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Abstract. To improve the performance of off-road motorcycles, tyre contact forces need to
be estimated. Differently to on-road motorcycle contact force estimators where the rider can
be considered attached to the chassis, an off-road motorcycles estimator needs to model the
rider dynamics, since driving in standing position provides significant isolation from motorcycle
motion. In this article, we use a novel simple rider model to approximate the interaction with
the motorcycle when no sensing on him is possible. In particular, the novelty is to keep the
pitch angle of the rider constant by means of an active torque on the hip. A tyre force estimator
is built using this rider model coupled to a five degree-of-freedom motorcycle, which is verified
with a virtual experiment performed on Working Model 2D, showing promising results.

1. Introduction
In vehicle dynamics, the tyre contact forces are of interest to implement control systems and
assess performance. It is known that direct measurement of them is not cost-effective nor reliable
[1], thus estimation techniques are required.

Examples of contact force estimators for motorcycles can be found for on-road. Teerius [2],
and Slimi [3], have developed state estimators for lateral dynamics of motorcycles, with which,
the slip angles are estimated, and with a tyre model, the forces are estimated. However, the
estimation of contact forces based on tyre models is subjected to uncertainty from the differences
between the tyre characterisation and driving conditions [4]. In off-road driving, this differences
are frequently expected due to changes in road material while driving, thread wear, and tyre
temperature and pressure. To avoid the uncertainty from a tyre model, we opt to use an inverse
dynamic model of the motorcycle to estimate the tyre contact forces.

In addition to the motorcycle, in off-road riding, the rider needs to be modelled as a separate
body from the motorcycle because of the large relative motion that exist between them. Research
on off-road bicycles [5], [6], have modelled the rider detached from the frame because arms and
legs provide significant vibration isolation to the rider [6]. They consider the rider as a multibody
system, with passive spring and damper elements connecting hip to foot, and shoulder to hand.
The degrees of freedom considered are rotation and vertical translation for the torso, while the
horizontal motion is constrained. However, in a novel approach, we consider rotation of the
torso constrained by a feedback torque applied at the hip, while the horizontal motion is free,
because it matches better the riding style in off-road.

In this article, we present a procedure to estimate the contact forces in off-road motorcycles.
The estimator consist of a motorcycle and rider model, which are described in section 2; the



procedure of the calculation is explained in section 3; a verification of the estimator using virtual
data is shown in section 4, and finally the main conclusions are summarized.

2. Multibody model
Multibody modelling may be performed numerically or symbolically. On one hand, numerical
simulations are well suited for final design stages [7] since detailed simulations for specific loading
conditions can be performed. On the other hand, symbolic modelling is well suited for early
design stages, or to develop simple and effective control models. In fact, it captures not only the
essential behaviour of the system, but also detailed modelling is possible. However it requires a
highly trained user [7]. Since our aim is to detect the essence of the system with a simple model,
we use symbolic modelling with MBSymba [8], [7], [9], which is an add-on for Maple [10], for
the automatic generation of equations of motion.

2.1. Motorcycle Model

The dynamics of the motorcycle on a plane involve multiple moving parts, however as it is a
common practice in motorcycle dynamics analysis, it can be represented by four rigid bodies:
1 rear wheel, 2 swing arm, 3 chassis, and 4 front wheel, Figure (1).

The motion is described by five degrees of freedom: horizontal, vertical and rotational
displacement of the chassis, xs, zs, µ, front suspension compression, zf and rear suspension
compression measured as the rotation of the swing arm with respect to the chassis, αr, and are
collected on the array

qm = [xs, zs, µ, zf , αr]
T . (1)

The selection of these coordinates is not unique and other combinations could have been made.
This set was selected because it can be related directly to inertial sensors on the chassis and
displacement potentiometers on the suspensions.

Forces There are two sources of external forces acting on the motorcycle: the rider and the
ground.

• The rider exert forces through his arms and legs over the handlebar and foot-pegs,
respectively. They are collected in

fr = [flt, fl, fa]
T , (2)

where fa is the force along his arm, and fl and flt, through his legs, and are calculated
using the rider model detailed on the next section.

