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First we study in detail the tensorization properties of 
weak gradients in metric measure spaces (X, d, m). Then, we 
compare potentially different notions of the Sobolev space 
H1,1(X, d, m) and of weak gradient with exponent 1. Eventu-
ally we apply these results to compare the area functional ´ √

1 + |∇f |2w dm with the perimeter of the subgraph of f , in 
the same spirit as the classical theory.
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1. Introduction

The aim of this paper is the investigation of some fine analytic questions related to 
the theory of weak gradients in metric measure spaces. One of our motivations has been 
the study of the area functional

A(f) =
ˆ

X

√
1 + |∇f |2w dm
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in metric measure spaces (X, d, m), where |∇f |w denotes a suitable notion of weak 
gradient induced by the metric measure structure. In the metric measure setting, the 
functional A has been an object of investigation in the recent paper [17], see also [16]
for generalizations. In the classical theory, it is well known that A corresponds to the 
surface area of the subgraph

Ef :=
{
(x, t) ∈ X × R : t < f(x)

}

of f . One of the aims of this paper is to investigate to what extent this correspondence 
holds also in metric measure spaces. The question makes sense, because by now there 
is a well established theory of BV functions and sets of finite perimeter in metric mea-
sure spaces, initiated in [21] (see also [1,20] for more recent developments). This theory 
provides, among other things, a canonical definition of surface area for sets of finite 
perimeter, see Section 2.5 for details.

Heuristically, the representation of A(f) as surface area of a subgraph seems to be 
closely related to a tensorization property of the weak gradients in the product metric 
measure structure, where one of the factors is simply the Euclidean real line endowed 
with the Lebesgue measure L 1. Specifically, we mean the following: if (X, dX , mX) and 
(Y, dY , mY ) are the factors, then for the metric measure structure

(
X × Y,

√
d2
X + d2

Y ,mX ×mY

)

the weak gradient (for the sake of simplicity we ignore in this introduction its potential 
dependence on the integrability exponent) should satisfy

|∇f(x, y)|2w = |∇f(·, y)|2w(x) + |∇f(x, ·)|2w(y) for mX ×mY -a.e. (x, y) ∈ X × Y.

(1.1)

There exist many properties that are easily seen to be stable under tensorization: 
compactness, properness, completeness, separability, length and geodesic properties, 
doubling, Poincaré inequalities, etc. As a matter of fact, although there are heuristic 
arguments suggesting that tensorization should always be true for the weak gradients 
(see Proposition 3.1, dealing with Euclidean spaces endowed with general norms), this 
question has not been much investigated so far. In [7] the tensorization property has 
been proved assuming a curvature lower bound on the factors (X, dX, mX), (Y, dY , mY )
and the quadratic structure of the Cheeger energy. In Section 3 we refine the analysis 
of [7] and we prove three results, all independent of curvature assumptions (with the 
first and third also independent of doubling and Poincaré assumptions, the first and the 
second independent of quadraticity assumptions):

(a) The weak gradient |∇f |w in the product structure always coincides with the 
L2(X × Y, mX ×mY ) relaxation of the squared “cartesian” slope
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|∇f |2c(x, y) := |∇f(·, y)|2(x) + |∇f(x, ·)|2(y),

starting from the class of locally Lipschitz functions (here |∇g| is the slope, or the local
Lipschitz constant, defined in (2.1)), see Theorem 3.2.

(b) Using (a), we show that if the factors are doubling and satisfy a (1, 2)-Poincaré 
inequality, then (1.1) holds, see Theorem 3.4. Although we follow a different path for the 
proof, it might be that this result could also be obtained starting from Proposition 3.1 us-
ing Cheeger’s differentiable structure and a suitable notion of product of Cheeger’s charts. 
We also prove a more refined result, namely if f ∈ L2(X×Y, mX ×mY ) satisfies f(·, y) ∈
H1,2(X, dX , mX) for mY -a.e. y ∈ Y , f(x, ·) ∈ H1,2(Y, dY , mY ) for mX -a.e. x ∈ X and

ˆ

X

ˆ

Y

|∇f(x, ·)|2w dmY dmY (x) +
ˆ

Y

ˆ

X

|∇f(·, y)|2w dmXdmY (y) < ∞,

then f ∈ H1,2(X × Y, 
√
d2
X + d2

Y , mX ×mY ).
(c) If the factors are strongly asymptotically Hilbertian, meaning that 

´
X
|∇f |2 dmX

and 
´
Y
|∇g|2 dmY are quadratic forms on locally Lipschitz functions, then the tensoriza-

tion property (1.1) holds, see Theorem 3.5.
Section 4 is devoted to the analysis of the Sobolev space H1,1(X, d, m). We define 

H1,1(X, d, m) in the spirit of the BV theory, considering those functions whose total 
variation |Df | is absolutely continuous w.r.t. m, and which are H1,1 along almost every 
curve (in the sense of [6]). Then, in Theorem 4.3 we compare this definition with the other 
ones already considered in the literature. An interesting fact is that, even though under 
doubling and (1, 1)-Poincaré the spaces are the same, the associated notions of weak 
gradient do not coincide (even though they are comparable, see (4.9) and (4.10)), see 
[16] and Remark 4.4. More precisely, the gradient |∇f |∗,1 singled out by the BV theory 
can be approximated only in the sense of measures by slopes of Lipschitz functions (see 
(2.15)) and, by construction, it gives rise to a functional f �→

´
X
|∇f |∗,1 dm which is lower 

semicontinuous on locally Lipschitz functions. On the other hand, the gradient |∇f |w,1
singled out by the theory of functions absolutely continuous along Mod1-a.e. curve enjoys 
a stronger approximation property (see Proposition 4.5 for the simple proof) but, in 
general, it fails to give raise to a lower semicontinuous functional f �→

´
|∇f |w,1 dm.

Finally, in Section 5 we prove upper and lower bounds for the perimeter of Ef , even 
for f ∈ BV (X, d, m). For f ∈ H1,1(X, d, m), under the doubling and (1, 1)-Poincaré 
assumptions we get

ˆ

B

√
1 + |∇f |2∗,1 dm ≤ P (Ef , B × R) ≤

ˆ

B

√
1 + |∇f |2w,1 dm

for any Borel set B ⊂ X, so that equalities hold if and only if the two notions of 
gradient coincide for the metric measure structure. Besides the case of asymptotically 
Hilbertian metric measure spaces with a curvature lower bound (see [13], which are the 
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so-called RCD(K, ∞) spaces introduced in [7]), we are not aware of conditions ensuring 
the coincidence m-a.e. of the two gradients.

2. Notation and preliminary results

We assume that all metric measure spaces (X, d, m) are complete and separable, that 
m is a finite Borel measure and that the support of m is the whole space X.

We denote by L d the Lebesgue measure in Rd. We say that f : X → R is locally 
Lipschitz if all its restrictions to bounded sets are Lipschitz. The slope (or the local
Lipschitz constant) of f : X → R is defined by

|∇f |(x) = lim sup
y→x

|f(y) − f(x)|
d(y, x) . (2.1)

2.1. Doubling and Poincaré inequality

We say that (X, d, m) is doubling if there exists a constant C > 0 satisfying

m(B2r(x)) ≤ Cm(Br(x)) ∀x ∈ X, r > 0. (2.2)

Given p ∈ [1, ∞), we say that the (1, p)-Poincarè inequality holds for Lipschitz func-
tions if, for all open balls Br(x) ⊂ X, one has

−
ˆ

Br(x)

|f − fx,r| dm ≤ cr

(
−
ˆ

Bλr(x)

|∇f |p dm
)1/p

∀f ∈ Liploc(X) (2.3)

for suitable c ≥ 0 and λ ≥ 1 independent of Br(x) (here −́
A

denotes the averaged integral 
on a Borel set A and fx,r = −́

Br(x) f). In the sequel we say that a constant is structural if 
it depends only on the doubling constant in (2.2) and the constants c, λ and the exponent 
p in (2.3).

2.2. Maximal functions and approximate continuity

Given g ∈ L1(X, m) nonnegative, we define

Mrg(x) := sup

⎧⎪⎨
⎪⎩ −

ˆ

Bs(x)

g dm : s ∈ (0, r)

⎫⎪⎬
⎪⎭ x ∈ X, r ∈ (0,∞]. (2.4)

More generally, if μ is a finite Borel measure, we define

Mrμ(x) := sup
{
μ(Bs(x))
m(Bs(x)) : s ∈ (0, r)

}
x ∈ X, r ∈ (0,∞], (2.5)

so that Mr(gm) = Mrg.
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For doubling metric measure spaces (X, d, m) we will need the weak L1 estimate for 
the maximal function; we need it in the stronger form, for M∞:

m
(
{M∞μ > λ}

)
≤ c

μ(X)
λ

∀λ > 0. (2.6)

The constant c in (2.6) depends only on the doubling constant of (X, d, m). For absolutely 
continuous measures we will also use the more refined estimate

lim
λ→∞

λm
(
{M∞g > λ}

)
= 0. (2.7)

This asymptotic version follows by (2.6), taking the inclusion

{M∞g > 2λ} ⊂ {M∞(g − λ)+ > λ)}

into account.
Using maximal functions, and under the doubling assumption, one can prove the 

existence of approximate limits of functions f ∈ L1(X, m): the approximate limit f̃(x)
at x is defined by the property

lim
r↓0

−
ˆ

Br(x)

|f(y) − f̃(x)| dm(y) = 0.

Points where the approximate limit exists are called approximate continuity points. It 
turns out that the approximate limit exists m-a.e. in X and that f̃(x) = f(x) for m-a.e. 
x ∈ X (notice that the first function is pointwise defined in its domain, while the latter 
belongs to a Lebesgue equivalence class).

