
ON THE NUMERICAL RANGE OF MATRICES DEFINED OVER

A FINITE FIELD

E. BALLICO

Abstract. Let q be a prime power. For u = (u1, . . . , un), v = (v1, . . . , vn) ∈
Fn
q2

let 〈u, v〉 :=
∑n

i=1 u
q
i vi be the Hermitian form of Fn

q2
. Fix an n×n matrix

M over Fq2 . Set Num(M) := {〈u,Mu〉 | u ∈ Fn
q2

, 〈u, u〉 = 1} (the numerical

range of M introduced by Coons, Jenkins, Knowles, Luke and Rault (case q a
prime q ≡ 3 (mod 4)) and by the author (arbitrary q)). When n = 2 we prove

an upper bound for |Num(M)|. We describe Num(M) for several classes of

matrices, mostly for n = 2, 4.

1. Introduction

Let q be a prime power. Let Fq denote the only field, up to field isomorphisms,
with |Fq| = q ([19, Theorem 2.5]). Let e1, . . . , en be the standard basis of Fn

q2 .
For all v, w ∈ Fn

q2 , say v = a1e1 + · · · + anen and w = b1e1 + · · · + bnen, set

〈v, w〉 =
∑n

i=1 a
q
i bi. 〈 , 〉 is the standard Hermitian form of Fn

q2 . For any n ≥ 1 and
any a ∈ Fq set

Cn(a) := {(x1, . . . , xn) ∈ Fn
q2 | x

q+1
1 + · · ·+ xq+1

n = a}.

The set Cn(1) is an affine chart of the Hermitian variety of Pn(Fq2) ([14, Ch. 5],
[16, Ch. 23]). Take M ∈Mn,n(Fq2), i.e. let M be an n×n matrix with coefficients
in Fq2 . For any k ∈ Fq set Numk(M) := {〈u,Mu〉 | u ∈ Cn(k)} ⊆ Fq2 . Set
Num(M) := Num1(M). The set Num(M) is called the numerical range of M .
These concepts were introduced in [8] when q is a prime q ≡ 3 (mod 4) and in [1]
in the general case.

If n > 2 we have Num(M) = Fq2 for “most ” M ∈ Mn,n(Fq2). This is the case
for most diagonal matrices, as it is possible to describe the numerical range of block
diagonal matrices. More precisely, fix A ∈Mm,m(Fq2), B ∈Mr,r(Fq2) and set

M =

(
A 0
0 B

)
.

Thus M ∈ Mm+r,m+r(Fq2). There is a complete description of Num(M) in terms
of all Num(A), Num0(A), Num(B) and Num0(B) ([8, Proposition 3.1], [1, Lemma
1]) and this description shows how easy from a given A to find B (even with r = 1
if m ≥ 2 and A is not too special) with Num(M) = Fq2 .

If n = 2 we may use Num(M) to give a good description of M , up to a unitary
transformation, at least if q 6= 2. In particular |Num(M)| describes in which field
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the eigenvalues of M are contained, if the eigenvectors of M are in C2(0) or not
and if they are orthogonal with respect to 〈 , 〉 (Remark 1).

For any M = (mij) ∈ Mn,n(Fq2) set M† := (mq
ji) ∈ Mn,n(Fq2). Note that

M†† = M and that 〈u,Mv〉 = 〈M†u, v〉 for all u, v ∈ Fn
q2 . The matrix M is

unitary if and only if M† = M . In [2] the author defined the real part and the
imaginary part first of any x ∈ Fq2 and then of any M ∈ Mn,n(Fq2). We briefly
recall here the case q odd. In Section 2 we give more details and explain the case
q even. Assume q odd. Fix α ∈ Fq, which is not a square in Fq and fix a root
β ∈ Fq2 of the equation t2 − α = 0, so that Fq2 is an Fq-vector space with 1 and
β. For any z = x + yβ ∈ Fq2 with x, y ∈ Fq set <z := x and =z := y. We have
z = (z + zq)/2 and =z = (z − zq)/2β. For any square matrix M ∈ Mn,n(Fq2) set

M+ := (M −M†)/2 and M− := (M + M†)/2β. We have M = M+ + βM−. If
M = M†, then Num(M) ⊆ Fq (Remark 4). Thus for any square matrix M we have
Num(M+) ⊆ Fq and Num(M−) ⊆ Fq.

We first prove the following upper bound for |Num(M)|.

Theorem 1. Fix any M ∈M2,2(Fq2). Then:

(i) |Num(M)| ≤ q2 − 2q + 2;
(ii) if |Num(M+)| ≤ q−1 and |Num(M−)| ≤ q−1, then |Num(M)| ≤ q2−2q+1;

(iii) if either |Num(M+)| ≤ q−2 or |Num(M−)| ≤ q−2, then either M = cI2×2

and Num(M) = {c} or q − 1 ≤ |Num(M)| ≤ q;
(iv) if {|Num(M+)|, |Num(M−)|} = {q − 1, q}, then |Num(M)| ≤ q2 − 2q + 2;
(v) if |Num(M+)| = |Num(M−)| = q, then |Num(M)| ≤ q2 − 4q + 8.

Then we describe Num(M) for many classes of 2 × 2 matrices. In the classical
case of the numerical range of complex matrices the case of 2× 2 matrices was the
critical one for the convexity theorem, while n > 2 was reduced to the 2 × 2 case
([10, Lemma 1.1.1 and Theorem 1.1.2], [11, 12, 20]).

