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Welfare functions and inequality indices in the
binomial decomposition of OWA functions

Silvia Bortot∗, Ricardo Alberto Marques Pereira, and Thuy H. Nguyen

Department of Economics and Management, University of Trento

Abstract

In the context of Choquet integration with respect to symmetric capacities, we consider
the binomial decomposition of OWA functions in terms of the binomial Gini welfare func-
tions Cj, j = 1, ..., n, and the associated binomial Gini inequality indices Gj, j = 1, ..., n,
which provide two equivalent descriptions of k-additivity. We illustrate the weights of
the binomial Gini welfare functions Cj, j = 1, ..., n, and the coefficients of the associated
binomial Gini inequality indices Gj, j = 1, ..., n, which progressively focus on the poorest
part of the population. Moreover, we investigate the numerical behavior of the binomial
Gini welfare functions and inequality indices in relation to a family of income distributions
described by a parameter related with inequality.

Keywords: Generalized Gini welfare functions and inequality indices, symmetric capac-
ities and Choquet integrals, OWA functions, binomial decomposition and k-additivity

JEL Classification: D31, D63, I31.

1 Introduction

The generalized Gini welfare functions introduced by Weymark [53] and the associated
inequality indices in Atkinson-Kolm-Sen’s (AKS) framework are related by Blackorby
and Donaldson’s correspondence formula [5, 6], A(x ) = x̄−G(x ), where A(x ) denotes a
generalized Gini welfare function, G(x ) is the associated absolute inequality index, and
x̄ is the plain mean of the income distribution x = (x1, . . . , xn) ∈ Dn of a population of
n ≥ 2 individuals, with D = [0,∞).

The generalized Gini welfare functions [53] have the form A(x ) =
∑n

i=1wi x(i) where
x(1) ≤ x(2) ≤ . . . ≤ x(n) and, as required by the principle of inequality aversion, w1 ≥ w2 ≥
. . . ≥ wn ≥ 0 with

∑n
i=1 wi = 1. These welfare functions correspond to the S-concave

class of the ordered weighted averaging (OWA) functions introduced by Yager [56], which
in turn correspond [22] to the Choquet integrals associated with symmetric capacities.

The use of non-additivity and Choquet integration [16] in Social Welfare and Decision
Theory dates back to the seminal work of Schmeidler [48, 49], Ben Porath and Gilboa [4],
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and Gilboa and Schmeidler [25, 26]. In the discrete case, Choquet integration [46, 14, 17,
27, 28, 40] corresponds to a generalization of both weighted averaging (WA) and ordered
weighted averaging (OWA), which remain as special cases. For recent reviews of Choquet
integration see Grabisch and Labreuche [33, 34, 35], and Grabisch, Kojadinovich, and
Meyer [32].

The complex structure of Choquet capacities can be suitably described in the k-
additivity framework introduced by Grabisch [29, 30], see also Calvo and De Baets [11],
Cao-Van and De Baets [13], and Miranda, Grabisch, and Gil [45]. The 2-additive case, in
particular, has been examined by Miranda, Grabisch, and Gil [45], and Mayag, Grabisch,
and Labreuche [42, 43]. Due to its low complexity and versatility the 2-additive case is
relevant in a variety of modelling contexts.

The characterization of symmetric Choquet integrals (OWA functions) has been stud-
ied by Fodor, Marichal and Roubens [22], Calvo and De Baets [11], Cao-Van and De
Baets [13], and Miranda, Grabisch and Gil [45]. It is shown, see Gajdos [24], that in the
k-additive case the generating function of the OWA weights is polynomial of degree k,
where the weights correspond to differences between consecutive generating function val-
ues, as illustrated in (25). In the symmetric 2-additive case, in particular, the generating
function is quadratic and thus the weights are equidistant, as in the classical Gini welfare
function.

In this paper we review the analysis of symmetric capacities in the Möbius representa-
tion framework and we recall the binomial decomposition of OWA functions due to Calvo
and De Baets [11], see also [10]. The binomial decomposition can be formulated in terms
of two equivalent functional bases, the binomial Gini welfare functions and the Atkinson-
Kolm-Sen (AKS) associated binomial Gini inequality indices, according to Blackorby and
Donaldson’s correspondence formula.

The binomial Gini welfare functions, denoted Cj with j = 1, . . . , n, have null weights
associated with the j − 1 richest individuals in the population and therefore they are
progressively focused on the poorest part of the population. Correspondingly, the associ-
ated binomial Gini inequality indices, denoted Gj with j = 1, . . . , n, have equal weights
associated with the j − 1 richest individuals in the population and therefore they are
progressively insensitive to income transfers within the richest part of the population.

The paper is organized as follows. In Section 2 we review the basic notions of welfare
function and inequality index for populations of n ≥ 2 individuals. In Section 3 we present
the basic definitions and results on capacities and Choquet integration, with reference to
the Möbius representation framework. In Section 4 we consider the context of symmetric
capacities and we recall the binomial decomposition of OWA functions due to Calvo and
De Baets [11], see also [10].

In Section 5 we illustrate the weights of the binomial Gini welfare functions Cj, j =
1, ..., n, and the coefficients of the associated binomial Gini inequality indices Gj, j =
1, ..., n, which progressively focus on the poorest part of the population. In Section 6 we
investigate the numerical behavior of the binomial Gini welfare functions and inequality
indices in relation to a family of income distributions described by a parameter related
with inequality. Finally, Section 7 contains some conclusive remarks.