2.3. Pseudo gradients and Cheeger energies

In this section we recall the basic facts of the theory of relaxed gradients. As we 
will see, even though the initial class of functions is a priori chosen to be the class of 
locally Lipschitz functions, it is sometimes technically useful to consider objects different 
from the slope in the relaxation process; for instance in Cheeger’s paper [10] upper 
gradients were used; while in [5, Section 8.3] and [8] the so-called asymptotic Lipschitz 
constant was used, and proved to be technically useful. See also [14] for a closely related 
axiomatization.

Definition 2.1 (Pseudo gradient). We call a function G on Liploc(X) with values into 
nonnegative Borel functions a pseudo gradient if the following properties hold:

(i) G is positively 1-homogeneous, i.e. G(tf) = tG(f) for all t ≥ 0;
(ii) G is convex;
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(iii) for some constant C,

G(χu + (1 − χ)v) ≤ χG(u) + (1 − χ)G(v) + CLip(χ)|u− v|

for all u, v, χ ∈ Liploc(X), 0 ≤ χ ≤ 1.

The main example of pseudo gradient is the slope in (2.1), other examples are for 
instance the one-sided slopes

|∇+f |(x) = lim sup
y→x

(f(y) − f(x))+

d(y, x) , |∇−f |(x) = lim sup
y→x

(f(y) − f(x))−

d(y, x) ,

or the cartesian slope in product spaces, see (3.3) below.
Given a pseudo gradient G, the Cheeger energy ChG : L2(X, m) → [0, ∞] associated 

to G is defined by

ChG(f) := inf

⎧⎨
⎩lim inf

h→∞

ˆ

X

G2(fh) dm : fh ∈ Liploc(X), fh → f in L2(X,m)

⎫⎬
⎭ ,

with the convention inf ∅ = ∞. We shall denote by Ch the “canonical” Cheeger energy 
associated to the slope and define

H1,2(X, d,m) :=
{
f ∈ L2(X,m) : Ch(f) < ∞

}
.

We call u ∈ L2(X, m) a G-relaxed slope of f if there exist Lipschitz functions fn
satisfying fn → f strongly in L2(X, m) and G(fn) → v weakly in L2(X, m), with v ≤ u

m-a.e. in X.
The following results collect the main facts about Cheeger energies and G-relaxed 

slopes; although the results in [10] and [6] are not stated in terms of pseudo-gradients, 
their proof extend with no change to this more general framework.

Theorem 2.2. For any f ∈ L2(X, m) and any pseudo gradient G the following properties 
hold.

(i) The collection of G-relaxed slopes of f is a convex closed set, possibly empty.
(ii) If the collection of G-relaxed slope is not empty, its element with minimal norm 

|∇f |∗,G satisfies

|∇f |∗,G ≤ u m-a.e. in X for any G-relaxed slope u. (2.8)

Furthermore, |∇f |∗,G can be obtained as the strong L2(X, m) limit of a sequence 
G(fn), with fn locally Lipschitz and fn → f in L2(X, m).
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(iii)
√

ChG is a convex lower semicontinuous functional in L2(X, m), positively
1-homogeneous and even if G is even. In addition, ChG(f) < ∞ if and only if 
the collection of G-relaxed slopes is not empty. In this case,

ChG(f) =
ˆ

X

|∇f |2∗,G dm.

We call |∇f |∗,G the minimal relaxed slope and, as we did for Ch, denote by |∇f |∗, 
the “canonical” one associated to G(f) = |∇f |.

Recall that the subdifferential of a convex lower semicontinuous functional Φ : H →
(−∞, +∞] in a Hilbert space is defined, at any point u such that Φ(u) < ∞, by

∂Φ(u) := {ξ ∈ H : Φ(v) ≥ Φ(u) + 〈ξ, v − u〉 ∀v ∈ H} .

Now, denoting by ΔG the element with minimal norm in the subdifferential of ChG, one 
can use the inequality

|∇(f + εg)|∗,G ≤ |∇f |∗,G + ε|∇g|∗,G m-a.e. in X, for all ε > 0,

which is a simple consequence of the convexity and homogeneity of G, to prove the 
following integration by parts formula, see for instance [6, Proposition 4.15] (the sec-
ond part of the proposition, dealing with the equality cases, uses also the chain rule 
[6, Proposition 4.8]).

Proposition 2.3. For all u ∈ D(ChG) and all v ∈ D(ChG) such that ∂ChG(v) is not 
empty, one has

−
ˆ

uΔGv dm ≤
ˆ

|∇u|∗,G|∇v|∗,G dm, (2.9)

with equality if u = φ(v) with φ : R → R Lipschitz, continuously differentiable and 
nonincreasing.

In Section 5 we will need to consider the Cheeger energy and associated weak gradient 
for a measure finite on bounded sets; these are defined in the same way as for the finite 
case. Locality of the weak gradients allows us to generalize statements about pointwise 
behavior also to this case (arguing, for instance, as in [6, Lemma 4.11]). The assumption 
that m is finite is not necessary in the following fundamental result obtained, among 
other things, in [10].

Theorem 2.4 (Minimal relaxed slope coincides m-a.e. with the slope). Assume that 
(X, d, m) is doubling and that (1, 2)-Poincaré holds for locally Lipschitz functions. Then

|∇f | = |∇f |∗ m-a.e. in X, for all f ∈ Liploc(X) ∩H1,2(X, d,m).
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On X = R
d endowed with the distance induced by a norm ‖ · ‖ and with the Lebesgue 

measure m = L d, it is easily seen that (for f smooth or locally Lipschitz)

Ch(f) =
ˆ

X

‖∇f‖2
∗ dm, (2.10)

where ‖ · ‖∗ is the dual norm and ∇f is the canonical Euclidean gradient. Hence, Ch is a 
quadratic form if and only if ‖ ·‖ is induced by a scalar product. As in [12], this motivates 
two possible definition of spaces which are “Hilbertian on small scales”.

Definition 2.5 (Strongly asymptotically Hilbertian m.m.s.). We say that (X, d, m) is 
strongly asymptotically Hilbertian if f �→

´
X
|∇f |2 dm is a quadratic form on Liploc(X).

Definition 2.6 (Asymptotically Hilbertian m.m.s.). We say that (X, d, m) is asymptotically 
Hilbertian if Ch is a quadratic form on L2(X, m).

Proposition 2.7. Any strongly asymptotically Hilbertian space is asymptotically Hilber-
tian. If doubling and (1, 2)-Poincaré inequality hold, then the two properties are equiva-
lent.

Proof. The first statement is a simple consequence of the fact that the lower semicon-
tinuous relaxation of a quadratic form is still a quadratic form. The second one follows 
by Theorem 2.4. �
2.4. Quadratic forms

Let H be a separable Hilbert space and let Q : H → [0, ∞] be a lower semicontinuous 
quadratic form. We shall denote by A the associated bilinear form on D(Q) = {Q < ∞}, 
namely

A(u, v) = 1
4
(
Q(u + v) −Q(u− v)

)
u, v ∈ D(Q).

Assuming D(Q) to be dense in H, we shall also denote by L the possibly unbounded 
operator whose domain D(L) consists of all u ∈ D(Q) satisfying

A(u, v) = 〈w, v〉 ∀v ∈ D(Q) (2.11)

for some w ∈ H. Since the density of D(Q) in H ensures that w is uniquely determined 
by (2.11) we can set w = Lu, so that

A(u, v) = 〈Lu, v〉 u ∈ D(L), v ∈ D(Q). (2.12)

The following classical result is the spectral theorem for compact operators, stated 
with assumptions at the level of the quadratic form.
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Theorem 2.8 (Spectral theorem). Let Q : H → [0, ∞] be a lower semicontinuous quadratic 
form with dense domain. Assume the existence of c > 0 satisfying Q(u) ≥ c‖u‖2 for all 
u ∈ H, and that the sublevel sets 

{
u ∈ H : Q(u) ≤ M

}
are compact in H for all M ≥ 0. 

Then there exists a complete orthonormal basis of H made of eigenvectors of L.

Proof. It is simple to check, by the minimization of v �→ 1
2Q(v) − 〈f, v〉, that 

L : D(L) → H is onto. In addition,

c‖u‖2 ≤ Q(u) = A(u, u) = 〈Lu, u〉 ≤ ‖u‖‖Lu‖ ∀u ∈ D(L)

shows that L−1 is continuous, with ‖L−1‖ ≤ 1/c. In order to apply the classical spectral 
theorem for compact operators to L−1 (see for instance [9, Theorem VI.11]), we need only 
to show that any sequence (un) ⊂ D(L) such that (‖Lun‖) is bounded is relatively com-
pact in H. To this aim, notice that the previous inequality yields Q(un) ≤ ‖L(un)‖2/c, 
so that Q(un) is bounded and (un) is relatively compact in H. �
2.5. BV functions

We recall the definition of BV introduced in [21] for locally compact spaces; this class 
has been further studied in [1], dropping the local compactness assumption, and it has 
been characterized by the behavior of the function along curves, see Theorem 2.12 below.

Definition 2.9 (The space BV (X, d, m)). Let f ∈ L1(X, m). We say that f belongs to 
BV (X, d, m) if there exist locally Lipschitz functions fn : X → R such that fn → f in 
L1(X, m) and lim supn

´
X
|∇fn| dm < ∞.

For f ∈ BV (X, d, m) and A ⊂ X open, we may consider the set function

|Df |(A) := inf

⎧⎨
⎩lim inf

n→∞

ˆ

A

|∇fn| dm : fn ∈ Liploc(A), lim
n→∞

ˆ

A

|fn − f | dm = 0

⎫⎬
⎭ .

