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Abstract—In presence of abrupt change events, multi-temporal
Synthetic Aperture Radar (SAR) data represent a precious
supporting tool for quantifying changes, in particular in urban
areas. A large amount of SAR data exists also at Very High
Resolution (VHR). Over urban areas, the introduction of the
VHR imagery moves the analysis down to the single building
scale. However, VHR imagery is also characterized by a large
heterogeneity and a more complex representation of the building.
In this work, we propose a geometrical model for describing
partially destroyed buildings and derive the corresponding multi-
temporal backscattering signature by applying the ray-tracing
method. The model is integrated into an unsupervised automatic
approach for the detection of both fully and partially destroyed
buildings. The strategy considers a hierarchical structure of the
changes. Experimental results conducted on two multi-temporal
VHR SAR datasets show a large robustness of the approach
and a good accuracy in the detection of the classes for damaged
buildings with different severity level.

Index Terms—Remote Sensing, Synthetic Aperture Radar
(SAR), Change Detection (CD), Very-High Resolution (VHR),
Damage assessment, Fuzzy-based analysis, Fully destroyed build-
ings, Partially destroyed buildings

I. INTRODUCTION

Remote sensing imagery from Synthetic Aperture Radar
(SAR) has proven a relevant role in multi-temporal analysis
for Change Detection (CD), with multiple applications. Some
of them focus on long-time phenomena [1], [2] and use image
time series; others focus on sharp changes [3]–[6] with a bi-
temporal analysis. These applications may assume an evident
importance in presence of urban areas and in case of abrupt
events, like natural hazards (e.g., flood [7] or earthquake [8]).
SAR imagery maps scattering information and is affected
by both geometrical distortions and speckle noise, which
make the interpretation a complex task. However, SAR shows
a low sensitivity to both weather and sunlight conditions,
which makes it suitable for multi-temporal applications, as it
guarantees acquisitions with a small temporal baseline, where
some of the optical sensors may not perform well [9].
Let us consider SAR systems acquiring scattering information

Davide Pirrone and Francesca Bovolo are with Center for Information and
Communication Technology, Fondazione Bruno Kessler, Trento, Italy. E-mail:
(see pirrone@fbk.eu).

Davide Pirrone and Lorenzo Bruzzone are with the Department of Infor-
mation Engineering and Computer Science, Trento, Italy.

We acknowledge ASI (Italian Space Agency) for providing COSMO-
SkyMed data.

with no polarimetric content (i.e., a single polarimetric chan-
nel). Among them, SAR systems can be characterized in terms
of the different geometrical resolution. Many sensors present
a geometrical resolution in the order of decades of meters
(i.e., Medium Resolution, MR). However, some SAR missions,
such as the in-operation TerraSAR-X or the forthcoming
Cosmo-SkyMed Second Generation, have been equipped with
enhanced imaging capabilities, showing a resolution down to
the meter scale (i.e., Very High Resolution, VHR). Therefore,
if the MR SAR imagery leads the analysis to a city block scale,
VHR SAR imagery improves the analysis capabilities down
to the building scale [10]–[12]. In the VHR SAR imagery,
the metric-level spatial resolution and the off-nadir imaging
geometry make that a low number of elementary scatterers
be present in the resolution cell, corresponding to different
elements of the building structure. This leads to a complex
and heterogeneous scattering pattern for the building [13].
However, the fine resolution increases the heterogeneity in the
image, as the reduced number of scatterers in the resolution
cell makes the speckle noise not fully developed [9]. An
alternative perspective to identify heterogeneous scattering
contributions on urban targets is represented by Polarimetric
SAR (PolSAR) imagery, which provides information on mul-
tiple polarimetric channels. Polarimetric target decompositions
have been proposed in the literature in order to discriminate
targets with different scattering behavior. In particular, this has
been exploited in the detection of urban areas from single-
time polarimetric images. Few works addressed the damage
analysis of urban areas with multi-temporal polarimetric data
[14]–[16], mostly because of the possibility of obtaining multi-
temporal full-polarimetric data, especially with very high
spatial resolution.
Instead, several works addressed the problem of CD in urban
areas with single-polarimetric VHR SAR data. They include
the supervised analysis of backscattering patterns in the post-
event SAR image [17], [18], the joint analysis of VHR
SAR and optical data [12], [19], [20], the use of ancillary
information coming from GIS layers with SAR data [5], [21]
and the multi-temporal analysis of VHR SAR data in an
unsupervised manner [6], [7], [22]–[27].
When considering meter-scale resolution, the data complexity
makes the pixel- and region-based approaches for MR data
not completely reliable for the CD analysis, thus an analysis
based on a higher semantic level was conducted in [22], [28].
This analysis requires the definition of a backscattering model
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of the object for associating a label of changed buildings to
changes in the scattering properties. Several models have been
presented in the literature. Some of the building models aim
at preserving the radiometric information, by means of an
accurate scattering model taking into account geometric and
dielectric parameters of the target [29]. Others are devoted
to the preservation of the geometrical accuracy, by using
the ray-tracing method, which models the scattering and the
propagation through optical rays [30]–[32].
A large interest in the literature has been devoted to the
detection of changes with size comparable to the one typical
of the building [22]. These are namely the changes from
no building to a complete standing building and viceversa.
These changes are named building construction and building
full destruction, respectively. A different situation considers
buildings for which only a part of the structure is affected
by the damage. The effect of the damage on the building
pattern should be larger than the VHR SAR resolution, in
order to be detectable. We refer to this event as building partial
destruction. In spite of the effort for the detection of building
construction and full destruction, a no effort has been spent
in tackling with automatic approaches the partial destruction
case. The latter was mainly conducted by considering visual
inspection of the operator who interprets the image features
thanks to the a priori knowledge of the SAR imaging geometry
and possibly considering the output of detailed SAR image
simulators [11], [33]–[35]. Nevertheless, partially-destroyed
buildings have the same relevance as the fully-destroyed ones
and together may provide enhanced information for rescue and
emergency services.
In this paper, we aim at proposing a model for multi-temporal
backscattering analysis of buildings partial destruction. The
model assumes that the damage impacts the satellite-facing
part and is based on geometrical assumptions about the shape
of both the building and the damage. A backscattering analysis
based on the ray-tracing method in single time is conducted on
the target (i.e., the partially-destroyed building) by varying the
size parameters of the structure and/or the angles with respect
to the SAR sensing direction. The model is highly complex
because of the way the damage perturbs the geometry of the
building. The multi-temporal backscattering signature of the
change is hence derived by comparison of the undamaged and
damaged building models. A sensitivity analysis is conducted
by varying the geometrical parameters and common elements
of the multi-temporal backscattering patterns are inferred and
evaluated, to establish the multi-temporal behavior of the
partial damage.
The novel model for the building partial destruction is inte-
grated in an automatic unsupervised CD strategy [22] designed
originally for the detection of fully-destroyed buildings only.
The resulting approach exploits a hierarchical rationale, based
on the different expected size of the changes, for identifying
both building full and partial destruction. The kind of building
damage is individuated from the backscattering variation by
considering the possible candidates and the expected change
size. For each candidate, spatial properties of the pattern are
evaluated based on the proposed multi-temporal scattering
model. These properties are evaluated through fuzzy member-

ship functions in order to measure the goodness of the building
candidate.
This paper is structured as follows. Sec. II presents the single-
time scattering behavior for the building for different condi-
tions (i.e., standing, fully and partially destroyed). In Sec.III,
the multi-temporal scattering behavior associated with both
building full and partial destruction is derived by comparing
the single-time models. In Sec. IV, the proposed automatic
strategy for the detection of the different damage severity
from multi-temporal VHR SAR data is described. In Sec.
V, experimental results are illustrated. Finally, in Sec. VI,
conclusions and final remarks for future developments are
traced.