• Over each tyre, the ground exert a normal contact force (Nf , Nr), and under braking or
acceleration, tangential contact forces (Qf , Qr) are also exerted. The contact point position
is described in term of angles η at the front and ζ at the rear, Figure (1). The magnitude
of the forces are collected in

ft = [Nf , Nr, Qf , Qr]
T . (3)

Additionally, for the derivation of the equations of motions it is necessary to describe the
suspension forces. The front suspension force Sf acts between the chassis and front wheel along
the fork, and the rear suspension torque, TSr, act between the chassis and swing arm. They are
described in terms of relative position and velocity of the suspension ends. They are collected
in

fs = [Sf , TSr]
T . (4)



Figure 1: Motorcycle and rider models. The five bodies numbered are: 1) rear wheel, 2)
swing arm, 3) chassis, 4) front wheel, and 7) rider. The motion of the motorcycle is described
by horizontal, vertical and rotational displacement of the chassis, xs, zs, µ, front suspension
compression, zf and rear suspension compression, αr, while the motion of the rider is described
by x7, z7. Over the rider, act the motorcycle forces shown at the foot-peg (point P) and handlebar
(point H), while over the bike act the reaction of these forces (not shown) and the normal N
and tangential Q contact forces over each tyre. Additionally, on the rider the rotational action
of shoulder and hip is replaced by an active torque at the hip.

Equations of motion and solution Using Newton-Euler approach, five equations of motion are
derived:

• On motorcycle, 1 + 2 + 3 + 4 : translation along x, z, and rotation on y around chassis
centre of mass.

• On rear wheel and swing arm 1 + 2 : rotation on y around main pin of swing arm.

• On front wheel 4 : translation along fork zf .

They can be organised as

Mm(qm)q̈m +Mm
′(qm, q̇m) = Awm(qm)g +Asfs +Ar(qm)fr +At(qm)ft, (5)

where Mm is the motorcycle mass matrix; Mm
′ is a pseudo-mass matrix containing products of

velocities; Awm, As, Ar, At are matrices that project the weight, suspension force, rider force
and tyre force vectors, respectively, into the generalized coordinates.

In this work it is assumed that, the position, velocities and accelerations are measured by
sensors, i.e. qm, q̇m, q̈m, are known; the suspension forces can be estimated from these signals;



while the rider forces, from a rider model. Therefore, the differential Equation (5), becomes
algebraic with the tyre force vector as the unknown. The equations are rearranged as

At(qm)ft = b1(qm, q̇m, q̈m, fs, fr), (6)

where vector b1 collects all the known terms of Equation (5). Matrix At is not square, since
there are five equations and four unknowns, therefore it is not invertible. To calculate the best
fit of ft in the five equations, the system is solved by the least squares method as

ft = (At
TAt)

−1At
Tb1. (7)

In doing this derivation, the contact angles η and ζ were neglected because these angles are
small on frequently driven terrains like gravel, dirt or sand roads since irregularities are small
compared to the wheel radius. By neglecting the contact angle, any acceleration measured on
the chassis x-coordinate (local forward direction), will be attributed to a braking force, and
not to an horizontal component of the normal force, as will happen if a large obstacle is hit.
Since this situation is not expected to occur frequently, the evaluation of the contact force of
the motorcycle over a long section should not be affected significantly by this error.

2.2. Rider Model

The human body is a structure with multiple degrees of freedom, heterogeneous mass distribution
and controlled by a combination of passive and active elements between its segments. A
comprehensive description of its motion is complex and laborious. The introduction of some
simplifications under certain constraints reduce significantly the modelling and computation
time, without losing the description of the fundamental characteristics of the phenomena.

To this end, the human body is usually considered as a collection of fifteen rigid bodies: head,
upper and lower torso, two upper and two lower arms, two hands, two upper and two lower legs
and two foot. They are connected by fourteen joints: cervical vertebrae as one group (neck),
thoracic and lumbar vertebrae as another group, two shoulders, two elbows, two wrists, two
hips, two knees and two ankles.

To this model we introduce further simplifications. First, the muscular action of arms and
legs is divided into linear and rotational forces. On one hand, the total force of arms and legs is
simplified to passive springs and dampers, since this behaviour have been identified on research
on human bodies under similar conditions. Indeed, [6], estimated the arms and leg stiffness and
damping of a human body mounted on bicycles and subjected to sinusoidal excitation. Also,
it is explained in [11] that during landings, (which is similar to impacts received when driving
standing-up) the first 50 to 80 milliseconds immediately after the impact, the reaction force is
passive. On the other hand, the rotational action of hip and/or shoulder is required to keep
the torso at a specific angle. To simplify modelling, shoulder torque is neglected because it is
expected to be much smaller compared to the hip counterpart. The reason for this assumption
is that the muscles responsible for hip rotation (glutes, psoas and illacus) are larger and more
powerful than the muscles responsible for shoulder rotation (pectoralis major, latissimus dorsi
and teres major), since the former are responsible for keeping the torso vertical, which involves
around half of body weight, while the latter are for arm motions which are around 5 % of body
weight each.

