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Abstract— Non-Intrusive Load Monitoring (NILM) implies
disaggregating the power consumption of individual appliances
from a single power measurement point. Recent approaches
use a mix of low and high-frequency features, but real-time
NILM on low-cost and resource-constrained smart meters
is still challenging due to the computing effort needed for
feature extraction and classification. In this paper, we present a
thorough survey on low, mid, and high-frequency features for
enabling the deployment of NILM algorithms on edge-devices.
We compare four different supervised learning techniques on
different use-cases. Moreover, we developed a novel Microcon-
troller (MCU) based Smart Measurement Node for collecting
measurements, providing computational capabilities to perform
NILM on-the-edge. Experimental results demonstrate that by
selecting the proper features, a robust disaggregation model
for real-time load monitoring is feasible on our MCU-based
meter with an accuracy of 95.99%, relying on merely 9.4kB of
memory requirements and 16K MACs operation.

I. INTRODUCITON

Non-Intrusive Load Monitoring (NILM) enables the dis-
aggregation of the overall household power consumption
taken from a single measurement point into appliance-level
information. Since its introduction in 1992 [1], NILM has
become an extremely active field of research. Recent ap-
proaches focus on the exploitation of a rich set of electrical
features. The fusion of low and high-frequency features
has been demonstrated to bring tangible benefits in load
disaggregation [2]. However, high-frequency multi-feature
NILM techniques rely on significant computing capabili-
ties. As a consequence, the state-of-the-art framework on
NILM requires server-based systems. Figure 1 depicts the
typical Remote NILM architecture. A local meter collects
household measurements, while a capable server-side back-
end performs computationally demanding disaggregation and
classification techniques. Wireless communication enables
a two-way data stream between the two sides, with high
bandwidth reserved for data uplink.

Recent studies demonstrated that real-time appliance-level
information could lead to energy savings over 5-20% [3].
Server-based frameworks do not scale appropriately in terms
of communication bandwidth and privacy. Furthermore, they
raise significant privacy concerns. Hence, there is a critical
need for effective load monitoring and analysis based on in-
situ data processing.

Enabling load monitoring on edge-devices is challenging
due to memory and computing power constraints. As a

Fig. 1: Non-Intrusive Load Monitoring Architecture

consequence, the trade-off between algorithm complexity
and accuracy needs to be explored to design a smart node
that performs local, real-time NILM.

Low-cost commercial power meters are not well-suited
for running advanced NILM algorithms because they do not
offer sufficient computational capabilities, and often they
cannot even sample current and voltage at a high enough
frequency. To tackle the shortcomings of current power
meters, we developed a novel Smart Measurements Node.
As shown in Figure 1, we designed the device to cut out
remote server processing. In this regard, we need to carefully
assess the set of features that need to be extracted, satisfying
the limitations of resource-constrained embedded processors.
Furthermore, we need to also assess the memory demands of
the disaggregation algorithm, since memory severely impacts
cost.

The paper presents the following contributions:

1) We developed a low-power MCU-based data acquisition
system, the Smart Measurement Node, capable of high-
frequency current and voltage measurements. The on-
board modules enable wireless data streaming as well
as ultra-low-power computation.

2) We present an in-depth survey of electrical frequency
features and an analysis of the trade-off between com-
puting overhead and disaggregation accuracy. Our anal-
ysis shows that a limited set of low-frequency features
is suitable for accurate at-the-edge monitoring with
affordable computational effort.

3) We compare four memory-constrained supervised learn-
ing techniques on load classification scenarios, showing



that a Random Forest (RF) algorithm reaches an ac-
curacy of 96.76% on a complex extended event-based
scenario.

The paper is organized as follows. In Section II, we present
related works, and we discuss the recent approaches for load
disaggregation. Section III describes the hardware of the
Smart Measurement Node. Section IV highlights the crucial
stages of the NILM framework, including data acquisition,
features extraction, and disaggregation. Experimental results
of our exploration of feature extraction and disaggregation
algorithms are reported in section V. Concluding remarks and
plans for future works complete this paper.

