The generated activity is then refined by the Motion Planner
into an executable plan. This last aspect is briefly summarised
in this paper, being the main focus on the Activity Planner.
Organisation of the paper. In Section II, we will offer a
detailed description of the problem and present our approach.
In Sections III and IV, we will show how to formalise and
solve the activity planning problem. In Section V, we will
discuss the Motion Planner technology that we combine with
the Activity Planner in order to characterise the actions and to
refine the Activity Plan. In Section VI, we show experimental
results and validation, finally, in Section VII, we report our
conclusions and future work.

II. THE ACTIVITY PLANNING PROBLEM

The Problem. The goal of the Activity Planner is to produce
plans for activities designed for an old person, henceforth
called user, with the help of an assistive robot. An activity
is conducted in wide public area such as a museum or a
shopping mall (called environment), where a number of points
of interest are located. A mild hypothesis is that both the
map layout and the position of the POIs are known by the
planner, as an example, a museum could provide a layout of
the building labelled with the collection of exhibited items (the
POIs), together with a statistic of the usual visit times.

The POIs are tagged with different categories (e.g. fossils,
mammals, etc) in order to meet the interests of the visitor,
who can assign a different rating to each of them and ask
the Activity Planner to organise the optimal visit tailored to
her/his specific needs: the activity plan. It is thus feasible and
computationally reasonable to consider a number of POIs of
about one hundred. For instance, in Figure 1 the green dots
represent the POIs and the red paths possible connections.
The goal of the Activity Planner is the choice of a selection
of these POIs to design an activity. As an example, an optimal
sequence may be given by P, P, P» and Ps.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

To evaluate the score of an activity plan, a set of tags is
assigned to each POI. Based on the score given by the user to
each category, and stored in her/his user profile, the planner
can determine the value of each POI as the sum of the values
given to each of its tags. Users scores can be collected with
a standard evaluation scheme, for instance based on a simple
star rating, or votes from O to 10, or with a percentage of
interest. Another possibility is to have the score imported from
a social network, e.g., it could be the average evaluation of
the POI reported by the participants with a profile similar to
the user’s. In addition, it is possible to add goals in terms
of metrics related to the physical condition of the user, such
as distance walked or calories burnt. We address next the
principal constraints that can be given to the Activity Planner.
1. Environment constraints: the geometric information on
the environment is stored in a specialised database (Spatial-
Lite [19]) as a set of polygons, along with the position of
the POIs and their properties. Because the environment has
specific geometries and configurations, the robotic walker can
move only in certain areas (passageways). Fixed obstacles
impose constraints on the synthesis of the trajectory. Moreover,
some environmental constraints change with time, e.g., a
passageway may be temporarily obstructed by a crowd or a
room may be closed for maintenance. Thus, according to these
events, pairs of POIs may or may not be directly connected.
2. Physical constraints: we can model the ensemble user—
walker as a car-like vehicle with rear wheel drive, as the
user pushes the assistive robot, which is actuated on the front
wheels. If the front wheels are free and the actuation is on the
rear, the resulting model is an unicycle-like vehicle [20]. In
both cases we need to account for nonholonomic constraints.
3. User constraints: the user’s physical or psychological con-
ditions are encoded in the so-called user constraints. Examples
of user constraints can be upper bounds on the duration of
the walking activity before taking a break or, on the contrary,
the enforcing of a minimum distance to be walked. Another
case can be the availability of a seat or of a toilette in
the vicinity. Those constraints may have different levels of
criticality: for some users it could be compulsory to keep
clear of busy areas, but only desirable to have a certain
number of stops during the walk. Different criticality levels
are modelled assigning different probabilities of satisfaction
to the constraints (mandatory constraints are satisfied with
probability 1). As sketched in Figure 2, user requirements can
be specified and inserted in the user profile also by a doctor,
a relative, a caregiver, and, of course, directly by the user.
The Approach. The adopted method splits the problem be-
tween Motion Planning and Activity Planning. The former
involves the physical motion of the robot between two con-
figurations, satisfying the kinematic and dynamic constraints,
while the latter optimises the choice and the sequence of high
level actions that build the plan. Visits to a shopping mall or a
museum are proposed to the user by a recommendation system
that accounts for her/his preferences, or by an external agent,
such as a relative, a doctor, friends, social media, etc.

We propose a solution in two phases: an offline statistical
preprocessing of the known environment (map and POIs);
an online construction of the plan that accounts for all the

Statistics on Activity : High-Level Low-Level
! Environment Recommendation " Live Environment Info
' o & "
| Motion Planner Problem |1 Gen’zf:g:] zllir;”:jevel Motion Planner [
| Simulations Formalization | 1} plan 9 i || Generation of actual path|:
: Y & t i J ipam following |

Action

Parameters Sensing system

Re-planning . H

' Assistive ,
Knowledge Base : : Robot :

Fig. 2. Architecture of the Activity Planner framework.

above discussed constraints and that is given to the Motion
Planner in order to be executed. The interaction between the
Activity and the Motion Planner is shown in Figure 2. An
elemental unit of the plan is an action) ;, that corresponds to
a motion from POI number ¢ (denoted as POI;) to POI number
Jj (POL;). The duration of the action is denoted by T (Y ;).
and depends both on the walking speed of the user and on
the length of the path, which, in turn, depends on the general
conditions of the environment. Therefore, we model 7 ();, j)
as a random variable, and estimate its probability distribution
via simulations. The environment is represented geometrically
by specifying the location of the POIs and the layout of the
map and of the static obstacles. As an example, consider the
map of a floor of a shopping mall annotated with walls and
pillars. This base model is used in the simulations as a static
map, randomly populated with moving elements, like groups
of people walking, and temporarily closed areas. Figure 1
shows an example of such simulations: the blue star identifies a
particular trajectory deviating from the shortest one, to avoid
a temporary obstacle. In each simulation, different dynamic
elements are created on the basis of probability distributions,
estimated according to observations of the real environment.
Specifically, different scenarios are characterised by the den-
sity of the dynamic elements (e.g. people), and by the number
and extension of unaccessible areas. Furthermore, different
kinds of users, with varying health conditions, are simulated.
For example, we consider both “healthy” users, with a walking
speed exceeding 1m/s, and debilitated users, moving at 0.5m/s
or less. For each simulation, the optimal trajectory between
POI; and POI; avoiding both static and dynamic obstacles
is found. The objective function depends both on the length
of the trajectory and on its shape (e.g., frequent curvature
changes are perceived as uncomfortable [20]). The analysis of
the data extracted from the simulations yields the probability
distribution of the duration 7 () ;) of an action for each user
profile in each considered scenario. Similarly, the probability
distributions of the travelled distance D (yl, j) and of the burnt
calories C (Y; ;) are obtained. This information is stored in
the Knowledge Base (see Figure 2 for reference). A key role
for planning decisions is played by the failure rate of) ;.
Whenever in a simulation the Motion Planner fails to produce
a feasible path, a counter is incremented. When the simulation
is completed, it is used to compute the failure rate. This
pre-processing is done offline, indeed, these statistics can be
periodically updated with the new collected data.