2



2 Welfare functions and inequality indices

In this section we consider populations of n ≥ 2 individuals and we briefly review the
notions of welfare function and inequality index in the standard framework of averaging
functions on the Dn domain, with D = [0,∞). The income distributions in this framework
are represented by points x ,y ∈ Dn. In any case, most of our results hold analogously
over different domains, for instance the reduced domain [0, 1] or even the extended domain
R.

We begin by presenting notation and basic definitions regarding averaging functions
on the domain Dn, with n ≥ 2 throughout the text. Comprehensive reviews of averaging
functions can be found in Fodor and Roubens [23], Calvo et al. [12], Beliakov et al. [2],
and Grabisch et al. [36].

Notation. Points in Dn are denoted x = (x1, . . . , xn), with 1 = (1, . . . , 1), 0 = (0, . . . , 0) .
Accordingly, for every x ∈ D , we have x · 1 = (x, . . . , x). Given x ,y ∈ Dn, by x ≥ y
we mean xi ≥ yi for every i = 1, . . . , n, and by x > y we mean x ≥ y and x ̸=
y . Given x ∈ Dn, the increasing and decreasing reorderings of the coordinates of x
are indicated as x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In particular,
x(1) = min{x1, . . . , xn} = x[n] and x(n) = max{x1, . . . , xn} = x[1] . In general, given a
permutation σ on {1, . . . , n}, we denote x σ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic
mean is denoted x̄ = (x1 + · · ·+ xn)/n.

Definition 1 Let A : Dn −→ D be a function.

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x,y ∈ Dn. Moreover, A is
strictly monotonic if x > y ⇒ A(x) > A(y), for all x,y ∈ Dn.

2. A is idempotent if A(x · 1) = x, for all x ∈ D. On the other hand, A is nilpotent
if A(x · 1) = 0, for all x ∈ D.

3. A is symmetric if A(xσ) = A(x), for any permutation σ on {1, . . . , n} and all
x ∈ Dn.

4. A is invariant for translations if A(x+ t · 1) = A(x), for all t ∈ D and x ∈ Dn. On
the other hand, A is stable for translations if A(x+ t · 1) = A(x) + t, for all t ∈ D
and x ∈ Dn.

5. A is invariant for dilations if A(t · x) = A(x), for all t ∈ D and x ∈ Dn. On the
other hand, A is stable for dilations if A(t · x) = t A(x), for all t ∈ D and x ∈ Dn.

We introduce the majorization relation on Dn and we discuss the concept of income
transfer following the approach in Marshall and Olkin [41], focusing on the classical results
relating majorization, income transfers, and bistochastic transformations, see Marshall
and Olkin [41, Ch. 4, Prop. A.1].

Definition 2 The majorization relation ≼ on Dn is defined as follows: given x,y ∈ Dn

with x̄ = ȳ, we say that

x ≼ y if
k∑

i=1

x(i) ≥
k∑

i=1

y(i) k = 1, . . . , n (1)

3



where the case k = n is an equality due to x̄ = ȳ. As usual, we write x ≺ y if x ≼ y and
not y ≼ x, and we write x ∼ y if x ≼ y and y ≼ x. We say that y majorizes x if x ≺ y,
and we say that x and y are indifferent if x ∼ y.

Another traditional reading, which reverses that of majorization, refers to the concept
of Lorenz dominance: we say that x is Lorenz superior to y if x ≺ y , and we say that x
is Lorenz indifferent to y if x ∼ y .

Given an income distribution x ∈ Dn, with mean income x̄, it holds that x̄ · 1 ≼ x
since k x̄ ≥

∑k
i=1 x(i) for k = 1, . . . , n. The majorization is strict, x̄ · 1 ≺ x , when x is

not a uniform income distribution. In such case, x̄ · 1 is Lorenz superior to x . Moreover,
for any income distribution x ∈ Dn with mean income x̄ it holds that x ≼ (0, . . . , 0, nx̄),
which is strict when x ̸= 0.

The majorization relation is a partial preorder, a necessary condition for x ,y ∈ Dn to
be comparable is that x̄ = ȳ, and x ∼ y if and only if x and y differ by a permutation.
In general, x ≼ y if and only if there exists a bistochastic matrix C (non-negative square
matrix of order n where each row and column sums to one) such that x = Cy . Moreover,
x ≺ y if the bistochastic matrix C is not a permutation matrix.

A particular case of bistochastic transformation is the so-called transfer, also called
T -transformation.

Definition 3 Given x,y ∈ Dn with x̄ = ȳ, we say that x is derived from y by means of
a transfer if, for some pair i, j = 1, . . . , n with yi ≤ yj, we have

xi = (1− ε) yi + εyj xj = εyi + (1− ε) yj ε ∈ [0, 1] (2)

and xk = yk for k ̸= i, j. These formulas express an income transfer, from a richer to a
poorer individual, of an income amount ε(yj − yi). The transfer obtains x = y if ε = 0,
and exchanges the relative positions of donor and recipient in the income distribution if
ε = 1, in which case x ∼ y. In the intermediate cases ε ∈ (0, 1) the transfer produces an
income distribution x which is Lorenz superior to the original y, that is x ≺ y.

In general, for the majorization relation ≼ and income distributions x ,y ∈ Dn with
x̄ = ȳ, it holds that x ≼ y if and only if x can be derived from y by means of a finite
sequence of transfers. Moreover, x ≺ y if any of the transfers is not a permutation.