II. RELATED WORK

Non-Intrusive Load Monitoring (NILM) is the task of dis-
aggregating the power consumption of individual appliances
from a single current and voltage measurement point, usually
at the main power inlet of a household. The NILM research
field is vast and includes several different areas. A significant
preliminary partition is between supervised and unsupervised
learning. As stated by Klemenjak [4], the distinctive factor is
whether or not ground-truth data is available for the training
phase. In this work, we manually labeled data and examined
only supervised algorithms.

The seminal paper on load disaggregation is by Hart [1].
He introduced different NILM scenarios and implemented a
model-based approach to accurately decompose the aggre-
gate load into individual components using low-frequency
features. His approach presents fair accuracy when using
ordinary ON/OFF appliances but fails when applied to more
sophisticated appliances, such as Finite State Machine ap-
pliances (FSM) or Continuously Variable Devices (CVD).
Many researchers tried to disaggregate the mains power
using real power as a single feature [5]. Unfortunately, this
approach does not discriminate loads with similar power
consumption characteristics. Others tried to overcome the
limitations of power-based methods analyzing current and
voltage waveforms [6]. The method proved to be successful,
excluding CVD loads and simultaneous appliances activa-
tion.

Along with the growing interest in Machine Learning
(ML), ML-based NILM method gained popularity. These
approaches differentiate in the choice of input features and
classification algorithm [7]. Many algorithms use data col-
lected at sampling rates around one Hz, like J. Kelly [8] that
introduced the first application of Neural Networks (NN) to
NILM. Other methods based on the use of Fourier series
analysis have gained traction for classifying non-linear and
complex dynamic loads [9]. In this regard, a recent approach
samples at one MHz, and extracts EMI features in the
frequency domain to classify using a kNN algorithm [10].

While the most significant advantage of the low-frequency
approach is its applicability in low-cost smart meters, the
higher frequency approach can recognize very hardly distin-
guishable loads. Since both types have their shortcomings,
the method explored in this paper combines low and high-

Fig. 2: Schematic overview of the Smart Measurement
Node

frequency features following the proposal of T. Bernard et
al. [2] for a single-channel blind source separation problem.

III. SYSTEM ARCHITECTURE

The Smart Measurement Node integrates two microcon-
troller units (MCU), as shown in Figure 2. One is the
STM32F4, a 32bit STMicroelectronics MCU based on the
ARM Cortex-M4 core with 128kBytes of FLASH memory
and 32kBytes of RAM. The core runs up to 100MHz and
allows a computing power of 1.25DMIPS/MHz. In run mode,
dynamic power scaling enables the current consumption to
be as low as 89 µA/MHz. The second MCU is GAP8, a 32bit
ultra-low-power IoT-edge computing engine. The System-on-
Chip (SoC) features a Fabric Controller (FC) core coupled
with an 8-core Cluster. All cores support the same extended
RISC-V instruction set architecture (ISA) that enables DSP-
centric operations, such as Single Instruction Multiple Data
(SIMD) instructions. GAP8 does not include data caches but
features a 512kBytes of L2 memory accessible by all cores
and two smaller L1 memories: 16kBytes for the Fabric Con-
troller (FC) and 64kBytes as multi-banked shared scratchpad
memory for the Cluster. Moreover, the SoC integrates two
instruction caches: 4kBytes for the FC and 16kBytes for
the Cluster. The extremely energy-efficient design enables
a deep-sleep power of 3.6 µW and allows up to 10 GMAC/s
(90 MHz, 1.0V) at the energy efficiency of 600 GMAC/s/W
within a worst-case power envelope of 75 mW. In this work,
the STM32F4 is in charge of measurement settings, data
acquisition, and streaming it to a server. GAP8 will be used
in the future to run the NILM algorithm in-situ.