II. BUILDING SCATTERING MODEL IN SINGLE-TIME VHR
SAR IMAGES

In this section, a single-time scattering model is presented
for the building under different damage conditions. We recall
models for both standing and fully destroyed buildings from
the literature [22], [31]. Based on the same paradigm, a
novel geometrical model for a partially-destroyed building is
proposed and corresponding scattering pattern is derived. In
general, in the perspective of scattering unsupervised change
detection, the multi-temporal information from complex urban
objects need to be rendered into a set of patterns being robust
to the target structure variability. Thus, some simplifying
geometrical assumptions on the target shape need to be made.
The scattering is then derived with ray-tracing technique based
on them. Let us consider a flat-roof building with rectangular
shape. Let H,W,L be its height and planar dimensions,
respectively. Let θ be the incidence angle of the sensor. For
typical imaging radar missions, θ is a value in the [20◦, 55◦]
interval. The building is considered as generally rotated with
respect to the range-azimuth plane, with orientation angle
φ defined between the segment W and the ground-range
direction. φ ranges in the interval [−π, π].
The scattering model is based on some simplifying assump-
tions about the problem geometry and the application of
the ray-tracing method. The first assumption considers no
perturbations from external elements on the building scattering
signature (i.e., isolated building). This is true if the density of
buildings is not higher than what is required to discriminate
the backscattering contributions of a building at the resolu-
tion of the considered SAR images. The second assumption
considers a structure with fixed height along one or both
planar dimensions. With these assumptions, the ray-tracing
method considers building slices along ground range and
scattering propagation with linear trajectories. The scattering
terms are grouped into surface scattering and additive multi-
bounce contributions, associated with either the surface targets
or the corner reflectors, respectively. The building scattering
analysis is conducted by first assuming the case of φ = 0.
The assumption is later removed and the analysis for the
general case φ 6= 0 is conducted. Each scattering analysis
focuses on the surface scattering and additive multiple bounce
contributions separately.
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(a) (b)

Fig. 1: Standing building: (a) acquisition geometry and building slices for φ = 0; (b) Backscattering profile for a single slice
(only surface scattering), LR ≥ LRT . Scattering terms: a (ground), b (double bounce), c (wall), d (roof), e (shadow). The
signature is represented in ground range.

A. Standing Building

Let us assume that the building is aligned to the range
direction (i.e., φ = 0). In the analysis of the backscattering
signature, we apply the ray-tracing method and consider
building slices (green rectangles in Fig. 1a) along the range
direction. Each slice is characterized by a width LR and a
height profile h assuming value H on the building and 0
outside. For φ = 0, LR coincides with the planar dimension
W (i.e., LR = W ) and all the slices show the same behavior.

Surface scattering: The contributions for the backscattering
coefficient are considered from different building elements,
namely the ground (a), the vertical wall (c) and the roof
(d). The SAR system senses the target with incidence angle
θ and this introduces layover and shadow effects for the
contributions, with terms a + c + d and e, respectively. Fig.
1b gives an example of the backscattering signature for the
single building slice. Two signatures for the surface scattering
are possible, depending on the value of LR compared to a
threshold LRT [12], [22], [31]. LRT is defined in terms of the
building height (H) and the incidence angle (θ), as follows:

LRT = H cot θ (1)

For LR ≥ LRT the layover and the shadow regions are
separated by a region of scattering from the roof d. For
LR < LRT , a second layover region exists, with contribution
a + c. Table I indicates the sequence of surface scattering
regions seen from near- to far-range for the two cases.

TABLE I: Homogeneous surface-scattering regions for stand-
ing building scenario.

Case Geometrical condition Surface scattering contributions
(near- to far-range)

1 LR ≥ LRT a+ c+ d; d; e
2 LR < LRT a+ c+ d; a+ c; e

Multi-bounce contributions: A double-bounce contribution
bwg for the backscattering coefficient is created by the corner
reflector formed by the standing wall (w) and the ground (g).
This contribution is reflected to the sensor with an angle θ
[36].
In order to model the angular dependency of the backscattering
coefficient for the different pattern regions, terms a, c and d

are modeled by assuming Lambert law for the radiation, as
follows:

s = Ks cos2 θ̂, s ∈ {a, c, d} (2)

being θ̂ the angle between the surface normal and the scat-
tering direction (i.e., θ̂ = θ for a, d and θ̂ = π/2 − θ for c
terms, respectively). For the double-bounce contribution bwg ,
a dihedral model with equal plates has been considered [37].
Based on these considerations, a simple model for bwg has
been considered.

bwg ∼ H sin2(θ + π/4) ≈ H sin θ cos θ (3)

Let us now remove the assumption of φ = 0 and consider a
generic value of φ. In this case, each slice has width LR and
a height profile with value H on the building. LR depends on
the azimuth position, the building size and the building orien-
tation. Figure 2a illustrates the acquisition geometry and the
slices (green rectangles) for an oriented building. Slices with
LR ≥ LRT present a backscattering signature as described
in Case 1 of Table I. Conversely, those with LR < LRT
present a backscattering signature as described in Case 2 of
Table I. Additive double-bounce contribution bwg is introduced
in the scattering signature by the corner reflector on each
slice [22]. By considering all the slices and superimposing
surface scattering and multiple-bounce contributions, a two-
dimensional backscattering pattern is derived for the standing
building. Fig. 2b shows an example of the two-dimensional
backscattering pattern for φ = π/4.

B. Fully-Destroyed Building

For every orientation angle, the fully-destroyed building
presents a backscattering signature with surface scattering
contributions from the ground (a) and the uncovered bare
soil (f ), with similar values. No multiple-bounce contributions
exist. Thus, the backscattering signature can be considered as
almost constant over range and azimuth [22].

C. Novel Model for Partially-Destroyed Building

In this section we illustrate the proposed model for a
partially-destroyed building. Let us assume the same building
described in Sec.II-A. Let us assume that a portion of the
satellite facing facade in near range fall down [34]. Since the
facades in far range are occluded because the SAR geometry,
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(a)

(b)

Fig. 2: Standing building with φ = −π/6: (a) acquisition
geometry and building slices; (b) example of backscattering
pattern for a standing building, with W > H cot θ, φ = π/4,
(Ka = 0.2,Kc = Kd = 5).