Definition 4 Let A : Dn −→ D be a function. In relation with the majorization relation
≼, the notions of Schur-convexity (S-convexity) and Schur-concavity (S-concavity) of the
function A are defined as follows:

1. A is S-convex if x ≼ y ⇒ A(x) ≤ A(y) for all x,y ∈ Dn

2. A is S-concave if x ≼ y ⇒ A(x) ≥ A(y) for all x,y ∈ Dn.

Moreover, the S-convexity (resp. S-concavity) of a function A is said to be strict if x ≺ y
implies A(x) < A(y) (resp. A(x) > A(y)). Notice that S-convexity (S-concavity) implies
symmetry, since x ∼ xσ ⇒ A(x) = A(xσ).
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Definition 5 A function A : Dn −→ D is an n-ary averaging function if it is monotonic
and idempotent. An averaging function is said to be strict if it is strictly monotonic.
Note that monotonicity and idempotency implies that min(x) ≤ A(x) ≤ max(x), for all
x ∈ Dn.

For simplicity, the n-arity is omitted whenever it is clear from the context. Particular
cases of averaging functions are weighted averaging (WA) functions, ordered weighted
averaging (OWA) functions, and Choquet integrals, which contain the former as special
cases.

Definition 6 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1,
the Weighted Averaging (WA) function associated with w is the averaging function A :
Dn −→ D defined as

A(x) =
n∑

i=1

wi xi. (3)

Definition 7 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1, the
Ordered Weighted Averaging (OWA) function associated with w is the averaging function
A : Dn −→ D defined as

A(x) =
n∑

i=1

wi x(i). (4)

The traditional form of OWA functions as introduced by Yager [56] is as follows, A(x ) =∑n
i=1 w̃i x[i] where w̃i = wn−i+1. In [57, 58] the theory and applications of OWA functions

are discussed in detail.
The following are two classical results particulary relevant in our framework. The

first result regards a form of dominance relation between weighting structures and OWA
functions, see for instance Bortot and Marques Pereira [10].

Proposition 1 Consider two OWA functions A,B : Dn −→ D associated with weighting
vectors u = (u1, . . . , un) ∈ [0, 1]n and v = (v1, . . . , vn) ∈ [0, 1]n, respectively. It holds that
A(x) ≤ B(x) for all x ∈ Dn if and only if

k∑

i=1

ui ≥
k∑

i=1

vi for k = 1, . . . , n (5)

where the case k = n is an equality due to weight normalization.

The next result regards the relation between the weighting structure and the S-
convexity or S-concavity of the OWA function, see for instance Bortot and Marques
Pereira [10].

Proposition 2 Consider an OWA function A : Dn −→ D associated with a weighting
vector w = (w1, . . . , wn) ∈ [0, 1]n. The OWA function A is S-convex if and only if the
weights are non decreasing, w1 ≤ . . . ≤ wn, and A is strictly S-convex if and only if the
weights are increasing, w1 < . . . < wn. Analogously, the OWA function A is S-concave if
and only if the weights are non increasing, w1 ≥ . . . ≥ wn, and A is strictly S-concave if
and only if the weights are decreasing, w1 > . . . > wn.
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We will now review the basic concepts and definitions regarding welfare functions and
inequality indices. Certain properties which are generally considered to be inherent to
the concepts of welfare and inequality are now accepted as basic axioms for welfare and
inequality measures, see for instance Kolm [38, 39]. The crucial axiom in this field is the
Pigou-Dalton transfer principle, which states that welfare (inequality) measures should be
non-decreasing (non-increasing) under transfers. This axiom translates directly into the
properties of S-concavity and S-convexity in the context of symmetric functions on Dn. In
fact, a function is S-concave (S-convex) if and only if it is symmetric and non-decreasing
(non-increasing) under transfers, see for instance Marshall and Olkin [41].

Definition 8 An averaging function A : Dn −→ D is a welfare function if it is continu-
ous, idempotent, and S-concave. The welfare function is said to be strict if it is a strict
averaging function which is strictly S-concave.

Due to monotonicity and idempotency, a welfare function is non decreasing over Dn

but increasing along the diagonal x = x · 1 ∈ Dn, with x ∈ D. Moreover, notice that
S-concavity implies symmetry. Due to S-concavity, a welfare function ranks any Lorenz
superior income distribution with the same mean as x as no worse than x , whereas a
strict welfare function ranks it as better.

Given a welfare function A, the uniform equivalent income x̃ associated with an in-
come distribution x is defined as the income level which, if equally distributed among
the population, would generate the same welfare value, A(x̃ · 1) = A(x ). The uniform
equivalent concept has been originally proposed by Chisini [15] in the general context of
averaging functions, see for instance Bennet et al. [3]. In the welfare context the uni-
form equivalent income has been considered by Atkinson [1], Kolm [37], and Sen [50] and
further elaborated by Blackorby and Donaldson [5, 6, 7] and Blackorby, Donaldson, and
Auersperg [8].

Due to the idempotency of A, we obtain x̃ = A(x ). Since x̄ · 1 ≼ x for any income
distribution x ∈ Dn, S-concavity implies A(x̄ · 1) ≥ A(x ) and therefore A(x ) ≤ x̄ due
to the idempotency of the welfare function. In other words, the mean income x̄ and the
uniform equivalent income x̃ are related by 0 ≤ x̃ ≤ x̄.