(2.13)

It can be proved that A �→ |Df |(A) is the restriction to open sets of a finite Borel measure 
(it is in this proof that it turns out to be useful to consider locally Lipschitz functions 
in Definition 2.9 and (2.13)), that we still denote by |Df |. Notice also the elementary 
inequality (first proved on open sets, and then extended to Borel sets)

|D(f + g)| ≤ |Df | + |Dg| ∀f, g ∈ BV (X, d,m). (2.14)

By construction, we have the lower semicontinuity property

lim inf
n→∞

|Dfn|(X) < ∞ ⇒ f ∈ BV (X, d,m) and |Df |(X) ≤ lim inf
n→∞

|Dfn|(X)

for fn ∈ BV (X, d, m) convergent to f in L1(X, m).
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Remark 2.10 (Sets of finite perimeter in locally finite m.m.s.). When concerned with 
characteristic functions, we will apply these concepts also in m.m.s. whose reference 
measure m is finite on bounded sets, i.e. we weaken the finiteness assumption on m by 
requiring that m(B) < ∞ for any bounded Borel set B (specifically, in Section 5 we will 
consider the product of a finite m.m.s. with the real line).

We say that E ⊂ X has finite perimeter in X if the characteristic function 
χE belongs to BV (Y, d, m) for any closed subset Y ⊂ X with finite measure and 
supn |DχE |(Bn(x0)) < ∞ for some (and thus all) x0 ∈ X. By monotone approxima-
tion with open sets with finite measure, still |DχE |(B) is well defined for any open set 
B ⊂ X and B �→ |DχE |(B) is a positive finite Borel measure in X. Furthermore, the 
monotonicity of the approximation gives that E �→ |DχE |(A) is lower semicontinuous 
with respect to local convergence in m-measure (i.e. L1

loc convergence of the characteristic 
functions) for any open set A ⊂ X.

When dealing with sets of finite perimeter, we will use the traditional notation

P (E,B) := |DχE |(B). �

By a diagonal argument in (2.13), it is clear that there exist fn locally Lipschitz 
convergent to f in L1(X, m) and satisfying lim supn

´
X
|∇fn| dm ≤ |Df |(X). Since, by 

the very definition of |Df |(A), it holds

lim inf
n→∞

ˆ

A

|∇fn| dm ≥ |Df |(A) for any open set A ⊂ X,

a well known criterion for weak convergence of measures gives the approximation prop-
erty:

∀f ∈ BV (X, d,m) ∃fn ∈ Liploc(X) with |∇fn|m ⇀ |Df | in duality with Cb(X).

(2.15)

We can now investigate the implications of doubling and (1, 1)-Poincaré for Lipschitz 
functions. From (2.15) we immediately obtain the BV version of the Poincaré inequality 
in BV , namely

−
ˆ

Br(x)

|f − fx,r| dm ≤ cr|Df |
(
Bλr(x)

)
∀f ∈ BV (X, d,m).

Possibly replacing λ by λ′ > λ, we will keep using the traditional form

−
ˆ

Br(x)

|f − fx,r| dm ≤ cr|Df |
(
Bλr(x)

)
∀f ∈ BV (X, d,m), (2.16)

stated with open sets. This estimate, when combined with the doubling property of 
(X, d, m), leads by standard arguments (see for instance [10,8]) to the following proposi-
tion.
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Proposition 2.11. Assume that (X, d, m) is doubling and that (1, 1)-Poincaré holds for 
Lipschitz functions. Then, there exists a structural constant c > 0 satisfying

|f̃(x) − f̃(y)| ≤ cd(x, y)
(
Mr|Df |(x) + Mr|Df |(y)

)
(2.17)

whenever f ∈ BV (X, d, m), x and y are approximate continuity points of f , r > 0 and 
d(x, y) < r/c.

2.6. Equivalence of weak gradients and locality

We denote by C([0, 1]; X) the space of continuous maps from [0, 1] to X endowed 
with the standard Polish structure and denote by et : C([0, 1]; X) → X, t ∈ [0, 1], the 
evaluation maps at time t, namely et(γ) = γ(t). We shall also denote by (et)#π the 
push-forward probability measure on X induced by π ∈ P(C([0, 1]; X)), namely

ˆ

X

φd(et)#π =
ˆ

φ(γ(t)) dπ(γ)

for any φ : X → R bounded Borel, or Borel nonnegative.
We say that π ∈ P(C([0, 1]; X)) is a ∞-test plan if it is concentrated on Lipschitz 

curves, Lip(γ) ∈ L∞(C([0, 1]; X), π) and the non-concentration property

(et)�π ≤ Cm ∀t ∈ [0, 1] (2.18)

holds for some constant C ≥ 0. We shall denote by C(π) the least constant satisfying 
(2.18).

We say that a Borel family Γ ⊂ C([0, 1]; X) is 1-negligible if π(Γ) = 0 for any ∞-test 
plan π. This notion is weaker than the non-parametric notion of Mod1-negligible set. 
Recall that Γ is said to be Mod1-negligible if for any ε > 0 there exists a Borel function 
ρ : X → [0, ∞] with 

´
X
ρ dm < ε and 

´
γ
ρ ≥ 1 for all ρ ∈ Γ. Since

π(Γ) ≤
ˆ ˆ

γ

ρ dπ(γ) ≤ ‖Lip(γ)‖∞
1ˆ

0

ˆ
ρ(γ(t)) dπ(γ) dt ≤ ‖Lip(γ)‖∞C(π)

ˆ

X

ρ dm

for any ∞-test plan π, we obtain that Mod1-negligible sets are 1-negligible. See [4] for 
a much more detailed comparison between notions of negligibility for families of curves, 
both parametric and non-parametric.

The next theorem is one of the main results of [1].

Theorem 2.12. Let f ∈ L1(X, d, m). Then f ∈ BV (X, d, m) if and only if there exists a 
finite Borel measure μ on X with the following property: for any ∞-test plan π one has:
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(i) f ◦ γ ∈ BV (0, 1) for π-a.e. γ;
(ii)

´
γ�|D(f ◦ γ)| dπ(γ) ≤ C(π)‖Lip(γ)‖∞μ.

For all f ∈ BV (X, d, m), the smallest measure μ satisfying (ii) is |Df |.

Again, in (ii) by γ�|D(f ◦ γ)| we mean the push-forward measure defined by

ˆ

X

φdγ�|D(f ◦ γ)| =
1ˆ

0

φ ◦ γ d|D(f ◦ γ)|.

Notice that (i) and (ii) are invariant in the Lebesgue equivalence class of f : indeed, 
because of (2.18), π-a.e. curve γ hits a prescribed m-negligible set in an L 1-negligible 
set of times, so that the integral in (ii) does not change if we replace f by f̂ , with 
m({f �= f̂}) = 0.

Remark 2.13. Let us split |D(f ◦ γ)| into absolutely continuous |Da(f ◦ γ)| and singular 
|Ds(f ◦ γ)| parts w.r.t. L 1. Notice that without further assumptions on the metric 
measure structure, while we know that

ˆ
γ�|Da(f ◦ γ)| dπ(γ) � m

(again because π-a.e. curve γ hits an m-negligible set in an L 1-negligible set of times), 
we can’t say in general that

ˆ
γ�|Ds(f ◦ γ)| dπ(γ)

is singular w.r.t. m. See [1, Example 7.4] for an explicit example of a function f ∈
BV (X, d, m) (actually a characteristic function) with |Df | ≤ Cm, but |D(f ◦γ)| singular 
w.r.t. L 1 for any curve γ.

3. Tensorization of metric measure spaces

In this section, as in Section 6 of [7], we consider two complete and separable m.m.s. 
(X, dX , mX), (Y, dY , mY ) and their product Z = X × Y , endowed with the product 
distance d satisfying d2 = d2

X + d2
Y and the product measure m. We assume mX and 

mY to be finite. We denote by Ch the Cheeger energy in (Z, d, m) and use the notation 
fx(y) = f(x, y), fy(x) = f(x, y).

In Section 6 of [7], it is proved, under curvature assumptions on the factors, that Ch
is quadratic whenever ChX and ChY are quadratic. In addition, defining

Λ :=
{
f ∈ L2(Z,m) :

{
fx ∈ H1,2(Y, dY ,mY ) for mX -a.e. x ∈ X
y 1,2

}
, (3.1)
f ∈ H (X, dX ,mX) for mY -a.e. y ∈ Y
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we have the inclusion H1,2(Z, d, m) ⊂ Λ and any f ∈ H1,2(Z, d, m) satisfies

|∇f |2∗(x, y) = |∇fy|2∗,X(x) + |∇fx|2∗,Y (y) for m-a.e. (x, y) ∈ Z. (3.2)

Notice that (3.2) provides immediately that Ch is a quadratic form whenever ChX
and ChY are quadratic forms, since

Ch(f) =
ˆ

Y

ChX(fy) dmY (y) +
ˆ

X

ChY (fx) dmX(x).

Notice also that, as illustrated by Proposition 3.1 below, (3.2) might be true indepen-
dently of quadraticity assumptions on ChX and ChY , just by “duality” with the formula 
d2 = d2

X + d2
Y defining d, but the full validity of this dual formula is presently an open 

problem (more precisely, the general validity of ≤ in (3.2) is not known, while we will 
prove that the converse inequality always holds).

Proposition 3.1 (An easy case of tensorization). Assume that X and Y are Euclidean 
spaces, with distances dX and dY induced by norms ‖ · ‖X and ‖ · ‖Y respectively. If mX

and mY are the corresponding Lebesgue measures, then (3.2) holds.

Proof. The norm ‖ · ‖Z in Z = X × Y corresponding to the distance dZ =
√

d2
X + d2

Y

obviously satisfies ‖(x, y)‖2
Z = ‖x‖2

X + ‖y‖2
Y . According to (2.10), we have to prove that

‖(x∗, y∗)‖2
∗,Z = ‖x∗‖2

∗,X + ‖y∗‖2
∗,Y ∀x∗ ∈ X∗, y∗ ∈ Y ∗,

where ‖ · ‖∗,Z denotes the dual norm of ‖ · ‖Z and ‖ · ‖∗,X and ‖ · ‖∗,Y denote the dual 
norms in X and Y respectively. We can estimate

〈(x∗, y∗), (x, y)〉 = 〈x∗, x〉 + 〈y∗, y〉

≤ ‖x∗‖∗,X‖x‖X + ‖y∗‖∗,Y ‖y‖Y

≤
√
‖x∗‖2

∗,X + ‖y∗‖2
∗,Y ‖(x, y)‖Z .