Fig. 3: Geometric model for the partially-destroyed building.

damages located in the far range need images acquired in
complementary acquisition direction, where they appear in
near range and the model applies the same as illustrated
next. Fig. 3 illustrates the geometric model for the partially-
destroyed building. For the sake of simplicity, the geometrical
model is assumed to have constant height along the direction
determined by L.
The fallen part of the building is defined by height H ,
slope α and planar dimensions ∆W,L, respectively. The fall
produced a debris with surface slope α with respect to the
nadir and planar dimensions (H−∆H) tanα,L, respectively.
Moving to far range, the debris is followed by the undamaged
part of the building, with height H and range and azimuth
dimensions W −∆W,L, respectively. Under the simplifying
assumption that volume is preserved while the building is
falling down, the three parameters {α,∆H,∆W} satisfy the
following equation:

∆W =
(H −∆H)2

2H
tanα (4)

Each slice of the building is characterized by a total width
LR and a height profile h. For φ = 0, all the slices have size
LR = W −∆W + (H−∆H) tanα. h keeps the same height
value for all the slices (see profiles in the green rectangles
of Fig. 4a), namely a ramp rising from 0 to H − ∆H , with
constant slope π/2 − α, on the damaged part and a constant
value H on the non-damaged part, respectively. Each slice
shows the same scattering behavior.
Surface scattering: Because of the off-nadir acquisition angle
θ, the missing layover from the fallen part shifts the signature

to far-range. The contributions to the backscattering coefficient
are considered from both building and debris elements, namely
ground (a), the vertical part of the wall (cw), the debris surface
(cd) and the roof (d). Fig. 4b illustrates an example of the
surface scattering for the single slice of a partially-destroyed
building for φ = 0. The slice signature is characterized by
the presence of layover and shadow effects, with regions a+
cw + d, e respectively. The two regions are separated by two
scattering regions depending on the the value of LR compared
to thresholds LRT1, LRT2. LRT1, LRT2 are defined in terms
of the incidence angle θ and building parameters α,∆H , as
follows.

LRT1 = H cot θ (5)

LRT2 = ∆H cot θ + (H −∆H) tanα (6)

For LR ≥ LRT2 the two regions are separated by a layover
region a + cd + d and a region of scattering from the roof
d. On the other hand, if L < LRT1, the two regions are
separated by two layover regions with values a+cw and a+cd,
respectively. Intermediate cases (i.e., LRT1 ≤ LR < LRT2)
show two layover regions with values a+cd+d and a+cd. The
geometrical conditions and the corresponding backscattering
regions for a single slice are summarized in Table II.

TABLE II: Surface scattering contributions for partially-
destroyed building.

Case Geometrical condition Surface scattering contributions
(near- to far-range)

1 LR ≥ LRT2 a; a+ cw + d; a+ cd + d; d; e
2 LRT1 ≤ LR < LRT2 a; a+ cw + d; a+ cd + d; a+ cd; e
3 LR < LRT1 a; a+ cw + d; a+ cw; a+ cd; e

Multi-bounce contributions: The presence of the debris surface
both reduces the double-bounce region associated with the
corner reflector and introduces two possible multi-bounce con-
tributions for the backscattering coefficient, derived according
to geometrical considerations [36]. These contributions may
either exist or not depending on the parameters θ, α,H,∆H .
The first one is the double bounce bdg (green color in Fig. 4c)
related to the interaction of the debris (d) and the ground (g),
which is reflected to the sensor with an angle 2α + θ. The
second contribution is the triple bounce bwdg (orange color
in Fig. 4c) related to the interaction among the vertical part
of the wall, the debris and the ground, which is reflected to
the sensor with an angle 2α − θ. Both angles are assumed
existing in the interval (0;π/2). The effect of the orientation
angle φ on all the multiple-bounce contributions is assumed
to be negligible. The possible cases are summarized in Table
III.
Terms a, cd, cw and d are modeled by assuming Lambert law
for the radiation.

s = Ks cos2(θ̂), s ∈ {a, cd, cw, d} (7)

being θ̂ the angle between the surface normal and the incidence
direction (i.e., θ̂ = θ for a, d, θ̂ = π/2 − θ for cw and
θ̂ = π/2 − θ − α for cd). Because of the similar material,
debris and the wall are assumed to have similar dielectric
properties and coefficients Kcd ,Kcw (i.e., Kcd ' Kcw = Kc).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3026838, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

5

(a) (b) (c)

Fig. 4: Partially destroyed building: (a) Acquisition geometry and building slices for φ = 0; (b) Backscattering signature with
surface scattering contributions for a single slice based on the ray-tracing method, LR ≥ LRT2. Scattering terms: a (ground),
cw (wall), cd (debris), d (roof), e (shadow); (c) Multiple bounce contributions introduced by the debris (single slice). The slice
is sensed with an incidence angle θ.

TABLE III: Multi-bounce contributions for partially-destroyed building.

Case Geometrical condition Multi-bounce contributions
(near- to far-range)

1 θ ≥ α
Double bounce from vertical wall (θ);
Double bounce from debris (2α+ θ);

2
{

θ < α
H tan θ ≥ (H − ∆H) tanα

Double bounce from vertical wall (θ)
Double bounce from debris (2α+ θ);

Triple bounce (2α− θ).

3
{

θ < α
H tan θ < (H − ∆H) tanα

Double bounce from debris (2α+ θ);
Triple bounce (2α− θ).

For the backscattering associated with the multiple-bounce
contributions, we rely on the same considerations expressed
for bwg . The models for both bdg and bwdg are expressed as
follows.

bdg ∼ KaKc cos(2α+ θ) sin(α+ θ) (8)

bwdg ∼ cos(2α− θ) sin(α− θ) (9)

By considering all the slices and superimposing surface scat-
tering and multiple-bounce contributions, a two-dimensional
scattering pattern is derived for the partially-destroyed build-
ing.
Let us now consider a generic angle φ 6= 0. To constrain
the damage to the satellite-facing facade, φ is limited to the
interval [−π/2, π/2]. Other values refer to a building with
damages on one of the occluded facades. Without loss of
generality, we focus the analysis for positive φ values. The
patterns for the corresponding negative values can be derived
by applying the same procedure. The building slices are now
characterized by width LR and height profile h, depending
on the azimuth position, the geometrical parameters and the
orientation angle. Furthermore, the slices of the oriented
building present debris with a slope angle β with respect to
the vertical direction. β depends on both angles α and φ as
follows.

β = arctan(cotα cosφ) (10)

Four kinds of height profile can be associated with h for the
general case, namely profile A, B, C and D. Each of the height
profiles can be described together with its backscattering
analysis, derived by applying the ray-tracing:

• profile A (yellow in Fig. 5): the slice only includes the
debris. h assumes values rising from 0 to LR cotβ with
constant slope π/2 − β. The corresponding backscatter-
ing signature is composed by contributions a and cd,

respectively. Layover of the two contributions occurs for
β < π/2− θ values. Double-bounce term bdg may occur
depending on the conditions described in Table III.

• profile B (dark green in Fig. 5): depending on the value
of φ, the profile has two possible behaviors. For small
values of φ (i.e., φ ≤ φ0), the slice includes both the
debris and the undamaged part. h assumes values rising
from 0 to H−∆H with constant slope π/2−β associated
with the near-range debris and constant value H on the
far-range undamaged part of the building. In this case,
the backscattering signature is characterized by surface
scattering and multiple bounce contributions as described
in the analysis for φ = 0 (see Tables II and III), with
angle β for the slice.
Conversely, for large values of φ (i.e., φ > φ0), the
slice only includes the debris and height profile assumes
values rising from value h0 to h0+LR cotβ with constant
slope π/2−β, being h0 ∈ [0, H −∆H −LR cotβ]. The
corresponding backscattering signature is similar to that
in Table I, with a region of layover a+cd+cw and a region
of shadow e. Two possible multi-bounce contributions,
with angles θ and 2α+ θ, are associated with the corner
reflector of h0 and the debris slope, respectively. φ0 is
derived based on geometrical considerations, as follows.