We now define the notion of absolute inequality index, introduced by Kolm [38, 39]
and developed by Blackorby and Donaldson [6], Blackorby, Donaldson, and Auersperg [8],
and Weymark [53]. Following Kolm, inequality measures are described as absolute when
they are invariant for additive transformations (translation invariance).

Definition 9 A function G : Dn −→ D is an absolute inequality index if it is continuous,
nilpotent, S-convex, and invariant for translations. The absolute inequality index is said
to be strict if it is strictly S-convex.

In relation with the properties of the majorization relation discussed earlier, it holds
that: over all income distributions x ∈ Dn with the same mean income x̄, a welfare func-
tion has minimum value A(0, . . . , 0, nx̄), and an absolute inequality index has maximum
value G(0, . . . , 0, nx̄).

In the AKS framework introduced by Atkinson [1], Kolm [37], and Sen [50], a welfare
function which is stable for translations induces an associated absolute inequality index
by means of the correspondence formula A(x ) = x̄−G(x ), see Blackorby and Donaldson
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[6]. The welfare function and the associated inequality index are said to be ethical, see
also Sen [51], Blackorby, Donaldson, and Auersperg [8], Weymark [53], Blackorby and
Donaldson [9], and Ebert [20].

Definition 10 Given a welfare function A : Dn −→ D which is stable for translations, the
associated Atkinson-Kolm-Sen (AKS) absolute inequality index G : Dn −→ D is defined
as

G(x) = x̄− A(x) (6)

The fact that A is stable for translations ensures the translational invariance of G. The
absolute inequality index can be written as G(x) = x̄ − x̃ and represents the per capita
income that could be saved if society distributed incomes equally without any loss of welfare.

In the AKS framework, a welfare function A which is stable for both translations
and dilations is associated with both absolute and relative inequality indices G and GR,
respectively, with G(x ) = x̄ GR(x ) for all x ∈ Dn. In what follows we will omit the term
“absolute” when referring to G.

A class of welfare functions which plays a central role in this paper is that of the
generalized Gini welfare functions introduced by Weymark [53], see also Mehran [44],
Donaldson and Weymark [18, 19], Yaari [54, 55], Ebert [21], Quiggin [47], Ben-Porath
and Gilboa [4].

Definition 11 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with w1 ≥ · · · ≥
wn ≥ 0 and

∑n
i=1 wi = 1, the generalized Gini welfare function associated with w is the

function A : Dn −→ D defined as

A(x) =
n∑

i=1

wix(i) (7)

and, in the AKS framework, the associated generalized Gini inequality index is defined as

G(x) = x̄− A(x) = −
n∑

i=1

(wi −
1

n
) x(i) . (8)

The generalized Gini welfare functions, which are strict if and only if w1 > . . . > wn > 0,
are clearly stable for both translations and dilations. For this reason they have a natural
role within the AKS framework and Blackorby and Donaldson’s correspondence formula.

An important particular case of the AKS generalized Gini framework is the classical
Gini welfare function Ac

G(x ) and the associated classical Gini inequality index Gc(x ) =
x̄− Ac

G(x ),

Ac
G(x ) =

n∑

i=1

2(n− i) + 1

n2
x(i) (9)

where the coefficients of Ac(x ) have unit sum,
∑n

i=1(2(n− i) + 1) = n2, and

Gc(x ) = −
n∑

i=1

n− 2i+ 1

n2
x(i) (10)

7



where the coefficients of Gc(x ) have zero sum,
∑n

i=1(n − 2i + 1) = 0. The classical Gini
inequality index Gc is traditionally defined as

Gc(x ) =
1

2n2

n∑

i,j=1

|xi − xj| . (11)

but in our framework it is convenient to express it as in (10), see [10].

3 Capacities and Choquet integrals

In this section we present a brief review of the basic facts on Choquet integration, focusing
on the Möbius representation framework. For recent reviews of Choquet integration see
[33, 32, 34, 35] for the general case, and [45, 42, 43] for the 2-additive case in particular.

Consider a finite set of interacting individuals N = {1, 2, . . . , n}. Any subsets S, T ⊆
N with cardinalities 0 ≤ s, t ≤ n are usually called coalitions. The concepts of capacity
and Choquet integral in the definitions below are due to [16, 52, 17, 27, 28].

Definition 12 A capacity on the set N is a set function µ : 2N −→ [0, 1] satisfying

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions)

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ) (monotonicity conditions).

Definition 13 Let µ be a capacity on N . The Choquet integral Cµ : Dn −→ D with
respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))] x(i) x = (x1, . . . , xn) ∈ Dn (12)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ . . . ≤ x(n). Moreover,
A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

Definition 14 Let µ be a capacity on the set N . The Möbius transform mµ : 2N −→ R
associated with the capacity µ is defined as

mµ(T ) =
∑

S⊆T

(−1)t−sµ(S) T ⊆ N (13)

where s and t denote the cardinality of the coalitions S and T , respectively.

Conversely, given the Möbius transform mµ, the associated capacity µ is obtained as

µ(T ) =
∑

S⊆T

mµ(S) T ⊆ N . (14)

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑

T⊆N

mµ(T ) = 1 (15)
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and the monotonicity conditions can be expressed as follows: for each i = 1, . . . , n and
each coalition T ⊆ N \ {i}, the monotonicity condition is written as

∑

S⊆T

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (16)

This form of the monotonicity conditions derives from the original monotonicity conditions
in Definition 12, expressed as µ(T ∪ {i})− µ(T ) ≥ 0 for each i ∈ N and T ⊆ N \ {i}.