This proves that ‖(x∗, y∗)‖2
∗,Z ≤ ‖x∗‖2

∗,X + ‖y∗‖2
∗,Y . On the other hand, if we choose 

nonzero vectors x, y such that 〈x∗, x〉 = ‖x∗‖∗,X‖x‖X and 〈y∗, y〉 = ‖y∗‖∗,Y ‖y‖X we 
obtain that the first inequality is an equality. Then, replacing x by ax and y by by with 
a, b ≥ 0 in such a way that

‖x‖X = ‖x∗‖∗,X and ‖y‖Y = ‖y∗‖∗,Y

we retain the first two equalities and we obtain that also the last inequality is an equal-
ity. �
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In Section 6 of [7], through a detailed analysis of the Hopf–Lax formula, inequality ≥
in (3.2) is proved independently of curvature assumptions, while curvature enters in the 
proof of the converse one (see [7, Lemma 6.15]).

In this section we will revise carefully the arguments of [7], obtaining some refinements 
independently of curvature assumptions.

We denote by |∇f |c : Liploc(Z) → [0, ∞] the convex pseudo gradient

|∇f |c(x, y) :=
√

|∇fy|2(x) + |∇fx|2(y), (3.3)

corresponding to a “cartesian” slope. Notice that

|∇f |(x, y) ≥ max{|∇fx|(y), |∇fy|(x)} ≥ 1
2 |∇f |c(x, y). (3.4)

We denote by Chc the Cheeger energy arising from the L2 relaxation of 
´
|∇f |2c dm

restricted to locally Lipschitz functions, namely

Chc(f) := inf

⎧⎨
⎩lim inf

n→∞

ˆ

Z

|∇fn|2c dm : fn ∈ Liploc(Z),
ˆ

Z

|fn − f |2 dm → 0

⎫⎬
⎭ .

As we discussed in Section 2.3, we have a minimal relaxed gradient associated to any 
f ∈ D(Chc), that we shall denote by |∇f |∗,c. It is also clear from (3.4) that Chc ≤ 2Ch. 
Even though it seems difficult to establish a pointwise converse inequality

|∇f |(x, y) ≤ C max{|∇fx|(y), |∇fy|(x)} ≤ C|∇f |c

for some constant C, we are able to refine a bit the scheme of [7] to prove the following 
result, independently of doubling, quadraticity and Poincaré assumptions.

Theorem 3.2. Chc = Ch on L2(Z, m) and

|∇f |∗ = |∇f |∗,c m-a.e. in Z, for all f ∈ H1,2(Z, d,m). (3.5)

Proof. We provide the proof of the inequality Chc ≤ Ch in the appendix, since it involves 
tools (Hopf–Lax formula, gradient flows) not directly connected to the rest of the paper. 
Let us prove the inequality Ch ≤ Chc and the corresponding inequality ≤ in (3.5). In 
the proof we shall use the dual point of view, i.e. we will work with the minimal weak 
upper gradient, which always coincides m-a.e. with the minimal relaxed gradient, see 
[6, Section 6] (this is the Sobolev counterpart of Theorem 2.12). By Lemma 6.14 in [7]
(in turn based on the calculus Lemma 4.3.4 of [3]), |∇f |c is an upper gradient for locally 
Lipschitz functions, namely

| d (f ◦ γ)| ≤ |∇f |c ◦ γ|γ̇| L 1-a.e. in (0, 1) (3.6)

dt
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for all γ ∈ AC([0, 1]; Z) and f ∈ Liploc(Z). Recall now that for any f ∈ D(Chc) we can 
find locally Lipschitz functions fn with fn → f in L2(Z, m) and |∇fn|c → |∇f |∗,c in 
L2(Z, m). Then, the standard argument for the closure of weak upper gradients (even 
under weak L2(Z, m) convergence, see [22, Lemma 4.11] or [6, Theorem 5.14]) provides 
the inclusion D(Ch) ⊃ D(Chc) and the inequality

|∇f |∗ ≤ |∇f |∗,c m-a.e. in Z. � (3.7)

It will be useful to compare Chc with the convex functional (actually a quadratic form, 
when ChX and ChY are quadratic)

J(f) :=
ˆ

Z

|∇fy|2∗,X(x) + |∇fx|2∗,Y (y) dm(x, y). (3.8)

The functional J is well defined on the set Λ in (3.1), and set equal to ∞ on L2(Z, m) \Λ. 
A standard Fubini argument then proves that J is L2(Z, m)-lower semicontinuous.

Lemma 3.3. If f ∈ L2(Z, m) is representable as fXfY , with fX ∈ H1,2(X, dX , mX) and 
fY ∈ H1,2(Y, dY , mY ), then Chc(f) = J(f). Furthermore, if −ξX ∈ ∂ChX(fX) and 
−ξY ∈ ∂ChY (fY ), then

−(fY ξX + fXξY ) ∈ ∂J
(
fXfY ). (3.9)

Proof. The inequality Chc(f) ≥ J(f), even for all functions f , is guaranteed by the 
definition of Chc, the inequality 

´
Z
|∇f |2c dm ≥ J(f) for f ∈ Liploc(Z) and the lower 

semicontinuity of J . In order to prove the converse inequality Chc(f) ≤ J(f) on tensor 
products f , by a simple truncation argument we can assume with no loss of generality 
that fX and fY are bounded functions. Let fn

X ∈ Liploc(X) with |∇fn
X | → |∇fX |∗,X in 

L2(X, mX); analogously, let fn
Y ∈ Liploc(Y ) with |∇fn

Y | → |∇fY |∗,Y in L2(Y, mY ). Since 
fX and fY are bounded, we can also assume that (fn

X) and (fn
Y ) are uniformly bounded. 

Since fn
Xfn

Y ∈ Liploc(Z) and

|∇(fn
Xfn

Y )|2c = (fn
X)2|∇fn

Y |2 + (fn
Y )2|∇fn

X |2

we can easily conclude.
The verification of (3.9) is straightforward. �
Now we can state the tensorization of doubling metric measure spaces satisfying a 

(1, 2)-Poincaré inequality for locally Lipschitz functions. Note that, by a localization 
argument, the following theorem is also valid for measures finite on bounded sets.

Theorem 3.4. Assume that (X, dX , mX) and (Y, dY , mY ) are doubling and satisfy a 
(1, 2)-Poincaré inequality for locally Lipschitz functions. Then the tensorization prop-
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erty (3.2) of weak gradients holds for all functions f ∈ D(Ch). In addition, Ch coincides 
with the functional J defined in (3.8).

Our third result on the tensorization provides the quadratic property of Ch inde-
pendently of curvature assumptions, but assuming the strong asymptotically Hilbertian 
property on the factors. As we discussed in Section 2.3, this assumption is equivalent 
to asymptotic Hilbertianity in the presence of doubling and (1, 2)-Poincaré inequality 
for locally Lipschitz functions, which are already covered by Theorem 3.4. Again, by a 
localization argument, the following theorem also holds for measures finite on bounded 
sets.

Theorem 3.5. If ChX , ChY are quadratic, then (3.2) holds iff Ch is quadratic. In partic-
ular, if (X, dX , mX) and (Y, dY , mY ) are strongly asymptotically Hilbertian, then Ch is a 
quadratic form and (3.2) holds.

We devote the rest of the section to the proof of Theorem 3.4 and Theorem 3.5.

Lemma 3.6. J is a convex and weakly lower semicontinuous functional on L2(Z, m). In 
addition, Chc ≥ J on L2(Z, m) and |∇fx|2∗,Y (y) + |∇fy|2∗,X(x) ≤ |∇f |2∗,c(x, y) for m-a.e. 
(x, y) ∈ Z.

Proof. Convexity of J is trivial, so it suffices to show lower semicontinuity of J in the 
strong topology of L2(Z, m). This and the last part of the statement are a simple ap-
plication of Fubini’s theorem and of the fact that any convergent sequence gn → g in 
L2(Z, m) can be refined to obtain a subsequence (nk) satisfying gxn(k) → gx in L2(Y, mY )
for mX -a.e. x ∈ X and gyn(k) → gy in L2(X, mX) for mY -a.e. y ∈ Y . �
Proof of Theorem 3.4. Taking Lemma 3.6, (3.5) and the equality Ch = Chc into account, 
to prove the tensorization property (3.2) for all functions f ∈ D(Ch) we need only to show 
that Chc ≤ J on H1,2(Z, d, m) and that D(J) ⊂ H1,2(Z, d, m). To prove the inequality we 
need to find, for all f ∈ H1,2(Z, d, m) a sequence of functions fn ∈ Liploc(Z) ∩ L2(Z, m)
satisfying fn → f in L2(Z, m) and J(fn) → J(f). Indeed, since Theorem 2.4 gives

Chc(fn) ≤
ˆ

Z

|∇fn|2c dm = J(fn),

the definition of Chc provides the result.
Since (Z, d, m) is a doubling space satisfying the (1, 2)-Poincaré inequality on Lipschitz 

functions, in order to build fn we can use the inequality (see for instance [8, Lemma 46])

|f̃(z) − f̃(z′)| ≤ C
(
(M |∇f |2∗)1/2(z) + (M |∇f |2∗)1/2(z′)

)
d(z, z′)

valid at all approximate continuity of f , and the sets



L. Ambrosio et al. / Advances in Mathematics 281 (2015) 1145–1177 1161
En :=
{
z ∈ Z : max{|f̃(z)|, (M |∇f |2∗)1/2(z)} ≤ n

}
.