φ0 = arcsin

[
LA cosφ

(H −∆H) tanα sinφ

]
(11)

• profile C (brown in Fig. 5): the slice includes both
the debris and the undamaged part. The height profile
assumes values rising from h1 to H−∆H with constant
slope π/2− β associated with the near-range debris and
a constant value H on the far-range undamaged part of
the building, h1 ∈ [H − ∆H − LR cotβ;H − ∆H].
For the corresponding backscattering signature, same
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considerations traced above for φ = 0 hold. Two further
contributions are associated with the positive value h1,
namely a decrease of the size along range of the regions
associated with the cw contribution and a double bounce
region associated with the part of the debris with height
h1.

• profile D (light green in Fig. 5): the slice includes only the
undamaged part. The backscattering signature is derived
based on the considerations for the standing building
slices in Sec. II-A.

By considering all the slices and superimposing surface scat-
tering and multiple-bounce contributions, a two-dimensional
backscattering pattern is derived for the partially-destroyed
building. Fig. 6 shows an example of two-dimensional
backscattering pattern for φ = π/4, with damage parameters
α = π/6,∆H = H/4.

Fig. 6: Example of backscattering pattern for a partially-
destroyed building for φ = −π/6,∆H = H/4, α = π/6
(Ka = 0.2,Kc = Kd = 5).

III. BUILDING SCATTERING MODEL IN MULTI-TEMPORAL
VHR SAR IMAGES

Based on the single-time scattering models derived in Sec.
II, a multi-temporal analysis for the building damage assess-
ment is conducted by comparing the patterns in pre- and post-
event. The expected behavior for the multi-temporal pattern

can be characterized by defining peculiar geometrical features
on the change regions of the multi-temporal scattering pattern.
Two possible damage situations are considered. The first
situation considers the complete destruction of building, by
comparing patterns for standing and fully-destroyed building
associated with pre- and post-event, respectively [22]. The
second situation is a novel contribution of this work and
considers the partial destruction of the building. This is ob-
tained by considering the pattern of the standing building and
the one of partially-destroyed building for the pre- and post-
event, respectively. The multi-temporal comparison highlights
presence of areas with scattering increase (ωI ), decrease (ωD)
or no change (ωnc) of scattering being peculiar for the two
cases.

A. Building Full Destruction

For building full destruction, the multi-temporal comparison
generates a pattern with a large increase region RI and
multiple adjacent decrease regions (Fig. 7a). The increase
region is associated with the disappearance of the building
shadow in far range. The decrease regions are associated
with the disappearance of the different scattering contributions
associated with the building structure in near range. The
opposite situation, describing the building construction, can be
described in the multi-temporal analysis an increase region in
near-range and decrease region in the far-range, respectively.
For sake of simplicity in the multi-temporal analysis, adjacent
decrease regions are grouped into a single region RD. RD is
characterized by area SD and length lD along the azimuth
direction. Corresponding values SI , lI are defined for the
increase region RI . An area measure STOT is then defined
for the convex hull of the two regions. Based on these spatial
parameters, four spatial features can be defined for the pair
of regions RI , RD, in order to describe the multi-temporal
pattern for the building full destruction (see Fig. 7b).

Fig. 5: Example of acquisition geometry of partially-destroyed building for φ 6= 0 and building slices. Aspect angle effect
generates four profiles, namely A (yellow), B (dark green), C (brown) and D (light green).
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(a)
(b)

Fig. 7: (a) Multi-temporal pattern for building full destruction,
for φ = π/4. Backscattering increase and decrease are repre-
sented in green and magenta, respectively; (b) representation
of the geometrical features associated with the pair of regions
RI (in green) and RD (in magenta) for the multi-temporal
scattering pattern.

• area ratio ra : minimum ratio between the areas SI and
SD.

ra = min{ SI
SD

,
SD
SI
} (12)

• azimuth length ratio rl : minimum ratio between the
lengths lI and lD.

rl = min{ lI
lD
,
lD
lI
} (13)

• orientation ζ : clock-wise angle between the range di-
rection and the line connecting the centroids of the two
regions.

• total change ratio rt : ratio between the sum of the areas
SD, SI and the convex hull area STOT .

rt =
SD + SI
STOT

(14)

From the literature, we expect that the ratio values tend to
one (i.e., ra, rl, rt ' 1), while orientation tend to zero (ζ ' 0)
[22].

B. Novel Model for Building Partial Destruction

The proposed multi-temporal pattern for building partial
destruction presents a sequence of regions along the range
direction being more complex than the one of building full
destruction and a dependency on both the orientation angle φ
and the damage parameters ∆H,α. A general characterization
of the pattern is thus conducted with a sensitivity analysis, by
considering θ > π/4 and LR > H cot θ. We assume that
Kc,Kd are similar and much larger than Ka (i.e., Kc '
Kd,Ka � Kd). ∆H,α are the free parameters ranging in
[H/4, 3H/4] and [π/12, π/3], respectively. Very large values
for parameters ∆H,α are associated with geometries which
are not likely to occur in real scenarios and thus excluded.
The orientation angle varies in [0, π/3]. Higher values make
the damaged facade tend to be oriented along the azimuth
direction, thus the slices of the multi-temporal pattern tend to
become close to profile D, with constant height on the slice.
Fig. 8 shows multi-temporal backscattering patterns of the
building partial destruction, derived for two damage options

and two different orientation angles. For the sake of simplicity
in the analysis, both adjacent increase and decrease regions
are grouped into a single one. From near- (subscript 1) to
far-(subscript 2) range, the multi-temporal pattern is com-
posed by the sequence of decrease (subscript dec), increase
(subscript inc)and no-change (subscript nc) in backscattering:
Rdec1, Rnc, Rinc1, Rdec2, Rinc2 characterizing the damaged
part; and a large no-change region, associated with the part
of the building not affected by the damage. This no-change
region is placed in far-range, with geometry dependent on
the building orientation. Most of the change regions tend
to be oriented according to φ (i.e., uniform along azimuth
for φ = 0). Conversely, Rinc2 is elongated in the range
direction, with size decreasing for φ tending to zero. Decrease
regions Rdec1, Rdec2 are associated with the fall of the debris
both reducing the near-range layover region and widening the
far-range region associated with d. No-change region Rnc
is associated with the part of the facade footprint showing
no variations in the total scattering. Increase region Rinc1
is associated with the scattering from the debris cd > cw.
Increase region Rinc2, located into slices corresponding to
the profile A of Fig. 5, is caused by the far-range height,
depending on angle β and is smaller than pre-event value H
(i.e., W cotβ < H). This causes a reduction of the shadow in
the multi-temporal scattering.
For large values of ∆H , the width along ground range for
all the decrease and increase regions tends to be small, while
that for the no-change regions tends to be large. Large ∆H
corresponds to small ∆W for (4), so that the damage tends
to be limited and the slice tends to behave as the standing
building one. Large α corresponds to large ∆W for (4). This
widens the region with scattering d and makes Rinc1 large.
On the other hand, large α makes slices following profile
A with a small height, and thus a small shadow region.
In the multi-temporal pattern, this makes Rinc2 large along
the range direction. Changes in the region sequence can be
seen in presence of a strong triple-bounce contribution in
the backscattering pattern of the partially-destroyed building,
generating a local increase of backscattering. Nevertheless,
the presence of this term is dependent on both α and φ, as
described above.
The multi-temporal patterns in the sensitivity analysis are used
for deriving a multi-temporal backscattering prototype of the
building partial destruction. In this work, patterns with similar
characteristics have been considered by assuming the condition
α < π/6. A geometrical analysis of the regions has been
conducted for this pattern, by focusing on two significant
regions, namely the decrease region Rdec1, associated with
the reduced size of the layover region, and the increase region
Rinc1, associated with the layover with stronger scattering
given by cd. Change regions may be concave. Thus, the convex
skull, defined as the largest convex polygon inscribed in the
considered region [38], was selected for both Rdec1, Rinc1.
Let R̃I , R̃D be the convex skull approximation for Rinc1 and
Rdec1, respectively. Similarly to what defined in Sec. III-A, R̃I
is characterized by area S̃I , and length l̃I , along the azimuth
direction. Corresponding values S̃D, l̃D are defined for the
region R̃D. Let S̃TOT be the area of the convex hull of the
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(a)