Defining a capacity µ on a set N of n elements requires 2n − 2 real coefficients, cor-
responding to the capacity values µ(T ) for T ⊆ N . In order to control exponential
complexity, Grabisch [29] introduced the concept of k-additive capacities.

Definition 15 A capacity µ on the set N is said to be k-additive if its Möbius transform
satisfies mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at least one coalition
T ⊆ N with t = k such that mµ(T ) ̸= 0.

In the k-additive case, with k = 1, . . . , n, the capacity µ is expressed as follows in
terms of the Möbius transform mµ,

µ(T ) =
∑

S⊆T, s≤ k

mµ(S) T ⊆ N (17)

and the boundary and monotonicity conditions (15) and (16) take the form

mµ(∅) = 0
∑

T⊆N, t≤ k

mµ(T ) = 1 (18)

∑

S⊆T, s≤ k−1

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (19)

Finally, we examine the particular case of symmetric capacities and Choquet integrals,
which play a crucial role in this paper.

Definition 16 A capacity µ is said to be symmetric if it depends only on the cardinality
of the coalition considered, in which case we use the simplified notation

µ(T ) = µ(t) where t = |T | . (20)

Accordingly, for the Möbius transform mµ associated with a symmetric capacity µ we use
the notation

mµ(T ) = mµ(t) where t = |T | . (21)

In the symmetric case, the expression (14) for the capacity µ in terms of the Möbius
transform mµ reduces to

µ(t) =
t∑

s=1

(
t

s

)
mµ(s) t = 1, . . . , n (22)

and the boundary and monotonicity conditions (15) and (16) take the form

mµ(0) = 0
n∑

s=1

(
n

s

)
mµ(s) = 1 (23)
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t∑

s=1

(
t− 1

s− 1

)
mµ(s) ≥ 0 t = 1, . . . , n . (24)

The monotonicity conditions correspond to µ(t)− µ(t− 1) ≥ 0 for t = 1, . . . , n.
The Choquet integral (12) with respect to a symmetric capacity µ reduces to an

Ordered Weighted Averaging (OWA) function [22, 56],

Cµ(x ) =
n∑

i=1

[µ(n− i+ 1)− µ(n− i)]x(i) =
n∑

i=1

wi x(i) = A(x ) (25)

where the weights wi = µ(n− i+ 1)− µ(n− i) satisfy wi ≥ 0 for i = 1, . . . , n due to the
monotonicity of the capacity µ, and

∑n
i=1 wi = 1 due to the boundary conditions µ(0) = 0

and µ(n) = 1. Comprehensive reviews of OWA functions can be found in [57] and [58].
The weighting structure of the OWA function (25) is of the general form wi =

f(n−i+1
n )−f(n−i

n ) where f is a continuous and increasing function on the unit interval, with
f(0) = 0 and f(1) = 1. Gajdos [24] shows that the OWA function A is associated with a
k-additive capacity µ, with k = 1, . . . , n, if and only if f is polynomial of order k. In fact,
in (22), the k-additive case is obtained simply by takingmµ(k+1) = . . . = mµ(n) = 0, and
the binomial coefficient of the Möbius value mµ(k) corresponds to t(t−1) . . . (t−k+1)/k!,
which is polynomial of order k in the coalition cardinality t.

4 The binomial decomposition

We now consider OWA functions A : Dn −→ D and we recall the binomial decomposition
of OWA functions due to Calvo and De Baets [11], with the addition of a uniqueness
result, see also [10].

We begin by introducing the convenient notation

αj =

(
n

j

)
mµ(j) j = 1, . . . , n . (26)

In this notation the upper boundary condition (23) reduces to

n∑

j=1

αj = 1 (27)

and the monotonicity conditions (24) take the form

i∑

j=1

(
i−1
j−1

)
(
n
j

) αj ≥ 0 i = 1, . . . , n . (28)

Definition 17 The binomial OWA functions Cj : Dn −→ D, with j = 1, . . . , n, are
defined as

Cj(x) =
n∑

i=1

wji x(i) =
n∑

i=1

(
n−i
j−1

)
(
n
j

) x(i) j = 1, . . . , n (29)

where the binomial weights wji, i, j = 1, . . . , n are null when i + j > n + 1 according to
the usual convention that

(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . .
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Except for C1(x ) = x̄, the binomial OWA functions Cj, j = 2, . . . , n have an in-
creasing number of null weights, in correspondence with x(n−j+2), . . . , x(n). The weight
normalization of the binomial OWA functions,

∑n
i=1 wji = 1 for j = 1, . . . , n, is due to

the column-sum property of binomial coefficients,

n∑

i=1

(
n− i

j − 1

)
=

n−1∑

i=0

(
i

j − 1

)
=

(
n

j

)
j = 1, . . . , n . (30)

Proposition 3 Any OWA function A : Dn −→ D can be written uniquely as

A(x) = α1C1(x) + α2C2(x) + . . .+ αnCn(x) (31)

where the coefficients αj, j = 1, . . . , n are subject to conditions (27) and (28). In the
binomial decomposition the k-additive case, with k = 1, . . . , n, is obtained simply by taking
αk+1 = . . . = αn = 0.