By the MacShane lemma we can extend the restriction of f̃ to En to a Lipschitz function 
fn with Lip(fn) ≤ Cn and |fn| ≤ n. Then, a standard argument based on maximal 
inequalities shows that fn → f in L2(Z, m), m(Z \En) ↓ 0 and |∇fn|2 are equi-integrable 
in L1(Z, m). Using the locality of weak gradients in the base spaces, this immediately 
yields J(fn) → J(f) and completes the proof of the inequality Chc ≤ J on H1,2(Z, d, m).

Now, let us prove the more delicate inclusion D(J) ⊂ H1,2(Z, d, m). In this proof it will 
be useful to assume that the distances dX and dY are geodesic; this is not restrictive, since 
the geodesic distances associated to dX and dY are (because of doubling and Poincaré) 
equivalent to the original distances and even induce the same weak gradients (see for 
instance [19, Corollary 7.3.17], but note that we need only equivalence of distances). 
We will prove that any h ∈ D(J) whose support is contained in a product of balls 
BR(x0) × BR(y0) belongs to H1,2(Z, d, m). The general case can be easily achieved by 
approximation.

Let us proceed now to the proof of the inclusion D(J) ⊂ H1,2(Z, d, m). Notice that, 
by the very definition of J , for any h ∈ D(J) one has not only hx ∈ H1,2(Y, dY , mY )
for mX -a.e. x ∈ X and hy ∈ H1,2(X, dX , mX) for mY -a.e. y ∈ Y , but also ChY (hx) ∈
L1(X, mX) and ChX(hy) ∈ L1(Y, mY ). Thanks to Cheeger’s theory (see also Theorem 40 
of the recent paper [8] for a different construction based on difference quotients and 
Γ-convergence which uses only the doubling property of the metric space) we can find 
L2-lower semicontinuous quadratic forms EX in L2(X, mX) and EY in L2(Y, mY ) equiv-
alent to the Cheeger energies, namely

c1 ChX ≤ EX ≤ 1
c1

ChX , c2 ChY ≤ EY ≤ 1
c2

ChY (3.10)

for suitable positive structural constants c1, c2. The quadratic forms

EX,1(f) := EX(f) +
ˆ

X

f2 dmX , EY,1(g) := EY (g) +
ˆ

Y

g2 dmY

induce Hilbertian structures in H1,2(X, dX , mX) and H1,2(Y, dY , mY ) respectively. We 
also denote by J1 the quadratic form

J1(h) :=
ˆ

X

EY,1(fx) dmX(x) +
ˆ

Y

EX,1(fy) dmY (y)

and notice that D(J1) = D(J), because of (3.10).
Fix x0 ∈ X, y0 ∈ Y and R > 0. Fix the notation:

D(x0, R) = {f :X → R: supp(f) ⊂ B(x0, R)},
D(y0, R) = {g:Y → R: supp(g) ⊂ B(y0, R)}.
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Then, for every M > 0, the sets

{f ∈ D(x0, R): EX,1(f) ≤ M},
{g ∈ D(y0, R): EY,1(g) ≤ M},

are compact in L2(X, mX) and L2(Y, mY ) respectively. Indeed, [15, Theorem 8.1] gives 
this Rellich–Kondrachov type result for domains in which the measure is doubling and 
also a global Poincaré inequality result holds (see [15, Inequality (46)]). However, it is 
easy to see that balls in geodesic spaces are John domains (see Section 9.1 in [15] for the 
definition) and hence [15, Theorem 9.7] provides the required global Poincaré inequality. 
Let

HX = L2(X,mX) ∩D(x0, R),

HY = L2(Y,mY ) ∩D(y0, R).

Notice that H1,2(X, dX , mX) ∩D(x0, R) is dense in HX with respect to the L2(X, mX)
norm and similarly for H1,2(Y, dY , mY ) ∩D(y0, R). Hence, by applying Theorem 2.8 to 
EX,1 in

HX = L2(X,mX) ∩D(x0, R)

and to EY,1 in

HY = L2(Y,mY ) ∩D(y0, R),

we can find complete orthonormal bases (fn) of HX and (gn) of HY made of eigenvectors 
of the operators LX and LY associated to these quadratic forms. In particular:

(a) the linear semigroup PX
t associated to EX,1 on HX leaves all 1-dimensional vector 

spaces Rfn invariant, and an analogous property holds for PY
t ;

(b) the functions fn are mutually orthogonal for the scalar product induced by EX,1 and 
an analogous property holds for gm.

Now, it is easily seen that the vector space E spanned by the tensor products fngm, 
where fn ∈ H1,2(X, dX , mX) ∩D(x0, R) and gm ∈ H1,2(Y, dY , mY ) ∩D(y0, R), is dense 
in the space

{h ∈ D(J): supp(h) ⊂ B(x0, R) ×B(y0, R)}

w.r.t. the norm induced by J1. Indeed, a simple functional analytic argument is based 
on the fact that the linear semigroup Pt induced by the quadratic form J1 leaves E
invariant, thanks to (a) and
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Pt(fngm) = (PX
t fn)(PY

t gm) t ≥ 0,

and on the fact that E is dense in L2(Z, m) norm; these two facts (see for instance 
[7, Proposition 4.9]) imply density in the stronger norm induced by J1.

In order to conclude the proof we use first the convexity and 1-homogeneity of 
√

Ch
and then Lemma 3.3 to get

√
Ch(h) ≤

∑
n,m

|λn,m|
√

Ch(fngm) =
∑
n,m

|λn,m|
√
J(fngm)

≤ c
∑
n,m

|λn,m|
√
J1(fngm) ≤ c

(∑
n,m

λ2
n,mJ1(fngm)

)1/2

= c
√

J1(h)

for any h ∈ E written as a sum 
∑

n,m λn,mfngm, with only finitely many λn,m nonzero, 
where in the last equality we used the fact that (fngm) are mutually orthogonal w.r.t. the 
scalar product induced by J1 (as a consequence of (b)). Finally we can use the density 
of E and the lower semicontinuity of Ch to conclude that Ch ≤ c2J1 on the set

{h ∈ D(J): supp(h) ⊂ B(x0, R) ×B(y0, R)}.

By letting R → ∞ we deduce Ch is finite on D(J) so that D(J) ⊂ D(Ch). �
A simple consequence of (3.9) is that, independently of quadraticity assumptions on 

ChX and ChY , the semigroup Pt associated to J (namely the gradient flow of J) acts on 
tensor products fXfY as follows

Pt(fXfY ) = (PX
t fX)(PY

t fY ), (3.11)

where PX
t and PY

t are the semigroups on the factors. Indeed, (3.9) with ξX = −ΔPX
t fX

and ξY = −ΔY P
Y
t fY and the Leibniz rule give that

− d

dt
(PX

t fX)(PY
t fY ) ∈ ∂J

(
(PX

t fX)(PY
t fY )

)
,

which is the subdifferential formulation of the gradient flow.

Proof of Theorem 3.5. Assuming that ChX , ChY are quadratic, it is clear that (3.2)
implies that Ch are quadratic, so let us prove the converse implication from Ch quadratic 
to (3.2). By Lemma 3.6 and the equality Chc = Ch provided by Theorem 3.2, we know 
that the two lower semicontinuous quadratic forms

Q1(f) := Ch(f), Q2(f) := J(f)
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satisfy Q1 ≥ Q2, hence Q = Q1 − Q2 is a nonnegative quadratic form which, by 
Lemma 3.3, vanishes on tensor products. By the inequality Q(u + v) ≤ 2Q(u) + 2Q(v), 
valid for nonnegative quadratic forms, we obtain that Q vanishes on the vector space 
spanned by tensor products. Now, as in the proof of Theorem 3.4, it is easily seen 
that the vector space E spanned by the tensor products is dense w.r.t. the norm 
‖ · ‖Q2 :=

√
‖ · ‖2

2 + Q2
2. Indeed, the linear semigroup Pt induced by the quadratic form 

Q2 leaves E invariant (because of (3.11)) and E is dense in L2(Z, m) norm; these two 
facts (see for instance [7, Proposition 4.9]) imply density in the stronger norm induced 
by ‖ ·‖Q2 . Therefore for any f ∈ L2(Z, m) we can find fn ∈ E convergent to f in L2(Z, m)
with Q2(fn) → Q2(f). Using lower semicontinuity of Q1 we get

Q1(f) ≤ lim inf
n→∞

Q1(fn) = lim inf
n→∞

Q2(fn) = Q2(f).

Taking into account the inequality |∇fx|2∗,Y +|∇fy|2∗,X ≤ |∇f |2c(x, y) for m-a.e. (x, y) ∈ Z

provided by the combination of Theorem 3.2 and Lemma 3.6, we obtain (3.2).
To prove the last statement of the theorem, assume that the factors are strongly 

asymptotically Hilbertian. Notice that

f �→
ˆ

Z

|∇f |2c dm =
ˆ

X

(ˆ
Y

|∇fx|2 dmY

)
dmX(x) +

ˆ

Y

(ˆ
X

|∇fy|2 dmX

)
dmY (y)

is a quadratic form on Liploc(Z). Since the lower semicontinuous relaxation of a quadratic 
form is still a quadratic form, it follows that Ch = Chc is a quadratic form. Therefore we 
can apply the first part of the statement to obtain (3.2). �
4. The Sobolev space H1,1(X, d, m)

In this section we investigate in more detail the possible definitions of the space 
H1,1 described in [1]. We adopt the definition leading to the larger space and study 
a few structural properties. Then, assuming doubling and (1, 1)-Poincarè, we compare 
with more restrictive definitions. The results of this section will be applied in the next 
section, dealing with H1,1 functions in X ×R. In this section we assume that m is finite 
on bounded sets.

Definition 4.1 (The space H1,1(X, d, m)). We denote by H1,1(X, d, m) the subspace of all 
f ∈ BV (X, d, m) satisfying:

(i) f ◦ γ ∈ H1,1(0, 1) for 1-almost every γ ∈ C([0, 1]; X);
(ii) |Df | � m.