In addition to the muscular simplifications, the following motions are neglected because they
are small compared to the relative translation between the torso and chassis. First, head,
upper and lower torso show small relative motion among them, and are considered on the torso.
Second, hand and foot, are considered as point masses on handlebar and footpeg. Third, the
displacement of arms and legs masses is neglected, because the masses are small compared to



the torso, and upper arm and leg masses are added to the torso, while, lower arm and legs, to
the handlebar and footpeg.

Finally, a constraint on the torso has to be added, because it has three degrees of freedom, and
forces of arm and legs provide two constraints, leaving one motion free. In the cyclist models
of [5] and [6], the horizontal translation of the rider has been constraint. However, we have
observed that in off-road motorcycle driving, the motorcycle is pushed forward and backwards
with respect to the rider to overcome different obstacles, while the head and torso are kept at
about a constant angle, therefore we opt to constraint the torso rotation. This is achieved by a
torque in the hip which cancels-out any resultant torque between arms and legs.

Summing up these simplifications, the rider is reduced to one body connected to the
motorcycle by two spring-damper elements, plus an internal torque at the hip, as shown on
Figure (1).

The generalized coordinates used to describe the motion of the rider are: displacement along
the hip-shoulder direction, x7, and perpendicular to it pointing to the motorcycle, z7. They are
collected in

qr = [x7, z7]
T . (8)

The selection of this coordinates is because they can be related directly to an inertial sensor
attached to the rider’s torso, as done equivalently on the motorcycle.

The inputs to the rider is the motion of the chassis of the motorcycle, described by

ur = [xs, zs, µ, ẋs, żs, µ̇]
T , (9)

which is a subset of qm and its derivative.

Leg and arm forces Three forces act on the rider, as mentioned on the motorcycle model. The
two forces that arise from the spring and damper elements which are directed along them, and
the third force arise from the internal torque on the hip, and act perpendicular to the leg. These
forces are expressed as functions of the generalized coordinates qr and the inputs ur, to remove
them from the equations of motions, as follows.

First, the springs and dampers are considered linear with their length and rate of change, as
on [5] and [6], i.e.

fl = kl(ll0 − ll) + cl l̇l

fa = ka(la0 − la) + ca l̇a, (10)

where the length of arm and legs, ll and la, and their rate of change, l̇l and l̇a are described by
the length of vectors vl and va, which depend on qr and ur as

ll = ||vl|| = g1(qr,ur)

la = ||va|| = g2(qr,ur).
(11)

Second, given that it is assumed that the hip torque cancells-out the resultant torque between
arms and legs, which is written as

0 = Thip + r7c × (fl + flt) + r7s × fa (12)

where r7c and r7s are the vectors from torso centre of mass to shoulder and hip, respectively,
and that from rotations on the leg around the hip, the torque can be written in terms of flt as,

Thip = fltll, (13)

the force flt can be expressed in terms of fl and fa, which depend only on qr and ur.



Equation of motion and output Using Newton approach, two equation of motion are derived,
one for each coordinate of qr, and are arranged as

Mr(qr)q̈r +Mr
′(qr, q̇r,ur) = Awrg +Am(qr, q̇r,ur) fr(qr, q̇r,ur), (14)

whereMr is the rider mass matrix; Mr
′ is a pseudo-mass matrix containing products of velocities

and the motorcycle motion; Awr, Am, are matrices that project the weight and rider forces,
into the generalized coordinates. In this differential equation, the only known variables are the
inputs ur, therefore it has to be integrated to known the motion of the rider. To solve the
system by a Runge-Kutta integrator, it is reduced to a first order differential equation as

v̇r = A2
−1b2(vr,qr,ur)

q̇r = vr.
(15)

After solving for the states of the rider qr, the magnitude of legs and arm forces acting on the
motorcycle are retrieved from Equations (10) - (13) as

fr = fr(qr, q̇r,ur). (16)

The codes for the derivation of the equations of the motorcycle and rider models can be found
in the Appendix.