The following interesting result concerning the cumulative properties of binomial
weights is due to Calvo and De Baets [11], see also Bortot and Marques Pereira [10].

Proposition 4 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the following
cumulative property,

i∑

k=1

wj−1,k ≤
i∑

k=1

wjk i = 1, . . . , n j = 2, . . . , n . (32)

Given that binomial weights have the cumulative property (32), Proposition 1 implies
that the binomial OWA functions Cj, j = 1, . . . , n satisfy the relations x̄ = C1(x ) ≥
C2(x ) ≥ . . . ≥ Cn(x ) ≥ 0, for any x ∈ Dn.

Summarizing, the binomial decomposition (31) holds for any OWA function A in terms
of the binomial OWA functions Cj, j = 1, . . . , n and the corresponding coefficients αj,
j = 1, . . . , n subject to conditions (27) and (28).

Consider the binomial OWA functions Cj with j = 1, . . . , n. The binomial weights wji,
i, j = 1, . . . , n as in (29) have regularity properties which have interesting implications at
the level of the functions Cj, j = 1, . . . , n, see [10].

Proposition 5 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the following
properties,

i. for j = 1 1/n = w11 = w12 = . . . = w1,n−1 = w1n

ii. for j = 2 2/n = w21 > w22 > . . . > w2,n−1 > w2n = 0

iii. for j = 3, . . . , n j/n = wj1 > wj2 > . . . > wj,n−j+2 = . . . = wjn = 0

The functions Cj, j = 1, . . . , n are continuous, idempotent, and stable for translations,
where the latter two properties follow immediately from

∑n
i=1 wji = 1 for j = 1, . . . , n.

Moreover, given that binomial weights are non increasing, wj1 ≥ wj2 ≥ . . . ≥ wjn for
j = 1, . . . , n, Proposition 2 implies that the functions Cj, j = 1, . . . , n are S-concave, with
strict S-concavity applying only to C2.

In relation with these properties, we conclude that the functions Cj, j = 1, . . . , n, which
we hereafter call binomial Gini welfare functions, are generalized Gini welfare functions
on the income domain x ∈ Dn.
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Definition 18 Consider the binomial Gini welfare functions Cj : Dn −→ D, with Cj(x) =∑n
i=1 wjix(i) for j = 1, . . . , n. The binomial Gini inequality indices Gj : Dn −→ D, with

j = 1, . . . , n, are defined as

Gj(x) = x̄− Cj(x) j = 1, . . . , n (33)

which means that

Gj(x) = −
n∑

i=1

vjix(i) = −
n∑

i=1

[
wji −

1

n

]
x(i) j = 1, . . . , n (34)

where the coefficients vji, i, j = 1, . . . , n are equal to −1/n when i + j > n + 1, since in
such case the binomial weights wji are null. The weight normalization of the binomial
Gini welfare functions,

∑n
i=1 wji = 1 for j = 1, . . . , n, implies that

∑n
i=1 vji = 0 for

j = 1, . . . , n.

The binomial Gini inequality indices Gj, j = 1, . . . , n are continuous, nilpotent,
and invariant for translations, where the latter two properties follow immediately from∑n

i=1 vji = 0 for j = 1, . . . , n. Moreover, the Gj are S-convex: given x ,y ∈ Dn with
x̄ = ȳ, we have that x ≼ y ⇒ Cj(x ) ≥ Cj(y) ⇒ Gj(x ) ≤ Gj(y) for all x ,y ∈ Dn, due
to the S-concavity of the Cj, j = 1, . . . , n.

In fact, the binomial Gini inequality indices Gj, j = 1, . . . , n in (33) correspond to
the Atkinson-Kolm-Sen (AKS) absolute inequality indices associated with the binomial
welfare functions Cj, j = 1, . . . , n, in the spirit of Blackorby and Donaldson’s correspon-
dence formula. Together, as we discuss below, the binomial Gini welfare functions Cj and
the binomial Gini inequality indices Gj, j = 1, . . . , n can be regarded as two equivalent
functional bases for the class of generalized Gini welfare functions and inequality indices.

In analogy with the binomial weights wji, i, j = 1, . . . , n, their inequality counter-
parts vji, i, j = 1, . . . , n have interesting regularity properties, which follow directly from
Proposition 5.

Proposition 6 The coefficients vji ∈ [−1/n, (n − 1)/n], with i, j = 1, . . . , n, have the
following properties,

i. for j = 1 0 = v11 = v12 = . . . = v1,n−1 = v1n

ii. for j = 2 1/n = v21 > v22 > . . . > v2,n−1 > v2n = −1/n

iii. for j = 3, . . . , n j−1
n = vj1 > vj2 > . . . > vj,n−j+2 = . . . = vjn = −1/n

Notice that C1(x ) = x̄ and G1(x ) = 0 for all x ∈ Dn. On the other hand, C2(x ) has
n−1 positive linearly decreasing weights and one null last weight, and the associatedG2(x )
has linearly increasing coefficients and is in fact proportional to the classical Gini index,
G2(x ) =

n
n−1 G

c(x ). The remaining Cj(x ), j = 3, . . . , n, have n−j+1 positive non-linear
decreasing weights and j − 1 null last weights, and the associated Gj(x ), j = 3, . . . , n
have n− j + 2 non-linear increasing weights and j − 1 equal last weights.