Our interest in the classical, i.e. over C, numerical range came from our interest
in quantum computing, quantum error correcting codes and convolutional codes
([4, 5, 6, 9, 13, 17, 21, 22]). Let V be a (finite-dimensional for error correcting
code purpose) complex vector space equipped with an Hermitian form 〈 , 〉, i.e. a
finite dimensional Hilbert space. Over a finite field one uses the Hermitian form
〈 , 〉 over Fq2 . The map νM : Cn(1) → Fq2 defined by the formula u 7→ 〈u,Mu〉
(which we call the numerical range map) should play an important role in the use
of Hermitian forms over finite fields for these topics.

In [3] we proved that the restriction of the numerical range (over Fq2) to sub-
spaces of Fn

q2 sometimes determines the matrix or it is sufficient to describe its main

properties. This is another reason for the interest of Num(A) where A ∈Mr,r(Fq2)
and r is very low. Restrictions are also usual in classical block codes.

Let In×n denote the unity n × n matrix. The matrix N ∈ M2,2(Fq2) is called

unitary if N†N = In×n (or equivalently NN† = In×n). Note that Numk(M) =
Numk(U†MU) for every unitary matrix U .

To state our results we consider the following geometric terminology.
As in [8] for any a ∈ Fq2 and any b ∈ Fq \ {0} the circle Sa,b with center a

and squared-radius b is the set {z ∈ Fq2 | (z − a)q+1 = b}. We obviously have
|Sa,b| = q + 1 (Remark 6 or [1, Remark 3]). If we know the center of a circle, to
get its squared-radius (and so to get all points of the circle) it is sufficient to know
one of its points. Two different circles with the same center are disjoint. In the
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set-up of [8] it was obvious that 2 distinct circles have at most 2 common points.
We prove (Lemma 5) that this is the case for all finite fields with odd order and so
if q is odd a circle is uniquely determined by 3 of its points.

Fix d ∈ Fq2 \ {0} and k ∈ Fq \ {0, 1}. The ellipse associated to (d, k) or of
type (d, k) is the set of all k(dzq + z) for some z ∈ Fq2 with zq+1 = k(1 − k). For
any b ∈ Fq2 a set B ⊂ Fq2 is called an un-centered ellipse of type (d, k, b) if B − b
(the set of all a − b with a ∈ B) is an ellipse associated to (d, k). Unions of un-
centered ellipses (with respect to different translations b) occur in the statement of
Proposition 2. See Lemma 2 for the cardinalities of the ellipses.

In Section 4 we prove the following results.

Proposition 1. Take M ∈M2,2(Fq2). There are linearly independent u1, u2 ∈ F2
q2

such that

〈u1, u2〉 = 〈u1,Mu1〉 = 〈u2,Mu2〉 = 0

if and only if there is a unitary transformation U of F2
q2 such that

N := U†MU =

(
0 b
b′ 0

)
for some b, b′. In the latter case Fq2u1 and Fq2u1 are uniquely determined by M .
If bb′ 6= 0, then b and b′ are uniquely determined by M .

(i) If b = b′ = 0, then Num(M) = {0}.
(ii) Assume bb′ = 0 and (b, b′) 6= (0, 0). Set ρ := q/2 − 1 if q is even and

ρ := (q − 1)/2 if q is odd. Then Num(M) is the union of 0 and ρ distinct circles
with center at 0.

(iii) Assume bb′ 6= 0 and q even. Let c be the only element of Fq2 with c2 = bb′.
Set y := c/b. If yq+1 = 1, then |Num(M)| = q − 1. If yq+1 6= 0, then Num(M) is
the union of {c} and q/2− 1 disjoint circles with center c and hence |Num(M)| =
1 + (q + 1)(q/2− 1).

(iv) Assume q odd, bb′ 6= 0 and that bb′ is a square in Fq2 , say bb′ = c2. If
cq+1 /∈ {−1, 1}, then Num(M) is the union of {−c, c} and q − 2 not necessarily
disjoint circles. If cq+1 = 1, then |Num(M)| = q and Num(M) = {z ∈ Fq2 |
zq + z = 1}. If cq+1 = −1, then |Num(M)| = q − 1.

(v) Assume bb′ 6= 0, q odd and that bb′ not a square in Fq2 . Set d := b/b′ and

E := 1
b′N . Then Num(E) is the union of 0 and of q − 2 ellipses of type (d, k), one

for each k ∈ Fq \ {0, 1}.

Proposition 2. Take q odd and let N ∈ M2,2(Fq2) with no eigenvalue in Fq2 .
Then N has two different eigenvalues in Fq4 . Let c ∈ Fq2 be the trace of N and set
M := N − (c/2)I2×2. Write a := m11, b := m12, d := m21. We have m22 = −a,
b 6= 0, d 6= 0 and b/d is not a square in Fq2 . Num(M) is the union of {−a, a} and

the q − 2 sets B(k, a, b, d), where 1
d (B(k, d, b, d) + a(2k − 1)) is an ellipses of type

(b/d, k), k ∈ Fq \ {0, 1}.

In the next statement we use the trace map TrFq2/Fq
([19, Definition 2.22 and

Theorem 2.23]) (see section 2).

Proposition 3. Fix M ∈M2,2(Fq2) such that M+ has a unique eigenvalue c1 with
eigenspace of dimension one spanned by u1 ∈ F2

q2 with 〈u1, u1〉 = 0, M− has a

unique eigenvalue c1 with eigenspace of dimension one spanned by u2 ∈ F2
q2 with
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〈u2, u2〉 = 0 and u2 is not proportional to u1. Then |Num(M)| = q and there is
b′ ∈ F∗q2 and b′′ ∈ Fq such that Num(M)/b′ is the Fq-line Tr−1

Fq2/Fq
(b′′).