At run-time, all the relevant information is retrieved, and
the Activity Planner returns a plan which is compliant with
the domain and the user profile. To this end, the current

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

operating scenario is estimated by the sensors deployed in
the environment, and the probability distributions are retrieved
accordingly. Then, the planning problem can be formulated
in a suitable, standard format, accepted by the off-the-shelf
optimisation tool chosen, as detailed in the next section. The
result of this optimisation is a plan composed of a list of
motion tasks, given as input to the Motion Planner. Thus,
in most of the cases, the Motion Planner produces a path
fulfilling the elder’s desires and needs, synthesised according
to their level of criticality. It is, however, possible that some
unique setting occurs, where no valid plans can be produced.
In these circumstances, an exception is raised and a new run
of the Activity Planner is triggered, accounting for the current
unforeseen situation, to adjust the original schedule. Nodes
and edges corresponding to unavailable POIs and actions are
removed from the graph, and the remaining resources (in terms
of time, distance and satisfaction of the various constraints)
updated. The new problem has the same formulation of the
original one, but a smaller size. An example of such a re-
planning is presented in Section VI.

The threshold on the failure rate is a useful tuning knob. If
we set it to 0, it means that we are considering a worst case
approach: we consider an action as eligible only if the Motion
Planner did not fail for any simulation.

III. FORMALISATION OF THE ACTIVITY PLANNING

In Section II we described the abstraction of the map as
a graph with nodes (the POIs) and edges (the actions): an
action); ; connects POI; to POI;. As explained above, the
operating conditions of the current scenario are determined
by the remote sensors deployed in the environment. With the
Boolean vector variable p we represent the POIs and we set
p; = 1if PO, is visited, and p; = 0 otherwise. For the actions,
similarly, we use a Boolean variable Y; ; that is equal to 1
when the corresponding action); ; is part of the solution.
These binary variables naturally model the visit of a node
or the traversal of an edge. Thus, the problem is recasted to
an Integer Programming formulation. The objective function
to be optimised is related to the sum of the scores of the
visited POIs. Letting ¢; be the score associated with POI;
for the current user, the objective function can be written as
Do Cipi = c"'p, where c is the vector of scores. This function
can be extended with features related to the physical conditions
of the user, e.g. a term >_, ,Y; ;E (D (};)) accounting for
the distance walked, or a term), . Y; ;E(C(};,;)) for the
calories spent. Being these values expressed in probability, we
consider their expected value E (-).

The constraints are defined on the basis of the user profile,
and can be classified as hard or soft constraints. Hard con-
straints are enforced by linear inequalities modelling specific
user needs and requirements, for instance maximum path
length, minimum calories spent, and so on. These constraints
involve a subset of nodes and edges, through the corresponding
Boolean variables p and Y; ; for certain indexes 7, j. As an
example, suppose that the user cannot walk for more than 15
minutes, the resulting constraint takes the form Y; ; =1 —
T (Yi,j) < 15. This can be reformulated as Y; ;-7 (V; ;) < 15.

Soft, non-critical constraints, to be satisfied only with
a certain probability, are instead modelled as Y;; =
1 = P(T(,;)<15) > 1 — «a (or, equivalently,
P, - T(Yi;) <15) > 1 — «a), where a quantifies the
probability of violation.

Additional constraints are required to guarantee the sequential
structure and connectivity of the visit, and to prevent sub-tours,
which are cycles disconnected from the rest of the solution
path. We can effectively avoid sub-tours by applying lazy con-
straints [21], which are widely employed for the solution of the
Travelling Salesman Problem. These constraints are natively
supported by most state-of-the-art numerical solvers, such as
Gurobi, Cplex and GLPK. Indeed, the exponential number of
possible sub-tours (i.e. cycles) in a graph, requires a dynamic
generation of the related constraints, during the search for
the optimal solution. When a new solution is generated, it
is checked for possible sub-tours. In the presence of one or
more of them, new lazy constraints are added. Each sub-tour
elimination constraint is formulated as »_, Vi ; < dim — 1,
where the sum is computed over the indices (i, j) of its edges,
while dim is the size of the cycle.

It is also possible to solve the problem without the lazy
constraints, but at the price of adding other variables and con-
straints: by introducing integer variables ¢ having the same size
of p, we can model the order of the visits to the POIs. With
these variables, it is possible to avoid loops in the solution
by imposing the condition Y; ; =1 = t; =¢; + 1, or, in
algebraic form, (V; ; —1)m+1<t; —t; < (1 =Y, ;)m+1,
with m a large, positive constant. Whenever Y; ; = 1, then
1 <t; —t; <1, yielding t; = ¢; + 1. On the other hand, if
Y;; =0, then —m+1 < t;—t; < m+1, which is never active
because m is a large constant. In Section VI, a quantitative
comparison of these two methods is presented.

Some additional constraints are required for consistency. An
initial and a final POI must be defined, e.g. the entry and exit
points. Moreover, all intermediate POIs must have an incoming
and an outgoing edge: p; =1 = Jj,h s.t. Y;; = 1AY;, =
1, or, equivalently, p; = Zj Yji, pi =}, Yin-

Therefore, the above discussed constraints, except for the prob-
abilistic ones, are linear inequalities and would yield an integer
linear programming. However, the presence of probabilistic
constraints transforms the problem into a Chance-Constrained
Stochastic Programming (CCSP) [22]. These constraints are
written as P(-) > 1 — a, where the argument is a linear
inequality. They can be expressed as the product of a matrix
with a subset of the decision variables, with 1 —q« the criticality
level, inherited from the user profile.

Summarising, the problem can been formulated as a CCSP
with a linear objective function, a set of linear inequalities and
additional stochastic constraints. Let us uniform the notation in
order to have a standard mathematical format for the complete
optimisation problem. Let & be the vector of the integer
decision variables (p, Y and t) and let A be the matrix of
all the non-stochastic inequalities, then we can write Az < b,
where b is the vector of right-hand sides. The optimisation
problem in canonical form is:

max CTiL'
xreNn

s.t. Ax < b, P(ﬁwﬁv)Zl—a. (1)

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

where € N", ¢ € R*", A € RF" D e RY*" is
the matrix that collects the probabilistic properties of nodes
and edges, v € RY, b € R* and a € (0,1)". Finally,
P (D:c < v)
non-critical constraints, that might be violated with some
probability. As a remark, n is the number of optimisation
variables, & the number of deterministic constraints, N the
number of probabilistic constraints.

> 1 — « is the term that formalises the

IV. CCSP SOLUTIONS OF THE PROBLEM

The CCSP optimisation problem (1) is an effective mod-
elling tool for optimisation problems under uncertainties [23].
In general, the presence of probabilistic constraints, impair-
ing the use of off-the-shelf numeric solvers, renders CCSP
instances challenging to solve [24], [25]. Therefore, we are
required to recast the CCSP problem to a different form, to
take advantage of the efficient solvers available. Depending
on the mathematical properties of the random matrix D,
different reformulations can be applied. If D has a Gaus-
sian distribution, the problem can be modelled as a Second
Order Cone Programming (SOCP). Otherwise, in general, an
approximated model of the problem (within an interval of con-
fidence) is generated with a Sample Average Approximation
(SAA) approach [22]. Given the heterogeneous nature of the
different probabilistic constraints, a solution of the inequality
Dz < v in terms of joint probabilities [25] is not suitable for
our application. Therefore, we handle each of the stochastic
constraints separately, i.e. P (d(i)Ta: < v(i)> >1—a®, for

i=1,2,..., N, where d¥ is the i row of D and o is the
criticality level associated with constraint .