Therefore, the only strict binomial welfare function is C1(x ) = x̄ and the only strict
binomial inequality index is G2(x ) = n

n−1 G
c(x ). In the remaining Gj(x ), j = 3, . . . , n

the last j−1 coefficients coincide and thus they are non strict absolute inequality indices,
in the sense that they are insensitive to income transfers involving only the j − 1 richest
individuals of the population.

12



5 Numerical and graphical illustration (I)

In this section we compute the weights of the binomial Gini welfare functions and the
coefficients of the associated binomial Gini inequality indices in dimensions n = 2, 3, 4, 5, 6.
We also provide a graphical illustration of weights and coefficients of Cj and Gj for
j = 1, . . . , 4 in the case n = 64.

In dimensions n = 2, 3, 4, 5, 6 the weights wij ∈ [0, 1], i, j = 1, . . . , n of the binomial
Gini welfare functions Cj, j = 1, . . . , n and the coefficients −vij ∈ [−(n − 1)/n, 1/n],
i, j = 1, . . . , n of the binomial Gini inequality indices Gj, j = 1, . . . , n are as follows,

n = 2
C1 : (12 ,

1
2) G1 : (0, 0)

C2 : (1, 0) G2 : (−1
2 ,

1
2)

n = 3
C1 : (13 ,

1
3 ,

1
3) G1 : (0, 0, 0)

C2 : (23 ,
1
3 , 0) G2 : (−1

3 , 0,
1
3)

C3 : (1, 0, 0) G3 : (−2
3 ,

1
3 ,

1
3)

n = 4
C1 : (14 ,

1
4 ,

1
4 ,

1
4) G1 : (0, 0, 0, 0)

C2 : (36 ,
2
6 ,

1
6 , 0) G2 : (− 3

12 ,−
1
12 ,

1
12 ,

3
12)

C3 : (34 ,
1
4 , 0, 0) G3 : (−2

4 , 0,
1
4 ,

1
4)

C4 : (1, 0, 0, 0) G4 : (−3
4 ,

1
4 ,

1
4 ,

1
4)

n = 5
C1 : (15 ,

1
5 ,

1
5 ,

1
5 ,

1
5) G1 : (0, 0, 0, 0, 0)

C2 : ( 4
10 ,

3
10 ,

2
10 ,

1
10 , 0) G2 : (− 2

10 ,−
1
10 , 0,

1
10 ,

2
10)

C3 : ( 6
10 ,

3
10 ,

1
10 , 0, 0) G3 : (− 4

10 ,−
1
10 ,

1
10 ,

2
10 ,

2
10)

C4 : (45 ,
1
5 , 0, 0, 0) G4 : (−3

5 , 0,
1
5 ,

1
5 ,

1
5)

C5 : (1, 0, 0, 0, 0) G5 : (−4
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5)

n = 6

C1 : (16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6) G1 : (0, 0, 0, 0, 0, 0)

C2 : ( 5
15 ,

4
15 ,

3
15 ,

2
15 ,

1
15 , 0) G2 : (− 5

30 ,−
3
30 ,−

1
30 ,

1
30 ,

3
30 ,

5
30)

C3 : (1020 ,
6
20 ,

3
20 ,

1
20 , 0, 0) G3 : (−20

60 ,−
8
60 ,

1
60 ,

7
60 ,

10
60 ,

10
60)

C4 : (1015 ,
4
15 ,

1
15 , 0, 0, 0) G4 : (−15

30 ,−
3
30 ,

3
30 ,

5
30 ,

5
30 ,

5
30)

C5 : (56 ,
1
6 , 0, 0, 0, 0) G5 : (−4

6 , 0,
1
6 ,

1
6 ,

1
6 ,

1
6)

C6 : (1, 0, 0, 0, 0, 0) G6 : (−5
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

The binomial Gini welfare functions Cj, j = 1, . . . , n have null weights associated
with the j − 1 richest individuals in the population and therefore, as j increases from
1 to n, they behave in analogy with poverty measures which progressively focus on the
poorest part of the population. Correspondingly, the binomial Gini inequality indices Gj,
j = 1, . . . , n have equal coefficients associated with the j − 1 richest individuals in the
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population and therefore, as j increases from 1 to n, they are progressively insensitive to
income transfers within the richest part of the population.

In the case n = 64, the weights of the binomial Gini welfare functions Cj, j = 1, . . . , 4
and the coefficients of the binomial Gini inequality indices Gj, j = 1, . . . , 4 are graphically
represented in Fig. 1 and Fig. 2.

0.00
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0.04

0.06

0 20 40 60
i = 1, ..., 64

 

variable

C_1

C_2

C_3

C_4

Figure 1: Weights of C1, C2, C3, C4 with n = 64.

−0.04

−0.02

0.00

0 20 40 60
i = 1, ..., 64
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G_1

G_2

G_3

G_4

Figure 2: Coefficients of G1, G2, G3, G4 with n = 64.
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6 Numerical and graphical illustration (II)

In this section we compute the binomial Gini welfare functions and inequality indices in
relation to a family of income distributions with n = 4 and n = 6. This family of income
distributions, each with unit average income, is defined on the basis of the parametric
Lorenz curve associated with the generating function

fα(r) = re−α(1−r) r ∈ [0, 1] (35)

where the parameter α ≥ 0 is related with inequality. Fig. 3 provides a graphical illus-
tration of the parametric Lorenz curve for parameter values α = 0, 1, . . . , 8.

Figure 3: Parametric Lorenz curve for parameter values α = 0, 1, . . . , 8.