Assume q odd. By Propositions 1 and 2 the assumptions of Proposition 3 are
satisfied only in the case (iv) with cq+1 = 1 of Proposition 1. Compare Theorem 2
below to see why matrices with |Num(M)| = q are interesting.

Proposition 4. Assume q odd. Take M ∈M2,2(Fq2) such that M has 2 eigenvalues
c1, c2 ∈ Fq2 , c1 6= c2, with eigenvectors u1, u2 with 〈ui, uj〉 6= 0 for all i, j. If q ≥ 5
(resp. q = 3), then |Num(M)| ≥ (q + 1)(q + 3)/4 (resp. |Num(M)| ≥ 4).

Remark 1. It seems that (after [1, 2, 8]) Proposition 2 was the only missing piece
for the rough classification of numerical ranges for n = 2: if we know Num(M) we
more or less know if M has eigenvalues in Fq2 , if they are 2 or one with multiplicities
2, if an eigenspace is one dimensional spanned by a vector v with 〈v, v〉 6= 0 or not
and partial information on Num(M) may exclude some cases.

In [2, Theorem 1] we proved a lower bound for |Num(M)|, unless M is a specific
class, when q is odd. We complete the proof for the case q even, q 6= 2, and prove
the following result.

Theorem 2. Assume q 6= 2. Take M ∈Mn,n(Fq2) such that M is not a multiple of
the identity matrix In×n. Then either |Num(M)| ≥ q or n = 2, |Num(M)| = q− 1,
M has a unique eigenvalue, c, with dim ker(M − cI2×2) = 1 and the kernel of
M − cI2×2 is spanned by a vector v ∈ ker(M − cI2×2) with 〈v, v〉 = 0.

We conclude the paper with the description of Numk(M) for the following class
of 4× 4 matrices.

Proposition 5. Take

M =


d b1 0 0
b6 d1 b2 b3
0 b5 d b4
0 b7 0 d


with d1, d, bi ∈ Fq2 , 1 ≤ i ≤ 7, b4 6= 0 and k ∈ Fq. Then Numk(M) = Fq2 .

We thanks the referees for feedback and suggestions.

2. Preliminaries

The Galois group of the inclusion Fq ⊂ Fq2 has order 2 and it is generated by
the Frobenius map σ : t 7→ tq.

Following [2] we recall the definitions of =, <, M+ and M−.
First assume q odd. If q is odd, Fq2 is obtained from Fq adding a root β of the

polynomial f(t) := t2−α, where α is not a square in Fq. The other root is −β and
hence σ(β) = −β, i.e. βq = −β. Thus Fq2 = Fq + Fqβ as an Fq-vector space. For
any z = x+ yβ ∈ Fq2 with x, y ∈ Fq set <z := x and =z := y. Since σ(z) = x−βy,
we have <z = (z + zq)/2 and =z = (z − zq)/2β. For any M ∈ Mn,n(Fq2) set

M+ := (M+M†)/2 and M− := (M−M†)/2β. We have M†+ = M+. Since βq = −β,

we have M†− = M−. Hence M = M+ +βM− with M+ and M− Hermitian matrices.
For any u ∈ Fn

q2 we have 〈u,Mu〉 = 〈u,M+u〉+β〈u,M−u〉 with 〈u,M+u〉 ∈ Fq and

〈u,M−u〉 ∈ Fq ([2, Lemma 1]). Thus the map z 7→ <z (resp. z 7→ =z) induces a
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surjection ρ1 : Num(M) → Num(M+) ⊆ Fq (resp. ρ2 : Num(M) → Num(M−) ⊆
Fq) and in particular |Num(M)| ≥ max{|Num(M+)|, |Num(M−)|}.

Now assume q even. Since Fq2 is a degree 2 extension of Fq, there is ε ∈ Fq such
that the polynomial f(t) = t2 +t+ε has no root in Fq and two distinct roots in Fq2 .
We fix one of these roots, β. Note that (β + 1)2 + β + 1 = β2 + β and hence β + 1
is the other root of f(t). Since these two roots are conjugate by the Galois group
of the extension Fq ↪→ Fq2 (which is generated by the Frobenius map σ : t 7→ tq),
we have βq = β + 1 and (β + 1)q = β. If z = x + yβ ∈ Fq2 with x, y ∈ Fq, then
set <z := x and =z := y. The maps < : Fq2 → Fq and = : Fq2 → Fq are Fq-linear.
Since σ : Fq2 → Fq2 is Fq-linear, σ2 is the identity map and σ(β) = β + 1, we have
zq = σ(z) = x+ y+ yβ. Thus y = z+ zq and x = z+βy = (β+ 1)z+βzq. For any
M ∈Mn,n(Fq2) set M+ := (β+ 1)M +βM† and M− = M +M†. Obviously M− is
Hermitian and (since 2β = 0) M = M+ +βM−. Since (β+1)q = β and βq = β+1,
M+ is Hermitian. Thus the map z 7→ <z (resp. z 7→ =z) induces surjections
ρ1 : Num(M)→ Num(M+) ⊆ Fq (resp. ρ2 : Num(M)→ Num(M−) ⊆ Fq).

Thus for arbitrary q we have

(1) max{|Num(M+)|, |Num(M+)|} ≤ |Num(M)|.