A. First Solution: Second Order Cone Programming

When the random vector d(¥) is normally distributed, d*) ~
N(p,X), the CCSP (1) can be reduced to a deterministic
Second Order Cone Programming with integer decision vari-
ables. The continuous relaxation of an integer SOCP model
is convex, therefore this kind of problems can be efficiently
handled by various solvers (e.g. CPLEX, Gurobi, etc.). Let

T . . . T
dD"z < v if d9 ~ N(u,X), then d¥

distributed as N (u"z — v 27Sx), thus

(@) _ T
T . (v H
P (d@ r< v(”) — @ <> ,)
VT
where ® is the standard Gaussian cumulative distribution

function (see the discussion in [26]). We require (2) greater
than 1 — (%), yielding:

z — v@ is

oW —pTe > et (1 - a(i)> H\/ixHQ, 3)

which represents a quadratic cone constraint. We have thus
restated problem (1), for: =1,2,..., N, as

max ¢l x s.t.

meNﬂ
Ax < b, “4)
v — Tz > o7 (1 - al)) [|[VE]],.

5

B. Second Solution: Sample Average Approximation

As mentioned above, the random matrix D may have an
unknown or uncommon distribution. In this case, an approxi-
mated model for problem (1) can be obtained with a Sample
Average Approximation (SAA), see [25]. First, we reformulate
(1) in terms of probability of violation of the constraint:

max ¢’ st. Ax <b,
xeNn
~ &)
P (Dcc > 'u) <o

As previously discussed, we should consider the stochas-
tic constraint as a set of individual inequalities, e.g.
P (dm% > Um) <a, fori=1,...,N. Let {d®)}M
be M independent identically distributed samples of the ran-
dom vector d¥), and ﬁg\? (x) be the proportion of times that
(dN T2 > v, in other words:

M

RC 1 i ;

P (@) = 37 L0 ()@ —0D), (6)
=1

where 1 (g o) : R — {0, 1} is the indicator function, valued 1
if the argument is positive and zero otherwise. The optimisa-
tion problem with the M samples d(i-7) is

max ¢’ x st. Ax <b,

zENT o ‘ (7)

Paz () <A1,

fori =1,2,...,N and 49 € [0,1] the criticality level of the
SAA problem. Inequality ﬁg&) < 4 is expressed by means
of new Boolean slack variables z € {0,1}V*M hence the
problem (1) is approximated with the SAA formulation, as
the following Integer Linear Program:

Ax < b,

max ¢l x s.t.
xeN"

fori=1,...,Nand j=1,..., M, where V() = 17d(é:)
is the sum of the weights of all the variables, i.e. an upper
bound on the weight of the solution. Whenever the constraint
is violated, i.e. (d®))Ta > v®, only z(#/) = 1 makes the
inequality (d(“))Tg — V(0:3) 2(0:9) < () hold true. On the
other hand, if the constraint is satisfied, then 2(9) can be set
to 0. Finally, the last inequality of (8) enforces the frequency
of violations below the criticality level (%),

Remark 1: As stated in [25], the levels of criticality v =
YD, AT may differ from a = [a@), ..., oM]T.
However, when v = «, the solution of the SAA approxi-
mation (8) converges to the solution of the original CCSP
model (1) with probability one as the number of samples
M increases. In the literature, to the best of the Authors’
knowledge, there is not a rule to choose a proper value for M.
In [25], the Authors suggested to choose v = /2 and to solve
many instances of problem (8) with different (small) values of
M, then keeping the best solution. This approach, indeed, is
more efficient than the solution of a single instance of (8)
characterised by a large number of samples M. In addition,
the Authors suggested for M a value in the range 50 — 120.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

Fig. 3. Portion of a museum, showing the connections between pairs of POIs.
Subgraphs within each room are complete.

Fig. 4. Left: complete graph (all pairs of POIs are connected). Computation-
ally prohibitive for larger graphs. Right: graph clustering; each block has the
same structure of Figure 3.

C. Hierarchical Decomposition and Optimisation

Both the SAA and the SOCP formulations presented above
can be solved with good performance by existing solvers for
instances of limited size. However, when the number of nodes
or edges of the graph becomes too large, the computational
times become prohibitive. Therefore, to maintain the compu-
tational times acceptable for the considered application, i.e.
few tens of seconds at most, larger problems are addressed
by decomposing the graph into a number of clusters of nodes,
and by employing a hierarchical solution. This clustering can
be obtained by grouping POIs belonging to nearby rooms
(see Figures 3), or to the same floor, or, more generally, by
partitioning and grouping the various nodes based on their
relative distances. For each cluster, it is then possible to solve
many small SOCP (or SAA) instances, that are thereafter used
as building blocks of the optimisation problem to generate the
global solution. Once the results for the different clusters are
available, their optimal combination representing the global
plan can be computed very quickly (tens of milliseconds), as
illustrated by numerical experiments in Section VI. Generally,
a cluster corresponds to a portion of the environment that
the user should visit as a single block. For example, if the
planner is applied to generate an activity within a museum,
the clustering could partition the POIs according to the floors
and to the different topic areas (e.g. plants, mammals, natural
history). An example of this scenario is shown in Figure 4,
illustrating the complete graph and a possible clustering of
its POIs. With this clustering, the full graph is shrunk to a
much smaller one, having 4 nodes and 6 links. The objective
of the high level problem is to maximise the overall reward
gained by visiting some of the POIs, while respecting the user
constraints, such as the total available time or the maximum
length of the solution. To produce a global plan satisfying
all these constraints, a number of different SOCP (or SAA)
problems related to each cluster are generated, each with a
different allocation of the available resources (e.g. length,
time). Therefore, the global plan is produced by finding the
best allocation of resources to assign to each cluster, in order to

maximise the overall reward. The quality of the plan generated
with this approach depends on the number of discretisations of
the available resources No € N. A finer discretisation yields
better solutions, at the price of increased computational times.

As an example, if the user specifies a maximum duration
of 3 hours for the whole activity, we could assign to each
cluster a maximum time constraint of 30, 60 and 90 minutes,
and determine the optimal reward for each of these scenarios.
Since all these optimisation problems are independent from
each other, they can be solved in parallel. Moreover, it is
also possible to pre-compute the solutions of the different
subproblems, and combine the results when necessary to
produce user-tailored plans.

The high level hierarchical problem can be formulated as
follows. Assuming a partition of the graph into n,, clusters, we
can define the matrices T, D € R™x*N¢ of local constraints.
Specifically, matrix entries T;; (respectively D;;) represent the
5" maximum allowed time (respectively length) assigned to
cluster i. Analogously, matrix § € R™x*N¢ gtores the optimal
scores associated with each cluster and each discretisation.
Finally, x € {0,1}™*N¢ is the Boolean matrix of unknowns
whose entries x;; represent the visit of cluster ¢+ with con-
straints j. Therefore, the high level hierarchical problem can
be expressed as the (deterministic) Integer Linear Program:

nx Nc¢

maXZZSinij s.t.

X ==

n Ne n N¢
Z ZE]XZ] < TmaX7 Z ZDUXU < Dmaxa (9)
i=1 j=1 =1 j=1
Nc
D xi <1 i=1,...,n,.
j=1

The last n, constraints are introduced to prevent clusters to
be selected more than once. It can be noticed that, in practice,
the high-level optimisation problem that we are required to
solve with the hierarchical approach has a very small size, and
can therefore be solved in a few milliseconds, as discussed in
Section VI. A potential issue comes from the existence of a
feasible solution for the partitioned problem in case such a
solution exists for the whole SAA (the converse is obviously
true). In general, the partitioning process could destroy feasible
solutions (so much so that the solution eventually found is sub-
optimal). However, in our setting, the partitioning is dictated
by the topology of the problem (e.g, a partition could be a
room). Therefore, most of the “interesting” feasible solutions
survive the partitioning process and, in our experiment, the
suboptimal ends up being quite close to the optimal solution.