(b)

Fig. 8: LR Patterns for partially-destroyed buildings with
φ = −π/4 and different values set for parameters {α,∆H}:
(a) {π/12, H/4}; (b) {π/6, 3H/4}. Areas of backscattering
decrease and increase are represented in magenta and green,
respectively.

pair R̃I , R̃D. Based on these spatial parameters, four spatial
features are defined for describing the multi-temporal pattern
for the building partial destruction:

• area fill ratio r̃a: ratio between the areas S̃I and S̃D.

r̃a =
S̃I

S̃D
(15)

• azimuth lengh ratio r̃l: minimum ratio between the
lengths l̃I and l̃D.

r̃l = min{ l̃I
l̃D
,
l̃D

l̃I
} (16)

• orientation ζ̃: clock-wise angle between the range direc-
tion and the line connecting the centroids of R̃I , R̃D.

• total change ratio r̃t: ratio between the sum of the areas
S̃I , S̃D and the convex hull area S̃TOT .

r̃t =
S̃I + S̃D

S̃TOT
(17)

IV. PROPOSED APPROACH FOR UNSUPERVISED BUILDING
CHANGE DETECTION IN VHR SAR IMAGES

In this section, a novel automatic hierarchical strategy for
the unsupervised detection of building changes with different
semantic meaning is proposed. Let X1, X2 be the two input
intensity VHR SAR images, with size M × N , acquired
before and after the change event, respectively. The strat-
egy aims at deriving a multi-class CD map with 5 classes
{ω0, ω1, ω2, ω3, ω4}. The classes are described as follows:
1) area with no change (ω0); 2) building full destruction
(ω1); 3) building construction (ω2); 4) building partial de-
struction (ω3); 5) change in backscattering not associated with
buildings (ω4). The novelty of the proposed strategy lies in
both integrating the proposed scattering model for building
partial destruction in an automatic building CD strategy and
considering a change hierarchy associated with the different
spatial scales (see Fig. 9) to formulate the CD problem. Classes
are reported as {ω1, ω2} for the first hierarchical level and
{ω0, ω3, ω4} for the second one. The decision on ω0 is left to
the second hierarchical level because the partially destroyed
building model includes no-change information (see III-B.
Fig. 10 illustrates the general block scheme of the proposed

Fig. 9: Hierarchical representation of the Building CD prob-
lem.

approach. The scheme namely presents: a processing stage
for the multi-temporal comparison and the generation of a
backscattering CD Map; Fully-Destroyed Building Detection
(FDBD) on the first hierarchical level, for identifying classes
ω1, ω2; a changed-building mask generation for removing
ω1, ω2 from the analysis at second level; Partially-Destroyed
Building Detection (PDBD) on the second hierarchical level,
for identifying classes ω0, ω3, ω4; fusion of the building CD
maps. Both FDBD and PDBD consider two steps. The first
one is for detecting the best changed building candidates in the
scattering CD map. The second one is associated a probability
of representing a fully/partially destroyed or a new building
to the candidates, based on the pattern geometrical parameters
described in Sec. III-A and Sec. III-B. The association is
conducted via a set of fuzzy membership functions. The
parameters used in the fuzzy set are tuned based on the model
of the building and its robustness to noise and clutter.

A. Multi-temporal comparison and Backscattering CD
Multi-temporal comparison of X1, X2 is conducted by

means of the log-ratio operator. The log-ratio image XLR is
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defined as follows:

XLR = log
X2

X1
(18)

Log-ratio operator is frequently used as a pixel-based index in
SAR CD analysis, as it both mitigates the speckle effect on the
multi-temporal information and highlights both the increase
and decrease of backscattering, which assumes positive and
negative values in XLR, respectively [22], [39]–[42]. Despite
the large mitigation of the speckle effect, a residual noise
contribution may still impact on the CD analysis. A multi-scale
decomposition step is applied to XLR in order to overcome
these issues [22], [43]–[45]. The output of the decomposition
process is a set of images Xn

LR, n = 0, ..., N−1. Images with
large n, have high robustness to noise but small level of detail
and vice versa. In the wavelet decomposition, XLR is assumed
as X0

LR (i.e., X0
LR = XLR). For this, 2D Discrete Stationary

Wavelet Transform (2D-SWT) is selected as as multi-scale
operator, following [22], [44]. At scale level N−1, changes on
small elements are neglected, while the large ones are detected
as homogeneous change areas. The optimal value N is chosen
based on the minimum building footprint size, in order to
preserve the edge information while mitigating the residual
speckle effect.
Let Xopt

LR be the decomposition at the optimal scale level (i.e.,
Xopt
LR = XN−1

LR ). An unsupervised thresholding is performed
on the Xopt

LR , in order to derive a backscattering CD map with
classes ωI , ωD, ωnc. The thresholding is performed according
to the split-based analysis introduced in [3]. Let SR and
SA be the dimensions of a split. Split-based analysis divides
the image Xopt

LR into splits with size SR × SA in order to

have populations of ωI , ωD comparable to that of ωnc. The
variance of samples within the split is considered as a measure
of change content (the higher the variance the higher the
probability that changes exist in the split). A subset of splits
with largest variance is defined for the threshold selection,
based on a split selection parameter B. SA, SR are chosen
based on the average building size on the scene, while B is
tuned based on the application. Small B values correspond to
a larger proportion of the total change information and vice
versa.
A Bayesian thresholding is applied on the set of selected splits,
by assuming that samples of the set be modeled as a mixture
of three Gaussian distributions. Unknown prior probabilities
and marginal distribution parameters are estimated with EM
algorithm [42]. The estimated thresholds are then extended to
the whole image and backscattering CD map Mopt is obtained.