Since Num(M+) ⊆ Fq, Num(M−) ⊆ Fq, 〈u,Mu〉 = 〈u,M+u〉+β〈u,M−〉, 〈u,M+u〉 ∈
Fq and 〈u,M−u〉 ∈ Fq (Remark 4), we have

(2) |Num(M)| ≤ |Num(M+)||Num(M−)|.

Remark 2. If q = 2 and n = 2 with M = (mij), i, j = 1, 2, then Num(M) =
{m11,m22} ([1, Remark 8]).

Remark 3. Fix c, d ∈ Fq2 and k ∈ Fq. For any n× n matrix M over Fq2 we have
Numk(cIn×n + dM) = ck2 + dNumk(M).

Remark 4. If M = M†, i.e. if M is a Hermitian matrix, then Num(M) ⊆
Fq ([2, Lemma 1]). In particular for any square matrix N , Num(N+) ⊆ Fq and
Num(N−) ⊆ Fq.

Remark 5. Let TrFq2/Fq
: Fq2 → Fq denote the trace map. The formula a 7→ aq +a

defines the trace map TrFq2/Fq
: Fq2 → Fq (case m = 2 of [19, Definition 2.22]). The

function TrFq2/Fq
: Fq2 → Fq is Fq-linear and non-zero ([19, Theorem 2.23]) and

hence it is surjective with as its kernel a 1-dimensional Fq-linear subspace of Fq2

seen as a 2-dimensional Fq-vector space. Since TrFq2/Fq
is an Fq-linear surjective

map, for each a ∈ Fq the set Tr−1
Fq2/Fq

(a) is an affine Fq-line and in particular

|Tr−1
Fq2/Fq

(a)| = q.

We use the following lemma proved in [2].

Lemma 1. ([2, Lemma 2]) Assume q 6= 2 and take M ∈ M2,2(Fq2) such that

M† = M . Then either M = cI2×2 with c ∈ Fq, or M has two distinct eigenvalues
c1, c2 ∈ Fq and M is unitarily equivalent to c1I1×1 ⊕ c2I1×1, or M has a unique

eigenvalue c ∈ Fq2 (and hence c ∈ Fq), dim ker(M − cI2×2) = 1 and ker(M − cI2×2)
is generated by v ∈ F2

q2 with 〈v, v〉 = 0.

Remark 6. Fix a ∈ F∗q . Since q + 1 is invertible in Fq, the polynomial tq+1 − a
and its derivative (q + 1)tq have no common zero. Hence the polynomial tq+1 − a
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has q + 1 distinct roots in Fq. Fix any one of them, b. Since aq−1 = 1([14, page 1],

[19, Theorem 2.8]), we have bq
2−1 = 1. Hence b ∈ F∗q2 . Thus there are exactly q+ 1

elements c ∈ F∗q2 with cq+1 = a.

We need the following 4 results proved in [1, 2, 8].

Proposition 6. ([1, Proposition 1], [8, Lemma 3.5]) Assume n = 2 and that M
has a unique eigenvalue, c, that its eigenspace has dimension 1, and that 〈v, v〉 6= 0
for some eigenvector v. Set ρ := q/2− 1 if q is even and ρ := (q− 1)/2 if q is odd.
Then |Num(M)| = 1 + ρ(q + 1) and Num(M) is the disjoint union of {c} and ρ
disjoint hermitian circles with centers at c.

Proposition 7. ([2, Proposition 1]) Assume n = 2 and that M has eigenvalues
c1, c2 ∈ Fq2 and vi ∈ F2

q2 \ {0}, i = 1, 2, such that c1 6= c2, Mvi = civi and

〈vi, vi〉 = 0 for all i. Then |Num(M)| = q and Num(M) = {t ∈ Fq2 | tq + t = 1}.

Proposition 8. ([2, Proposition 2], [8, Lemma 3.6]) If q is odd, set ρ = (q− 1)/2.
If q is even, set ρ := q/2−1. Assume n = 2 and that M has 2 different eigenvalues
c1, c2 ∈ Fq2 and that for each i = 1, 2 there is vi ∈ F2

q2 with Mvi = civi and

〈v1, v1〉 6= 0. Assume 〈v1, v2〉 6= 0, i.e. assume that M has not a unitary basis.
Then Num(M) is the union of {c1, c2} and ρ Hermitian circles and hence we have
Num(M) ≤ 2 + ρ(q + 1).

3. Proofs of Theorems 1 and 2

Proof of Theorem 1: Write M = (mij), i, j = 1, 2. By Remark 2 we may assume
q 6= 2 (note that the assumptions of (ii) imply m11 = m22 if q = 2 by Remark 2).
Part (ii) follows from (2). Part (i) is a logical consequence of parts (ii), (iii), (iv) and
(v). Thus it is sufficient to prove parts (iii), (iv) and (v). Since Num(M+) ⊆ Fq and
Num(M−) ⊆ Fq, we have |Num(M+)| ≤ q and |Num(M−)| ≤ q. By Lemma 1 (or
by [2, Theorem 1]) if |Num(M+)| < q − 1, then |Num(M+)| = 1 and M+ = aI2×2

for some a ∈ Fq. The same holds for M−. Using this observation for M+ and M−
and using (1) and (2) we get that if |Num(M+)| < q − 1, then either M = cI2×2

for some c ∈ Fq2 or q − 1 ≤ |Num(M)| ≤ q, concluding the proof of part (iii).
Now assume |M+| = q, i.e. assume that M+ has two distinct eigenvalues c1, c2 ∈

Fq with c1 6= c2 ([2, Lemma 2]). In this case M+ is unitarily equivalent to c1I1×1⊕
c2I1×1 (Lemma 1). Thus taking U†MU instead of M with U a unitary matrix we
reduce to the case M+ = c1I1×1 ⊕ c2I1×1. Taking (c2 − c1)−1(M − c1I2×2) instead
of M ([8, Lemma 2.7] or [1, Lemma 1]), we reduce to the case c1 = 0 and c2 = 1,
i.e. <m11 = <m12 = <m21 = 0 and <m22 = 1.