The node features an analog front-end consisting of two
instances of the LTC1407A, a dual-channel ADC from
Linear Technology capable of sampling rates up to 1.5Msps
while recording simultaneously, and a resolution up to 14bit
with 16384 discrete digital values. As a result, the 0V to 2.5V
unipolar full-scale input range leads to a voltage resolution
of 152 µV. The 80dB Common Mode Rejection Ratio
(CMMR) at 100kHz allows eliminating efficiently common-
mode noise by measuring signals differentially from the
source. On the other hand, the 74 dB Signal-to-Noise Ra-
tio (SNR) at 100Hz highlights the low-noise performance.
The typical power consumption of 14mW contributes to
the overall energy efficiency of the node. Furthermore, the
analog stage provides an Isolated Interface, which contains a
voltage divider and a Shunt resistor to measure voltage and
current, and a Non-Isolated Interface, with the possibility to
use Rogowski Coils and Hall-Effect Sensors. In this paper,



we used the Isolated Interface because it allows for direct
and simultaneous sampling of current and voltage.

The system also integrates the WF121 WiFi module by
Bluegiga Technologies. The device features a 2.4GHz 802.11
b/g/n radio and a 32bit MCU, which provides low-level
programming drivers and an API for typical use cases. To
test the Wi-Fi bandwidth, we send 256-byte-sized packets
to a server awaiting the receiving end. The measured net
bandwidth on a total transmission size of 2.56MBytes is
800kbps, which translates into an upload sample rate of
57ksps (28.5ksps, respectively) with 14bit of sample reso-
lution.

The firmware running on our Smart Measurement Node
consists of different stages. A preliminary phase establishes
a Wi-Fi connection to the client-server as well as switches the
Wi-Fi module in streaming mode. An advanced control timer
sets a sampling rate of 20kHz by enabling the ADC to start
acquiring current and voltage measurements. Considering
STM low-level drivers work only with multiples of bytes, we
store two 14bit samples in 4-Byte-Arrays. The four unused
bits allow marking buffer overflows. The Serial Peripheral
Interface (SPI) streams data operating at a frequency of
16Mbps, while on the active MCU, the Direct Memory
Access (DMA) handles the reception. To reduce the noise
induced by the Wi-Fi module, we average two consecutive
measurements, which results in an actual sampling rate of
10kHz. A 512Bytes Ping-Pong buffer helps boosting the
overall throughput overlapping I/O task and data processing.
When one buffer is full, we transmit its content via Universal
Synchronous-Asynchronous Receiver/Transmitter (USART)
to the Wi-Fi module, therefore readily streamed to the
receiving client. A baud-rate of 1Mbps is enough to enable
continuous dual-channel 14bit measurements. On the server-
side, we extract features and process data by using Scikit-
learn ML libraries.

IV. NILM FRAMEWORK

The standard NILM framework consists of three stages. A
data acquisition system collects electrical signals as voltage
and current. In the feature extraction stage, electrical features,
such as real power and harmonics, are extracted. Finally, the
disaggregation algorithm processes the features leading to
appliance-level information.

A. Data Acquisition

To analyze typical NILM scenarios, we recorded house-
hold appliances that appear in publicly available NILM
Dataset, such as BLUED [11]. Our dataset, openly accessible
at [12], includes ten different devices from three categories
described in the literature [1]:

• ON/OFF appliances: Two-states loads such as the light
bulb, the electric coffee machine, and the fan. Even if
the fan has three different power states related to fan
speed, we considered them belonging to the same group.

• FSM appliances: Multi-state devices with a finite num-
ber of working states. The microwave oven represents a

FSM device because its magnetron repeatedly turns on
and off with a transition state in between.

• CVD appliances: Their power consumption changes
continuously depending on the battery charge level and
current workload with no consistent step change. The
monitor, the laptop, the smartphone charger, the head-
phones, the power-bank, and the waveform generator
are CVD devices belonging to our dataset.

To enable load disaggregation on event-free and event-
based NILM scenarios, we divided the dataset into sections,
each for a distinct training and testing phase.
(a) Single Appliances without Switching Events: A Dataset

composed of each appliance individually recorded at a
steady state. The graph in Figure 3.a shows the typical
sine-wave electric current envelope of a linear load, the
fan. This class of acquisitions gives us a clear overview
of devices’ electric current waveform and is highly
practical for event-free classification.

(b) Single Appliances with Switching Events: Recordings
consisting of each appliance, individually collected,
switched on in the middle of the trace. In Figure 3.b,
we observe the electric coffee machine current when
switching from OFF to ON in the first part of the
recording. These measurements target both event-free
and event-based load classification.