B. Hierarchical level 1: Fully-destroyed building detection
(FDBD)

Starting from Mopt, building change detection is performed
on each hierarchical level by detecting the changed-building
candidates and then performing spatial analysis on each of
them in order to detect classes. Changed-building candidates
are generally associated with areas with a large density of
changed pixels. The candidate detection is performed via a
set of moving windows applied on the scattering CD map,
following the approach in [22]. In order to capture most of
the possible orientations for the changed-building candidates,
five possible windows Wβ , β = 1, ..., 5 with constant area
and different geometry are considered in the analysis. The

Fig. 10: Block scheme of the proposed approach.
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spatial analysis of the candidates is conducted by evaluating
the geometry of the change regions (as defined in both Sec.
III-A and Sec. III-B) with a fuzzy inference system, in order
to detect building classes.
For the first level, the changed building candidates are detected
by using a sliding window with size parameters z1, z2 on
Mopt. Scanning from left to right, the total number of changed
pixels inside the window is computed. Fig. 11 shows the
set of the possible moving windows applied in the candi-
dates detection. In particular, Wβ includes four rectangular
windows with size z1 × z2 and different orientation angles
(i.e., {π/2, π/4, 0,−π/4}) and a square window of size√
z1z2 ×

√
z1z2. As the FDBD is devoted to completely

changed building candidates, the values of z1, z2 are selected
based on the average building footprint size on the site.

Fig. 11: Set of moving windows used for the candidate
detection with dimensions z1, z2.

Let Wβ(i, j), β = 1, ..., 5 be one of the possible moving
windows centered on the pixel (i, j), with size parameters
z1 × z2. Let M (FD)

Wβ(i,j)
= Mopt|Mopt ⊂ Wβ(i, j) be the set

of pixels of Mopt in Wβ(i, j), indicating the amount of pixels
belonging to ωD or ωI . A candidate index C(FD)(i, j) for the
pixel (i, j) can be defined as the maximum value of the set,
indicating the amount of the change information detected in
the set of windows.

C(FD)(i, j) = max
β=1,...,5

card(M
(FD)
Wβ(i,j)

∈ ωD∧M (FD)
Wβ(i,j)

∈ ωI)
(19)

where card(·) represents the cardinality of the set. Finally, a
binary map of the candidates C(FD)

bin is derived by thresholding
C(FD) with threshold value T (FD)

C . The set of candidates is
extracted from C

(FD)
bin by considering the connected compo-

nents of the changed regions and by applying the flood-fill
algorithm with an eight-connected neighborhood [22], [46].
The threshold is chosen based on the size of the moving
window (i.e., T (FD)

C = τFDz1z2, 0 < τFD ≤ 1).
A bounding box is traced for each of the candidates and
all possible region pairs with an increase and a decrease
region are considered for a spatial analysis. Without loss of
generalization, let us assume that one region of decrease and
one region of increase exist inside the single candidate box.
If more regions of increase or decrease exist, spatial analysis
is conducted on each possible pair and the one providing the
best candidate score is assumed as most reliable. The spatial
analysis of the region pair is conducted with a fuzzy inference

(a) (b)

Fig. 12: Examples of membership function: a) Sigmoid func-
tion with a = 10, c = 0.5; and b) Gaussian function with
µ = 0.35, σ2 = 0.332.

system based on the geometrical parameters of the pair [47].
The analysis focus on the set rl, ra, rt, ζ. As described in Sec.
III-A, reliable values of ra, rt, rl are expected to be close to 1,
as there is no sensible prevalence of the values of either RI or
RD. On the other hand, reliable values of ζ are expected to be
close to zero [22]. Thus for the evaluation, sigmoid member-
ship functions Σl(rl, al, cl),Σa(ra, aa, ca),Σt(rt, at, ct) and
Σζ(|ζ| , aζ , cζ) are chosen for the features rl, ra, rt and ζ,
respectively. Sigmoid membership function Σ(r, a, c) (Fig.
12a) is described by parameters a which tunes the slope of
the function, and the constant c which locates the center of
the function, respectively, as follows:

Σ(r, s, t) =
1

1 + e−a(r−c)
(20)

Parameters are set as:
• aa > 0
• ca > 0
• at > 0
• ct > 0
• al > 0
• cl > 0

for the ratio-based features. This indicates a direct proportion-
ality between the ratio value and the probability of a candidate
to be a fully-destroyed building.

• aζ < 0
• cζ > 0

for the orientation feature, indicating an inverse proportionality
where the higher the angle (i.e., lower alignment) the lower
the probability of a candidate to be a fully-destroyed building.
For each pair of candidate regions, the aggregate membership
ηFD = ΣlΣaΣζΣt is computed for a global evaluation. The
candidates with ηFD greater than a membership threshold
T

(FD)
η are labeled either ω1, ω2, depending on whether RD

appears in near range and RI in far range or vice versa [22].
The objects detected as ω1, ω2 are masked out from the map
Mopt, resulting in a map M (mask)

opt .

C. Hierarchical level 2: Partially-destroyed building detection
(PDBD)

The analysis of the PDBD is structured with the same
paradigm of the FDBD, because of the geometrical properties
of the multi-temporal model for the partially-destroyed build-
ing (Sec. III-B), but it accounts for the different size and spatial
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properties of the backscattering signature of partial damages.
For the second hierarchical level, the changed building candi-
dates are detected from M

(mask)
opt by using a sliding window

with size parameters z1, z2, scanning from left to right and
counting the total number of changed pixels inside the window.
The windows keep the same set of orientation values as in Fig.
11. The detection provides a candidate index C(PD) indicating
the amount of the change information in the set of windows. A
binary map of the candidates C(PD)

bin is derived by thresholding
C(PD) with threshold value T

(PD)
C , chosen based on the

size of the moving window (i.e., T (PD)
C = τPDz1z2, 0 <

τPD ≤ 1). The set of candidates is extracted from C
(PD)
bin by

considering the connected components, similarly to what done
in FDBD. In order to avoid the detection of a large number of
small candidates, window size parameters are kept similar to
those considered in the first hierarchical level, while threshold
value is smaller.
A bounding box is traced for each candidate and a spatial
analysis is conducted on region pairs R̃I , R̃D. For the case
of building partial destruction, the spatial analysis focuses on
the set r̃l, r̃a, r̃t, ζ̃. For the evaluation, sigmoid membership
function Σl(r̃l, ãl, c̃l), defined in (20), and Gaussian member-
ship functions γa(r̃a, µa, σa), γt(r̃t, µt, σt), γζ(ζ̃, µζ , σζ) are
chosen according to the physical meaning of features r̃l, r̃a, r̃t
and ζ̃, respectively. Gaussian membership function γ(r, µ, σ)
(Fig. 12b) is described by parameters µ and σ associated with
mean and standard deviation of the function, respectively, as
follows.

γ(r, µ, σ) = e
−(r−µ)2

2σ2 (21)

All the parameters of the four membership functions are
set with real positive values. For each pair, the aggregate
membership ηPD = γaγζγtΣl is computed. The candidates
both presenting a pair of regions with decrease and increase
in near and far range, respectively, and having a value ηPD
greater than a membership threshold T

(PD)
η are classified as

building partial destruction (ω3).

D. CD Map Fusion

An overall building CD map is obtained by combining
information from Mopt and the output maps from both FDBD
and PDBD. Regions of no-change in backscattering are la-
beled as ω0. Regions of ωI , ωD not associated with any of
the building models (i.e., ω1, ω2, ω3 classes) are labeled as
general change (ω4). Remaining regions of no backscattering
variations are labeled as no-change (ω0). The overall building
CD map represents ω ∈ {ω0, ω1, ω2, ω3, ω4}.