V. MOTION PLANNING

The previous sections of the paper focused on the for-
malisation and solution of the “high-level” Activity Planning
problem. Once the sequence of POIs to be visited has been
determined, the abstract plan must be refined into an “exe-
cutable” plan by the Motion Planner, that will be discussed in
this section. This requires an algorithm for path planning, but
our approach does not need a specific method. We propose

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

a suitable technique that is effective for our application, but
there can be others, as illustrated in the introduction.

Both the length and the user comfort have to be considered
for the design of a path by the Motion Planner. While the
length is solely a geometric property, the comfort index can
be specified via various properties and depends both on the
dynamical model of the vehicle and on the shape of the path.
These two aspects can be considered together, in a “global”
approach. The optimisation problem .J, for positive weights
w1, we, ws, i1s defined as:

minJ:wl/ ds+w2/ dt+w3/ c(s) ds, (10)
P P P

where P is the path, the first integral minimises the length,
the second the total time and the third the comfort function
¢(s). If v is the speed profile along the path P, integrals with
respect to time dt and space ds are related with the formula
ds = v dt, thus it is possible to reformulate the previous target
functional completely in space or time.

The complexity of the problem can be reduced addressing two
subproblems separately: firstly the geometric part, accounting
for the shape, the length and the comfort (expressed in terms
of minimum jerk, see [20], [27], [28]); secondly the kinematic
part, dealing with the vehicle dynamics, and yielding a speed
profile v to be tracked along the path. A similar decomposition
is discussed in [29], [30], [31]. Following the work of [20],
[27] we model the human/walker trajectories as clothoid
curves. Thus, the objective function to be minimised depends
both on the length of the path and on the total jerk. For
an efficient manipulation of clothoid curves we rely on [32],
[33]. Within our framework, the adopted planning algorithm
is a variation of the traditional RRT* [34], called Informed-
RRT* (I-RRT*) [35]. When the algorithm starts, and there
is no available solution, it works like RRT*: it samples new
points inside the free configuration space and connects them
to the closest nodes within the search tree, if the connecting
subpath is collision free. After a new node is inserted into the
tree, a “rewiring” operation is performed: if passing through
the new node reduces the total cost to reach some of its
neighbours, their costs and edges are updated accordingly.
The main difference between [-RRT* and RRT* is perceivable
only after a feasible solution has been found. Indeed, when
a solution is available, contrarily to RRT*, I-RRT* restricts
the sampling region to the set of points having a heuristically
estimated cost lower than the current known optimum.

The modelling of the environment variability is accomplished
using statistic information on the areas crossed by the path.
The result of the technique proposed here (i.e., a sequence of
motion primitives connecting different points) can be used as
an input for a dynamic motion planning strategy that adapts
the plan to the contingent condition in the field. For instance,
the technique proposed in [36] can be used to adapt the motion
plan to the presence of humans in the environment. Once, the
plan is adapted, it can be implemented through a real-time
control strategy. For instance, the authority sharing techniques
solutions presented in [37], [38], and extensively validated on
elder people in [39], can be a very good fit.

Fig. 5. Toy map of the museum with an entrance and exit point and other
POIs that are marked in different colours to represent different categories of
interest for the user. The solid line represents the optimal visit sequence for
the preference score ¢ = [0,2,2,10,10,5,0]7, the dashed line is the result if
the user does not express a preference, i.e. for scores ¢ = [0,1,1,1,1,1, O}T.

KnowledgeBase

P,...,P,
Yij

Motion Planning
Cuslor, Ty, To2 : :

o, P o Re-planning request ! +,_Feedback Info /

Activity Planning

ST

Fig. 6. Block diagram showing the flow among the high-level Activity
Planning, the low-level system (Motion Planner, robot, sensing system) and
the Knowledge base.

VI. EXPERIMENTS AND COMPARISONS

This section presents an experimental validation of the
proposed Activity Planner. We discuss the application of our
methods to synthesis an optimal plan to visit a museum. The
validation is done in three steps, firstly, a toy example is
discussed, to show how to construct the problem. Then a
realistic case, inspired by the museum of natural sciences of
our city, is proposed. Finally, an extensive battery of examples
is studied: we construct 900 scenarios, divided into small,
medium and large sized test cases. Each of them is solved
with the eight techniques proposed: SOCP and SAA, solved
on the full graph and with the hierarchical strategy, with/out
the lazy constraints.

A. A Toy Example

We begin by showing a toy example inspired to a museum
visit. The main objective is to produce an activity plan
considering the distribution of the distances among 5 POIs
and the related travelling times. Each POI is part of some
categories, and each category has a rating ranging from 0 to
10, where 10 represents the highest preference.

The visit time for each POL, i.e., the time spent by the user in
the desired POI, is chosen constant and equal to 5. The global
plan is constrained to have an overall time duration and a total
distance travelled lower than 7" = 37 and L = 17, respectively
(the measurement unit is not really relevant for the abstract
formulation of this example). We assume to know the map of
the museum, the location of the 5 POIs (P, ..., FPgs), and of
the entrance and exit points (P; and Pr) (see Figure 5 for the
topology and Figure 6 for a schematic view of the variables
and the flow of the system). Therefore, the total number of
points is n = 7.

Objective function. The POIs are tagged with a category,
which is represented in Figure 5 with a different colour. Each
category is associated with a score and the POIs’ scores
are collected in the vector c¢. The objective is to maximise
the total score of the visited POlIs, defined as ch, where

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

p = [p1,...,p7]T. The scores chosen by an hypothetical user,
according to her/his preferences, are ¢ = [0, 2,2, 10, 10, 5, 0]
The entrance and exit points (p; and p7) have score and visit
time equal to zero because they are not POIs to be visited
but still must be part of the plan. This means that the most
rewarding POIs are Py and P; (with a score of 10), that
correspond to the integer variables py4, ps.

If the user has no particular preference, which can be
modelled with equal scores (set to 1 or to any other positive
constant, e.g. ¢ = [0,1,1,1,1,1,0]T), then the plan is solely
determined by enforcing the constraints. As a consequence,
the number of visited POIs will be maximised on the basis of
the time required for each visit and of the distance travelled.

Consistency constraints. A first equation encodes the con-
straint that one of the edges has to emanate from the the start
node (the entrance): Z;‘:z Y; ; = 1. This is an obvious trans-
lation of the constraint, assuming the definition of the Boolean
variables Y; ; given in Section III. Likewise, the fact that only
one edge reaches the exit node is translated as Z?Zl Y7=1
Notice that a general equality constraint f(x) = 0, such as
the ones introduced above, can be transformed into the two
inequalities f(x) < 0 and f(x) > 0, which are consistent
with the general form presented in (1). Each visited node
should have an incoming edge and an outgoing edge (except
the entrance node P, and the exit node P7). This fact produces
a set of constraints of the form

7
{ZYﬂ:pl} U{ZYi,j:pi}
j =2 j

To avoid sub-tours, two possibilities exist: with lazy con-
straints or by keeping track of the node visiting order (as
discussed in Section III). In this example, we adopt the second
option. Hence, we need the help of another set of integer
variables, ¢, of the same dimension of p, expressing the visit
order. We fix the initial node t; = 1, then we set for each
active edge (4, j) the constraint ¢; < t;:

6

=1

7
{—m(l—Yi,j)+1 <tj—t <m(1-Yi;)+1st.i# j}

i,j=1
with m = n + 1 in this example (in general, it should be
greater than the maximum path size n). All these constraints
are required to obtain a consistent solution.