3. Estimator structure
Figure (2) shows an overview of the estimator structure. The estimator reads motorcycle
kinematics, which are the states of the system, to estimate the contact forces at the tyres
through a procedure described next.

It starts from the source of the motorcycle kinematics data, which can be experimental or
virtual. Experimentally, some of the motorcycle states are measured with commonly available
sensors, which are accelerometers, gyroscopes and displacement potentiometers. Afterwards,
the signals are filtered and fused to improve the exactitude of measurements, and to estimate
the remaining motorcycle states. The processing of experimental signals is not treated in this
article. Conversely, virtual data is an alternative to the experimental data, and is only used to
test the estimator, as explained on section 4.

The procedure continues with the estimator itself, which consist of two consecutive blocks:
rider model and motorcycle model. First, the rider model reads some of the motorcycle states, to
estimate the arm and leg forces by forward dynamics. Second, these forces, plus the motorcycle
states, are passed to the motorcycle model to estimates the tyre contact forces by inverse
dynamics.

In particular, the rider model block, reads the position and velocity of the motorcycle chassis,
Equation (9), and solves the differential equation, Equation (14), to determine the state of the
rider qr. Then, using the calculated states of the rider and its inputs, it calculates the leg and
arm forces fr using Equation (16) which is the output of the block.

The motorcycle block, reads the rider forces and the motorcycle states to solve Equation (6)
by least squares method, Equation (7), to estimate the normal and tangential components of
the tyre contact forces, which finishes the procedure.

4. Verification of model
The equations of rider and motorcycle models are verified using data from a virtual experiment,
since measurements are noise free and it is possible to measure the contact forces directly. To
this end, the motorcycle states are measured and passed to the estimator block to calculate rider
and contact forces which are compared to the forces measured directly in the virtual simulation.



Figure 2: Estimator structure.

The virtual experiment is carried out in Working Model 2D, [12], Figure (3), with a model
which has additional details than the one described in section 2, making it a closer representation
to reality. On one hand, the motorcycle model adds wheel rotational inertias and moving contact
points of the wheels. On the other hand, the rider model considers the length and masses of
upper and lower arms and legs, and the hip torque over the torso angle is controlled by a PD
feedback controller, as

Thip = Kp(e− θ7p) +Kdė, (17)

where Kp and Kd are the proportional and derivative constants, e = θ7(t)−θ7,ref , is the absolute
angle error e of the torso, θ7,ref is the desired angular position of the torso and θ7p is an angular
preload which avoids a different resting position than the desired.

Figure 3: Virtual experiment of motorcycle with rider braking as it transit over a bump in
Working Model 2D. Motorcycle is modelled with four bodies; rear brake torque 20 Nm from t =
0.1 to 2 s, front brake torque 20 Nm from t = 0.1 to 2.5 s; rider has five bodies with three degrees
of freedom; torque at hip is applied by a PD controller to mantain the torso angle; bump is 0.3
m high and 7 m long; initial velocity 5 m/s.

4.1. Results

Figure (4), shows that the estimated output of the rider model is in correspondence with the
virtual measurement. The discrepancies on the forces are originated on the difference between
the estimated motion of the rider and the one that occurred on the experiment. This is expected
since the rider models of the estimator and the virtual experiment are different as explained in
the introduction of section 4. The different mass distribution and hip torque controllers can
explain this different motion.The other possible source of discrepancy is that either arm and/or



leg reached total extension in the virtual experiment, since contrarily, the rider model does not
have a limit, however it was checked that it did not occur in this situation.

With respect to the hypothesis of considering horizontal motion of the rider, it showed to
be significant, since it is checked that it is of the same order of magnitude than the vertical
motion. Indeed, the amplitude of the horizontal motion is 0.45 m, while the vertical is 0.41 m.
Nonetheless, to validate this hypothesis, a real-life experiment is required.
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Figure 4: Comparison of virtual and estimated leg and arm forces

Figure (5), shows that the estimated vertical contact forces are in good agreement with the
virtual measurements as well, however there is a discrepancy on the horizontal force when it
transits through the bump. The differences arise from the two simplifications done between
the virtual experiment and the motorcycle model: tyre contact point always at the bottom and
wheel inertias. Indeed, in a simulation in which the wheel inertia was removed in the virtual
experiment, and the moving contact point was added to the motorcycle model, the results match
perfectly. This result suggests that if large bumps are expected recurrently and the horizontal
force is of particular interest, then the contact point needs to be considered in the model, but if
the normal force is the main interest, this estimator would be enough. Nonetheless, a parametric
analysis is needed to quantify and assess the effect of these simplifications on the estimations.