(c) Multi-Appliances with/without Superposition: A realis-
tic scenario built by a restricted set of appliances with
two different switching patterns. The first one includes
switching on/off appliances without superposition. In
the second one, each appliance is individually switched
on, then switched off, keeping the same order. Figure 3.c
shows the current superposition of several appliances.
From the nearly sinusoidal waveform, it becomes clear
the presence of linear loads, such as the light bulb
and the monitor, while the recurring peaks are due to
Switched-Mode Power Supply (SMPS) appliances, such
as the power-bank. These measurements are suitable to
validate both event-free and event-based scenarios.

(d) Extended Single Appliances: Data collected to test the
chance of adopting EMI features with more complex
appliances. We recorded a late 2011 MacBook Pro with
an Intel I5 core running from one to four threads. To
effectively stress the laptop, we issued a command from
the terminal, which pushes the CPU until its limit. We
also collected the laptop when running a 4K video
playback to have a different workload comparison. We
recognize in Figure 3.d the ordinary current envelope of
a SMPS as well as CVD device, such as the MacBook
Pro running four threads.

B. Feature Extraction

In this work, we examined the deployment of different
feature vectors composed of low and high electrical fre-
quency features. By multiplying current and voltage samples,
we obtain the instantaneous power. Within a time-frame of
100ms long, accordingly 1000 instantaneous power values,



Fig. 3: Electrical Current Acquisition in 4 Different
Scenarios

we average them and then compute the active, nonactive,
and apparent power. To determine higher frequency fea-
tures, we calculate the Discrete Fourier Transform (DFT) of
electric current samples over the same time-frame. Because
odd harmonic currents constitute efficient features for load
disaggregation, we extract them, resulting in 100 values per
time-frame. The sampling frequency of 10kHz results in
a maximum measurable frequency of 5kHz at a resolution
of 10Hz. Low-frequency features form the first part of the
generated feature vector, while high-frequency features the
second part.

The feature extraction trade-off between frequency compo-
nents and computing resources needed for obtaining them re-
stricts NILM implementation severely. While the number of
low-frequency features makes the computing task lightweight
for resource-constrained devices, DFT has a computational
complexity of O(N×log(N)), where N is the number of
samples. The required computing resources makes an on-
the-edge feature extraction challenging when extending the
frequency range. To evaluate the opportunity of reducing
the feature vector size for enabling lightweight NILM on
resource-constrained and low-power MCUs, we considered
four different feature vectors:

(I) Low-frequency features;
(II) Odd electric current harmonics up to the 10th.

(III) Low-frequency features and odd electric current har-
monics up to the 10th;

(IV) Low-frequency features and odd electric current har-
monics up to the 50th;

In table I, we reported the computational complexity in
terms of Multiply-Accumulation (MAC) operations required
to extract the feature vector in each of the above cases. Push-

ing the extraction process toward high-frequency features
clearly demands to increase the computing effort.

TABLE I: Feature Vector Extraction Computing Effort

Feature Vector MACs

Low-freq. 3K
10 High-freq. 4.6K

Low-freq. + 10 High-freq. 7.6K
Low-freq. + 50 High-freq. 7.7K

C. Disaggregation Algorithms

In the disaggregation stage, supervised learning techniques
process the extracted features breaking down the overall load
profile into appliance-level information. To enable NILM on-
the-edge in the future, we focused on the deployment of
memory-efficient and low computational algorithms. Accord-
ingly, we evaluated the performance of a k-Nearest Neighbor
(kNN), Support Vector Machine (SVM), Multi-Layer Percep-
tron (MLP), and Random Forest (RF) classifiers. Below, we
briefly introduce the algorithms mentioned above.

– kNN: A non-parametric algorithm based on feature
similarity. It can classify an unknown input from the
test set by its k-nearest neighbor learned during the
training phase. Its simplicity and strength as regards the
research space, along with state-of-the-art achievements
obtained by Bernard [2], make this model interesting for
comparisons.

– SVM: A supervised machine learning method capable
of performing multi-class classification. It relies on
finding a set of hyper-planes in high dimensional space
to classify instances. The algorithm already proved its
potential in many load classification scenarios [13].
As a consequence, we decided to include it in our
experiment.