Taking βM instead on M if necessary, from now on we assume |Num(M)+| ≥
|Num(M)−|.

(a) Now we also assume |M−| = q. For any A ∈M2,2(Fq2) let ρ1 : Num(A)→
Num(A+) (resp. ρ2 : Num(A)→ Num(A−)) be the surjection induced by the map
< : Fq2 → Fq (resp. = : Fq2 → Fq). Working with M+ we proved (without any
change of the unitary frame) the existence of t0, t1 ∈ Fq such that t0 6= t1, and

|ρ−1
1 (ti)| = 1, i = 0, 1. In the same way we prove the existence of a0, a1 ∈ Fq such

that a0 6= a1 and |ρ−1
2 (ai)| = 1, i = 0, 1. Hence |Num(M)| ≤ q2 − 4q + 8, proving

part (v).
(b) Assume |M−| = q − 1. Since ρ2 is well-defined and |M−| = q − 1, to

prove part (iv) of Theorem 1 it is sufficient to prove that 1 + βk ∈ Num(M) with



NUMERICAL RANGE 7

k ∈ Fq if and only if k = =m22. Take u = (x, y) ∈ F2
q2 and assume u ∈ C2(1),

i.e. xq+1 + yq+1 = 1. We have 〈u,Mu〉 = 1 + βk if and only if 〈u,M+u〉 = 1
and 〈u,M−u〉 = k. We have 〈u,M+u〉 = yq+1 and thus 〈u,M+u〉 = 1 if and
only if x = 0. If x = 0 and hence yq+1 = 1 we have 〈u,M−u〉 = =m22. Hence
|Num(M)| ≤ q2 − 2q + 2. �

Proof of Theorem 2: By [2, Theorem 1] to prove Theorem 2 it is sufficient to prove
the case q ≥ 4, q even and n ≥ 3. All cases with n ≥ 3 of the proof of [2, Theorem
1] work verbatim for all even q 6= 2, except step (b2.2). Thus it is sufficient to prove
Theorem 2 in the case q even, q 6= 2, n = 3, and for the following very particular
Hermitian matrices

A =

 1 a12 a13

aq12 1 a23

aq13 aq23 1


with a12, a13, a23 ∈ Fq \ {0}. More precisely, it was proven that Fq \ {0} ⊆

Num(A) ⊆ Fq and so Theorem 2 is true for A if and only 0 ∈ Num(A). For all
x, y, z ∈ Fq2 set h(x, y, z) := 〈u,Au〉 and h1(x, y, z) := h(x, y, z)−xq+1−yq+1−zq+1

with u = (x, y, z) ∈ F3
q2 . Since

Au = (x+ a12y + a13z, a
q
12x+ y + a23z, a

q
13x+ aq23y + z),

we have

h1(x, y, z) = a12x
qy + a13x

qz + aq12xy
q + aq13xz

q + a23y
qz + aq23y

qz.

Take (a, b, c) ∈ F3
q2 and assume h(a, b, c) = 0 and k := 〈(a, b, c), (a, b, c)〉 6= 0,

i.e. assume k := aq+1 + bq+1 + cq+1 6= 0. Since |F∗q | = q − 1 and F∗q2 is a cyclic

group of order (q + 1)(q − 1), there is t ∈ Fq2 such that tq+1 = 1/k. Thus, setting
u := (tx, ty, tz), we have 〈u,Au〉 = 0 and 〈u, u〉 = 1. Thus u would prove that
0 ∈ Num(A). Thus to conclude the proof of Theorem 2 we may assume that no
such triple (a, b, c) exists, i.e. that {h(x, y, z) = 0} ⊆ {xq+1 + yq+1 + zq+1 = 0}.
Set H := {xq+1 + yq+1 + zq+1 = 0} ⊂ F3

q2 . The set H is the affine cone of the

Hermitian curve of P2(Fq2) ([14, 15, 16]) and we may see in this way (or check
directly), that the degree q + 1 homogenous polynomial xq+1 + yq+1 + zq+1 is
irreducible. Since the degree q + 1 homogeneous polynomial h(x, y, z) is not a
multiple of xq+1 + yq+1 + zq+1, Bezout’s theorem applied to the curves of P2(Fq2)
given by these homogeneous degree q+1 polynomials shows that {h(x, y, z) = 0} has
at most 1+(q2−1)(q+1)2 elements. We have 1+(q2−1)(q+1)2 = q4 +q3−q2. Set
∆′ := {h(x, y, z) = 0} and ∆ := {h1(x, y, z) = 0}. Since ∆∩H = ∆′∩H, it would be
sufficient to prove that |∆| > q4 +q3−q2. Set g(x, y, z) := a12x

qy+a13x
qz+a23y

qz.
Let Tr : Fq2 → Fq denote the trace. The trace Tr is non-zero, Fq-linear and defined
by the formula Tr(t) = tq + t. Thus the set γ := {Tr(t) = 0} ⊆ Fq2 is a 1-
dimensional Fq-subspace of Fq2 . Since q is even, we have tq + t = 0 if and only
if tq = t, i.e. if and only if t ∈ Fq ([19, Theorem 2.5]). We get that ∆ is the
set of all (a, b, c) ∈ Fq such that g(a, b, c) ∈ Fq. The Frobenius map t 7→ tq is a
bijection of Fq2 . Since a13 6= 0, a23 6= 0 and the Frobenius map is injective, the
set γ1 := {(a, b) ∈ F2

q2 | a13x
q + a23y

q = 0} has q2 elements. Fix t ∈ Fq and

(a, b) ∈ F2
q2 \ γ1. There is a unique z ∈ Fq such that z(a13a

q + a23y
q) + a12a

qb = t.