Considering a population with n individuals, the family of income distributions with
unit average income associated with the parametric Lorenz curve above is given by

x(i) = n
[
fα
( i

n

)
− fα

( i− 1

n

)]
i = 1, . . . n. (36)

We now compute the binomial Gini welfare functions and inequality indices in relation
to the family of income distributions (36), with n = 4 and n = 6, for α = 0, 1, . . . , 8.

α C1 C2 C3 C4

0 1 1 1 1
1 1 0.670305 0.539449 0.472367
2 1 0.463080 0.295505 0.223130
3 1 0.328127 0.164265 0.105400
4 1 0.237350 0.092561 0.049787
5 1 0.174534 0.052801 0.023518
6 1 0.130012 0.030448 0.011109
7 1 0.097827 0.017722 0.005248
8 1 0.074186 0.010397 0.002479

Table 1: Binomial Gini welfare functions with n = 4.
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Figure 4: C1, . . . , C4 with α = 0, 1, . . . 8.

α C1 C2 C3 C4 C5 C6

0 1 1 1 1 1 1
1 1 0.691971 0.566210 0.500512 0.460871 0.434598
2 1 0.497069 0.329902 0.254565 0.213783 0.188876
3 1 0.368422 0.197533 0.131594 0.099836 0.082085
4 1 0.280141 0.121300 0.069130 0.046944 0.035674
5 1 0.217440 0.076204 0.036888 0.022227 0.015504
6 1 0.171565 0.048845 0.019979 0.010597 0.006738
7 1 0.137149 0.031860 0.010972 0.005087 0.002928
8 1 0.110786 0.021094 0.006103 0.002458 0.001273

Table 2: Binomial Gini welfare functions with n = 6.
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Figure 5: C1, . . . , C6 with α = 0, 1, . . . 8.

16



α G1 G2 G3 G4

0 0 0 0 0
1 0 0.329695 0.460551 0.527633
2 0 0.536920 0.704495 0.776870
3 0 0.671873 0.835735 0.894601
4 0 0.762651 0.907439 0.950213
5 0 0.825466 0.947199 0.976482
6 0 0.869988 0.969552 0.988891
7 0 0.902172 0.982278 0.994753
8 0 0.925814 0.989603 0.997521

Table 3: Binomial Gini inequality indices with n = 4.
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Figure 6: G1, . . . , G4 with α = 0, 1, . . . 8.

α G1 G2 G3 G4 G5 G6

0 0 0 0 0 0 0
1 0 0.308029 0.433790 0.499488 0.539129 0.565402
2 0 0.502931 0.670099 0.745435 0.786217 0.811124
3 0 0.631579 0.802468 0.868406 0.900165 0.917915
4 0 0.719859 0.878700 0.930870 0.953056 0.964326
5 0 0.782560 0.923796 0.963112 0.977773 0.984496
6 0 0.828435 0.951155 0.980021 0.989403 0.993262
7 0 0.862851 0.968140 0.989028 0.994913 0.997072
8 0 0.889214 0.978906 0.993897 0.997542 0.998727

Table 4: Binomial Gini inequality indices with n = 6.
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Figure 7: G1, . . . , G6 with α = 0, 1, . . . 8.

The pattern of the numerical data in Tables 1-4 and Figures 4-7 reflects the dominance
relations x̄ = C1(x ) ≥ C2(x ) ≥ . . . ≥ Cn(x ) ≥ 0 and 0 = G1(x ) ≤ G2(x ) ≤ . . . ≤
Gn(x ) ≤ x̄ for the income distributions considered here, with x ∈ Dn and x̄ = 1.

Moreover, considering the parametric Lorenz curve depicted in Fig. 3, the values taken
by the binomial Gini welfare functions and inequality indices with n = 4 and n = 6
for α = 0, 1, . . . , 8 illustrate clearly the effect of the parameter α ≥ 0 in relation with
inequality.

7 Conclusions

We consider the binomial decomposition of OWA functions, in terms of the binomial
Gini welfare functions Cj(x ) and the associated binomial Gini inequality indices Gj(x ) =
x̄ − Cj(x ), with j = 1, . . . , n, for all income distributions x ∈ Dn. The context is that
of Choquet integration with respect to symmetric capacities, in which the binomial Gini
welfare functions and associated binomial Gini inequality indices provide two equivalent
descriptions of k-additivity.

We illustrate the weights of the binomial Gini welfare functions Cj, j = 1, ..., n, and
the coefficients of the associated binomial Gini inequality indices Gj, j = 1, ..., n. The
binomial Gini welfare functions Cj, j = 1, . . . , n have null weights associated with the
j − 1 richest individuals in the population and therefore, as j increases from 1 to n, they
behave in analogy with poverty measures which progressively focus on the poorest part
of the population. Correspondingly, the binomial Gini inequality indices Gj, j = 1, . . . , n
have equal coefficients associated with the j− 1 richest individuals in the population and
therefore, as j increases from 1 to n, they are progressively insensitive to income transfers
within the richest part of the population.

We introduce a family of income distributions described by a parameter α ≥ 0 related
with inequality and we compute the binomial Gini welfare functions and inequality indices
with n = 4 and n = 6 for α = 0, 1, . . . , 8. The data obtained reflects the dominance
relations regarding binomial Gini welfare functions and inequality indices and illustrates
the effect of the parameter α ≥ 0 in relation with inequality.
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