V. EXPERIMENTAL RESULTS

In order to validate the proposed approach, two datasets
of multi-temporal VHR SAR images with size 1024 × 1024
pixels have been considered. The two datasets describe two
residential areas in the city of L’Aquila (Italy), which has
been interested by a strong earthquake that caused the collapse
of several buildings and relevant damages to many others,
together with the death of several civilians. The first dataset
is a residential modern area outside the inner city, for which

most of the buildings can reasonably be assumed as isolated
from the neighbors. The second dataset is near a medieval
residential area in the inner city, in which part of the scene
presents buildings that are very close to each other and thus
single backscattering features of buildings are difficult to be
detected at the resolution of the available SAR images. This
aspect makes the building change detection more complex as
building backscattering may slightly differ from the theoretical
one because of occlusion from or interaction with neighboring
buildings. The selection of the two datasets has been subjected
to both the presence of damaged built-up structures with high
severity and the low building density that favors the use of
the building scattering model. For both the multi-temporal
datasets, pre-event and post-event VHR SAR images have been
acquired by the Cosmo-SkyMed constellation in Spotlight
mode on April 5th, 2009 and September 12th, 2009 respec-
tively. Both images are in HH polarization, have incidence
angle θ = 53◦. After standard processing the level 1C (geo-
coded ellipsoid corrected) images show a spatial resolution
of 1 meter and a 0.5m × 0.5m pixel spacing. Radiometric
calibration and co-registration were performed.
For the validation, a reference map of the fully- and partially-
destroyed buildings in the area has been derived based on
a post-event damage survey conducted on site. The survey
provided a building damage map with EMS98 scale [48].
Because of the damage grade and the spatial resolution of
the data, the attention was focused on grades 4 (partially
destroyed) and 5 (fully destroyed) of the EMS scale. The
analysis has been refined to the best of our abilities by a visual
inspection of an ortho-photo of the crop acquired after the
seismic event and by taking into account the SAR geometry
of acquisition. For buildings with lacking information of the
EMS damage, the visual inspection has been the only factor for
the generation of the reference. Detection accuracy has been
evaluated at building level, evaluating the correct detections
and mis-classifications for the classes ω1, ω2 and ω3. In the
following, a more detailed description of the scene and the
performance of the proposed approach are reported for the
two crops.

A. Crop 1: Modern Residential Area

The first crop has a size of 1024×1024 pixels and represents
the southern part of inner city. Fig. 13a shows a multi-temporal
false color composition of the two SAR images of Crop 1,
where areas of backscattering increase and decrease appear in
magenta and green, respectively. Fig. 13b shows the post-event
ortho-photo, with red an yellow polygons indicating fully-
and the partially-destroyed buildings, respectively. A total of
200 buildings were counted. Among these, 8 buildings were
classified as fully destroyed (ω1), 6 as partially destroyed (ω3).
The proposed approach computed the log-ratio feature XLR

and performed multi-scale analysis has been conducted on
XLR, generating the sequence {X0

LR, ..., X
N−1
LR }. The optimal

scale level N has been selected considering the average
building size and the noise level of the SAR images. It has
been demonstrated that the value N = 4 preserves radar
footprint of buildings with size larger than 8 meters, which
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(a) (b)

(c) (d)

(e) (f)

Fig. 13: Crop 1: a) Multi-temporal false color composition
of SAR images (R,B: September 2009, G: April 2009); b)
Optical post-event image; c) Backscattering CD Map Mopt,
with increase and decrease represented in magenta and green,
respectively; d) Candidate gray-scale map C(FD); e) Candi-
date gray-scale map C(PD); f) Multi-class building CD map
(ω1 (red), ω3 (yellow), ω4 (blue)).

is compatible with the minimum size of building footprints
in the considered scenario [22]. The impulse response of the
filters in the 2D-SWT have been chosen from the Daubechies
family with order 4 [43]. The split-based analysis has been
conducted on XN−1

LR for deriving the backscattering CD map
Mopt. The split size has been selected by taking into account
the average size of the buildings which was estimated to
be L × W × H = 25 × 20 × 13m3. By following [49],
projecting in ground-range geometry, and taking into account
the pixel spacing of 0.5 m along both the range and azimuth
directions, it resulted in SR = 120 and SA = 40 pixels,
respectively. The selection of the splits with highest change
content has been conducted by selecting B = 3. Previous
experimental results conducted on this site [22] (as well as
on others [3]) proved how the split-based approach shows
robust performance with respect to the change in the split

size. In particular, the robustness proved was proved with
SA and SR ranging in the intervals [20; 60] and [80; 170],
respectively [22]. On the samples of the split subset, no-
change and change classes have been separated by estimating
the statistical unknown parameters with the EM algorithm
and applying the Bayesian thresholding. Fig. 13c shows the
map Mopt, in which backscattering increase and decrease are
represented in green and magenta, respectively.
FDBD has been conducted on the map, starting with the
analysis based on the sliding window for the extraction of
the building candidates. FDBD detects the presence of fully-
destroyed buildings, thus the window size has been selected
comparable to the minimum building footprint, with values
z1 = 40, z2 = 20 respectively [22]. Fig. 13d shows the output
map generated by the sliding window. Threshold scale value
τFD = 0.2 (thus T

(FD)
C = 160) was selected in order to

limit the outliers in the candidate analysis. This resulted in
a total of 52 building candidates. For each of the building
candidates, the proposed fuzzy rules have been applied. Ag-
gregate membership ηFD has been derived and thresholded
for detecting fully-destroyed buildings. The threshold was
selected by considering a limit case of 0.6 for the membership
function of the single rules, resulting in an aggregate value
T

(FD)
η = 0.125 for η(FD). The value is compatible with

the considerations asserted in [22]. After the masking of the
detected buildings on Mopt, PDBD has been conducted on
the masked map. In order to avoid a large number of small
regions, the window size has been selected with same size
of that in FDBD. The threshold for the candidates detection
in this step has been selected smaller than that required for
the FDBD (i.e., τPD = 0.0725). The analysis yielded a
set of 139 candidates. The proposed fuzzy rules have been
applied on the candidates. Aggregate membership ηPD has
been derived and thresholded. An overview of the parameters
considered in the analysis is reported in Table IV. The fuzzy
membership function parameters were set according to the
physical meaning of the tested features (see Sec. III and IV)
and in agreement with the results of some initial empirical
tests. The method showed to be robust to the selection of
these values. The maps obtained with the application of the
two fuzzy sets have been fused in the final multi-class building
CD map (see Fig. 13f).
Table V reports the quantitative assessment for crop 1. With
the proposed approach, 7 out of 8 buildings were correctly
labeled as ω1 (see Fig. 14a, [22]), while 4 out of 6 as ω3.
The three miss detections correspond to a fully- and partially-
destroyed building labeled as general change and a partially-
destroyed building labeled as no change, respectively. A total
of 5 false alarms was reported for building misclassified as ω3.
It is worth noting that the five false alarms are buildings not
following the model of partially-destroyed building, but still
characterized by a damage level EMS4 in the survey [48].
From a qualitative analysis, the miss detection of the fully
destroyed building (ω1) may be probably explained by the
influence of the surrounding buildings and vegetation on the
multi-temporal building footprint (see Fig. 14b and 14c).
Most of the false alarms can be associated with the presence
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TABLE IV: Parameters used in the experiments: (a) common
parameters; (b) FDBD and PDBD specific parameters.