5. Conclusion
In this article an estimator of tyre contact forces on off-road motorcycle is presented. Modelling
the rider as one body that keeps the pitch angle constant by means of an active torque at
the hip showed promising preliminary results, since the motion exhibited while braking over a
bump resembles the one observed in reality. For the future, we aim to do a parametric study
of the simplifications done such as the fixed torso angle, rider lumped into one mass, neglecting
wheel inertias, and fixed contact points on the wheel. Afterwards, we envisage an experimental
validation of the estimator.
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Table 1: List of symbols: sub-index i refers to f or r for front or rear; j, to a or l for arm or
leg; and k, to m or r for motorcycle or rider.

C Hip point
H Handlebar point
Mk Mass matrix of model k
Ni Normal contact force on tyre i
P Footpeg point
Qi Tangential contact force on tyre i
S Shoulder point
Sf Front suspension force along fork
TSr Rear suspension torque on swing arm
Thip Hip torque
cj Damping of body j
fj Force along body j
fr Forces of motorcycle over rider
fs Suspension forces
ft Tyre contact forces
flt Force perpendicular to leg
g1 Function for leg length

g2 Function for arm length
kj Stiffness of body j
lj Length of body j
lj0 Initial length of body j
mn Mass of body number n
qk Coordinates of model k
ra,b Vector from point a to point b
x7 Rider displacement along H-S direction
xs Horizontal displacement of chassis
z7 Rider displacement perpendicular to x7
zf Fork compression
zs Vertical displacement of chassis
αr Rear suspension compression angle
ǫ Caster angle
ζ Rear contact angle
η Front contact angle
µ Angular displacement of chassis

Table 2: Inertial parameters and initial
positions of bodies.

Mass Inertia xi zi
Body kg kg m2 m m
1 18 0 0 -0.3
2 0 0.28 0.279 -0.328
3 81 23 0.768 -0.507
4 12 0 1.35 -0.3
7 75 0 0.33 -1.22

Table 3: Additional inertial parameters and
initial positions used in rider of virtual experi-
ment.

Mass Inertia xi zi
Body kg kg m2 m m
Torso 41.2 1.85 0.33 -1.22

Upper leg 16.5 0.3 0.25 -0.89
Lower leg 9.7 0.2 0.51 -0.55
Upper arm 4.5 0.04 0.52 -1.32
Lower arm 4 0.1 0.75 -1.24

Table 4: Stiffness and damping of rider and
motorcycle.

Stiffness Damping
Component N/m Ns/m

Arm 23100 515
Leg 74000 1350

Front susp. 10320 533
Rear susp. 15420 752

Table 5: Parameters of the hip torque PD
controller of virtual experiment.

Parameter Value
Kp -2000 Nm
Kd -500 Nm

θ7,ref -0.79 rad
θ7p 0 rad



Appendix - Maple / MBSymba models

Rider Model

> interface(displayprecision=3, rtablesize=50):

Coordinates
> q := [x__7(t), z__7(t)]:
> u := [x__s(t), z__s(t), mu(t)]:
> PDEtools[declare](q,u,prime=t,quiet); alias(C=cos,S=sin):