User’s constraints. The user, for this example, requires a
path shorter than a maximum distance L within a probability
of failure of o = 0.05. This gives in Equation (4) a value
of ®71(1 — o) ~ 1.64. For a generic path between POIs
P; and P;, we denote with £,,(4,5) and {,2(4,j) the mean
and the variance of the corresponding distance, respectively,
reported in Table I. So, the mean and the variance of
the planned distance will be p; = Z;ﬁj:l Y; ;¢,(i,j) and
o} = Zi;j:l Y; ils2(i,j). The constraint thus becomes
L — y; > ®71(1 — oy)o;. The constraint on the maximum
duration is similar. If T is the maximum allowed time,
ar = 0.05 is the probability of not satisfying the constraint
(implies ® (1 — ;) &~ 1.64), and the means and variances
are given in Table II, we obtain T'— p, —v > &~ (1 —a; o,

where v = Z?:g p;ve(i) is the overall visit time and

TABLE 1
DISTANCE MATRICES £, AND £ 2.

7, [

a

1 2 3 4 5 6 7|1 2 3 4 5 6 7

- 4962171725 73| - 86139 1.1 1.1 23 19
49 - 16383925 26|86 - 09 52 55 2223
6.2 1.6 - 4.9 54 3.7 22{|13.9 09 - 85 10.7 49 1.7
1.73849 - 241464| 11 52 85 - 21 07 14
1.7395424 - 226.1||1.1 55107 2.1 - 1.7 13
2525371422 - 50/23 22 49 07 1.7 - 91
7.3 2.6 2.2 6.4 6.1 5.0 - |[{19.4 2.3 1.7 14.6 13.5 9.1 -

N O Ut W N

TABLE I
TIME MATRICES Tu AND T 2.

Tp, 7'02
N1 2 3 4 5 6 7|1 2 3 4 5 6 7

- 6.3 8022223294 - 142230 1.8 1.8 3.8 32
6.3 - 2149503233142 - 16 86 9.1 3.739
8.021 - 637.04828|23.0 1.6 - 14.1 17.7 8.2 29
224963 - 311882||18 86 141 - 35 1.1 24
22507031 - 287918 91 177 3.5 - 29 22
3232481828 - 65|38 37 82 11 29 - 15
9.4 3.3 28827965 - (32.0 3.9 2.9 24.1 223 15 -

N O UL W N

vy = [0,5,5,5,5,5,0]7 is the vector of POIs visit times. The
vector x of the unknowns of problem (4) is the concatenation
of the binary variables p and Y and the integer variables . To
standardise the problem, the inequalities are recast into matrix
form so that the final formulation becomes (4).

Results. The optimal computed visit sequence for ¢ =
[0,2,2,10,10,5,0]T is Py, Ps, Py, Ps, Pr (see the solid line
path in Figure 5), with an overall score of 25, a mean length
of u; = 10.5 and standard deviation o; = 3.6, while the mean
time is pr + v = 28.6 with o, = 4.6. With probability of
1 — oy = 0.95, the overall length of the path is less than 16.5
and with probability 1 — a; = 0.95 the overall time is less
than 36.2. It can be noticed that the solution satisfies all the
constraints. The POIs Py and P; have a higher score than
the others and are both preferred. On the other hand, even if
POI P; is on the way, it is not part of the plan because the
visit time required would cause a constraint violation. In the
case the user does not specify a particular preference for the
POIs, i.e. ¢ = [0,1,1,1,1,1,0]%, the result of the optimisation
is Py, Py, Ps, P>, P; (see the dashed path in Figure 5). With
probability 0.95, the length of the path is less than 12.2 and the
total visit time less than 30.7. The difference between the two
solutions depends on the scores of the POIs: in the first case
P5 is very rewarding with respect to P, while in the second
all the scores are equal, therefore every sequence of five POIs
satisfying all the constraints is an optimal solution, and the
solver can return any of them. The toy example is solved in
a few milliseconds using Julia and the Gurobi optimiser.

B. Realistic Scenario

A realistic scenario for the Activity Planner is now con-
sidered. We adapted the map of an existing museum (i.e.,

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

v. times
[min] 1 6 10

W
20 .

Fig. 7. Map of the ground and first floor of Muse. The blue/magenta solid line
is the synthesis of the Activity Planner, the direction is specified by the arrows.
The orange squares are the lifts that connect the floors. The thematic areas are
categorised with a representative logo, for instance, plants in the greenhouse,
a dinosaur for the fossils and so on. The POIs are shown as circles, with the
radii proportional to the scores, from 0 (no interest) to 5 (high interest); the
filling colour represents the visiting time, from a pale colour (less time) to
dark colour (long visit), see also the corresponding colormap.

the MUSE in the city of Trento, Italy), that is composed of
different thematic areas (i.e. different POIs tags). The museum
develops over two floors that are connected with lifts, see
Figure 7 for the layout, with the thematic zones and the
relative POIs highlighted. The user has given scores to each
POI, with importance proportional to the depicted radius. The
estimated visit time is represented by the filling colour of
the circle, as detailed in the legend and in the caption of
Figure 7. The synthesis of a plan is reported, which was
obtained accounting for a maximum distance constraint of
1000 meters, together with a time limit of two hours, both
to be respected within 95% probability. The activity begins
at the museum’s entry point at the ground floor, followed
by taking the lift (orange square) to reach the upper floor.
The first thematic area visited is the mammals, but more time
is spent for fishes and dinosaurs. Before returning by lift to
ground floor, there is a visit to the panoramic terrace over
the conservatory. Then, the plan proceeds visiting some of
the POIs within the tropical greenhouse. Notice that some
POIs are skipped even if they are close to the path, due to
their high visit time and low scoring. The last part of the
plan brings the user to the sensorial zone and to the area
dedicated to kids, before ending the visit. We discuss for this
example only the SOCP solution, for the sake of brevity. A
full comparison of all the eight proposed solution strategies on
a large number of scenarios is presented in the next section.
The computational time for this example scenario is about
22 seconds, with convergence to the optimal solution. The
travelled distance is 482 meters within 95% probability, while
the duration is few seconds below the limit of two hours within
95%, thus the solution is dominated by the time constraint.
To illustrate a realistic example of a possible re-planning
request, e.g. to overcome an unforeseen situation as discussed
at the end of Section II, suppose now that the designed visit to
the fish area cannot be carried out due to a non-programmed
maintenance intervention (see red star in Figure 8). Since the
original solution has become unfeasible, a new instance of the
Activity Planner is run, in order to get a new plan (shown

—#—— Original Plan

i
. @

—— Re-planning

first floor

Fig. 8. Deviation from the original plan (Figure 7) due to the unforeseen
closure of the fish area.

with the dashed black and red line in Figure 8). The new
plan includes an additional POI in the fossils area on the first
floor, while the rest of the plan stays unaltered. The re-planned
solution is computed in about 5 seconds.

C. Experimental Validation

To validate the proposed activity planner, we extend the
results presented in the previous examples, by conducting
900 experiments under different conditions, based on three
different graph layouts, classified as small, medium and large
sized. In order to validate the hierarchical technique described
in Section IV, each layout is composed of different blocks,
representing specific physical areas (floors and sections of the
museum), each including a collection of rooms filled with
POIs. An example of the considered graph layout pattern is
shown in Figures 3 and 4. The subgraph within each room is
complete, meaning that the POIs of a room are all connected,
while pairs of rooms are linked through entry and exit points.
For each execution, all the parameters associated with each
POI and action, the bounds on the maximum duration of
the visit and maximum travelled distance, and all the data
required by the Activity Planner are randomly generated. We
call the ensemble graph, probabilistic distributions of visit
times, distances, travel times, etc. a scenario. To validate
the proposed approach, each scenario is solved with all the
eight techniques presented (see Table III), namely: the SOCP
and SAA problems, solved completely (full problem) and
with the hierarchical decomposition (identified with “_h”).
The numerical tests are conducted with and without the lazy
constraints (the latter identified with “_ns”, i.e. without sub-
tour elimination constraints), as described in Section III. For
each of the three museum sizes (small, medium and large), 300
scenarios are considered, each comprising a different graph
and different parameters. For the small museums we have 4
clusters, 4 rooms per cluster and 4 POIs per room; for the
medium sized we have 5 clusters, 5 rooms per cluster and
5 POIs per room; finally, the large sized museums have 5
clusters, 8 rooms per cluster and 10 POIs per room. Hence, the
total number of POIs is respectively 64, 125 and 400. Actually,
for our purposes, typical real settings have dimensions ranging
from small to medium sized scenarios, up to one hundred
POIs. However, we test also larger scenarios to show the scal-
ability and applicability of the proposed approach in general
and the effectiveness of the hierarchical decomposition. The
parameters for each museum are chosen randomly: the random
distribution of scores and visit times is uniform, whereas travel
times and distances are distributed normally.

For the hierarchical solution, the number N is partitioned

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

as follows: in Table III we have No = 9 = 3 x 3, that is 3
values for the time and 3 values for the distance, Table IV
shows a finer granularity, No = 30 = 6 x 5. As highlighted in
Section IV-C, the finer the granularity, the better the solution,
but at the cost of an increased computational time; this can
be seen comparing Tables III and IV. The optimal solution
for each combination of local constraints is obtained from the
solution of the CCSP problem (1), that can be solved both
via SOCP (4) or via SAA (8). The tuning parameters for
the algorithms are four: N¢, a, v and M. The number of
discretisations N¢ can be chosen according to the available
computational resources. As a rule of thumb, it is possible to
start with a coarse splitting and then refine while the elapsed
time is below an user defined threshold value. The criticality
levels @ and - tune the probability of not satisfying a prob-
abilistic constraint, thus, they do not alter the computational
times. The criticality level o, in general, is chosen on the
basis of the user profile; in our experiments the same value
is chosen for all the constraints, i.e. « = a1l for a = 0.05.
Based on Remark 1, we select v = a/2. Moreover, for the
parameter M, that should be chosen in the range 50 — 120, we
have determined experimentally that a value of 75 provides a
good trade-off between accuracy (w.r.t. SOCP equivalent) and
performance. Therefore, for all the examples, we generate a
number M = 75 of samples (from an estimated Gaussian
distribution), each modelling a different circumstance.

The hierarchical method firstly solves the n, X N¢g (ie.
number of clusters times number of different discretisations)
SOCP/SAA subproblems, obtaining the optimal scores S.
The second step is to find the solution to the high level
problem (9), thus obtaining the overall (suboptimal) solution.
We employed Gurobi through the Julia interface to solve the
Integer Program. Being the problem modelled as a standard
optimisation, we could use any off-the-shelf tool available,
inheriting its properties in terms of completeness, complexity
and computational performance. We report the solving times
(and standard deviations in brackets) in Tables III and IV (they
include both the optimisation time, and the time required to
build the model given as input to the solver). A timeout of
30 seconds is set in order to limit the computational time
of each hierarchical subproblem, after that, the best (feasible)
solution found so far (if any) is returned. The solution of the
high-level problem for the hierarchical approach takes only
tens of milliseconds, therefore it does not affect the total
time, dominated by the solution of the low level subproblems.
The solver timeout for the optimisation of the full problems
without the hierarchical decomposition, is set to 400 seconds.
As shown in Table III, this timeout affects only the solutions
without the lazy constraints. Indeed, with the adoption of the
lazy sub-tour elimination constraints, the solver is able to
converge to the global optimum before the timeout.

D. Discussion of the results

To measure the quality of the computed solutions in the
cases where we are not able to find the global optimum for
the complete problem, it is possible to compare the found sub-
optimal solution with the optimal solution of its continuous

10

relaxation. Indeed, the convexity of the relaxed problem, both
for the SAA (linear program) and for the SOCP (second-order
cone programming) formulation, leads to the global optimum.
Since the integral constraints on the decision variables make
the problem non-convex, the relaxed solution provides a con-
servative upper bound on the optimal score, that can be used as
the quantitative measure of the quality of the found solution.
More in details, the solver produces a sequence of relaxed
solutions, yielding a non-increasing sequence of upper bounds
on the optimal value. The solver stops either when a time-out
is triggered, or if the gap between the upper bound and the
current (feasible) solution becomes zero. In our experiments,
the optimum is always found before 30 seconds for both the
small and medium sized scenarios, as illustrated in Table III,
where the scores are normalised to 100% (corresponding to
the value of the optimal solution).

Only for the large scenarios the time-out stops the solver
for some of the sub-problems of the hierarchical approach,
however the gap between the best solution found and the
upper bound provided by the relaxation is on average smaller
than 15%. The overall difference between the hierarchical
approximation and the global optimal solution (which, for
large scenarios, is not a practicable way due to excessive
computational times) is found to be less than 20% from the
upper bound, as can be seen from Table III and Table IV.
Therefore, from a practical point of view, the quality of the
solution is really satisfactory; moreover, the number of 400
POIs of the large scenarios is way beyond the typical use
case of our application. In addition, if the found solution
were not satisfactory, it would always be possible to trigger
a second optimisation, either by resorting to a multi-start
approach (i.e., starting the solver from a different initial guess),
by modifying the parameters of the solver (tolerances) or by
changing solution strategy.

The analysis of the experiments leads us to the following
comments: the SOCP method is in general faster than the
SAA method for the hierarchical subproblems; it is possible to
obtain the same result of the SOCP with a SAA approximation
with 75 samples; even with a small number of discretisations
Ng, it is possible to get good suboptimal solutions; with the
hierarchical technique it is possible to handle, in a reasonable
amount of time, large problems that cannot be tackled directly
(see the column relative to large sized scenarios In Table IV).

Comparison with conventional methods To further sub-
stantiate the effectiveness of our approach, we report here
a comparison with standard techniques. As aforementioned,
these methods can only handle one stochastic constraint or
multiple deterministic constraints, therefore a common prac-
tice is to convert the probabilistic bounds into deterministic
ones. This is achieved by replacing each random variable
with the equivalent worst case percentile. For instance, if the
mean length of an edge is p; = 10, the standard deviation
0y = 2, the probability of failure oy = 0.05 (as in the
carried out examples), the converted deterministic length is
w4+ @711 =)oy = 10 + 1.64 - 2 = 13.28, where ® is the
standard Gaussian cumulative distribution function. A possible
drawback of this conversion is that it could end up producing
very conservative results, being based on worst case scenarios.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

Transactions on Industrial Informatics

TABLE III
RESULTS FOR THE THREE SIZES (900 SCENARIOS), MEAN TIMES IN
SECONDS, STD DEVIATION IN BRACKET, SCORE IN % W.R.T. BEST FOUND.

small sized medium sized large sized
Problem time score time score | time score
saa 6 (1) 100 14 (5) 100 | 355 (55) 100
saa_h 21 (3) 77 | 66 (8) 72 | 320 (40) 80
saa_ns 20 (10) 100 111 (59) 100 | 426 (82) 98
saa_ns_h 30 (3) 77 108 (14) 72 | 990 (253) 80
socp 5(4) 100 | 21 (11) 100 | 344 (55) 100
socp_h 10 (1) 77| 31 (4) 72 191 (31) 80
socp_ns 19 (14) 100 104 (57) 100 | 413 (73) 91
socp_ns_h | 21 (3) 77 | 80 (15) 72 | 652 (200) 80
TABLE IV

RESULTS FOR THE THREE SIZES (900 SCENARIOS) WITH A FINER
DISCRETISATION (N¢ = 30), MEAN TIMES IN SECONDS, STD DEVIATION
IN BRACKET, SCORE IN % W.R.T. BEST FOUND.

small sized medium sized large sized
Problem time score time score time score
saa_h 75 (8) 96 | 260 (24) 96 1633 (84) 82
saa_ns_h 104 (10) 96 | 394 (42) 96 | 2922 (341) 82
socp_h 34 (4) 96 118 (15) 96 1259 (49) 82
socp_ns_h | 70 (8) 96 | 274 (36) 96 | 2245 (231) 82

The comparison with this deterministic approach is carried
out on the toy example of Section VI-A with POIs scores
c = [0,2,2,10,10,5,0]7 and keeping the same parameters.
The visit sequence obtained with the deterministic approach
is Py, Py, Ps, P5, P;, which avoids the POI P5 (the most
rewarding) due to a constraint violation, while the sequence for
our approach is Py, Ps, Py, Ps, P7. The length and time (with
probability 0.95) using the deterministic approach are both
lower than those obtained with our approach, but the score is
lower as well, i.e. 17 w.r.t. 25. This is a further evidence that
managing stochastic constraints in place of deterministic ones
is beneficial, even for small sized problems. In fact, this gap
becomes more evident when the size of the problem and the
number of POIs composing the solution increase.

VII. CONCLUSIONS

Planning activities tailored to different users, maximising
their satisfaction while respecting all the given physical con-
straints is a key aspect for a robotic walker used to assist
elderly throughout the performance of social activities in pub-
lic spaces. The solution presented in this paper is based on a
strong interaction between the “high level” and the “low level”
planning components (i.e. the Activity Planner and the Motion
Planner). With the support of the Motion Planner, the physical
parameters associated with the different motion actions are
determined. Moreover, the Motion Planner refines an activity
plan to an actual sequence of paths that the assistive robot
can follow. The Activity Planner, on the other hand, selects
the optimal sequence of motion actions composing the plan
by solving a CCSP problem, that models all the deterministic
and probabilistic constraints deriving from the user and the
environment. In addition, we propose a hierarchical approach,
that can be used to solve instances on larger environments
within a few tens of seconds (a reasonable time-frame for this
application), producing very good (suboptimal) solutions.

Several possible research directions lie before us. First, we
will seek different solution algorithms for the Activity Planner,

11

in order to reduce the execution time and/or improve the
quality of the suboptimal solution. We will also investigate
different models in which the user requirements could be
associated with a level of importance, which could be distinct
from the level of criticality considered in this paper. For
instance, a requirement could be stated in probabilistic terms
(e.g., for physical limitations) but it could be more important
for the user than other deterministic requirements in a situation
in which they cannot be all satisfied. The development of a
metaheuristic solution capable of solving the complete Activity
Planning problem to find sub-optimal solutions in a reasonable
amount of time, and the study of its application in combination
with or as an alternative to the Integer Programming solvers,
is an interesting research topic and is deferred to future work.
Finally, we will explore the application of our framework in
other areas of robotics, such as automated delivery in crowded
environments (such as historic city centres).

REFERENCES

[1]1 H. Liu, “Exploring human hand capabilities into embedded multifingered
object manipulation,” [EEE Transactions on Industrial Informatics,
vol. 7, no. 3, pp. 389-398, 2011.

[2] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral,
J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt et al., “Reach
and grasp by people with tetraplegia using a neurally controlled robotic
arm,” Nature, vol. 485, no. 7398, p. 372, 2012.

[3] L. Lunenburger, G. Colombo, R. Riener, and V. Dietz, “Clinical as-
sessments performed during robotic rehabilitation by the gait training
robot lokomat,” in Rehabilitation Robotics, 2005. ICORR 2005. 9th
International Conference on. IEEE, 2005, pp. 345-348.

[4] B. Graf, M. Hans, and R. D. Schraft, “Care-O-bot IIdevelopment of a
next generation robotic home assistant,” Autonomous robots, vol. 16,
no. 2, pp. 193-205, 2004.

[5] O. Chuy, Y. Hirata, and K. Kosuge, “Control of walking support
system based on variable center of rotation,” in Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, vol. 3. 1EEE, 2004, pp. 2289-2294.

[6] K.-T. Yu, C.-P. Lam, M.-F. Chang, W.-H. Mou, S. H. Tseng, and L. C.
Fu, “An interactive robotic walker for assisting elderly mobility in senior
care unit,” in 2010 IEEE Workshop on Advanced Robotics and its Social
Impacts, Oct 2010, pp. 24-29.

[7]1 L. Palopoli et al., “Navigation assistance and guidance of older adults
across complex public spaces: the DAL approach,” Intelligent Service
Robotics, vol. 8, no. 2, pp. 77-92, Apr 2015.

[8] M. Saha, T. Roughgarden, J.-C. Latombe, and G. Snchez-Ante, “Plan-
ning tours of robotic arms among partitioned goals,” The International
Journal of Robotics Research, vol. 25, no. 3, pp. 207-223, 2006.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
dynamics by a synergistic combination of layers of planning,” IEEE
Transactions on Robotics, vol. 26, no. 3, pp. 469—482, June 2010.

[10] M. Van Den Briel, R. Sanchez, M. B. Do, and S. Kambhampati, “Ef-
fective approaches for partial satisfaction (over-subscription) planning,”
in AAAI 2004, pp. 562-569.

[11] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,” EU.
J. of Operational Research, vol. 255, no. 2, pp. 315-332, 2016.

[12] M. Schilde, K. E. Doerner, R. F. Hartl, and G. Kiechle, “Metaheuristics
for the bi-objective orienteering problem,” Swarm Intelligence, vol. 3,
no. 3, pp. 179-201, 2009.

[13] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, “A sur-
vey on algorithmic approaches for solving tourist trip design problems,”
Journal of Heuristics, vol. 20, no. 3, pp. 291-328, 2014.

[14] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[15] N. Ganganath et al., “A constraint-aware heuristic path planner for
finding energy-efficient paths on uneven terrains,” IEEE Transactions
on Industrial Informatics, vol. 11, no. 3, pp. 601-611, 2015.

[16] A. Colombo, D. Fontanelli, A. Legay, L. Palopoli, and S. Sedwards,
“Efficient customisable dynamic motion planning for assistive robots
in complex human environments,” Journal of ambient intelligence and
smart environments, vol. 7, no. 5, pp. 617-634, 2015.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2020.3012094, IEEE

(171

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Industrial Informatics

J. J. Kim and J. J. Lee, “Trajectory optimization with particle swarm
optimization for manipulator motion planning,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 3, pp. 620-631, June 2015.

S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path
planning,” IEEE Trans. on robotics and automation, vol. 16, no. 5, pp.
615-620, 2000.

A. Furieri, “SpatiaLite,” www.gaia-gis.it/fossil/libspatialite/index, 2015.
G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An
Optimality Principle Governing Human Walking,” IEEE Transactions
on Robotics, vol. 24, no. 1, pp. 5-14, Feb 2008.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). Princeton, NJ, USA: Princeton University Press, 2007.
J. Luedtke and S. Ahmed, “A sample approximation approach for opti-
mization with probabilistic constraints,” STAM Journal on Optimization,
vol. 19, no. 2, pp. 674-699, 2008.

M. Zare, T. Niknam, R. Azizipanah-Abarghooee, and A. Ostadi, “New
stochastic bi-objective optimal cost and chance of operation manage-
ment approach for smart microgrid,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 6, pp. 2031-2040, Dec 2016.

G. C. Calafiore and L. E. Ghaoui, “On distributionally robust chance-
constrained linear programs,” Journal of Optimization Theory and Ap-
plications, vol. 130, no. 1, pp. 1-22, Jul 2006.

B. K. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample average ap-
proximation method for chance constrained programming: Theory and
applications,” Journal of Optimization Theory and Applications, vol.
142, no. 2, pp. 399416, Aug 2009.

E. Camponogara, A. B. de Oliveira, and G. Lima, “Optimization-
based dynamic reconfiguration of real-time schedulers with support
for stochastic processor consumption,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 4, pp. 594-609, Nov 2010.

P. Bevilacqua, M. Frego, E. Bertolazzi, D. Fontanelli, L. Palopoli, and
F. Biral, “Path planning maximising human comfort for assistive robots,”
in 2016 IEEE Conference on Control Applications (CCA). 1EEE, 2016,
pp. 1421-1427.

E. Bertolazzi and M. Frego, “Interpolating clothoid splines with curva-
ture continuity,” Mathematical Methods in the Applied Sciences, vol. 41,
no. 4, pp. 1723-1737, 2017.

E. Velenis and P. Tsiotras, “Minimum-time travel for a vehicle with
acceleration limits: Theoretical analysis and receding-horizon implemen-
tation,” J. of Opt. Theory and App., vol. 138, no. 2, pp. 275-296, 2008.
M. Frego, P. Bevilacqua, E. Bertolazzi, F. Biral, D. Fontanelli, and
L. Palopoli, “Trajectory planning for car-like vehicles: A modular
approach,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), Dec 2016, pp. 203-209.

M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli,
“Semi-analytical minimum time solutions with velocity constraints for
trajectory following of vehicles,” Automatica, vol. 86, pp. 18 — 28, 2017.
E. Bertolazzi and M. Frego, “G1 fitting with clothoids,” Mathematical
Methods in the Applied Sciences, vol. 38, no. 5, pp. 881-897, 2015.
E. Bertolazzi and M. Frego, “On the G2 Hermite interpolation problem
with clothoids,” J. of Computational and Applied Mathematics, vol. 341,
pp- 99 — 116, 2018.

S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*) in International Conference on
Robotics and Automation (ICRA). 1EEE Press, 2011, pp. 1478-1483.
J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in Int. Conference on Intelligent
Robots and Systems (IROS). 1EEE Press, 2014, pp. 2997-3004.

P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli, ‘“Reactive
planning for assistive robots,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 1276-1283, April 2018.

M. Andreetto, S. Divan, F. Ferrari, D. Fontanelli, L. Palopoli, and
F. Zenatti, “Simulating Passivity for Robotic Walkers via Authority-
Sharing,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
1306-1313, April 2018.

M. Andreetto, S. Divan, F. Ferrari, D. Fontanelli, L. Palopoli, and
D. Prattichizzo, “Combining Haptic and Bang-Bang Braking Actions for
Passive Robotic Walker Path Following,” IEEE Transactions on Haptics,
pp. 1-1, 2019.

F. Ferrari, S. Divan, C. Guerrero, F. Zenatti, R. Guidolin, L. Palopoli, and
D. Fontanelli, “Human—Robot Interaction Analysis for a Smart Walker
for Elderly: The ACANTO Interactive Guidance System,” International
Journal of Social Robotics, Jun 2019.

12

Paolo Bevilacqua Paolo Bevilacqua is a Postdoc-
toral Researcher at the Embedded Electronics and
Computing Systems (EECS) Group of the Depart-
ment of Information Engineering and Computer Sci-
ence (DISI), University of Trento, Italy, where he
obtained his masters degree in computer science in
2015, and his PhD in 2019. His research interests
focus mainly on motion planning for wheeled robots,
and on socially compliant autonomous navigation in
environments shared with humans.

Marco Frego Marco Frego received the M.S. in
Mathematics in 2010 and the PhD in Mechatronics
in 2014, both from the University of Trento, Italy.
After an experience as an assistant professor from
2014 to 2015 at the Hamburg University of Tech-
nology (TUHH), Hamburg, Germany, he moves to
the Dep. of Inf. Eng. and Computer Science (DISI),
and he teaches numerical analysis at the Dep. of
Industrial Engineering (DII) of the University of
Trento, Italy. Since 2020 he is with the Faculty of
Science and Engineering of the Free University of

Bolzano. His research interests include optimisation and optimal control,
clothoid curves for planning of autonomous and assistive robots.

c

Luigi Palopoli Luigi Palopoli is Professor of
Robotics and Real-Time Embedded systems at the
University of Trento. He received his PhD degree
from the Scuola Superiore S. Anna in Pisa in
2002. His past research revolved around real-time
control systems and control with computation and
communication constraints. Recently, he has shifted
his interest toward Robotics and he coordinated
two large european initiatives in the area of robots
for elderly assistance. He is associate editor of the
IEEE Transactions on Automatic control and of the

Elsevier Journal of Systems Architecture.

Daniele Fontanelli Danicle Fontanelli (M’10,
SM’19) received the M.S. degree in Information En-
gineering in 2001, and the Ph.D. degree in Robotics
in 2006, both from the University of Pisa, Italy.
He was a Visiting Scientist with the Vision Lab
of the University of California at Los Angeles, US,
from 2006 to 2007. After a period with the Interde-
partmental Research Center “E. Piaggio”, University
of Pisa, he joined as an Associate Researcher the
University of Trento, Italy, where he is now an As-
sociate Professor. He has authored and co-authored

more than 150 scientific papers in peer-reviewed top journals and conference
proceedings. He is currently an Associate Editor for the IEEE Transactions
on Instrumentation and Measurement and for the IET Science, Measurement
& Technology Journal. His research interests include distributed estimation
and control, human localization algorithms, real-time estimation and control,
wheeled mobile robots’ estimation and control, and service robotics.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28,2020 at 22:01:56 UTC from IEEE Xplore. Restrictions apply.