By analogy with the Sobolev case, we denote by |∇f |∗,1 the density of |Df | w.r.t. m.
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In view of the example mentioned in Remark 2.13, we know that (ii) would not be suf-
ficient to provide Sobolev regularity of f along 1-almost every curve (not even if |Df | has 
a bounded density), a natural requirement for Sobolev functions, also in view of the con-
nection with other definitions. In the presence of doubling and (1, 1)-Poincaré inequality 
for locally Lipschitz functions, however, (ii) is sufficient, see the proof of the implication 
from (iii) to (i) in Theorem 4.3 which only uses |Df | � m (see also [16, Theorem 4.6]).

We use the notation |∇f |∗,1 because, at this level of generality, we expect that weak 
gradients depend on the integrability exponent, even for Lipschitz functions, see [11]
for examples compatible even with the doubling assumption. Notice that the obvious 
inequality |Df | ≤ |∇f |m on locally Lipschitz functions gives |∇f |∗,1 ≤ |∇f | m-a.e. in X
for all f ∈ Liploc(X), while additional assumptions are needed to reverse this inequality 
(see (4.5) below).

In the next proposition we are able to prove the locality of |∇f |∗,1. It was difficult for 
us to prove this fact using only (2.15) (because, unlike the Sobolev case, the convergence 
of slopes is weak and not strong), therefore we adopt the dual point of view provided by 
Theorem 2.12.

Proposition 4.2 (Locality of |∇f |∗,1). Let f ∈ H1,1(X, d, m). Then

|∇f |∗,1 = 0 m-a.e. in {f = 0}. (4.1)

In particular, if f , g belong to H1,1(X, d, m), then

|∇f |∗,1 = |∇g|∗,1 m-a.e. in {f = g}. (4.2)

Proof. It is well known that for a Sobolev function g : (0, 1) → R the property holds, 
namely g′ = 0 L 1-a.e. on {g = 0}. Given a ∞-test plan π, from part (i) of Definition 4.1
it follows that

(f ◦ γ)′ = 0 L 1-a.e. on γ−1({f = 0}), for π-a.e. γ.

Since |D(f ◦ γ)| = |(f ◦ γ)′|L 1, the definition of push-forward gives γ�|D(f ◦ γ)|({f =
0}) = 0 for π-a.e. γ. By integration w.r.t. π, since π is arbitrary we get that the measure

μ := χ{f �=0}|∇f |∗,1m = χ{f �=0}|Df |

still satisfies (ii) of Theorem 2.12. Then, the minimality of |Df | = |∇f |∗,1m gives (4.1).
It follows from the inequalities (derived from (2.14)) that

−|∇(f − g)|∗,1 + |∇g|∗,1 ≤ |∇f |∗,1 ≤ |∇g|∗,1 + |∇(f − g)|∗,1 m-a.e. in X.

Using (4.1) we obtain (4.2). �
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If we assume that the (1, 1)-Poincaré inequality for Lipschitz functions we can spe-
cialize (2.16) to H1,1(X, d, m), obtaining

−
ˆ

Br(x)

|f − fx,r| dm ≤ cr

ˆ

Bλr(x)

|∇f |∗,1 dm ∀f ∈ H1,1(X, d,m). (4.3)

Analogously, (2.17) gives

|f̃(x) − f̃(y)| ≤ cd(x, y)
(
Mr|∇f |∗,1(x) + Mr|∇f |∗,1(y)

)
. (4.4)

When f is locally Lipschitz we can use (4.4) at approximate continuity points of 
Mr|∇f∗,1| (see for instance the argument in [8]) to get

|∇f | ≤ cMr(|∇f |∗,1) m-a.e. in X, for all f ∈ Liploc(X).

Letting r ↓ 0 eventually gives, for some structural constant c,

|∇f | ≤ c|∇f |∗,1 m-a.e. in X, for all f ∈ Liploc(X). (4.5)

Now, we can combine the “local” Lipschitz estimate (4.4), with the weak L1 and 
asymptotic estimates (2.6), (2.7) to get the following Lusin type approximation result 
of H1,1 functions by Lipschitz functions; this way, we get the equivalence with other, 
a priori stronger, definitions.

Theorem 4.3 (Equivalent definitions of H1,1(X, d, m)). Let f ∈ L1(X, m) and let us 
consider the following conditions:

(i) there exist fn ∈ Lip(X) ∩ L1(X, m) with fn → f in L1(X, m), m({f �= fn}) → 0
and |∇fn| equi-integrable;

(ii) there exist a Borel function g : X → [0, ∞) and a representative f̂ of f such that ´
X
g dm < ∞ and

|f̂(γ(1)) − f̂(γ(0))| ≤
ˆ

γ

g for Mod1-a.e. curve γ; (4.6)

(iii) f ∈ H1,1(X, d, m).

Then (i) ⇒ (ii), with g limit point of |∇fn| in the weak L1(X, m) topology, and 
(ii) ⇒ (iii), with

|∇f |∗,1 ≤ g m-a.e. in X. (4.7)

If (X, d, m) is doubling and the (1, 1)-Poincaré inequality for locally Lipschitz functions 
holds, then f ∈ BV (X, d, m) and |Df | � m imply (i). In particular (iii) ⇒ (i).
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Proof. (i) ⇒ (ii). See for instance [22], [18, Theorem 10.5] and the recent monograph [19]
for the construction of the representative f̂ . The main point is to find Lipschitz functions 
f̃n convergent to f m-a.e. in X and upper gradients gn of f strongly convergent to g
in L1(X, m), using also the fact that this implies 

´
γ
gn →

´
γ
g for Mod1-a.e. γ. The 

functions f̃n are finite convex combinations of fn, where the coefficients of the convex 
combinations are chosen in such a way that the corresponding convex combination gn of 
|∇fn|, which are upper gradients of f̃n, are strongly convergent.

(ii) ⇒ (iii). Since families of subcurves of a Mod1-negligible set of curves are still 
Mod1-negligible, the argument in [22] shows that f̂ is absolutely continuous (and not 
only H1,1) along Mod1-a.e. curve, with

∣∣ d
dt

f ◦ γ(t)
∣∣ ≤ g(γ(t))|γ̇(t)| for L 1-a.e. t ∈ (0, 1), for Mod1-a.e. γ. (4.8)

Since we already observed that Mod1-negligible sets are 1-negligible, we obtain (i) of 
Definition 4.1. In connection with condition (ii) of Definition 4.1, we can use (4.8) to 
show that the measure μ = gm satisfies

ˆ
γ�|D(f ◦ γ)| dπ(γ) ≤ C(π)‖Lip(γ)‖∞μ

for any ∞-test plan π. The minimality property of |Df | stated in Theorem 2.12 then 
gives |Df | ≤ gm, so that |Df | � m.

(iii) ⇒ (i), under the doubling and Poincaré assumptions. We apply (2.17) with r = ∞
and denote by En the set of approximate continuity points of f where M∞(|∇f |∗,1 + |f |)
is smaller than n. By the McShane Lipschitz extension theorem, we can extend f̃ |En

to 
a 2cn-Lipschitz function on X, denoted by fn, with |fn| ≤ n. Since the weak L1 estimate 
holds, it is then clear that fn ∈ L1(X, m) and m({f �= fn}) ≤ m(X \ En) → 0. In 
connection with equi-integrability of |∇fn|, namely

lim
z→∞

lim sup
n→∞

ˆ

{|∇fn|>z}

|∇fn| dm = 0,

it suffices to split the integral on En and on X \ En. The former can be estimated 
uniformly in n from above, thanks to (4.5) and locality, with

c

ˆ

En∩{|∇fn|∗,1>z/c}

|∇fn|∗,1 dm ≤ c

ˆ

{|∇f |∗,1>z/c}

|∇f |∗,1 dm

which is infinitesimal as z → ∞. The latter can be estimated using (2.7). A similar and 
simpler argument shows that fn → f in L1(X, m). �

The characterization (ii) in Theorem 4.3 of H1,1(X, d, m) suggests another definition 
of minimal 1-gradient |∇f |w,1, namely the smallest function g (up to m-negligible sets) 
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such that, for some representative f̂ of f , the inequality (4.6) holds. This is the point of 
view also adopted, besides the relaxation point of view, in the theory of Sobolev spaces 
with exponent p > 1, see [22,19,5] for a comparison between the definitions. From (4.7)
we immediately get

|∇f |∗,1 ≤ |∇f |w,1 m-a.e. in X, (4.9)

while the inequality (4.5) gives, for some structural constant c,

|∇f |w,1 ≤ |∇f | ≤ c|∇f |∗,1 m-a.e. in X. (4.10)

Remark 4.4. In general equality does not hold in (4.9), not even under the doubling 
and Poincaré assumptions: in [16], a metric measure space is built endowing X = [0, 1]
with the Euclidean distance and the weighted measure m = ωL 1 ∈ P(X), with ω ≡ 1
on a “fat” Cantor set K ⊂ (0, 1) (i.e. a compact totally disconnected set with positive 
Lebesgue measure) and ω = 1/2, say, on (0, 1) \ K. It is clear that (X, d, m), being 
comparable to the standard Euclidean structure, satisfies the doubling and Poincaré 
assumptions. On the other hand, in [16] Lipschitz functions fn convergent to the identity 
function f in L1(X, m) are built in such a way that

lim sup
n→∞

ˆ

X

|∇fn| dm <

ˆ

X

|∇f | dm.