Parameter Value
N 4
SR 120
SA 40
B 3
z1 40
z2 20

(a)
FDBD PDBD

Parameter Value Parameter Value
τFD 0.2 τPD 0.0725
T

(FD)
η 0.125 T

(PD)
η 0.125

aa 10 µa 3.6
ca 0.3 σa 1.55
al 10 ãl 10
cl 0.5 c̃l 0.15
aζ -10 µζ π/8
cζ π/3 σζ 0.4
at 30 µt 0.45
ct 0.5 σt 0.12

(b)

TABLE V: Crop 1: Detection assessment of the proposed
approach.

Building Detection Assessment
Correct Detections

Fully Destroyed (ω1) 7
Partially Destroyed (ω3) 4

Missed Detections

Fully Destroyed
detected as Partially Destroyed (ω3) 0

detected as general change (ω4) 1
detected as no change (ω0) 0

Partially Destroyed
detected as Fully Destroyed (ω1) 0
detected as general change (ω4) 1

detected as no change (ω0) 1

of vegetated areas close to the buildings, creating a multi-
temporal behavior for the scattering not clearly predictable nor
considered in the backscattering model (see Fig. 14d) [35].

B. Crop 2: Medieval Residential Area

Fig. 15a shows the multi-temporal false color composition
of the two SAR images for the second dataset, with green
and magenta mapping the backscattering increase and de-
crease, respectively. Fig. 15b shows the corresponding post-
event ortho-photo. From the ortho-photo, 165 buildings were
counted. Among these, 3 were classified as fully destroyed, 4
as partially destroyed. The approach considered the generation
of the log-ratio XLR and the use of the wavelet-based multi-
scale analysis for generating the robust multi-temporal feature
XN−1
LR . N = 4 was selected as optimal scale value. Split-

based CD analysis was conducted on XN−1
LR for generating

the backscattering CD map (see Fig. 15c). For the FDBD,
a sliding window with size z1 = 40, z2 = 20 was selected
for the candidate detection. Fig 15d shows the output map
generated by the sliding window in the FDBD. The thresh-
olded map provided a set of 85 possible candidates. The set
of fuzzy rules was applied on the building candidates and the
aggregate membership ηFD was thresholded. An overview of
the parameters selected in the fuzzy analysis is presented in
Table IV. The fuzzy parameters are selected based on both

(a) (b)

(c) (d)

Fig. 14: Crop 1: Examples for buildings detected by the pro-
posed approach: a) miss (above) and correct (below) detection
for Fully-Destroyed building class; b) correct detection for
Partially-Destroyed Building class; c) false alarm for Partially-
Destroyed Building class; d) miss detection for Partially-
Destroyed Building class.

the geometry of the multi-temporal signature, the robustness
of the fuzzy detection step, and their physical meaning (see
Sec. III and IV). With the masking of the elements in ω1, ω2,
the PDBD analysis was conducted. Same parameters were kept
for the sliding window. A threshold scale value τPD = 0.1 was
selected slightly higher in order to have a robust detection in
presence of local vegetated areas (see Fig. 15b). This provided
a set of 141 candidates. The resulting building candidates have
been analyzed with the proposed fuzzy logic set. Thresholding
on the aggregate membership values have has been finally
conducted. The final CD map is reported in Fig. 15f.

TABLE VI: Crop 2: Detection assessment of the proposed
approach.

Building Detection Assessment
Correct Detections

Fully Destroyed 2
Partially Destroyed 2

Missed Detections

Fully Destroyed
detected as Partially Destroyed 1

detected as general change 0
detected as no change 0

Partially Destroyed
detected as Fully Destroyed 0
detected as general change 2

detected as no change 0

Table VI reports the performance analysis for Crop 2. The
proposed approach presents the correct detection of 2 fully-
destroyed building (ω1) and 2 partially-destroyed buildings
(ω3), with the 3 miss detections, namely 1 fully-destroyed and
2 partially-destroyed buildings. However, it is worth noting
that one of the miss detection associated with ω1 has been
detected as ω3, while both the miss detections in ω3 are labeled
as ω4. In other words, mislabeled partially destroyed buildings
do not represent missed alarms since they are detected as
changes anyway, this is important in an emergency scenario.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15: Crop 2: a) Multi-temporal false color composition
of SAR images (R,B: September 2009, G: April 2009); b)
Optical post-event image; c) Backscattering CD Map Mopt,
with increase and decrease represented in magenta and green,
respectively; d) Candidate gray-scale map C(FD); e) Candi-
date gray-scale map C(PD); f) Multi-class building CD map
(ω1 (red), ω2 (green), ω3 (yellow), ω4 (blue)).

The proposed approach introduced 6 false alarms in the two
hierarchical levels, namely 1 associated with ω1, 2 to ω2

and 3 for ω3, respectively. This is a very good result given
the complexity of typical Italian Medieval Residential urban
scenarios where building density is high with respect to the
resolution of the SAR images. Buildings appear juxtaposed
or at very small (below the resolution of the sensor) distance
and a strong presence of vegetation in the local scene can
be observed. In this situation, the backscattering of partially
destroyed buildings may slightly differ from the theoretical
one because of occlusions from and interaction with the
backscattering of neighbouring objects. In this perspective we
believe that the method demonstrated very good capabilities in
detecting the small changes associated with partially destroyed
buildings.

VI. CONCLUSION

In this work, a novel approach for building change
detection in multi-temporal VHR SAR has been presented.
The approach defines the building-change detection problem
as being hierarchical to separate new, fully-destroyed and
partially-destroyed buildings in light of that they happen
at different spatial scales. To this end a set of fuzzy-based
geometrical rules has been defined for each kind of change.
The ones associated with partially destroyed buildings are
based on the proposed novel single and multi-temporal
scattering models. The pre- and post-event models are
obtained by applying the ray-tracing method and the post-
event one makes some assumptions about the geometry
and the size of the building and its damaged part. The
multi-temporal scattering behavior is computed by comparing
the pre- and post-ones.

Validation has been conducted by considering a pair of
VHR SAR images acquired by Cosmo-SkyMed constellation
before and after the earthquake in L’Aquila, 2009. The results
highlighted the effectiveness of the approach and the validity
of the proposed partially destroyed building model, with the
detection of both partially and fully destroyed buildings. It
is worth recalling here that the two kinds of change has
large relevance in damage assessment and emergency response
applications. The approach demonstrated to be accurate on two
different kinds of urban structures. As expected, it achieved
better performance in the modern regular urban structure than
on the more complex and dense historical urban one.
Future developments aim at analyzing the multi-temporal
signature of buildings with damage interesting other macro-
elements and integrating their detection in the unsupervised
CD strategy. Moreover we plan to include an ad hoc data
sets designed for the analysis of performance in detecting new
buildings. Furthermore, we will study the detection problem
in presence of dense built-up areas (like i the case of the
Italian Medieval Residential data set), where building footprint
is partially affected by surrounding elements.
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