– MLP: A feed-forward Artificial Neural Network (ANN)
consisting of at least three fully connected layers. Its
capability of learning non-linear models and its flexi-
bility, together with the results achieved in NILM by
Kelly [8], make it an attractive option to evaluate for
our approach.

– RF: An easy-to-use classifier consisting of several mul-
tiple decision trees created at training time. Each tree
provides a class prediction for an input object, and then
the model aggregates the votes to decide the final class.
The high accuracy achieved in different classification
scenarios makes Random Forest models challenging for
load disaggregation.

In Table II, we schematize the computational complexity
and the memory footprint of each algorithm. The memory
demand consists of the number of parameters stored at
inference time into the edge-device. At the same time, the
asymptotic complexity refers to the computing resources
needed for running the algorithm. This latter accounts for
the number of required MAC operations during a single feed-
forward pass, except for the RF classifier where comparisons
(CMP) are the most executed operations. The table clearly
outlines the linking between resources and feature vector



TABLE II: Algorithm Computational Complexity and
Memory Footprint

Model Computational Complexity Memory

SVM O(Nfeatures × Nsv) Nsv

RF O(Nfeatures × Ntrees) Nthreshold × Ntrees

KNN O(Nfeatures × Datasetsize) Nfeatures × Datasetsize
MLP O(

∑Layer−1

i=0
Ini×Outi) Nweights

dimension, further highlighting the need to reduce the feature
vector size to reduce the overall computing effort.

V. EVALUATION

We detail here the results of our analysis. The evaluation
covers the three classification scenarios and the four machine
learning approaches mentioned in the previous section. We
divided the procedure in (i) a preliminary hyperparameter
search, to find the most performing algorithm, and (ii) an
evaluation stage to assess the model performance. The first
stage considers only accuracy as a metric and consists of:

1) Grid Search to tune hyperparameters;
2) 10-Fold Cross-Validation to further test parameters;
3) Comparison to find the most accurate algorithm.

The second one includes:
1) Performance evaluation on the dataset split in 2/3 for

the training set and 1/3 for the testing;
2) Performance evaluation on a dataset from a different

scenario.
In the latter stage, we used precision, recall, and F1 score,
as well as accuracy.

A. Event-Free Load Detection

We trained the algorithms considering a dataset composed
only by instances from the scenario (a), meaning without
switching events. The model is fed with the extracted fea-
tures and is used to predict appliances in the recordings.
The hyperparameter optimization procedure (i) resulted in a
linear kernel SVM with a feature vector consisting of power
measurements as well as electric current harmonics up to the
10th harmonics. The generated model needs 293 Support
Vectors Nsv to identify the optimal separating hyperplane
to maximizes the margin of the training data, while 3809
MAC operations are required to perform the algorithm. The
other models provide good results, as well. In table IV, we

show algorithms accuracy together with parameters, MAC
operations, and memory footprint.

In the evaluation stage (ii), we trained the SVM on
a dataset extended to measurements without superposition
from the scenario (c). From results shown in Table III, we
notice that, even though a fraction of accuracy is lost, the
model still has remarkable accuracy.

TABLE III: SVM Event-Free Performance on Seen/Unseen
Data

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Seen 99.90 99.91 99.90 99.90
Unseen 95.99 98.55 95.99 97.13

Excluding power measurements from the feature vector,
still enables load classification with exceptional results. As
reported in Table V, using only electric current harmonics
up to the 10th led to a low memory-footprint and computa-
tionally lightweight SVM with 99.87% of accuracy.

B. Event-Based Load Detection

To detect appliances in an event-based context, we de-
signed an algorithm described by the flow chart in Figure 4.
Below, we describe the system behavior:

1) Voltage and current acquisition at a sampling rate of
10kHz;

2) Active power calculation over a time-frame of 100ms;
3) Triggering a switching event when a variation in the

active power exceeds a certain threshold;
4) Estimation of the differential feature vector Fdiff after

the event detection trigger;
5) Appending the differential feature vector to the dataset;
6) Training of the model on the new dataset.