Now, the very definition of H1,1(X, d, m) gives that |Df |(X) <
´
X
|∇f | dm, hence |Df | =

|∇f |∗,1m gives that |∇f |∗,1 < |∇f | in a set with positive m-measure. Since it is easy to 
check that |∇f | = |∇f |w,1 = 1 m-a.e. for the identity function, we have a situation 
where the two notions of weak gradient in the limiting case p = 1 differ. The difference 
of the notions arises basically from the fact that f �→

´
X
|∇f |∗,1 dm has an L1-lower 

semicontinuity property built in, while f �→
´
X
|∇f |w,1 dm a priori does not. �

In the following proposition we show that |∇f |w,1 enjoys a stronger approximation 
property by Lipschitz functions, compared to (2.15). In the proof we will use the identity

|∇f | = |∇f |w,1 m-a.e. in X, for all f ∈ Liploc(X), (4.11)

which is proved in [19, Theorem 12.5.1] and it extends Theorem 2.4 to the limiting case 
p = 1. For the sake of completeness we sketch the main ideas used to prove (4.11). 
Clearly, it suffices to prove that for every f ∈ Liploc(X) it holds |∇f | ≤ |∇f |w,1 m-a.e. 
in X. By the Vitali–Carathéodory theorem (see [19, Theorem 3.2.4]), it suffices to show 
that |∇f | ≤ g for any countably valued lower semicontinuous upper gradient g ∈ L∞

loc(X)
of f for which there is a positive real number c with g ≥ c. By [19, Lemma 12.5.9] there 
is sequence (fk) of Lipschitz functions, with a corresponding sequence (gk) of continuous 
upper gradients, such that (fk) converges to f in L2

loc(X) and lim supk gk ≤ g m-a.e. 
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in X. Then (fk) is bounded in H1,2
loc (X) and we conclude exactly as in the proof of [19, 

Theorem 12.5.1].

Proposition 4.5. Assume that (X, d, m) is doubling and that the (1, 1)-Poincaré inequality 
holds for locally Lipschitz functions. Then for all f ∈ H1,1(X, d, m) there exist locally 
Lipschitz functions fn with fn → f and |∇fn| → |∇f |w,1 in L1(X, m).

Proof. Using the identity (4.11) it suffices to prove |∇fn|w,1 → |∇f |w,1. Now, no-
tice that, because of the inequality (4.10), the weak gradient |∇g|w,1 is local on Borel 
sets as well as |∇g|∗,1 (but, this property could be proved directly with the definition 
of |∇g|w,1). Therefore the sequence (fn) provided by Theorem 4.3(i) provides the re-
sult. �
5. Sets of finite perimeter and the area formula

In the setup of the tensorization Section 3, assume that Y = R endowed with the 
standard Euclidean structure and the Lebesgue measure L 1. This is a σ-finite and not 
finite metric measure space, but we can use a localization argument for weak gradients 
(in the same spirit of [1, Theorem 1.1] or [6, Lemma 4.11]) and apply all results of that 
section to this situation. Departing a bit from the notation of Section 3, we will then 
consider a m.m. space (X, d, m) and endow X × R with the product distance d̃ and the 
product measure m̃ = m × L 1.

If we consider a set of finite perimeter E ⊂ X × R that is the subgraph of a function 
f : X → R, namely

Ef :=
{
(x, t) ∈ X × R : t < f(x)

}

then it is natural to compare the perimeter of Ef , defined according to the well estab-
lished metric BV theory in X × R, to the area of the graph of f . In this context the 
natural regularity condition on f is f ∈ H1,1(X, d, m) (or even BV (X, d, m)); namely we 
would like to know whether

P (Ef , B × R) =
ˆ

B

√
1 + |∇f |2∗,1 dm for all B ⊂ X Borel (5.1)

for f ∈ H1,1(X, d, m). We will provide a partial positive answer using the tensorization 
property of weak gradients; this is not surprising, since locally Lipschitz functions on A
are used to define the perimeter P (Ef , A) for A ⊂ X × R open.

Theorem 5.1. Assume that (X, d, m) is a doubling metric measure space, and that the 
(1, 1)-Poincaré inequality holds for Lipschitz functions. Then:



1170 L. Ambrosio et al. / Advances in Mathematics 281 (2015) 1145–1177
(a) for all f ∈ H1,1(X, d, m) and all B ⊂ X Borel one has

P (Ef , B × R) ≤
ˆ

B

√
1 + |∇f |2w,1 dm. (5.2)

(b) for all f ∈ BV (X, d, m), denoting by |Df | = |∇f |∗,1m + |Dsf | the Radon–Nikodym 
decomposition of |Df |, one has

P (Ef , B × R) ≥
ˆ

B

√
1 + |∇f |2∗,1 dm + |Dsf |(B) for all B ⊂ X Borel. (5.3)

Proof. We first prove the inequality ≤ in (5.2), for f locally Lipschitz and B ⊂ X open. 
Let χε ∈ C∞(R) be monotonically convergent to χ(0,∞) with 0 ≤ χε ≤ 1, χ′

ε ≥ 0 and ´
χ′
ε dt ≤ 1. Then,

gε(x, t) := χε(f(x) − t)

provides a locally Lipschitz approximation of the characteristic function of Ef . Given 
our assumptions on (X, d, m), Theorem 2.4 (applied in (X × R, d̃, m̃) which is doubling 
and satisfies (1, 1)-Poincaré for locally Lipschitz functions), Theorem 3.4 and the chain 
rule for weak gradients give

|∇gε|(x, t) = |∇gε|∗(x, t) =
√

|∇gxε |2∗,R(t) + |∇gtε|2∗,X(x)

= χ′
ε(f(x) − t)

√
1 + |∇f |2∗(x) = χ′

ε(f(x) − t)
√

1 + |∇f |2(x)

for m̃-a.e. (x, t) ∈ X × R. If we integrate on B × R and use Fubini’s theorem, we get
ˆ

B×R

|∇gε| dm̃ ≤
ˆ

B

√
1 + |∇f |2 dm.

By the definition of P (Ef , B × R) we obtain the inequality

P (Ef , B × R) ≤
ˆ

B

√
1 + |∇f |2 dm. (5.4)

For f ∈ H1,1(X, d, m) and B open we use the Lipschitz approximation provided by 
Proposition 4.5 and the lower semicontinuity of the perimeter in open sets to obtain (5.2). 
Being an inequality between positive and finite Borel measures, it extends from open to 
Borel sets.

We now prove the inequality (5.3). Let gn ∈ Liploc(X × (−N, N)) be convergent 
to χEf

in L1(X × (−N, N), m̃). By Fubini’s theorem, possibly refining the sequence, 
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we can assume that gtn → χt
Ef

= χ{f(x)>t} in L1(X, m) for L 1-a.e. t ∈ (−N, N), 
and that gxn → χx

Ef
= χ{t<f(x)} in L1(−N, N) for m-a.e. x ∈ X. Applying once more 

Theorem 2.4 in X×R and Theorem 3.4 gives |∇gn|2(x, t) = |∇gxn|(t)2 + |∇gtn|2(x) m̃-a.e. 
in X × (−N, N). Fix now a, b : X → [0, 1] continuous with a2 + b2 ≤ 1 and notice that

lim inf
n→∞

ˆ

X×(−N,N)

√
|∇gxn|2(t) + |∇gtn|2(x) dm̃(x, t)

≥ lim inf
n→∞

ˆ

X×(−N,N)

a(x)|∇gxn|(t) + b(x)|∇gtn|(x) dm̃(x, t)

≥
ˆ

X

lim inf
n→∞

ˆ

(−N,N)

a(x)|∇gxn|(t) dtdm(x) +
ˆ

(−N,N)

lim inf
n→∞

ˆ

X

b(x)|∇gtn|(x) dm(x)dt

≥
ˆ

X

aχf∈(−N,N) dm +
ˆ

(−N,N)

ˆ

X

b d|Dχ{f>t}| dt.

Now we use the fact that (gn) is arbitrary to get

P (Ef , X × (−N,N)) ≥
ˆ

X

aχf∈(−N,N) dm +
ˆ

(−N,N)

ˆ

X

b d|Dχ{f>t}| dt.

Letting N ↑ ∞ and using the coarea formula

|Df | =
∞̂

−∞

|Dχ{f>t}| dt

(see for instance [21]) gives

P (Ef , X × R) ≥
ˆ

X

a dm +
ˆ

b d|Df | =
ˆ

X

(a + b|∇f |∗,1) dm +
ˆ

X

b d|Dsf |.

Since |Dsf | ⊥ m, taking the supremum among all admissible pairs (a, b) we get (5.3)
with B = X. Repeating the argument with any open set B ⊂ X the inequality is proved 
on all open sets and then on all Borel sets. �

In the proof of the statement made in the next remark, the following lemma will be 
useful.

Lemma 5.2. Let un ∈ L1(X, m) be nonnegative functions satisfying

lim sup
n→∞

ˆ √
1 + u2

n dm ≤
ˆ √

1 + u2 dm
X X
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for some nonegative u ∈ L1(X, m). If unm weakly converge to a measure μ ≥ um, then 
μ = um and un → u in L1(X, m).

Proof. Let ν = ν
m
m + νs be the Radon–Nikodym decomposition of ν with respect m. 

Since the functional

ν �→
ˆ

X

√
1 +

∣∣ ν
m

∣∣2 dm + νs(X)

is sequentially weakly lower semicontinuous and the density of μ is, by assumption, larger 
than u m-a.e., we obtain

lim inf
n→∞

ˆ

X

√
1 + u2

n dm ≥
ˆ

X

√
1 +

∣∣ μ
m

∣∣2 dm + μs(X) ≥
ˆ

X

√
1 + u2 dm + μs(X),

hence μs(X) = 0, μ = um and 
´ √

1 + u2
n dm converge to 

´ √
1 + u2 dm. We can now use 

the strict convexity of z �→
√

1 + z2 (see for instance Exercise 1.20 of [2]) to conclude. �
By the lower semicontinuous nature of both functionals, we believe that equality 

always holds in (5.3) at least on f ∈ H1,1(X, d, m), i.e.

P (Ef , B × R) =
ˆ

B

√
1 + |∇f |2∗,1 dm for all B ⊂ X Borel.