Varying a, b and t get a subset Ψ of ∆ with cardinality q(q4 − q2). Since q ≥ 4, we
have q5 − q4 > q4 + q3 − q2. �
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4. Specific matrices

Lemma 2. The ellipse A of Fq2 associated to (d, k) has cardinality q + 1, unless
dq+1 = 1.

(1) If dq+1 = 1 and q is even, then |A| = 1 + (q/2).
(2) If dq+1 = 1, q is odd and either dk(1− k) is not a square in Fq2 or any of

its square roots, c, has cq+1 = −k(1− k), then |A| = (q + 1)/2.
(3) Assume dq+1 = 1 and q odd. If dk(1 − k) is not as in (2), then |A| =

(q + 3)/2.

Proof. Since k(1−k) ∈ Fq\{0} and F∗q2 is a cyclic group of order (q+1)(q−1), the set

B := {z ∈ Fq2 | zq+1 = k(1− k)} has cardinality q+ 1. Thus to prove the first part
it is sufficient to prove that if z, w ∈ B and dzq + z = dwq +w, then z = w, unless
dk+1 = 1. Take z, w ∈ B with z 6= w and dzq + z = dwq + w, i.e. (since zw 6= 0)
with dzq+1w+z2w = dzwq+1 +zw2, i.e. with dk(1−k)w+z2w = dk(1−k)z+zw2.
Set fz(t) = dk(1 − k)z + zt2 − dk(1 − k)t − z2t. Since z 6= 0, the polynomial
fz(t) is a degree 2 polynomial with fz(z) = fz(w) = 0, zt2 as its leading term and

dk(1 − k)z as its constant term. Hence dk(1 − k) = wz. Thus w = dk(1−k)
z and

dq+1kq+1(1− k)q+1 = (wz)q+1 = k2(1− k)2, i.e. dq+1 = k1−q(1− k)1−q = 1 (since

kq−1 = (1− k)q−1 = 1). For arbitrary d and z 6= 0 we have zfz(dk(1−k)
z ) = dk(1−

k)z2+d2k2(1−k)2−d2k2(1−k)2−z2dk(1−k) = 0. Thus if (dk(1−k)
z )q+1 = k(1−k),

i.e. dq+1 = 1 we have a solution w 6= z if and only if z2 6= dk(1− k).
First assume q even. In this case there is a unique α ∈ Fq2 with α2 = dk(1− k).

Since (α2)q+1 = dq+1kq+1(1− k)q+1 = k2(1− k)2, αq+1 is the unique t ∈ Fq2 with
t2 = k2(1− k)2 and so αq+1 = k(1− k), i.e. α ∈ B. Thus |A| = 1 + (q/2).

Now assume q odd. If dk(1 − k) is not a square in Fq2 , then z2 6= dk(1 − k).
Hence |A| = (q + 1)/2 if dk(1 − k) is not a square. Now assume dk(1 − k) = c2

for some c ∈ Fq2 . We have (cq+1)2 = k2(1 − k)2 and hence either cq+1 = k(1 − k)
or cq+1 = −k(1 − k). Note that (−c)q+1 = cq+1 and so if cq+1 = −k(1 − k), then
no solution of t2 = dk(1 − k) is contained in B. If cq+1 = k(1 − k), then we have
exactly two z ∈ B with z = w (c and −c). We are in Case (3). �

Lemma 3. Assume q odd and fix a, b ∈ Fq2 with a 6= b. Set Θ := {z ∈ Fq2 |
zq−1 + 1 = 0} and Aa,b := {z ∈ Fq2 | (z − a)q+1 = (z − b)q+1}. Then Aa,b =
{(a+ b)/2} ∪ {(a+ b)/2 + t(b− a)/2}t∈Θ, |Aa,b| = q and Aa,b is an Fq-line of the
two-dimensional Fq-space Fq2 containing (a+ b)/2.

Proof. Note that (a + b)/2 ∈ Aa,b. Set S′ := Aa,b − (a + b)/2 (translation) and
S := 2

b−aS
′. We have S = A−1,1. By Remark 5 it is sufficient to prove that

S = {0} ∪ Θ, i.e. that S = {z ∈ Fq2 | zq + z = 0}. We have (z − 1)q+1 =
(z−1)q(z−1) = (zq−1)(z−1) = zq+1 +1−zq−z and (z+1)q+1 = zq+1 +1+zq +z.
Thus (z − 1)q+1 = (z + 1)q+1 if and only if 2(zq + z) = 0. �

Lemma 4. Assume q odd. Take a circle S = {(z−a)q+1 = b} and u, v, w ∈ S such
that |{u, v, w}| = 3. Then (with the notation of Lemma 3) we have Au,v ∩ Au,w =
{a}.
Proof. Obviously the center of S is contained in all AO,Q for all O,Q ∈ S such that
O 6= Q. Thus it is sufficient to prove that Au,v 6= Au,w. By Lemma 3 the affine
Fq-line Au,v (resp. Au,w) is spanned by a and (u + v)/2 (resp. a and (u + w)/2).
Thus Au,v 6= Au,w. �



NUMERICAL RANGE 9

Lemma 5. Assume q odd. Two distinct circles have at most 2 common points and
any 3 distinct points of Fq2 are contained in at most one circle.

Proof. Use Lemma 4 and that a circle is uniquely determined by its center and one
of its points. �

Proof of Proposition 4: By Proposition 8 Num(M) is the union of 2 points and q−2
circles. If q = 3 use the unique circle. For q ≥ 5 use the first (q + 1)/2 circles. By
Lemma 5 we get |Num(M)| ≥ (q+1)(q+1)/2−2(q+1)(q−1)/8 = (q+1)(q+3)/4. �

Remark 7. Take M ∈ M2,2(Fq2). There are u1 and u2 with c := 〈u1,Mu1〉 =
〈u2,Mu2〉 and 〈u1, u2〉 = 0 if and only if M − cI2,2 is as in Proposition 1.

Proof of Proposition 1: Since 〈 , 〉 is non-degenerate and 〈u1, u2〉 = 0, we have
〈ui, ui〉 6= 0, i = 1, 2. Since F∗q2 is a cyclic group of order (q + 1)(q − 1) and F∗q is

a subgroup of F∗q2 of order q − 1 ([19, Theorem 2.5]), there is zi ∈ Fq2 such that

zq+1
i = 1/〈ui, ui〉. Set fi := ziui. We have 〈fi, fi〉 = 1, i = 1, 2, and 〈fi, fj〉 = 0 for

all i 6= j. Take U such that Uei = fi for all i. We have 〈u,Nu〉 = 〈Uu,MUu〉 for all
u ∈ Fn

q2 and hence Num(N) = Num(M). Let f(t) be the characteristic polynomial

of N . We have b = b′ = 0 if and only if M = 0I2×2. Part (i) is obvious.
(a) Assume b′ = 0 and b 6= 0. Hence 1

bN is as in Proposition 6 and in particular
1
bN is the union of 0 and ρ different circles with center 0.

(b) Assume b = 0 and b′ 6= 0. The transpose N t of N is as in step (a) . For any
matrix A ∈ Mn,n(Fq2) and any u ∈ Fn

q2 we have 〈u,Au〉 = 〈A†u, u〉 = (〈u,A†u〉)q.

If A ∈Mn,n(Fq), then At = A†. We apply this observation to the matrix 1
b′N . The

q-power of a circle centered at 0 is the same circle. Hence 1
b′ Num(M) is as in step

(a), concluding the proof of (ii).
(c) From now on we assume bb′ 6= 0. Since F∗q4 is a cyclic group of order

(q2 + 1) · |F∗q2 |, there is c ∈ Fq4 such that c2 = bb′. Hence over Fq4 we have

f(t) = (t+ c)(t− c).
(c1) Assume q even. In this case every element of Fq2 is a square and hence

c ∈ Fq2 . In this case we have f(t) = (t − c)2 and c is the unique eigenvalue of N .
Since N is not a multiple of the diagonal, its eigenspace V1 = ker(N − cI2×2) has
dimension 1 and (N−cI2×2)(V1) = V1. Since (b, b′) 6= (0, 0), e2 is not an eigenvector
of N , and we may take v = e1 +ye2 as a generator of V1. Thus v 6= 0 and Nv = cv,
i.e. c = by and cy = b′. We have 〈v, v〉 = 1 + yq+1. First assume yq+1 6= 1. In this
case N has an eigenvector u such that 〈u, u〉 6= 0 and u spans the only eigenspace
of N , because N 6= cI2×2. Thus (N − cI2×2) is a multiple of one of the matrices
considered in Proposition 6, and hence Num(N) is the union of {c} with q/2 − 1
distinct circles centered at c. Now assume yq+1 = 1. In this case 〈v, v〉 = 0 and
|Num(M)| = q − 1 by Theorem 2.

(c2) Now assume q odd and that bb′ is a square in Fq2 . In this case both
c and −c are eigenvalues of N . Since neither e1 nor e2 is an eigenvector of N ,
we may find eigenvectors v1 (resp. v2) of N with respect to c (resp. −c) with
vi = e1 + yie2. We have y1 = c and y2 = −c. Thus 〈vi, vi〉 = 1 + cq+1, i = 1, 2,
and 〈v1, v2〉 = 1− cq+1. First assume cq+1 /∈ {−1, 1}. In this case N has 2 distinct
eigenvectors with non-zero hermitian norm and not mutually orthogonal. The set
Num(M) is described in Proposition 8 and in Corollary 4 as a union of q − 2 not
necessarily disjoint circles plus 2 points (sometimes in the circles). Now assume
cq+1 = −1. In this case |Num(M)| = q and Num(M) = {zq + z = 0} (Proposition
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7). Now assume cq+1 = −1. In this case M and N are unitarily equivalent to a
diagonal matrix with c and −c on the diagonal. Hence Num(M) = Fqc.

(c3) Now assume q odd and that bb′ is not a square. Take u = xe1 + ye2

with 〈u, u〉 = 1, i.e. with xq+1 + yq+1 = 1. We have 〈u,Nu〉 = bxqy + b′xyq. Set
E := 1

b′N and d := b/b′. We have 〈u,Eu〉 = dxqy + xyq. Taking either x = 0 and

as y any element of Fq2 with yq+1 = 1 (e.g. taking y = 1) or taking y = 0 and
as x any element of Fq2 with xq+1 = 1 (e.g. taking x = 1) we get 0 ∈ Num(E)
and hence 0 ∈ Num(M). Now assume xy 6= 0. Fix k ∈ Fq \ {0, 1} and consider
the subset of Num(M) obtained from all u = (x, y) ∈ C2(1) with yq+1 = k and
hence xq+1 = 1 − k. Set z := x/y. We have zq+1 = (1 − k)/k. Conversely, for

any z ∈ Fq2 and for any y0 ∈ Fq2 with yq+1
0 = k, we have (z/y0)k+1 = 1 − k

and so z = x0/y0 with x0 := z/y0 and xq+1
0 = 1 − k. Since yq+1 = k we have

〈u,Eu〉 = k(dxqy + xyq)/yk+1 = k(dzq + z). Hence the part of Num(E) coming
from all x, y with xq+1 = 1− k and yq+1 = k is an ellipse associated to (d, k). �

Proof of Proposition 2: Take u = (x, y) ∈ F2
q2 with 〈u, u〉 = 1, i.e. with xq+1 +

yq+1 = 1. If x = 0, i.e. y is any y with yq+1 = 1, e.g. y = 1, then 〈u,Mu〉 = m22 =
−a. If y = 0, i.e. xq+1 = 1 (e.g. x = 1), then 〈u,Mu〉 = m11 = a. Now assume
xy 6= 0 and k := yq+1. We have xk+1 = 1−k. We have Mu = (ax+by, dx−ay) and
〈u,Mu〉 = axq+1 +bxqy+dxyq−ayq+1 = bxqy+dxyq +a−2ka. Let A(k, a, b, d) be
the set of all 〈u,Mu〉 − a+ 2ka for all u = (x, y) with xq+1 = 1− k and yq+1 = k.
The proof of Proposition 1, case bb′ not a square in Fq2 , gives that 1

dB(k, a, b, d) is
an ellipse of type (b/d, k). �

Proof of Proposition 3. We have c1, c2 ∈ Fq. Taking M − (c1 + c2β)I2×2 instead of
M we reduce to the case c1 = c2 = 0. Write M = (mij), i, j = 1, 2. Since u1 and u2

are not proportional, they form a basis of F2
q2 . Write M = (bij), i, j = 1, 2, in the

basis u1, u2. By assumption <a11 = <a21 = <a22 = 0, =a11 = =a22 = =a12 = 0
and there are b, d ∈ F∗q2 such that <a12 = b and =a12 = d. Since 〈 , 〉 is non-

degenerate and 〈ui, ui〉 = 0, i = 1, 2, we have 〈u1, u2〉 6= 0. Taking a multiple of u1

instead of u1 if necessary we reduce to the case 〈u1, u2〉 = 1. Thus 〈u2, u1〉 = 1.
Take u = xu1 + yu2 ∈ F2

q2 with 〈u, u〉 = 1, i.e. with xqy + xyq = 1. We have

Mu = xbu1 + βdyu2 and 〈u,Mu〉 = yqxb + βdyxq. Since xqy = 1 − xyq, we get
〈u,Mu〉 = b + (b − βd)yqb. Since q − 1 = |Num(M+)| ≤ |Num(M)| by (1), we
have b − βd 6= 0. Hence (Num(M) − b)/(b − βd) is the set ∆ of all yqx such
that xqy + xyq = 1. Note that xy 6= 0 for all (x, y) ∈ ∆. Fix c ∈ F∗q2 and set

Θc := {z ∈ Fq2 | zq + z = c−q−1}. Since Θc = Tr−1
Fq2/Fq

(c−q−1), we have |Θc| = q.

Take any z ∈ Θc and set x := zc and y := c. Since z ∈ Θc, we have xqy + xyq = 1.
Thus zcq+1 = xqy ∈ Num(M). Since c 6= 0, zcq+1 6= wcq+1 for all z 6= w. Hence Θc

gives a subset ∆c of Num(M) with cardinality q. Thus to prove that |Num(M)| = q
it is sufficient to prove that ∆c ⊆ ∆1. Fix z ∈ Θc, i.e assume

(3) zqcq+1 + zcq+1 = 1.

Take w := zcq+1. Since c ∈ Fq2 , we have cq(q+1) = cq+1. Hence wq = zqcq+1. Thus
(3) gives w ∈ Θ1. Thus wq · 1 ∈ ∆1. Since (zc)qc = wq, ∆c ⊆ ∆1. �

Proof of Proposition 5: Taking M−dI4×4 instead of M we reduce to the case d = 0
with d1 − d instead of d. For any u = (x1, x2, x3, x4) we have

Mu = (b1x2, b6x1 + (d1 − d)x2 + b2x3 + b3x4, b4x4 + b5x2, b7x2)
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and hence

〈u,Mu〉 = xq2(b6x1 + (d1 − d)x2 + b2x3 + b3x4) + x2(b1x
q
1 + b5x

q
3 + b7x

q
4) + b4x

q
3x4

Fix c ∈ Fq2 and set x3 := 1, x4 = c/b4 and x2 = 0. For any x1 we have 〈u,Mu〉 = c.

Take x1 such that xq+1
1 = k − xq+1

4 − xq+1
3 − xq+1

2 = k − 1 − cq+1/bq+1
4 (Remark

6). �
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