The crucial step concerns the estimation of the differen-
tial feature vector, which combines features from different
instants regarding the switching event. We extract features
immediately preceding Fn−1 and following Fn+1 the event,
as well as 10 and 20 samples previously, Fn−10 and Fn−20,
and next, Fn+10 and Fn+20, to the event. We average
the feature vectors before and after the event resulting in
two intermediate vectors, whose subtraction leads to the
differential feature vector.

TABLE IV: Event-Free Performance with III Feature Vector over 10-Fold Cross-Validation

Model Parameters Complexity Memory (kB) Mean Accuracy (%)

SVM Nsv = 293 3809 MAC 9.4 99.96
RF Nthreshold = 50, Ntrees = 10 500 CMP 16 99.90

KNN Datasetsize = 331k 4.3M MAC 10600 99.92
MLP Nweights = 6650 6650 MAC 213 99.76

TABLE V: Event-Free Performance with II Feature Vector over 10-Fold Cross-Validation

Model Parameters Complexity Memory (kB) Mean Accuracy (%)

SVM Nsv = 285 2.85k MAC 9.12 99.87
RF Nthreshold = 10, Ntrees = 1000 10k CMP 32 99.33

KNN Datasetsize = 331k 3.3M MAC 10600 99.92
MLP Nweights = 1.6k 1.6k MAC 51.2 99.85



Fig. 4: Event-Based Detection Flow Chart

Fig. 5: Microwave oven Power Intake

The choice of the power threshold is of paramount con-
cern. The issue at stake is a trade-off between a drop in
the threshold, to raise low-power devices detection, and
the increase of false positive, especially for high-energy
appliances where power fluctuations are more substantial.
To achieve the highest-performance on event detection, we
computed the likelihood detection when varying the power
threshold between 0W to 10W. The experiment resulted in
5W as the most effective threshold, leading to a likelihood
of 99.4% to detect switching events.

Several appliances present oscillating transients when
changing the operating states. Because transitioning shows
a significant power-level shift, we temporarily disable the
detection scheme setting a hysteresis time of 5s to avoid
false positive. Accordingly, we observed from the results of
the likelihood test that our detection system fails mostly on
appliances with several adjacent changing of power states.
As revealed from the microwave oven average active power
intake in Figure 5, the magnetron works through cycles
that alternate between fully-on and fully-off, thus altering
the large scale duty-scale. In between the IDLE and ON
phase, a STARTING transitional state allows the magnetron
to reach the fully-on activity. The FSM easily enables the
OFF/IDLE and STARTING/ON event detection. At the same
time, the short elapsed time in between consecutive states
does not allow to detect the following IDLE/STARTING and
ON/IDLE event.

To assess performance, we restricted the deployed appli-
ances to a set formed by the power-bank, the light bulb,

the monitor, the electric coffee machine, and the fan at
minimum speed. We built the dataset with instances from
the scenario (b), namely with switching events. The in-
depth parameter search (i) led to a RF classifier as the most
accurate algorithm. Power measurements, as well as current
harmonics up to the 10th harmonics, turned out to be the
most suitable feature vector. The accuracy obtained in the
10-Fold Cross-Validation procedure is 98.89%. The classifier
consists of Ntrees=100 estimators and Nleafnodes=10 leaf
nodes, thus leading to a memory requirement of 32kB to
store threshold values and to a worst-case computing effort
of 10K comparisons (CMPs).

TABLE VI: RF Event-Based Performance

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Seen 98.35 98.55 98.35 98.45
Useen 97.67 97.89 97.67 97.66

In the evaluation stage ii), we added unseen instances
with superposition from the scenario (c). We reported in
Table VI the performance scores on both seen and unseen
data. Although there is a low decrease in performance, the
model still performs well, achieving an accuracy of 97.67%.

The results demonstrate that our approach provides com-
petitive accuracy versus state-of-the-art event-based ap-
proaches and, more importantly, enables lightweight NILM
suitable for limited computing capabilities and resource-
constrained embedded systems. In fact, Bernand’s kNN-
based approach [3] on event-based scenario achieves an F1
score of 93%, demanding hundreds MB to store the 3-
day dataset and considerable computing resources for pre-
processing and disaggregating. Our RF event-based approach
reaches an F1 score of 97.66%, requiring only 13k MAC
operations for the reduced feature vector extraction and 10K
comparions (CMP) for each inference, while the memory
footprint is limited to 32kB.