In the next remark, instead, we compare with the relaxation point of view of [16].

Remark 5.3. Let us discuss the question of the validity of the equality

inf
{

lim inf
n→∞

ˆ

X

√
1 + |∇fn|2 dm : fn ∈ Liploc(X), fn → f in L1(X,m)

}

=
ˆ

X

√
1 + |∇f |2∗,1 dm (5.5)

for f ∈ H1,1(X, d, m). Notice that the inequality ≥ follows at once from the lower semi-
continuity of the perimeter and (5.4), (5.3) with B = X, while the inequality ≤ with the 
apriori larger gradient |∇f |w,1 instead of |∇f |∗,1 in the right hand side follows immedi-
ately by Proposition 4.5. Hence, if |∇f |∗,1 = |∇f |w,1 m-a.e. in X, equality holds in (5.5). 
Conversely, if equality holds in (5.5), a diagonal argument provides fn ∈ Liploc(X) such 
that fn → f in L1(X, m) and

lim sup
n→∞

ˆ √
1 + |∇fn|2 dm ≤

ˆ √
1 + |∇f |2∗,1 dm.
X X
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If we denote by μ a weak limit of |∇fn|, we obviously have μ ≥ |Df | on open sets A, 
hence μ ≥ |∇f |∗,1m. From Lemma 5.2 we obtain that μ � m and that |∇fn| → |∇f |∗,1
in L1(X, m). As in [22], this implies the existence of representatives f̃ of f and g of 
|∇f |∗,1 such that

|f̃(γ(1)) − f̃(γ(0))| ≤
ˆ

γ

g

for Mod1-a.e. curve γ, hence |∇f |∗,1 ≥ |∇f |w,1 m-a.e. in X.
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Appendix A. Proof of the inequality |∇f |∗ ≥ |∇f |∗,c

In [6], a very detailed analysis of the fine properties of the Hopf–Lax semigroup

Qtg(w) := inf
w′∈W

g(w′) + 1
2td

2
W (w′, w) (A.1)

in a metric space (W, dW ) has been made. The analysis is based on the quantities

D+
g (w, t) := sup lim sup

n→∞
dW (w,w′

n), D−
g (w, t) := inf lim inf

n→∞
dW (w,wn),

where the supremum and the infimum run among all minimizing sequences (wn) in (A.1). 
These quantities reduce respectively to the maximum and minimum distance from w of 
minimizers in the locally compact case. Confining for simplicity our discussion to the 
case of bounded functions g : W → R, which suffices for our purposes, for all t > 0 it 
has been shown that (see Propositions 3.2, 3.3 and 3.4 of [6]):

(a) D+
g and D−

g are respectively upper and lower semicontinuous in W × (0, ∞) and, 
given w, D+

g (w, t) = D−
g (w, t) with at most countably many exceptions;

(b) Qtg is Lipschitz in X, with Lip(Qtg) ≤ 2
√

osc(g)/t, where osc(f) = sup f − inf f ;
(c) D−

g (·, t)/t is an upper gradient of Qtg;
(d) the following pointwise equality holds:

d+
Qtg(w) +

(D+
g (w, t))2

= 0, (A.2)

dt 2t2
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where d+/dt stands for right derivative (part of the statement is its existence at 
every point).

Notice that, since D+
g (·, t)/t ≥ D−

g (·, t)/t is an upper semicontinuous upper gradient of 
Qtg, it bounds the slope of Qtg from above. Therefore (A.2) implies the Hamilton–Jacobi 
subsolution property d

+

dt Qtg+|∇Qtg|2/2 ≤ 0, but the sharper form (A.2) is often essential 
for the proofs.

More precisely, our proof of the inequality |∇f |∗ ≥ |∇f |∗,c is based on a refinement 
of Lemma 6.16, Lemma 6.17 and Proposition 6.18 of [7] and it is split in these steps:

Step 1. Let g : Z → R be a bounded function and set

Qtg(x, y) := inf
{
g(x′, y′) + 1

2t
(
d2
X(x, x′) + d2

Y (y, y′)
)}

. (A.3)

In this step we show that for L 1-a.e. t > 0 one has

d+

dt
Qtg + 1

2 |∇Qtg|2c ≤ 0 m-a.e. in Z. (A.4)

In (6.40) of [7], starting from (A.2), an inequality similar to (A.4) for all t > 0 has 
been proved, where instead of |∇Qtg|2c the sum |(Qtg)x|2∗,Y + |(Qtg)y|2∗,X was used. Our 
refinement (A.4) still relies on (A.2) and the pointwise inequality (see (6.43) of [7])

[D+
g ((x, y), t)]2 ≥ [D−

Lt,y
(x, t)]2 + [D−

Rt,x
(y, t)]2 (A.5)

where Lt,y(x′) := QY
t g(x′, ·)(y) and Rt,x(y′) := QX

t g(·, y′)(x). By minimizing first w.r.t. 
to one variable and then with respect to the other variable in (A.3) we have the easy 
identities

(Qtg)y(x) = QX
t (Lt,y)(x), (Qtg)x(y) = QY

t (Rt,x)(y). (A.6)

By (a) we can apply Fubini’s theorem to convert D− into D+ in (A.5), thus obtaining

[D+
g ((x, y), t)]2 ≥ [D+

Lt,y
(x, t)]2 + [D+

Rt,x
(y, t)]2 for m-a.e. (x, y) ∈ Z

for L 1-a.e. t > 0. Since D+ is an upper semicontinuous upper gradient and upper 
semicontinuous upper gradients bound, as we already said, the slope from above, we can 
use (A.6) to get eventually (A.4).

Step 2. (The so-called Kuwada lemma.) In this step we show that if h ∈ L∞(Z, m) is a 
probability density, and ht is the solution to the gradient flow of Chc starting from h, then 
μt = htm ∈ P(Z), t �→ μt is locally absolutely continuous from [0, ∞) to P(Z) endowed 
with the quadratic Wasserstein distance W2. In addition, its metric speed satisfies
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|μ̇t|2 ≤
ˆ

{ht>0}

|∇ht|2∗,c
ht

dm for L 1-a.e. t > 0. (A.7)

The proof of this fact uses the Hamilton–Jacobi subsolution property (A.4) of Step 1 
(used in integral form, so its validity for L 1-a.e. t > 0 is sufficient), as well as the 
integration by parts formula (2.9) with the Laplacian ΔG corresponding to the energy 
ChG induced by the pseudo gradient G(f) = |∇f |c.

Step 3. In this step we conclude the proof of the inequality |∇f |∗ ≥ |∇f |∗,c. Now for 
any bounded nonnegative f ∈ D(Ch) with 

´
f2 dm = 1 we can find, arguing exactly as 

in Proposition 6.18 of [7], a sequence of locally Lipschitz functions fn convergent to f in 
L2(X, m) satisfying

lim sup
n→∞

ˆ

Z

|∇fn|2∗,c dm ≤ Ch(f) (A.8)

(the only difference is that the gradient flow of Chc has to be used, as in the previous 
steps). Therefore f ∈ D(Chc) and Chc(f) ≤ Ch(f) which, in combination with (3.7), gives 
the result. Using invariance under addition by constants and homogeneity, we extend the 
result to all bounded functions f . Eventually a truncation argument and the locality of 
weak gradients provide the result for general f . The preliminary reduction to nonnegative 
and normalized f ’s is necessary in view of Step 2, because we use in the construction of 
fn the estimate (A.7) on metric derivative for a P(Z)-valued map.

We briefly sketch, for the reader’s convenience the argument leading to (A.8), referring 
to [6, Theorem 6.2] and [7, Proposition 6.18] for more details. By homogeneity and 
invariance under addition of constants we can assume, besides 

´
f2 dm = 1, that c−1 ≥

f ≥ c > 0 m-almost everywhere in Z. We consider the gradient flow (ht) of Chc with 
initial datum h := f2, setting μt = htm. The maximum principle yields c−2 ≥ ht ≥ c2

and a standard argument based on chain rule and integration by parts (2.9) yields the 
energy dissipation identity

d

dt

ˆ
ht log ht dm = −

ˆ

{ht>0}

|∇ht|2∗,c
ht

dm for L 1-a.e. t > 0. (A.9)

Let g = h−1|∇h|∗; by the chain rule we know that logh is Sobolev along almost every 
curve and we can use the same argument of [6, Theorem 6.2] to get

ˆ (
h log h− ht log ht

)
dm ≤

ˆ
log h(h− ht) dm ≤

( tˆ

0

ˆ
g2hs dm ds

)1/2( tˆ

0

|μ̇s|2 ds
)1/2

.

Now, inequality (A.7) gives
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ˆ (
h log h− ht log ht

)
dm ≤ 1

2

tˆ

0

ˆ
g2hs dm ds + 1

2

tˆ

0

|μ̇s|2 ds

≤ 1
2

tˆ

0

ˆ
g2hs dm ds + 1

2

tˆ

0

ˆ

{hs>0}

|∇hs|2∗,c
hs

dm ds.

Recalling the entropy dissipation formula (A.9) we obtain

tˆ

0

ˆ

{hs>0}

|∇hs|2∗,c
hs

dm ds ≤
tˆ

0

ˆ
g2hs dm ds.

Now, the chain rule and the identity g = 2f−1|∇f |∗ give 
´ t

0 Chc(
√
hs) ds ≤´ t

0
´
|∇f |2∗f−2hs dm ds, so that dividing by t and passing to the limit as t ↓ 0 we get

lim sup
t↓0

1
t

tˆ

0

Chc(
√
hs) ds ≤

ˆ

X

|∇f |2∗ dm.

Therefore there exists si ↓ 0 with lim supi Chc(
√

hsi) ≤ Ch(f). Since 
√
hsi are equi-

bounded and converge strongly to f in L2(Z, m) as s ↓ 0, a diagonal argument pro-
vides (A.8).
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