Frames and points
> T__R := ground:
> _gravity := make_VECTOR(ground,0,0,g):
> T__3 := T__R * translate(x__s(t) + x__03, 0, z__s(t) + z__03 ) * rotate(’Y’,
mu(t)) :
> T__7 := T__R * translate(x__07, 0, z__07) * rotate(’Y’, theta__07 ) * translate(x__7(t)
, 0, z__7(t)):
> G7 := make_POINT(T__7, g7x, 0, g7z):
> P__3h := make_POINT(T__3, x__3h, 0, z__3h): handlebar
> P__3p := make_POINT(T__3, x__3p, 0, z__3p): footpeg
> P__7s := make_POINT(T__7, x__7s, 0, 0): shoulder
> P__7c := make_POINT(T__7, x__7c, 0, 0): hip (cadera)
> PS := project(P__7s, T__R): shoulder point in ground coordinates
> PC := project(P__7c, T__R): cadera (hip) point in ground coordinates
> ua := < uax, 0, uaz, 0 > / l__arm:
> va := < 0, 1, 0, 0 > :
> wa := < wax, 0 , waz, 0 > / l__arm:
> T__arm := < ua | va | wa | < comp_X(PS), 0, comp_Z(PS), 1 > >:
> ul := < ulx, 0, ulz, 0 > / l__leg:
> vl := < 0, 1, 0, 0 > :
> wl := < wlx, 0, wlz, 0 > / l__leg:
> T__leg := < ul | vl | wl | < comp_X(PC), 0, comp_Z(PC), 1 > >:

Bodies and forces
> rider := make_BODY(G7, m[7], 0, I[7], 0):
> arm_force := make_FORCE(T__arm, 0, 0, F__a, PS, rider):
> leg_force := make_FORCE(T__leg, F__lt, 0, F__l, PC, rider):
> hip_torque := make_TORQUE(T__R, 0, F__lt * l__leg, 0, rider ):

Implicit equations of motion
> collect_list := [ diff(x__7(t),t,t), diff(z__7(t),t,t), m[7], g, F__a, F__l]:
> rider_system := {rider, arm_force, leg_force, hip_torque}:
> eqnsN := newton_equations( rider_system ):
> dyn_eqnsN1 := collect([comp_X(eqnsN), comp_Z(eqnsN)], collect_list):
> eqnsN_Y := comp_Y( euler_equations(rider_system, G7)):
> flt1 := F__lt = collect(solve(%, F__lt), collect_list):
> dyn_eqnsN0 := collect(subs(%, dyn_eqnsN1), collect_list):



Expressions for arm and leg lengths, vectors, unit vectors and forces
> v__sh := project(join_points(P__7s, P__3h), T__R): Shoulder to handlebar
> v__cp := project(join_points(P__7c, P__3p), T__R): Cadera to footpeg
> l__armi := sqrt(dot_prod(v__sh,v__sh)):
> l__legi := sqrt(dot_prod(v__cp,v__cp)):
> lengthi := l__arm = l__armi, l__leg = l__legi, v__arm = diff(l__armi,t), v__leg
= diff(l__legi,t):
> v__shx := project(rotate(’Y’,Pi/2, v__sh ),ground):
> v__cpx := project(rotate(’Y’,Pi/2, v__cp ),ground):
> unit_vectors := uax = comp_X(v__shx), uaz = comp_Z(v__shx), wax = comp_X(v__sh),
waz = comp_Z(v__sh), ulx = comp_X(v__cpx), ulz = comp_Z(v__cpx), wlx = comp_X(v__cp),
wlz = comp_Z(v__cp):
> forces := F__a = c__a * v__arm + k__a * (l__arm - l__arm0 - l__armp),
> F__l = c__l * v__leg + k__l * (l__leg - l__leg0 - l__legp) :

Explicit equations of motion

> subs(forces,dyn_eqnsN0): subs(lengthi,%): subs(unit_vectors,%): dyn_eqns:=%:

Initial conditions in rider fram
> P7 := project(origin(T__7), T__R):
> V7 := velocity(P7, T__R):
> P7_c := [ comp_X(P7), comp_Z(P7) ] :
> V7_c := [ comp_X(V7), comp_Z(V7) ] :
> Pg70 := [ x__g70, z__g70]:
> Vg70 := [vx__g70, vz__g70]:
> P7_Pg := op(combine( solve(P7_c - Pg70 , [op(q)] ), trig)):
> op( combine(solve(V7_c - Vg70 , [op( diff(q,t)) ]))):
> V7_Vg := subs( P7_Pg, %):
> X7i := < rhs(op(1,%%%)); rhs(op(2,%%%)); rhs(op(1,%)); rhs(op(2,%)) >:

First order formulation
> fo_vars, fo_eqns := first_order(dyn_eqns, q, t):
> A2, b2 := GenerateMatrix(fo_eqns, diff(fo_vars,t)):