C. Extended Event-Free Load Detection

The last load classification scenario reflects a more com-
plex context, developed to explore the capability of our
approach to classifying even subtle differences in current
and voltage traces, such as those created by a change in the
workload of a laptop. The test dataset consists of instances
from the scenario (a) and (d). As a result, we added classes
related to laptop states.

The comprehensive hyperparameters exploration (i) re-
sulted in pure power measurements as the most efficient
feature vector. kNN classifier enables load detection with
remarkable accuracy at the expense of 3MB memory demand
to store dataset instances. Large memory footprints such as
this are impractical for low-cost resource-constrained MCUs.
As a result, we focused on a more memory-lightweight tech-
nique suitable for edge computing limitations. By demanding
only 5K comparisons (CMP) and 160kB of memory re-
quirement, the RF classifier achieved an accuracy of 92.14%
on the 10-Fold Cross-Validation. In Table VII, we illustrate
the accuracy achieved by the two algorithms together with
parameters, MAC operations, and memory footprint.



TABLE VII: Extended Event-Free Performance over 10-Fold Cross-Validation

Model Parameters Complexity Memory (kB) Mean Accuracy (%)

RF Nthreshold = 50, Ntrees = 100 5k CMP 160 92.14
KNN Datasetsize = 32k 96k MAC 3072 97.79

Fig. 6: Extended Event-Free Confusion Matrix

The confusion matrix reported in Figure 6 gives some
relevant insights. To increase the readability, we cropped the
central section of the original one. The model can classify
laptop states against other appliances correctly. Neverthe-
less, there are some misclassifications. It happens mostly
between MACthreads2, MACthreads3, and MACthreads4,
while MACthread1 seems to be well recognized. We remark
that the accuracy of each appliance is always above 79%,
which is a very promising result.

TABLE VIII: RF Extended Event-Free Performance

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Seen 91.92 92.08 91.92 91.92
Useen 96.76 99.25 96.76 97.91

To check against overfitting, we extended the dataset to
measurements without the superposition of scenario (c). The
results, shown in Table VIII, confirm that the model still
enables load classification on unknown instances achieving
an accuracy of 96.76%.

VI. CONCLUSION

To fully exploit NILM potentiality, real-time feedback
on appliance power consumption is crucial. State-of-the-art
techniques on NILM rely on large memory-footprint and
high-power computing resources, but modern smart meters
are resource-constrained and cannot afford those workloads.

To overcome this computational and storage bottleneck,
we developed a novel flexible and low-power Smart Mea-
surement Node. The device enables voltage and current
acquisition up to a sampling rate of 1.5MHz and a Wi-
Fi bandwidth of 800kbps, meaning 57ksps with 14bit of
sampling resolution. We designed the system with two larger

power computing on-board MCUs to allow NILM at-the-
edge. To reduce feature extraction computing requirements as
well as disaggregation memory footprint, we provided an in-
depth analysis of low and higher electrical frequency features
together with a survey of the trade-off between NILM
accuracy and computing overhead. We tested four different
feature vectors on four different supervised machine learning
techniques. The experiments led us to conclude that a reduc-
tion of feature vector size, without compromising accuracy is
possible. A SVM classifier requiring 9.4kB of 32bit support
vectors and 3.9k MAC operations per inference reaches an
accuracy of 96.74% on the event-free dataset. As for event-
base classification, we achieve accuracy comparable with
SOA, while only requiring requiring 13K MACs for feature
vector extraction and 10K comparisons (CMP) per inference
with just 32kB memory-footprint. This results demonstrates
feasibility of NILM on edge devices. A more extensive
feature vector allows for detecting subtler events. We enable
laptop workload classification with accuracy always above
79% per each thread class, requiring just 160kB of storage.

The future work will target a fully on-the-edge NILM
implementation. The focus will be on porting the full NILM
processing on the two MCUs available on our Smart Mea-
surement Node enabling live disaggregation. The presence of
the single-core (STM32F4) and multicore (GAP8) will allow
a parallel acceleration of the NILM algorithm.
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