Motorcycle forces over rider - f r
> fl_tr := project(leg_force,T__R):
> fa_tr := project(arm_force,T__R):
> Flx1 := comp_X(fl_tr):
> Flz1 := comp_Z(fl_tr):
> Fax1 := comp_X(fa_tr):
> Faz1 := comp_Z(fa_tr):
> f8_i := [Flx1, Flz1, Fax1, Faz1]:
> subs(flt1, f8_i): subs(forces, %): subs(unit_vectors, %): subs(lengthi,
%): fr := %:

Motorcycle Model
> interface(displayprecision=3, rtablesize=50):
> with(LinearAlgebra):
> q := [x__s(t),z__s(t), mu(t), z__f(t), alpha__r(t)]:
> PDEtools[declare](q,u,prime=t,quiet):
> alias(C=cos,S=sin):



Frames:
> T__R := ground:
> _gravity := make_VECTOR(ground,0,0,g):
> T__3 := T__R * translate(b,0,-h) * translate(x__s(t), 0, z__s(t) )
> * rotate(’Y’,mu(t)) :
> T__3 * translate(-b, 0, h - R__r) * rotate(’Y’, alpha__r0) * translate(l__r,0,0):
> P__S := project( origin(%), T__3):
> T__2 := T__3 * translate(comp_X(P__S), 0, comp_Z(P__S))
> * rotate(’Y’, alpha__r0 - alpha__r(t)) * translate(-l__s, 0, 0):
> T__1 := T__2 * translate(-(l__r - l__s), 0, 0):
> T__4 := T__3 * translate(w - b, 0, h - R__f) * rotate(’Y’, epsilon)
> * translate(0, 0, -z__f(t) ):

Bodies
> rear_wheel := make_BODY(T__1, m__1, 0, 0, 0): show(rear_wheel):
> swing_arm := make_BODY(T__2, 0, 0, I__2, 0): show(swing_arm):
> chassis := make_BODY(T__3, m__3, 0, I__3, 0): show(chassis):
> front_wheel := make_BODY(T__4, m__4, 0, 0, 0): show(front_wheel):

Points
> cp_front := project(CoM(front_wheel),T__R) + make_VECTOR(T__R, 0, 0, R__f):
> cp_rear := project(CoM(rear_wheel ),T__R) + make_VECTOR(T__R, 0, 0, R__r):
> P__3h := make_POINT(T__3, x__3h, 0, z__3h): handlebar
> P__3p := make_POINT(T__3, x__3p, 0, z__3p): footpeg

Forces
> front_cont := make_FORCE(ground, N__fx, 0, N__fz, cp_front, front_wheel):
> rear_cont := make_FORCE(ground, N__rx, 0, N__rz, cp_rear , rear_wheel):
> leg_force := make_FORCE(T__R, -flx, 0, -flz, P__3p, chassis):
> arm_force := make_FORCE(T__R, -fax, 0, -faz, P__3h, chassis):
> front_susp := make_FORCE(T__4, 0, 0, S__f, origin(T__4), front_wheel, chassis):
> rear_susp := make_TORQUE(T__2, 0, TS__r, 0, swing_arm, chassis):

Equations of motion of all motorcycle

> all_bike := {rear_wheel, swing_arm, chassis, front_wheel, rear_cont, front_cont,
leg_force, arm_force}:
> eqnsN__A := newton_equations(all_bike):
> eqnsN__Ax := comp_X(eqnsN__A):
> eqnsN__Az := comp_Z(eqnsN__A):
> eqnsE__A := euler_equations(all_bike, origin(T__3)):
> eqnsN__Ay := combine(comp_Y(eqnsE__A),’trig’):

Equation of motion of Front Wheel

> front := {front_wheel, front_cont, front_susp}:
> eqnsN__4 := newton_equations(front):
> eqnsN__4z := collect(comp_Z(project(eqnsN__4,T__4)),m__4):

Equation of motion of Rear Wheel + Swing arm

> rear_swing_arm := {rear_wheel, swing_arm, rear_cont, rear_susp}:
> eqnsE__12 := euler_equations(rear_swing_arm, P__S):
> eqnsE__12y := combine(comp_Y(eqnsE__12),’trig’):

Solution
> all_eqns := [eqnsN__Ax, eqnsN__Az, eqnsN__Ay, eqnsN__4z, eqnsE__12y]:
> x__m := [N__fx, N__fz, N__rx, N__rz ]:
> GenerateMatrix(all_eqns, x__m):
> A1:= combine(%[1],’trig’):
> b1:= -%%[2]:


